
HyDREA: Utilizing Hyperdimensional Computing For A More Robust

and Efficient Machine Learning System

JUSTIN MORRIS, University of California San Diego, La Jolla, CA 92093, USA and San Diego State University,

San Diego, CA 92182, USA

KAZIM ERGUN, University of California San Diego, La Jolla, CA 92093, USA

BEHNAM KHALEGHI, University of California San Diego, La Jolla, CA 92093, USA

MOHSEN IMANI, University of California Irvine, Irvine, CA 92697, USA

BARIS AKSANLI, San Diego State University, San Diego, CA 92182, USA

TAJANA ROSING, University of California San Diego, La Jolla, CA 92093, USA

Today’s systems, rely on sending all the data to the cloud, and then use complex algorithms, such as Deep Neural Networks,
which require billions of parameters and many hours to train a model. In contrast, the human brain can do much of this
learning effortlessly. Hyperdimensional (HD) Computing aims to mimic the behavior of the human brain by utilizing high
dimensional representations. This leads to various desirable properties that other Machine Learning (ML) algorithms lack
such as: robustness to noise in the system and simple, highly parallel operations. In this paper, we propose HyDREA, a
HyperDimensional Computing system that is Robust, Efficient, and Accurate. We propose a Processing-in-Memory (PIM)
architecture that works in a federated learning environment with challenging communication scenarios that cause errors
in the transmitted data. HyDREA adaptively changes the bitwidth of the model based on the signal to noise ratio (SNR) of
the incoming sample to maintain the accuracy of the HD model while achieving significant speedup and energy efficiency.
Our PIM architecture is able to achieve a speedup of 28× and 255× better energy efficiency compared to the baseline PIM
architecture for Classification and achieves 32× speed up and 289× higher energy efficiency than the baseline architecture for
Clustering. HyDREA is able to achieve this by relaxing hardware parameters to gain energy efficiency and speedup while
introducing computational errors. We show experimentally, HD Computing is able to handle the errors without a significant
drop in accuracy due to its unique robustness property. For wireless noise, we found that HyDREA is 48× more robust to
noise than other comparable ML algorithms. Our results indicate that our proposed system loses less than 1% Classification
accuracy, even in scenarios with an SNR of 6.64. We additionally test the robustness of using HD Computing for Clustering
applications and found that our proposed system also looses less than 1% in the mutual information score, even in scenarios
with an SNR under 7𝑑𝐵, which is 57× more robust to noise than K-means.

1 INTRODUCTION

“Federated learning” [1] is a popular model for distributed model training in which a centralized model stored on
a server is “cloned” to some set of devices which all collect the same features. Each device then updates its local
copy of the model and periodically transmits weights to the server, which are used to update the global model
via an averaging operation. Intuitively, federated learning reduces communication costs by transmitting only
model weights instead of raw training data.

Authors’ addresses: Justin Morris, University of California San Diego, La Jolla, CA 92093, USA and San Diego State University, San Diego, CA
92182, USA; Kazim Ergun, University of California San Diego, La Jolla, CA 92093, USA; Behnam Khaleghi, University of California San Diego,
La Jolla, CA 92093, USA; Mohsen Imani, University of California Irvine, Irvine, CA 92697, USA; Baris Aksanli, San Diego State University, San
Diego, CA 92182, USA; Tajana Rosing, University of California San Diego, La Jolla, CA 92093, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).
1539-9087/2022/7-ART
https://doi.org/10.1145/3524067

ACM Trans. Embedd. Comput. Syst.

SEN IMANI, University of California Irvine, Irvine, CA 92697, USA

AKSANLI, San Diego State University, San Diego, CA 92182, USA

NA ROSING, University of California San Diego, La Jolla, CA 92093, USA

systems, rely on sending all the data to the cloud, and then use complex algorithms, such as Deep Neural N
equire billions of parameters and many hours to train a model. In contrast, the human brain can do much
effortlessly. Hyperdimensional (HD) Computing aims to mimic the behavior of the human brain by utiliz
onal representations. This leads to various desirable properties that other Machine Learning (ML) algorith
robustness to noise in the system and simple, highly parallel operations. In this paper, we propose Hy

imensional Computing system that is Robust, Efficient, and Accurate. We propose a Processing-in-Memo
ture that works in a federated learning environment with challenging communication scenarios that caus
ansmitted data. HyDREA adaptively changes the bitwidth of the model based on the signal to noise ratio
ming sample to maintain the accuracy of the HD model while achieving significant speedup and energy effi

M architecture is able to achieve a speedup of 28× and 255× better energy efficiency compared to the basel
ture for Classification and achieves 32× speed up and 289× higher energy efficiency than the baseline archite
ng. HyDREA is able to achieve this by relaxing hardware parameters to gain energy efficiency and speedu
ing computational errors. We show experimentally, HD Computing is able to handle the errors without a sig
accuracy due to its unique robustness property. For wireless noise, we found that HyDREA is 48× more r
an other comparable ML algorithms. Our results indicate that our proposed system loses less than 1% Class
y, even in scenarios with an SNR of 6.64. We additionally test the robustness of using HD Computing for Cl
ions and found that our proposed system also looses less than 1% in the mutual information score, even in s
SNR under 7𝑑𝐵, which is 57× more robust to noise than K-means.

TRODUCTION

ted learning” [1] is a popular model for distributed model training in which a centralized model st
r is “cloned” to some set of devices which all collect the same features. Each device then updates
f the model and periodically transmits weights to the server, which are used to update the globa
averaging operation. Intuitively, federated learning reduces communication costs by transmittin
weights instead of raw training data.

addresses: Justin Morris, University of California San Diego, La Jolla, CA 92093, USA and San Diego State University, San D
A; Kazim Ergun, University of California San Diego, La Jolla, CA 92093, USA; Behnam Khaleghi, University of California S
CA 92093, USA; Mohsen Imani, University of California Irvine, Irvine, CA 92697, USA; Baris Aksanli, San Diego State Unive
A 92182 USA; Tajana Rosing University of California San Diego La Jolla CA 92093 USA

2 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

In “Federated learning”, Hyperdimensional (HD) computing offers three benefits [2]. First, an HD “model”
is simply a collection of bitvectors which may be less burdensome for communication than other state-of-the-
art methods (especially deep neural networks) where the weights are typically floating point values and are
non-negligible in size [3, 4]. While a line of deep neural networks research tries to reduce the parameters of
these models [5], the number of parameters are still higher than HD. Second, local training of the HD model is
extremely simple and more energy efficient than many existing ML techniques [6]. Third, transmitting faulty
model weights in classical ML algorithms may lead to slower training or convergence to a worse local optimum
compared to HD.

The third point is particularly helpful for “Federated learning”. Transmitting model parameters to the central
learning system is done mostly through wireless communication. The noise in a wireless channel can incur
bit-level errors in the transmitted signal and without error correction, could lead to faulty models due to the
noisy data. This is especially true in urban areas where distance is not the only factor adding noise to the wireless
channel, but also large buildings and multiple obstacles in the way that degrade the wireless signal.
We additionally take advantage of the simple and highly parallelizable operations in HD to create an analog

PIM accelerator with adaptable model bitwidths to achieve the best energy and execution time, while maintaining
high accuracy based on the SNR of the wireless channel. This characteristic has made HD the target of various
hardware acceleration frameworks, particularly FPGAs [7], and PIM architectures [6, 8, 9]. Although GPUs and
FPGAs provide a suitable degree of parallelism that makes them amenable to machine learning algorithms such as
deep neural network [10], the complexity of their resources, e.g., floating point units or DSP blocks, is far beyond
the HD requirements, making such devices inefficient for HD. Analog PIM architectures tackle this problem as
they comprise memresistive arrays with intrinsically non-complex computational capability, which is sufficient
for HD operations. Besides block-level parallelism, another remarkable feature of PIM is eliminating the high
cost data movement in the traditional von Neumann architectures as, in PIM, data resides where computation is
performed. Adding a PIM accelerator for HD computing to perform cognitive tasks provides significant speed
up over utilizing the on-board CPU and saves energy with analog computations and less data movement. Our
contributions in this paper are as follows:

• We propose a PIM architecture that adaptively changes the bitwidth of the model based on the SNR of the
incoming sample to maintain the accuracy of the HD model while achieving high speedup and energy
efficiency. Our PIM architecture is able to achieve 255× better energy efficiency and speed up execution
time by 28× compared to the baseline PIM architecture.

• We take advantage of HD Computing’s robustness to errors and relax the precision of ADCs in ISAAC [11].,
which introduces errors, but improves area and energy efficiency. Our architecture also utilizes quantized
values to different bitwidths.

• We additionally evaluate utilizing our accelerator in a federated learning environment, by utilizing a popular
network simulator – NS-3 [12] – to model the communication between devices and simulate wireless noise.
We compared HyDREA with other light-weight ML algorithms in the same noisy environment. Our results
demonstrate that HyDREA is 48× more robust to noise than other comparable ML algorithms. Our results
indicate that our proposed system loses less than 1% Classification accuracy, even in scenarios with an SNR
under 7𝑑𝐵.

• We additionally evaluate HD Clustering to the same wireless communication errors and found that our
proposed system also looses less than 1% in the mutual information score, even in scenarios with an SNR
under 7𝑑𝐵, which is 57× more robust to noise than K-means.

• Finally, we extend our architecture to support HD Clustering and our results show that our PIM architecture
achieves 289× higher energy efficiency and 32× speed up compared to the baseline architecture during
Clustering.

ACM Trans. Embedd. Comput. Syst.

third point is particularly helpful for Federated learning . Transmitting model parameters to the
g system is done mostly through wireless communication. The noise in a wireless channel ca
l errors in the transmitted signal and without error correction, could lead to faulty models due
ata. This is especially true in urban areas where distance is not the only factor adding noise to the w
l, but also large buildings and multiple obstacles in the way that degrade the wireless signal.
dditionally take advantage of the simple and highly parallelizable operations in HD to create an
celerator with adaptable model bitwidths to achieve the best energy and execution time, while main
curacy based on the SNR of the wireless channel. This characteristic has made HD the target of
re acceleration frameworks, particularly FPGAs [7], and PIM architectures [6, 8, 9]. Although GP
provide a suitable degree of parallelism that makes them amenable to machine learning algorithms
ural network [10], the complexity of their resources, e.g., floating point units or DSP blocks, is far
requirements, making such devices inefficient for HD. Analog PIM architectures tackle this pro
mprise memresistive arrays with intrinsically non-complex computational capability, which is su
operations. Besides block-level parallelism, another remarkable feature of PIM is eliminating th
ta movement in the traditional von Neumann architectures as, in PIM, data resides where comput
med. Adding a PIM accelerator for HD computing to perform cognitive tasks provides significan
r utilizing the on-board CPU and saves energy with analog computations and less data moveme
utions in this paper are as follows:

We propose a PIM architecture that adaptively changes the bitwidth of the model based on the SNR
ncoming sample to maintain the accuracy of the HD model while achieving high speedup and
fficiency. Our PIM architecture is able to achieve 255× better energy efficiency and speed up ex
me by 28× compared to the baseline PIM architecture.

We take advantage of HD Computing’s robustness to errors and relax the precision of ADCs in ISAA
which introduces errors, but improves area and energy efficiency. Our architecture also utilizes qu
alues to different bitwidths.
We additionally evaluate utilizing our accelerator in a federated learning environment, by utilizing a
etwork simulator – NS-3 [12] – to model the communication between devices and simulate wireles

We compared HyDREA with other light-weight ML algorithms in the same noisy environment. Our
emonstrate that HyDREA is 48× more robust to noise than other comparable ML algorithms. Our
ndicate that our proposed system loses less than 1% Classification accuracy, even in scenarios with
nder 7𝑑𝐵.

dd ll l Cl h l d f d

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 3

Similarity check

Training Data

Training Data
@ Class k

Training Data
@ Class 2

Training Data
@ Class 1 Encoding

Query

Class 1 (C1)

Class 2 (C2)

Class k (Ck)

In
fe

re
nc

e

Encoding

Encoding

Encoding

Associative Memory

D
is

ta
n

ce
 S

im
ila

ri
ty

T
ra

in
in

g

Training
Module

Inference
Data

Fig. 1. Overview of HD model training and inference.

2 PRELIMINARY

In this section, we first explain the procedures involved in HD algorithm and then review the related work on
HD acceleration and HD robustness to noise.

2.1 Hyperdimensional Computing Classification

Without loss of generality, we explain the steps of HD computing for Classification tasks, though other algorithms,
e.g., Clustering, follow the same procedure, as well. These steps are illustrated by Fig. 1.
(1) Encoding: There are multiple different types of encoding for HD Computing [13–15]. In this paper we

evaluate two different types. The first is Random Projection and the second is ID-Level. Let us assume a feature
vector F = {𝑓1, 𝑓2, . . . , 𝑓𝑛}, with 𝑛 features (𝑓𝑖 ∈ N) in original domain. The goal of the encoding stage is to map
this feature vector to a 𝐷 dimensional space vector: H = {ℎ1, ℎ2, . . . , ℎ𝐷 }.

Random Projection: This encoding was first proposed in [14]. This encoding first generates 𝐷 dense bipolar
vectors with the same dimensionality as original domain, P = {p1, p2, . . . , p𝐷 }, where p𝑖 ∈ {−1, 1}𝑛 . The inner
product of a feature vector with each randomly generated vector gives us a single dimension of a hypervector in
high-dimensional space. For example, we can compute the 𝑖 − 𝑡ℎ dimension of the encoded data as:

ℎ𝑖 = 𝑠𝑖𝑔𝑛(p𝑖 · F)

where 𝑠𝑖𝑔𝑛 is a sign function which maps the result of the dot product to +1 or -1. Thus, to encode a feature
vector into a hypervector, we perform a matrix vector multiplication between the projection matrix and the
feature vector using:

H = 𝑠𝑖𝑔𝑛(PF)

ID-Level: This encoding was first proposed in [13]. The encoding is performed in three steps, which we
describe below. The first step is to create two sets of HVs, 𝐼𝐷 HVs and level HVs. Both ID HVs and level HVs
are 𝐷 dimensional HVs where each element is either −1 or 1. The encoding scheme assigns a unique channel
𝐼𝐷 HV to each feature position. 𝐼𝐷s are hypervectors which are randomly generated such that all features will
have orthogonal channel 𝐼𝐷s, i.e., 𝛿 (𝐼𝐷𝑖 , 𝐼𝐷 𝑗) < 5, 000) for 𝐷 = 10, 000 and 𝑖 ≠ 𝑗 ; where the 𝛿 measures the
element-wise similarity between the vectors. The HD computing encoder also generates a set of level HVs to
consider the impact of each feature value. To create these level hypervectors, we compute the minimum and
maximum feature values among all data points, v𝑚𝑖𝑛 and v𝑚𝑎𝑥 , then quantize the range of [v𝑚𝑖𝑛, v𝑚𝑎𝑥] into𝑚
levels. Each level is then assigned a corresponding level HV: LV = {LV1, · · · , LV𝑚}. To encode a feature vector,
the encoder looks at each position of the feature vector and element-wise multiplies the channel ID (𝐼𝐷𝑖) with the

ACM Trans. Embedd. Comput. Syst.

Training Data

@ Class k Class k (Ck)Encoding

Associative MemoryTraining
Module

Fig. 1. Overview of HD model training and inference.

ELIMINARY

section, we first explain the procedures involved in HD algorithm and then review the related w
eleration and HD robustness to noise.

yperdimensional Computing Classification

t loss of generality, we explain the steps of HD computing for Classification tasks, though other algo
ustering, follow the same procedure, as well. These steps are illustrated by Fig. 1.
ncoding: There are multiple different types of encoding for HD Computing [13–15]. In this pa
e two different types. The first is Random Projection and the second is ID-Level. Let us assume a
F = {𝑓1𝑓𝑓 , 𝑓2𝑓𝑓 , . . . , 𝑓𝑛𝑓𝑓 }, with 𝑛 features (𝑓((𝑖𝑓𝑓 ∈ N) in original domain. The goal of the encoding stage is
ture vector to a 𝐷 dimensional space vector: H = {ℎ1, ℎ2, . . . , ℎ𝐷 }.
dom Projection: This encoding was first proposed in [14]. This encoding first generates 𝐷 dense
with the same dimensionality as original domain, P = {p1, p2, . . . , p𝐷 }, where p𝑖 ∈ {−1, 1}𝑛 . Th
of a feature vector with each randomly generated vector gives us a single dimension of a hyperv
mensional space. For example, we can compute the 𝑖 − 𝑡ℎ dimension of the encoded data as:

ℎ𝑖 = 𝑠𝑖𝑔𝑛(p𝑖 · F)

𝑠𝑖𝑔𝑛 is a sign function which maps the result of the dot product to +1 or -1. Thus, to encode a
into a hypervector, we perform a matrix vector multiplication between the projection matrix a
vector using:

H = 𝑠𝑖𝑔𝑛(PF)

evel: This encoding was first proposed in [13]. The encoding is performed in three steps, wh
e below. The first step is to create two sets of HVs, 𝐼𝐷 HVs and level HVs. Both ID HVs and lev

imensional HVs where each element is either −1 or 1. The encoding scheme assigns a unique c
to each feature position. 𝐼𝐷s are hypervectors which are randomly generated such that all featu

4 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

corresponding level hypervector (ℎ𝑣𝑖). The following equation shows how an 𝑛-length feature vector is mapped
into the HD space with this encoding scheme:

𝐻 = [ℎ𝑣1 ∗ 𝐼𝐷1 + ℎ𝑣2 ∗ 𝐼𝐷2 + . . . + ℎ𝑣𝑛 ∗ 𝐼𝐷𝑛]

ℎ𝑣 𝑗 ∈ {𝐿𝑉1, 𝐿𝑉2, . . . , 𝐿𝑉𝑚}, 1 � 𝑗 � 𝑚

𝐼𝐷𝑖 ∈ {−1, 1}𝐷 , 𝐿𝑉𝑗 ∈ {−1, 1}𝐷

(2) Training: The simplicity of HD training makes it distinguished from conventional learning algorithms.
Consider hypervector H𝑖 as the encoded hypervector of input 𝑖 with the procedure explained above, which
required the inner-product of D bit hypervectors followed by dimension-wise addition of 𝑛 1 bit values, where 𝑛
is the number of features. Each input 𝑖 belongs to a class 𝑗 , so we further annotateH 𝑗

𝑖 to show the class 𝑗 of input
𝑖 , as well. HD training simply adds all hypervectors of the same class to generate the final model hypervector.
Therefore, the class hypervector of label 𝑗 , denoted by C 𝑗 , is:

C 𝑗
= H

𝑗
0 + H

𝑗
1 + · · · =

∑

𝑘

H 𝑗 (1)

Meaning that we simply accumulate the encoded hypervectors for which their original input belongs to class 𝑗 .
Another advantage of HD over DNNs is HD supports efficient one-pass training, i.e., visiting each input just

once and adding theH𝑖s to create the model yields acceptable accuracy, while DNN training requires hundreds
of iterations over the whole data set to converge to the final accuracy. HD accuracy can also be improved by
retraining the model. During retraining, the encoded hypervector of each input is created again, and its similarity
with the existing class (model) hypervectors is checked (see step 3). If amisprediction is observed, say that encoded
H 𝑗 belonging to class C 𝑗 is predicted as class C𝑘 , the model is updated as follows, which means the information
of H 𝑗 causing (mis)-similarity to C𝑘 is discarded.

C 𝑗
= C 𝑗 + H 𝑗

C𝑘
= C𝑘 −H 𝑗

(2)

(3) Similarity checking: The inference step as well as the retraining step need to find out the most similar
class hypervector to the encoded one. Most commonly, this is performed by cosine similarity while other metrics
(e.g. Hamming distance) could be appropriate depending on the problem.

𝑐𝑜𝑠 (�H , �C 𝑗) =
�H· �C 𝑗

‖ �H‖ · ‖ �C 𝑗 ‖
(3)

Equation (3) shows the similarity checking of encoded hypervectorH with class hypervector C 𝑗 . Since classes

are constant, ‖ �C 𝑗 ‖ can be pre-calculated. ‖ �H ‖ can be factored out as it is common for all candidate classes to be
compared withH . Hence, cosine similarity reduces to a simple dot-product between H and C 𝑗 s. These vectors
are not in binary, they are the results of accumulating several other binary vectors.

2.2 Hyperdimensional Computing Clustering

The HD Clustering algorithm is very similar to the popular K-means algorithm [16]. The first step of HD
Clustering, like Classification is to first encode the data into high-dimensional space. In this paper, we evaluate
two encodings, both covered in Section 2.1. HD Clustering then operates on the encoded HVs as the main datatype.
HD Clustering, like K-means, then selects random centers to start. HD Clustering then iterates through all of the
encoded data points while comparing them with the cluster centers using a similarity metric and assigning each
point to the center it is most similar to. In K-means, that similarity metric is the Euclidean distance. In HD, we
utilize cosine similarity for non-binary values, but Euclidean distance could also be used. However, HD maps
data into high dimensional space, 𝐷 = 10, 000, so calculating cosine similarity is much more efficient. After all

ACM Trans. Embedd. Comput. Syst.

d the inner-product of D bit hypervectors followed by dimension-wise addition of 𝑛 1 bit values, w
umber of features. Each input 𝑖 belongs to a class 𝑗 , so we further annotateH 𝑗

𝑖HH to show the class 𝑗 o
ll. HD training simply adds all hypervectors of the same class to generate the final model hype
ore, the class hypervector of label 𝑗 , denoted by C 𝑗 , is:

C 𝑗
= H

𝑗
0HH +H

𝑗
1HH + · · · =

∑

𝑘

H 𝑗

g that we simply accumulate the encoded hypervectors for which their original input belongs to
her advantage of HD over DNNs is HD supports efficient one-pass training, i.e., visiting each inp
nd adding theH𝑖HH s to create the model yields acceptable accuracy, while DNN training requires hu
tions over the whole data set to converge to the final accuracy. HD accuracy can also be impro
ing the model. During retraining, the encoded hypervector of each input is created again, and its sim
e existing class (model) hypervectors is checked (see step 3). If amisprediction is observed, say that e
onging to class C 𝑗 is predicted as class C𝑘 , the model is updated as follows, which means the infor
ausing (mis)-similarity to C𝑘 is discarded.

C 𝑗
= C 𝑗 + H 𝑗

C𝑘
= C𝑘 −H 𝑗

imilarity checking: The inference step as well as the retraining step need to find out the most
ypervector to the encoded one. Most commonly, this is performed by cosine similarity while other
mming distance) could be appropriate depending on the problem.

𝑐𝑜𝑠 (�H , �C 𝑗) =
�H· �C 𝑗

‖ �H‖ · ‖ �C 𝑗 ‖

n (3) shows the similarity checking of encoded hypervectorH with class hypervector C 𝑗 . Since

stant, ‖ �C 𝑗 ‖ can be pre-calculated. ‖ �H ‖ can be factored out as it is common for all candidate class
ed withH . Hence, cosine similarity reduces to a simple dot-product between H and C 𝑗 s. These
in binary, they are the results of accumulating several other binary vectors.

yperdimensional Computing Clustering

D Clustering algorithm is very similar to the popular K-means algorithm [16]. The first step
ing, like Classification is to first encode the data into high-dimensional space. In this paper, we e

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 5

the points are labeled, the new centers are chosen and the process is repeated until convergence or the maximum
number of iterations is reached. Convergence occurs when no point is assigned to a different cluster compared to
the previous iteration. The main difference is that HD Clustering adds a pre-processing step to the Clustering
algorithm that maps the data into high dimensional space, or hypervectors.

2.3 Related Work

HD computing is light-weight enough to run with acceptable performance on CPUs [17]. However, utilizing a
parallel architecture can significantly speed up HD execution time. Imani et al. showed two orders of magnitude
speed up when HD runs on GPU [6]. Salamat et al. proposed a framework that facilitates fast implementation
of HD algorithms on FPGA [7]. Due to the bit-level operations in HD, which is more suitable for FPGAs than
GPUs, they claimed up to 12× energy and 1.7× speed up over GPUs. HD requires much less memory than DNNs,
but the required memory capacity is still beyond the local cache of many devices. Thus, an excessive amount of
energy and time is spent moving data between these devices and their main memory (off-chip memory in the
case of FPGAs).

To resolve this, prior work used PIM architectures, where processing occurs in memory, eliminating the time
and energy of data movement [18–20]. In FELIX [8], a digital PIM architecture was proposed. However, digital PIM
operations are significantly slower than equivalent analog PIM operations. Prior work accelerated the inference
phase of HD computing in analog PIM with an associative memory [6]. However, the associative memory only
stored the trained class hypervectors, so the input data needed to be encoded elsewhere and then moved into the
associative memory, negating the benefit of less data movement. Also, the associative memory only supports
inference in HD. In this paper, we implement HD Computing in an analog PIM ReRAM architecture based on
ISAAC [11]. This architecture allows us to fully implement HD Computing operations end-to-end from encoding
to inference unlike prior work. Our architecture differs in that we further take advantage of HD Computing’s
robustness to noise and relax the precision of the ADCs. We target the ADCs as they are the highest energy
overhead in the architecture [11, 21].

Several works claimed that HD signal representations are inherently robust to various forms of noise [22–25].
Work in [23] investigated the robustness of HD to RTL level errors (e.g. bit-flips) during computation and found
an HD-based approach tolerating an 8.8× higher probability of bit-level errors. Similar results are reported in
[26].

Work in [23] presented preliminary evidence showing that HD delivered superior performance to conventional
data representations in the presence of bit-level errors during processing. Similarly, bit-level errors occur during
data transmission as a result of channel noise and interference from multiple users. To the best of our knowledge,
there has been no systematic empirical (or theoretical) evaluation of HD as an avenue for achieving robust
learning when data must be communicated over noisy channels. This paper compares HD computing with a
“Federated learning” approach for training other ML models and proposes a new analog PIM architecture to
accelerate the whole HD computing algorithm from training to inference.

3 HyDREA ANALOG PIM ARCHITECTURE

Combining the energy savings by eliminating data movement and a parallel architecture suitable for dimension-
wise parallelism of HD algorithms, analog PIM, with its simple arithmetic support, appears as a promising
solution for HD computing. A PIM architecture needs to support three classes of in-memory operations; (1)

dot-product for the matrix multiplication in encoding and the similarity metric in inference, i.e., the �H · �C 𝑗 part in
Equation 3 in which each dimension of H and C 𝑗 is fixed-point (results of binary vector additions), (2) addition
and subtraction for training and retraining where, as explained by Equation 1, we add H

𝑗
𝑖 s to produce C 𝑗 which

denotes the final class hypervector of inputs with label 𝑗 , and (3) search operation to find the best matched class

ACM Trans. Embedd. Comput. Syst.

up when HD runs on GPU [6]. Salamat et al. proposed a framework that facilitates fast impleme
algorithms on FPGA [7]. Due to the bit-level operations in HD, which is more suitable for FPGA
hey claimed up to 12× energy and 1.7× speed up over GPUs. HD requires much less memory than
required memory capacity is still beyond the local cache of many devices. Thus, an excessive am
and time is spent moving data between these devices and their main memory (off-chip memory
FPGAs).
solve this, prior work used PIM architectures, where processing occurs in memory, eliminating t
rgy of data movement [18–20]. In FELIX [8], a digital PIM architecture was proposed. However, dig
ons are significantly slower than equivalent analog PIM operations. Prior work accelerated the in
f HD computing in analog PIM with an associative memory [6]. However, the associative memo
he trained class hypervectors, so the input data needed to be encoded elsewhere and then moved
tive memory, negating the benefit of less data movement. Also, the associative memory only su
ce in HD. In this paper, we implement HD Computing in an analog PIM ReRAM architecture ba
[11]. This architecture allows us to fully implement HD Computing operations end-to-end from en
ence unlike prior work. Our architecture differs in that we further take advantage of HD Comp
ness to noise and relax the precision of the ADCs. We target the ADCs as they are the highest
ad in the architecture [11, 21].
ral works claimed that HD signal representations are inherently robust to various forms of noise
n [23] investigated the robustness of HD to RTL level errors (e.g. bit-flips) during computation an
based approach tolerating an 8.8× higher probability of bit-level errors. Similar results are repo

k in [23] presented preliminary evidence showing that HD delivered superior performance to conve
presentations in the presence of bit-level errors during processing. Similarly, bit-level errors occur
nsmission as a result of channel noise and interference from multiple users. To the best of our kno
as been no systematic empirical (or theoretical) evaluation of HD as an avenue for achieving
g when data must be communicated over noisy channels. This paper compares HD computing
ted learning” approach for training other ML models and proposes a new analog PIM architec
ate the whole HD computing algorithm from training to inference.

DREA ANALOG PIM ARCHITECTURE

ning the energy savings by eliminating data movement and a parallel architecture suitable for dim
ll li f HD l ith l PIM ith it i l ith ti t

6 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

Fig. 2. Overview of the PIM architecture used by HyDREA.

in inference, by finding the maximum of cosine similarity scores between the encoded query H and all class
hypervectors. The baseline architecture provided by ISAAC [11] is perfect for mapping HD Computing to an
analog PIM architecture because it supports all 3 of the above operations. This can be seen in Figure 2 C.

(1) Dot Product: The top half shows how the dot product operation is implemented in our analog PIM crossbar.
Assume each resistive cell in the first (i.e., the shown one) column is programmed to resistances 𝑅11 and 𝑅21 where
𝑅𝑖 𝑗 belongs to row 𝑖 and column 𝑗 . Voltages𝑉1 and𝑉2 are applied to the first and second rows. The corresponding
generated current flows through the column is 𝐼1, which shows the result of dot-product. A larger 𝐼 shows larger
number and since 𝐼 = 𝑉/𝑅, the resistance of memristive cells need to be proportional to the inverse of the value
they represent. For 2D vectors, 𝐴 and 𝐵, the first set of inputs, 𝐴, is programmed into the resistances 𝑅11 and
𝑅21 having the conductances of (𝐴11 =

1/𝑅11 = 𝐶11 and 𝐴21 =
1/𝑅21 = 𝐶21). Afterwards, the second set of inputs, 𝐵,

is applied as the voltages at each row (𝐵11 = 𝑉1 and 𝐵21 = 𝑉21). As the figure shows, by applying input values
as the voltages to the rows and storing values as conductances, Ohm’s law dictates that the current flowing
through each resistor is the product of the conductance and applied voltage. Following Kirchhoff’s law, the
current accumulated at each column is equal to the sum of all the currents flowing through resistors of the
column. That is, the total current is 𝐼1 = 𝐶11 ·𝑉1 +𝐶21 ·𝑉2. For our design, we store the class hypervectors as the
conductances of the ReRam matrix and the query HV is sent as the DAC input voltages.
(2) Addition: The bottom half of Fig. 2(c) shows how the addition is implemented in a crossbar analog PIM

architecture. Addition works analogous to the dot product, except all the input voltages are set to logical 1 (i.e.,
𝑉ℎ𝑖𝑔ℎ). This, the aggregate current of passing through the first column is 𝐼1 = 𝐶11 +𝐶21.

(3) Search: Upon performing dot-product between the query hypervector with all class hypervectors, the
search operation needs to find the class with the maximum similarity score. In analog PIM, search is implemented
using nearest distance search, which finds the most similar value for a given reference. However, we desire a
search for the maximum value (so the reference is unknown). But we know the maximum value of the cosine
similarity metric is 1, hence we can implement our maximum value search with the already supported nearest
distance search by searching for the value that has the highest similarity to reference 1. Hence the returned value
will be maximum score. Note that similarity check returns the closest value (absolute difference) by prioritizing
MSB bits.

HyDREA takes advantage of HD computing’s robustness to noise to reduce computational complexity without
losing a significant amount of accuracy. By reducing the bitwidth of the ADCs in analog PIM, HyDREA is able
to achieve significant energy savings. However, it comes at a cost of inaccurate computations. However, HD
computing is robust to hardware failures and inaccurate computations, making it a perfect candidate to be

ACM Trans. Embedd. Comput. Syst.

Fig. 2. Overview of the PIM architecture used by HyDREA.

ence, by finding the maximum of cosine similarity scores between the encoded query H and a
ectors. The baseline architecture provided by ISAAC [11] is perfect for mapping HD Computin
PIM architecture because it supports all 3 of the above operations. This can be seen in Figure 2 C
ot Product: The top half shows how the dot product operation is implemented in our analog PIM c
each resistive cell in the first (i.e., the shown one) column is programmed to resistances 𝑅11 and 𝑅2
ngs to row 𝑖 and column 𝑗 . Voltages𝑉1𝑉𝑉 and𝑉2𝑉𝑉 are applied to the first and second rows. The corresp
ed current flows through the column is 𝐼1𝐼𝐼 , which shows the result of dot-product. A larger 𝐼 show
r and since 𝐼 = 𝑉/𝑅// , the resistance of memristive cells need to be proportional to the inverse of th
present. For 2D vectors, 𝐴 and 𝐵, the first set of inputs, 𝐴, is programmed into the resistances
ing the conductances of (𝐴((11 =

1/𝑅// 11 = 𝐶11 and 𝐴21 =
1/𝑅// 21 = 𝐶21). Afterwards, the second set of in

ed as the voltages at each row (𝐵11 = 𝑉1𝑉𝑉 and 𝐵21 = 𝑉21𝑉𝑉). As the figure shows, by applying input
voltages to the rows and storing values as conductances, Ohm’s law dictates that the current fl
h each resistor is the product of the conductance and applied voltage. Following Kirchhoff’s l
accumulated at each column is equal to the sum of all the currents flowing through resistors
. That is, the total current is 𝐼1𝐼𝐼 = 𝐶11 ·𝑉1𝑉𝑉 +𝐶21 ·𝑉2𝑉𝑉 . For our design, we store the class hypervector
tances of the ReRam matrix and the query HV is sent as the DAC input voltages.

Addition: The bottom half of Fig. 2(c) shows how the addition is implemented in a crossbar anal
cture. Addition works analogous to the dot product, except all the input voltages are set to logica
This, the aggregate current of passing through the first column is 𝐼1𝐼𝐼 = 𝐶11 +𝐶21.
earch: Upon performing dot-product between the query hypervector with all class hypervect
operation needs to find the class with the maximum similarity score. In analog PIM, search is imple
earest distance search, which finds the most similar value for a given reference. However, we d
for the maximum value (so the reference is unknown). But we know the maximum value of the
ty metric is 1, hence we can implement our maximum value search with the already supported
e search by searching for the value that has the highest similarity to reference 1. Hence the returne

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 7

Fig. 3. Example of Inference in HyDREA.

accelerated by our design. With our bitwidth reduction optimization, HyDREA is able to achieve the energy
efficiency of digital PIM with the speed of analog PIM.

3.1 Architecture

Fig. 2(a) shows the architecture HyDREA constituting of multiple In-Situ Multiply Accumulate (IMA) blocks. In
our implementation, HyDREA comprises of 24 IMA blocks. The design choice of using 24 IMA blocks was to
ensure that our architecture can fit the largest dataset tested. This is critical because if all the data does not fit,
data would need to be offloaded and stored off chip. The load and store operations in our ReRAM array are very
costly and would incur a significant amount of latency to our design. IMA blocks are memory crossbars with
the capability of performing analog addition and dot-product operations. Each IMA block consists of 8 crossbar
arrays, each of which contains 128 rows and 128 columns of memory cells. There are 8 × 128 Digital-to-Analog
(DAC) blocks per IMA, i.e., 128 per each crossbar arrays, allocated to the rows to convert the incoming digital
signal (voltage) to analog (current) in order to perform computation. There is also a shared Sample and Hold
(S+H) block, and shared Analog-to-Digital (ADC) blocks in each IMA. Fig. 2(b) shows an example of a crossbar
memory array. Each bitline is connected to all the wordlines through memresistive cells, which have stored the
information (e.g., values of class dimensions) by changing the resistance level of each cell. Each memresistive cell
in our configuration is a 2 bit MLC, i.e., it has four resistance states to be able to represent 2 bits. Storing the
HD model, i.e., the values of classes dimensions, needs to program the NVMs, which is a slow write operation.
However, it is only done one time before beginning the inference step, so the overhead is amortized in the entire
course of inference.
Figure 3 shows an example of how inference is performed in HyDREA. The first step is to encode the input.

The input is stored in the eDRAM buffer of the encoder tile. When a new input shows up, it allows the current
input to proceed with its next operation. This operation is itself pipelined (shown in Figure 3). In the first cycle,
an eDRAM read is performed to read the input. These values are sent over the shared bus to the IMA for the
encoder and recorded in the input register (IR). After the input values have been moved, the IMA will perform
the matrix multiplication during the next 16 cycles.

In the next 16 cycles, the eDRAM is ready to receive other inputs and deal with other IMAs. Over the next 16
cycles, the IR feeds 1 bit at a time for each of the input values to the crossbar arrays. The first 128 bits are sent to
crossbars 0 and 1, and the next 128 bits are sent to crossbars 2 and 3. At the end of each cycle, the outputs are

ACM Trans. Embedd. Comput. Syst.

Fig. 3. Example of Inference in HyDREA.

ated by our design. With our bitwidth reduction optimization, HyDREA is able to achieve the
cy of digital PIM with the speed of analog PIM.

rchitecture

) shows the architecture HyDREA constituting of multiple In-Situ Multiply Accumulate (IMA) bl
plementation, HyDREA comprises of 24 IMA blocks. The design choice of using 24 IMA blocks
that our architecture can fit the largest dataset tested. This is critical because if all the data does
ould need to be offloaded and stored off chip. The load and store operations in our ReRAM array a
and would incur a significant amount of latency to our design. IMA blocks are memory crossba
ability of performing analog addition and dot-product operations. Each IMA block consists of 8 c
each of which contains 128 rows and 128 columns of memory cells. There are 8 × 128 Digital-to-
blocks per IMA, i.e., 128 per each crossbar arrays, allocated to the rows to convert the incoming
voltage) to analog (current) in order to perform computation. There is also a shared Sample an
lock, and shared Analog-to-Digital (ADC) blocks in each IMA. Fig. 2(b) shows an example of a c
y array. Each bitline is connected to all the wordlines through memresistive cells, which have sto
ation (e.g., values of class dimensions) by changing the resistance level of each cell. Each memresis
configuration is a 2 bit MLC, i.e., it has four resistance states to be able to represent 2 bits. Stor
del, i.e., the values of classes dimensions, needs to program the NVMs, which is a slow write op
er, it is only done one time before beginning the inference step, so the overhead is amortized in th
of inference.
re 3 shows an example of how inference is performed in HyDREA. The first step is to encode th
ut is stored in the eDRAM buffer of the encoder tile. When a new input shows up, it allows the
o proceed with its next operation. This operation is itself pipelined (shown in Figure 3). In the fir

8 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

12345678
ADC Bitwidth

0

20

40

60

80

100

A
re

a
S

av
in

g
s

(%
)

(a)

12345678
ADC Bitwidth

0

20

40

60

80

100

E
n

er
g

y
S

av
in

g
s

(%
)

(b)

Fig. 4. Area savings (a) and energy consumption savings (b) as the bitwidth of the ADC is dropped.

latched in the Sample & Hold circuits. In the next cycle, these outputs are fed to the ADC units. The results of the
ADCs are then fed to the shift-and-add units, where the results are merged with the output register (OR) in the
IMA.

As shown in Figure 3, at the end of cycle 19, the OR in the IMA has its final output value. This is sent over the
shared bus to the central units in the tile. The central OR contains the final results for encoding at the end of cycle
20. During this time, the IMA for the next input has already begun processing to maintain utilization. Finally,
in cycle 21, contents of the central OR are written to the eDRAM that will provide the inputs for the similarity
check. The similarity check is then performed with the same pipeline as it too is a matrix multiplication.

3.2 Challenges

To perform the computation in analog, PIM needs to convert the signals into analog domain. For this, it requires
to employ DAC and ADC converters at the inputs and outputs, respectively. As shown in previous work, these
signal domain converters contribute to a significant overhead in the residing architecture [11, 21], which reaches
up to 89% of the system power consumption. However, the overhead of these converters can be significantly
alleviated as it is exponentially tied in the precision of converters. This, obviously, increases the error as the signal
levels are quantized. Fortunately, it is less problematic in the context of HD computing thanks to its remarkable
tolerance to error, as information is spread over all the independent and identically distributed dimensions of
vectors, so failing the computation on a certain portion of dimensions (bits) should not affect the overall result
noticeably.

Furthermore, the addition of ADCs for conversion is the largest overhead of using analog PIM for computation.
The ADCs take up a huge amount of area as with each bit of resolution added, their area doubles. Prior work tried
to alleviate this by sharing the large ADC across multiple blocks [11]. This approach can slow down computation.
However, in this paper we significantly reduce this overhead by using extremely low precision ADCs (as low as
2-bits), which our application, HD Computing, can handle.

3.3 HyDREA: Analog PIM Architecture Optimiztions

ADC Reduction: As in Section 3.2, the energy overhead of conversion from the digital domain to the analog
domain and back dominates the energy usage of analog PIM, and this is handled by the ADC blocks. Thus, our
task to improve the energy efficiency of analog PIM focuses on improving the energy efficiency of the ADC
blocks. We achieve this by reducing the precision of the ADC blocks. Figure 4 shows the expected energy and
area savings of reducing the bitwidth of an ADC. The results from the energy breakdown of ISAAC shows 89% of
energy is used on ADC conversion. Then, knowing that each bit we drop from the ADC reduces ADC energy
by approximately half, we can extrapolate the expected savings. As the figure shows, for each reduction in the
bitwidth of an ADC, we expect the area and energy consumption to halve. This is because in order to add support
for each additional bit, the amount of circuit area doubles and therefore, the energy usage approximately doubles.

ACM Trans. Embedd. Comput. Syst.

Fig. 4. Area savings (a) and energy consumption savings (b) as the bitwidth of the ADC is dropped.

in the Sample & Hold circuits. In the next cycle, these outputs are fed to the ADC units. The result
re then fed to the shift-and-add units, where the results are merged with the output register (OR

hown in Figure 3, at the end of cycle 19, the OR in the IMA has its final output value. This is sent o
bus to the central units in the tile. The central OR contains the final results for encoding at the end
ing this time, the IMA for the next input has already begun processing to maintain utilization.
e 21, contents of the central OR are written to the eDRAM that will provide the inputs for the sim
The similarity check is then performed with the same pipeline as it too is a matrix multiplication

hallenges

orm the computation in analog, PIM needs to convert the signals into analog domain. For this, it r
oy DAC and ADC converters at the inputs and outputs, respectively. As shown in previous work
domain converters contribute to a significant overhead in the residing architecture [11, 21], which
9% of the system power consumption. However, the overhead of these converters can be signi
ed as it is exponentially tied in the precision of converters. This, obviously, increases the error as th
re quantized. Fortunately, it is less problematic in the context of HD computing thanks to its rem
ce to error, as information is spread over all the independent and identically distributed dimens
so failing the computation on a certain portion of dimensions (bits) should not affect the overa
bly.
hermore, the addition of ADCs for conversion is the largest overhead of using analog PIM for comp
Cs take up a huge amount of area as with each bit of resolution added, their area doubles. Prior wo
iate this by sharing the large ADC across multiple blocks [11]. This approach can slow down comp
er, in this paper we significantly reduce this overhead by using extremely low precision ADCs (as
which our application, HD Computing, can handle.

yDREA: Analog PIM Architecture Optimiztions

Reduction: As in Section 3.2, the energy overhead of conversion from the digital domain to the
and back dominates the energy usage of analog PIM, and this is handled by the ADC blocks. Th
improve the energy efficiency of analog PIM focuses on improving the energy efficiency of th

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 9

0 2 4 6 8 10 12 14
Training Iterations

50

60

70

80

90

A
cc

u
ra

cy
 (

%
)

8 Bit Naive HyDREA

Fig. 5. Impact of HyDREA using a 4 bit model on training compared to training a naive bitwidth reduction 4 bit model and

training a 8 bit model.

Instead of using 8-bit ADC blocks in analog PIM that achieve full precision conversion to the digital domain, if we
reduce the bitwidth of the ADCs we can reduce the energy usage by half for every bit of the ADC we drop. This
will save a significant amount of energy during the analog to digital conversion step in analog PIM. However, as
mentioned our computations will lose accuracy and as we drop more bits, our computations will become more
inaccurate as we sacrifice precision for energy efficiency.

We can reduce our ADC blocks from 8 bits to n bits. By doing this, we will convert the first n most significant
bits and omit the 8 − 𝑛 least significant bits. For example if we use a 6 bit ADC block to convert 167 we would
lose the last two bits and output 164 instead. This leads to good approximate conversions with large numbers,
but very poor approximation with smaller numbers. If we use a 6 bit ADC block to convert 7 we would get 4
which is almost 50% off. Furthermore, we do not produce inaccurate conversions every time. If we convert 172
with a 6 bit ADC block, we wold get 172 because the last two bits of 172 are both 0. Therefore, we produce exact
computations when the bits we would drop are all zero. Our ADC block conversions fall into three categories:
exact conversions, slightly inaccurate conversions, and highly inaccurate conversions. Since HD computing
utilizes dot product as the similarity check, the larger computations dominate the dot product operation and
therefore, the highly inaccurate conversions of smaller operations do not effect the accuracy of the HD model.
Therefore, we are able to take advantage of reducing the bitwidth of ADCs to create an analog PIM architecture
for accelerating HD computing that does not incur a significant loss in accuracy.

DAC Reduction: We additionally reduce the energy and execution time overhead of analog PIM by reducing
the number of DACs and IMA blocks needed. We achieve this by reducing the precision of the HD model bitwidth.

Due to HD computing’s robustness to noise, we could simply reduce the bitwidth of the HD model and achieve
efficiency gains without a significant drop in accuracy. When reducing the bitwidth further, training the HD
model becomes unstable and the accuracy does not converge. Figure 5 compares training an HD model with 4
bits of precision and training the same model with a full 8 bits of precision. The details of the setup and software
used to obtain these results can be found in Section 5. The top line shows that training an 8 bit model is much
smoother and clearly improves in each iteration compared to training with reduced bitwidth. This is because,
as HVs are added up and adjusted with retraining, some dimensions may saturate the available bitwidth. Any
additional change to dimensions with saturated bitwidths that attempt to change the dimension in the direction
of the bitwidth saturation does not improve the model further. For instance, when using a bitwidth of 4, the
maximum positive value a dimension can represent is 7. If during retraining, the dimension would be increased
further, it would instead stay at 7. In contrast, if the dimension is adjusted with subtraction, it would decrease
normally despite any previous attempts to increase the dimension further. This causes over-adjustments in the
HD model during retraining when an abnormal change is applied. This is why the accuracy does not converge

ACM Trans. Embedd. Comput. Syst.

0 2 4 6 8 10 12 14
gTraining Iterations

50

mpact of HyDREA using a 4 bit model on training compared to training a naive bitwidth reduction 4 bit mo

a 8 bit model.

of using 8-bit ADC blocks in analog PIM that achieve full precision conversion to the digital domai
the bitwidth of the ADCs we can reduce the energy usage by half for every bit of the ADC we dro
e a significant amount of energy during the analog to digital conversion step in analog PIM. How
ned our computations will lose accuracy and as we drop more bits, our computations will becom
ate as we sacrifice precision for energy efficiency.
an reduce our ADC blocks from 8 bits to n bits. By doing this, we will convert the first n most sig
d omit the 8 − 𝑛 least significant bits. For example if we use a 6 bit ADC block to convert 167 we
e last two bits and output 164 instead. This leads to good approximate conversions with large nu
y poor approximation with smaller numbers. If we use a 6 bit ADC block to convert 7 we wou
s almost 50% off. Furthermore, we do not produce inaccurate conversions every time. If we conv
6 bit ADC block, we wold get 172 because the last two bits of 172 are both 0. Therefore, we produc
ations when the bits we would drop are all zero. Our ADC block conversions fall into three cat
onversions, slightly inaccurate conversions, and highly inaccurate conversions. Since HD com
dot product as the similarity check, the larger computations dominate the dot product operati
re, the highly inaccurate conversions of smaller operations do not effect the accuracy of the HD
re, we are able to take advantage of reducing the bitwidth of ADCs to create an analog PIM arch
elerating HD computing that does not incur a significant loss in accuracy.
Reduction: We additionally reduce the energy and execution time overhead of analog PIM by re

mber of DACs and IMA blocks needed. We achieve this by reducing the precision of the HD model b
to HD computing’s robustness to noise, we could simply reduce the bitwidth of the HD model and
cy gains without a significant drop in accuracy. When reducing the bitwidth further, training
becomes unstable and the accuracy does not converge. Figure 5 compares training an HD mode
precision and training the same model with a full 8 bits of precision. The details of the setup and s
obtain these results can be found in Section 5. The top line shows that training an 8 bit model i
er and clearly improves in each iteration compared to training with reduced bitwidth. This is b
are added up and adjusted with retraining, some dimensions may saturate the available bitwid

10 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

during retraining with greatly reduced bitwidths. HyDREA is able to improve upon the naive design of simply
reducing the bitwidths by additionally modifying the HD algorithm to complement the bitwidth reduction.
As explained in Section 2, the HD model is initially trained by adding up all of encoded data points into

one class HV for each class. When reducing the bitwidth of the HD model from 8 bits to 4 bits, 4 bits may not
provide enough precision for model convergence during retraining, preventing the HD model from performing
effectively at lower bitwidths. To subvert this problem, we propose to analyze the initial HD model to identify
key dimensions that need to utilize the full bitwidth available. HyDREA then locks these dimensions to either the
maximum or minimum value to ensure the the HD model does not drastically change during retraining.

We propose that the largest dimensions in both the positive and negative directions that saturate the desired
bitwidth are key dimensions, as dot product is used as the similarity metric. Hence, the largest dimensions in
both positive or negative direction contribute the most to the resulting dot product. Dimensions with the largest
values in either direction show that most data points from that class agree in that dimension, i.e. a class HV that
represents the class well should ensure these dimensions are not over-adjusted.
To support bitwidth reduction, we propose to modify the initial training algorithm of HD. To identify key

dimensions in the HD model to lock, our design first performs the initial training with a full 8 bit representation.
HyDREA copies the initial class HV and takes the absolute value of all the dimensions in the class HV and finds
the indices of the largest 𝛼 dimensions that would saturate the desired bitwidth. They are set to the maximum
(minimum) value if they saturated in the positive (negative) direction. The other dimensions are scaled down to
the desired bitwidth. This is done for all 𝑘 class HVs. The initial model is then loaded into our PIM architecture.
The dimensions that were previously set to the maximum or minimum value are locked from changes during
retraining to prevent the HD model from over adjustments. HyDREA only locks dimensions that would saturate
the desired bitwidth. If the dimensions do not saturate the desired bitwidth, the bitwidth is sufficient and no
change is needed. This lock is achieved by not enabling the write bits at locked dimensions.
Figure 5 compares training an HD model with the naive approach of simply reducing the bitwidth to 4 and

training the same model with HyDREA using the same bitwidth. The graph shows how HyDREA improves upon
the naive design, as during retraining the model is clearly improving and increasing in accuracy like the full 8 bit
model. Meanwhile, the naive design’s accuracy fluctuates greatly and does not converge.

3.4 HyDREA: Supporting HD Clustering

Here we discuss how we can useHyDREA to support HD Clustering. As described in Section 2, the HD Clustering
algorithm is very similar to the K-means algorithm with a different similarity metric. For HD Clustering, instead
of using Euclidean distance, we use cosine similarity to measure the distance between the samples and the
cluster centers. This makes mapping HD Clustering onto our existing architecture relatively simple as for
Classification, HyDREA already accelerates the similarity checking part of HD inference. Additionally, we use
the same encodings for Clustering and Classification, so that accelerator can be reused as well. Therefore, to map
HD Clustering to HyDREA, we feed the samples in the original feature domain into our encoding block. Then, to
update the distances between the samples and the cluster centers, we feed the cluster centers into the inference
accelerator as the class HVs and the samples as the query HVs. This then gives us both the distance in cosine
similarity between each sample and all the cluster centers as well as the cluster that each sample is most similar
to. The next step of the HD Clustering algorithm, which is to chose the next cluster centers is too complex to
accelerate in PIM. However, 98% of the time is spent on encoding and similarity checking. Therefore, offloading
updating the cluster centers to the host CPU does not incur a significant amount of overhead.

ACM Trans. Embedd. Comput. Syst.

ropose that the largest dimensions in both the positive and negative directions that saturate the
h are key dimensions, as dot product is used as the similarity metric. Hence, the largest dimens
sitive or negative direction contribute the most to the resulting dot product. Dimensions with the
n either direction show that most data points from that class agree in that dimension, i.e. a class H
nts the class well should ensure these dimensions are not over-adjusted.
upport bitwidth reduction, we propose to modify the initial training algorithm of HD. To ident
ions in the HD model to lock, our design first performs the initial training with a full 8 bit represe
A copies the initial class HV and takes the absolute value of all the dimensions in the class HV an
ices of the largest 𝛼 dimensions that would saturate the desired bitwidth. They are set to the ma
um) value if they saturated in the positive (negative) direction. The other dimensions are scaled d
ired bitwidth. This is done for all 𝑘 class HVs. The initial model is then loaded into our PIM archi
mensions that were previously set to the maximum or minimum value are locked from changes
ng to prevent the HD model from over adjustments. HyDREA only locks dimensions that would s
ired bitwidth. If the dimensions do not saturate the desired bitwidth, the bitwidth is sufficient
is needed. This lock is achieved by not enabling the write bits at locked dimensions.
re 5 compares training an HD model with the naive approach of simply reducing the bitwidth t
g the same model with HyDREA using the same bitwidth. The graph shows how HyDREA improv
ve design, as during retraining the model is clearly improving and increasing in accuracy like the f
Meanwhile, the naive design’s accuracy fluctuates greatly and does not converge.

yDREA: Supporting HD Clustering

e discuss how we can useHyDREA to support HD Clustering. As described in Section 2, the HD Clu
hm is very similar to the K-means algorithm with a different similarity metric. For HD Clustering,
g Euclidean distance, we use cosine similarity to measure the distance between the samples a
centers. This makes mapping HD Clustering onto our existing architecture relatively simple
cation, HyDREA already accelerates the similarity checking part of HD inference. Additionally,

me encodings for Clustering and Classification, so that accelerator can be reused as well. Therefore,
stering to HyDREA, we feed the samples in the original feature domain into our encoding block. T
the distances between the samples and the cluster centers, we feed the cluster centers into the in

h l HV d h l h HV Thi h i b h h di i

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 11

Fig. 6. An Overview of our framework for communicating in the federated learning enviroment.

4 NETWORK SIMULATION

Figure 6 shows an overview of our federated learning framework and how devices communicate. There are two
kinds of devices in our network edge devices and the central node. Edge devices are where local samples are
generated. During training, they use a cut down version of our accelerator for HyDREA that just implements
encoding to map the data into HD space. The sample is then sent to the central node, where on its way there, the
encoded sample is subject to wireless communication noise. The central node’s purpose is to collect all encoded
samples from all of the edge nodes, train a global model, and perform inference. It too uses our accelerator, except
it has full training and inference functionality. Once the global model is sufficiently trained, it can be used for
inference. Upon inference, the edge device again encodes the input sample to HD space. The sample is then sent
to the central node wirelessly incurring a varying degree of noise. The central node then performs inference on
the trained HD model and sends the resulting label back to the edge device.

We evaluate the feasibility of HyDREA in a “Federated learning” environment, by utilizing a popular network
simulator – ns-3 [12] – to model the communication between devices and simulate wireless noise. In the results
section, we compare HyDREA with other ML algorithms in the same noisy environment. The ns-3 physical layer
model calculates bit error rates (BER) taking into account the Forward Error Correction (FEC) present in WiFi
standards such as IEEE 802.11a/g/n. The model first calculates the received signal–to–noise ratio (SNR) based
on parameters used in the simulation model and then calculates a packet error rate (PER) based on the mode of
operation (e.g. modulation, coding rate) to determine the probability of successfully receiving a frame (packet
success rate - PSR). The received signal SNR depends on the following parameters:

• Transmission powers of devices: Since noise power is usually constant, increasing the transmission power
results in a higher SNR, thus lower BER. However, since energy efficiency is crucial in many applications,
IoT devices usually operate in low power modes, resulting in low SNR.

• Distance between communicating nodes: As two communicating nodes get further away, the received
signal strength decreases, resulting in low SNR.

• Propagation loss: The loss in the communication channel is different for different topologies. For example,
if two devices are in the line-of-sight of each other, this scenario would incur much less loss compared to
them communicating in a dense downtown with buildings blocking the view.

ACM Trans. Embedd. Comput. Syst.

Fig. 6. An Overview of our framework for communicating in the federated learning enviroment.

TWORK SIMULATION

6 shows an overview of our federated learning framework and how devices communicate. There
f devices in our network edge devices and the central node. Edge devices are where local samp
ted. During training, they use a cut down version of our accelerator for HyDREA that just impl
ng to map the data into HD space. The sample is then sent to the central node, where on its way th
d sample is subject to wireless communication noise. The central node’s purpose is to collect all e
s from all of the edge nodes, train a global model, and perform inference. It too uses our accelerator
ull training and inference functionality. Once the global model is sufficiently trained, it can be u
ce. Upon inference, the edge device again encodes the input sample to HD space. The sample is th
entral node wirelessly incurring a varying degree of noise. The central node then performs infer
ned HD model and sends the resulting label back to the edge device.
valuate the feasibility of HyDREA in a “Federated learning” environment, by utilizing a popular n
or – ns-3 [12] – to model the communication between devices and simulate wireless noise. In the
we compare HyDREA with other ML algorithms in the same noisy environment. The ns-3 physic

calculates bit error rates (BER) taking into account the Forward Error Correction (FEC) present
ds such as IEEE 802.11a/g/n. The model first calculates the received signal–to–noise ratio (SNR
meters used in the simulation model and then calculates a packet error rate (PER) based on the m
on (e.g. modulation, coding rate) to determine the probability of successfully receiving a frame
rate - PSR). The received signal SNR depends on the following parameters:

ransmission powers of devices: Since noise power is usually constant, increasing the transmission
esults in a higher SNR, thus lower BER. However, since energy efficiency is crucial in many appli

12 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

Fig. 7. SNR/BER vs distance for BPSK modulation with Friis prop. loss.

Fig. 8. Model of a Downtown Topology Represented in NS-3, Where Buildings buildings have higher signal attenuation

compared to open-air and they block the line-of-sight when they are placed between the transmitters (blue) and the receiver

(green).

• Interference: When many devices communicate at the same time, each other’s signals act as an interfering
signal, which degrades the demodulation and decoding performance at the receiving end. In this case, we
have to calculate signal-to-interference-plus-noise ratio (SINR).

We study how HD Classification and Clustering performance changes with varying transmission power levels,
distance, different propagation loss scenarios, and under different number of interfering devices. Additionally, the
error rate depends on the modulation, coding and error correction mechanism adopted by the WiFi technology.
Ns-3 allows us to study the error rates for modulation schemes such as BPSK, QPSK, 16to1024 QAM, under binary
convolutional coding for rates 1

2 ,
2
3 ,

3
4 , and

5
6 . We can both enable or disable forward error correction (FEC) in all

of these cases. Our experiments use the WiFi protocol stack (802.11n), which is the most matured communication
standard implementation in ns-3. There are efforts on modeling low-rate and low-power standards for IoT, but
they are not fully developed yet. Hence, we modify the 802.11 PHY and MAC layer parameters and scale data
rate and power values to imitate communication in an IoT environment. The modulation techniques and coding
schemes of 802.11n, namely BPSK, M-ary QAM, and Direct-Sequence Spread Spectrum (DSSS), are common
with many low-power wireless protocols [27]. Different techniques have different SNR vs BER (Bit error rates)
curves, but these curves are the same across protocols [28–30]. Since we adjust the parameters of 802.11n, we
can simulate the characteristics of low power IoT protocols by operating at the low SNR regions of the SNR-BER

ACM Trans. Embedd. Comput. Syst.

Fig. 7. SNR/BER vs distance for BPSK modulation with Friis prop. loss.7. SNR/BER vs distance for BPSK modulation with Friis prop.

Model of a Downtown Topology Represented in NS-3, Where Buildings buildings have higher signal atte

d to open-air and they block the line-of-sight when they are placed between the transmitters (blue) and the

nterference: When many devices communicate at the same time, each other’s signals act as an inte
gnal, which degrades the demodulation and decoding performance at the receiving end. In this c
ave to calculate signal-to-interference-plus-noise ratio (SINR).

tudy how HD Classification and Clustering performance changes with varying transmission powe
e, different propagation loss scenarios, and under different number of interfering devices. Addition
ate depends on the modulation, coding and error correction mechanism adopted by the WiFi tech
ows us to study the error rates for modulation schemes such as BPSK, QPSK, 16to1024 QAM, under
utional coding for rates 1

2 ,
2
3 ,

3
4 , and

5
6 . We can both enable or disable forward error correction (FEC

cases. Our experiments use the WiFi protocol stack (802.11n), which is the most matured commun
d implementation in ns-3. There are efforts on modeling low-rate and low-power standards for

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 13

Table 1. Dataset Information

Dataset Type # Classes # Train Data # Test Data # Features

UCIHAR [34] Classification 6 6,213 1,554 561

CARDIO [35] Classification 2 1,913 213 21

FACE [36] Classification 2 22,441 2,494 608

ISOLET [37] Classification and Clustering 26 6,238 1,559 617

Hepta [38] Clustering 7 N/A 212 3

Tetra [38] Clustering 4 N/A 400 3

Two Diamonds [38] Clustering 2 N/A 800 2

Wingnut [38] Clustering 2 N/A 1016 2

Iris [38] Clustering 3 N/A 135 3

curve. We vary the distance between the transmitter and the receiver to collect data at various SNRs. We evaluate
with the Friis propagation loss model. Figure 7 shows the BER versus distance curve between transmitter and
receiver. We additionally test error rates from other sources of noise. Such as a downtown scenario with buildings
in between the nodes shown in Figure 8 or a highly congested network. We use the hybrid building propagation
loss model consisting of Okumura-Hata [31], ITU-R 1411 and ITU-R 1238 [32] loss models. The model includes
the multi-path fading loss through building walls for both line-of-sight (LoS) and no LoS cases. There are also
random communication attempts between other nodes in the network resulting in dynamic BER and packet
losses.

We compare HDwith two baseline approaches. In the first, we assume that corrupted data packets are discarded
and must be re-transmitted. This ensures the accuracy of the resulting model, but increases latency and energy
consumption – especially in congested networks. Second, we train on the corrupted data. This eliminates the
need to re-transmit packets but may slow model convergence or cause the model to converge to a worse local
optimum (recall that Neural Networks are a non-convex optimization problem). Due to the robustness of HD
Computing to noise, the HD model is able to learn more effectively from corrupted packets than other ML models,
eliminating the need to re-transmit data while ensuring a high-quality result. Low-power networks such as
LoRaWAN and LPWAN usually operate at very low SNRs [33] which can result in error rates ranging from 10−5

to 10−1. Many applications require perfect data reconstruction at the receiver, so it is often aimed for networks by
design to have an error rate at upper levels of this range. We show that HD is very resilient to errors, such that
one can deliberately use very low-power for communication and operate at extremely low SNRs, going beyond
the error rates that of standard network configurations, while still getting acceptable accuracy for the learning
tasks. This comes with large energy savings that is crucial for resource-constrained IoT devices. We additionally
compare HD Computing robustness to Error Correction Codes (ECC) in wireless communication in Section 5.10.

5 EVALUATION

5.1 Experimental Setup

We verified the functionality of HyDREA using both software and hardware implementations. In software,
we implemented HD Classification and Clustering on an Intel Core i7 7600 CPU using an optimized C++
implementation. For the hardware implementation, we used an analog-based PIM architecture proposed in [11].
We modify the ISAAC architecture to more efficiently run for HD Computing by relaxing the bitwidth resolution
of the ADCs. Our PIM design works at 1.2GHz and uses n bit ADCs, 1 bit DACs, and 128×128 arrays, where each
memresistor cell stores 2 bits. To estimate the energy consumption and execution time of HyDREA, we utilize the
detailed energy and execution time breakdown of an ISAAC tile found in the original ISAAC paper [11]. We then
calculate the estimated execution time and energy by summing up the required operations for HD Computing.

ACM Trans. Embedd. Comput. Syst.

[] g /

Wingnut [38] Clustering 2 N/A 1016 2

Iris [38] Clustering 3 N/A 135 3

We vary the distance between the transmitter and the receiver to collect data at various SNRs. We e
e Friis propagation loss model. Figure 7 shows the BER versus distance curve between transmit
r. We additionally test error rates from other sources of noise. Such as a downtown scenario with bu
een the nodes shown in Figure 8 or a highly congested network. We use the hybrid building prop
del consisting of Okumura-Hata [31], ITU-R 1411 and ITU-R 1238 [32] loss models. The model i
lti-path fading loss through building walls for both line-of-sight (LoS) and no LoS cases. There a
m communication attempts between other nodes in the network resulting in dynamic BER and

ompare HDwith two baseline approaches. In the first, we assume that corrupted data packets are di
st be re-transmitted. This ensures the accuracy of the resulting model, but increases latency and

mption – especially in congested networks. Second, we train on the corrupted data. This elimina
re-transmit packets but may slow model convergence or cause the model to converge to a wor
m (recall that Neural Networks are a non-convex optimization problem). Due to the robustness
ting to noise, the HD model is able to learn more effectively from corrupted packets than other ML
ting the need to re-transmit data while ensuring a high-quality result. Low-power networks
AN and LPWAN usually operate at very low SNRs [33] which can result in error rates ranging fro
Many applications require perfect data reconstruction at the receiver, so it is often aimed for netw
to have an error rate at upper levels of this range. We show that HD is very resilient to errors, su
n deliberately use very low-power for communication and operate at extremely low SNRs, going
or rates that of standard network configurations, while still getting acceptable accuracy for the l
his comes with large energy savings that is crucial for resource-constrained IoT devices. We addi
e HD Computing robustness to Error Correction Codes (ECC) in wireless communication in Secti

ALUATION

xperimental Setup

ified the functionality of HyDREA using both software and hardware implementations. In so
plemented HD Classification and Clustering on an Intel Core i7 7600 CPU using an optimiz

14 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

Table 2. Impact of Dimensionality andData Representation on the Robustness of HDComputing Classification and Clustering

Accuracy.

Dimensionality 10,000 8,000 6,000 4,000 2,000

RP Binary (Classification) 0.58% 0.82% 1.44% 1.89% 2.39%

ID-Level Binary (Classification) 0.56% 0.79% 1.52% 1.78% 2.42%

RP (Clustering) 0.58% 2.31% 2.65% 2.86% 3.24%

ID-Level Binary (Clustering) 0.66% 2.48% 2.52% 2.79% 3.13%

ID-Level Int (Clustering) 44.89% 46.60% 64.71% 72.82% 72.13%

ID-Level Float (Clustering) 85.17% 85.19% 85.23% 85.43% 85.55%

02468
ADC Bitwidth

90

91

92

93

A
cc

u
ra

cy
 (

%
)

(a) ISOLET

02468
ADC Bitwidth

94.5

95

95.5

96

96.5

A
cc

u
ra

cy
 (

%
)

(b) UCIHAR

02468
ADC Bitwidth

92

93

94

95

96

A
cc

u
ra

cy
 (

%
)

(c) FACE

02468
ADC Bitwidth

99.4

99.6

99.8

100

A
cc

u
ra

cy
 (

%
)

(d) CARDIO

Fig. 9. Impact of bitwidth reduction on accuracy of HyDREA.

We tested our approach for HD Classification on four practical Classification applications and for HD Clustering
on six datasets from the Fundamental Clustering Problem Suite [38], shown in Table 1.

5.2 HyDREA and Dimensionality

To test the impact of dimensionality on HD Classification and Clustering robustness, we utilized the 6.64 SNR
test with all datasets. Table 2 summarizes the results, where each entry in the table is the average accuracy for all
datasets at that dimensionality. There is a clear relationship between HD robustness to errors and dimensionality.
One may think that we can achieve faster execution and lower energy consumption with lower dimensionality;
but due to our PIM’s highly parallel nature, as long as the HD model fits into the PIM arrays, execution time
and energy does not change. Since our design requires a highly robust HD model, the rest of our tests utilize
a dimensionality of 𝐷 = 10, 000. Additionally, the table shows that the data representation highly impacts the
robustness of HD. Binary values are the most robust because each individual bit flip impact the correctness of the
end result the same. However, with other representations such as floating point, depending on the bit flipped, the
error can increase significantly. For instance, if an exponent bit is flipped, that would incur significantly more
error than if a mantissa bit was flipped. For the most robust models, one should transmit binary encoded HVs.

5.3 HyDREA and the Impact of our Analog PIM Architecture on HD Classification

Figure 9 shows the impact of ADC bitwidth reduction on HD model accuracy for four practical applications. The
accuracy of each model reduces as the bitwidth drops, but not significantly. When the ADC bitwidth is 4, the
average accuracy drop across all applications is 1.5%. This is because our ADC blocks provide highly accurate
approximations for high value conversions, and the high value numbers dominate the dot product output. Thus,
the resulting dot product closely approximates the exact version. Also, the resulting dot product does not need to
be exact, owing to HD’s robustness to hardware inaccuracies. Despite inaccurate results, the classes are separated
enough that slight variations still result in the HD model selecting the same output class. Overall, HyDREA
reduces bitwidth to 2 while only losing 1.8% in accuracy.

ACM Trans. Embedd. Comput. Syst.

ID-Level Float (Clustering) 85.17% 85.19% 85.23% 85.43% 85.55%

0246
ADC Bitwidth

(a) ISOLET

02468
ADC Bitwidth

94.5

95

95.5

96

96.5

A
cc

u
ra

cy
(%

)

(b) UCIHAR

02468
ADC Bitwidth

92

93

94

95

96

A
cc

u
ra

cy
 (

%
)

(c) FACE

468
ADC Bitwidth

99.4

99.6

99.8

100

A
cc

u
ra

cy
 (

%
)

(d) CARDIO

Fig. 9. Impact of bitwidth reduction on accuracy of HyDREA.

ed our approach for HD Classification on four practical Classification applications and for HD Clu
datasets from the Fundamental Clustering Problem Suite [38], shown in Table 1.

yDREA and Dimensionality

the impact of dimensionality on HD Classification and Clustering robustness, we utilized the 6.
h all datasets. Table 2 summarizes the results, where each entry in the table is the average accurac
s at that dimensionality. There is a clear relationship between HD robustness to errors and dimens
ay think that we can achieve faster execution and lower energy consumption with lower dimensi
to our PIM’s highly parallel nature, as long as the HD model fits into the PIM arrays, executio

ergy does not change. Since our design requires a highly robust HD model, the rest of our tests
nsionality of 𝐷 = 10, 000. Additionally, the table shows that the data representation highly impa
ess of HD. Binary values are the most robust because each individual bit flip impact the correctnes
ult the same. However, with other representations such as floating point, depending on the bit flipp
an increase significantly. For instance, if an exponent bit is flipped, that would incur significantl
han if a mantissa bit was flipped. For the most robust models, one should transmit binary encode

yDREA and the Impact of our Analog PIM Architecture on HD Classification

9 shows the impact of ADC bitwidth reduction on HD model accuracy for four practical applicatio
cy of each model reduces as the bitwidth drops, but not significantly. When the ADC bitwidth i

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 15

(a) Retraining (b) Inference

Fig. 10. Energy consumption and execution time of HyDREA using different model bitwidths during training and inference

with an ADC bitwidth of 2.

(a) Comparison With THRIFTY [39] (b) Impact of NVME on HD

Fig. 11. Execution time comparison of HyDREA with THRIFTY, a processing in storage architecture for HD Computing and

the impact of higher bandwidth memories such as NVME on HD Computing.

Figure 10 shows the impact of our analog PIM architecture with 2 bit ADCs and varying model bitwidths on
energy consumption and execution time. Our proposed architectural changes drastically improve the energy
efficiency and execution time of HD. Our proposed architecture uses 2 bit ADCs and 1 bit models, and achieves
32× (29×) speed up and 232× (267×) higher energy efficiency than the baseline architecture during inference
(retraining). Also, in high SNR cases, these models achieve comparable accuracy to full precision models.

ACM Trans. Embedd. Comput. Syst.

(a) Retraining (b) Inference

Energy consumption and execution time of HyDREA using different model bitwidths during training and i

ADC bitwidth of 2.

(a) Comparison With THRIFTY [39] (b) Impact of NVME on HD

Execution time comparison of HyDREA with THRIFTY, a processing in storage architecture for HD Compu

act of higher bandwidth memories such as NVME on HD Computing.

16 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

Table 3. Speedup of HyDREA over a digital PIM implementation with the same bitwidth as HyDREA with the same area.

Dataset ISOLET UCIHAR CARDIO FACE

Retraining 110.4× 111.8× 105.6× 115.2×

Inference Same Bit Digital 128.9× 137.3× 139.9× 136.1×

Fig. 12. Accuracy of Design as the SNR varies with an ADC bitwidth of 2 and varying model bitwidth.

5.4 HyDREA vs Processing in Storage and Digital Processing in Memory

Figure 11 compares HyDREA execution time during the training process to THRIFTY [39]. The results show
that due to the slower digital operations in THRIFTY, as well as the higher latency of computing near flash
storage, HyDREA is on average 180× faster during training than in storage computing. Furthermore, Figure 11
also compares the impact of high bandwidth memory, or specifically NVME storage, on HD Computing latency.
We perform this test on the same machine where the only difference is for HDD, we store all data on a slow
spinning hard drive and for NVME, we use a PCIe generation 4.0 NVME storage drive. The results clearly show
that the higher bandwidth does not impact the overall latency of HD Computing. Therefore, in storage computing
solutions such as THRIFTY do not have much to gain from utilizing NVME technologies. Thus, analog processing
in memory architectures such as HyDREA are more capable of delivering faster execution times than digital
processing in memory architectures.
In Table 3 we also compare HyDREA with a FELIX [8] digital PIM based implementation of HD Computing.

We compare using the same model bitwidths and memory area. Our results show that HyDREA is 111× faster
than the digital PIM design during retraining and 136× faster than the digital PIM design during inference on
average. because the individual operations in analog PIM are much faster than they are in digital PIM. HyDREA
achieves better speed up during inference than retraining when compared to digital PIM because inference only

ACM Trans. Embedd. Comput. Syst.

Fig. 12. Accuracy of Design as the SNR varies with an ADC bitwidth of 2 and varying model bitwidth.

yDREA vs Processing in Storage and Digital Processing in Memory

11 compares HyDREA execution time during the training process to THRIFTY [39]. The result
e to the slower digital operations in THRIFTY, as well as the higher latency of computing ne
, HyDREA is on average 180× faster during training than in storage computing. Furthermore, Fi
mpares the impact of high bandwidth memory, or specifically NVME storage, on HD Computing
form this test on the same machine where the only difference is for HDD, we store all data on
g hard drive and for NVME, we use a PCIe generation 4.0 NVME storage drive. The results clearl
higher bandwidth does not impact the overall latency of HD Computing. Therefore, in storage com

ns such as THRIFTY do not have much to gain from utilizing NVME technologies. Thus, analog pro
mory architectures such as HyDREA are more capable of delivering faster execution times than

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 17

Fig. 13. Accuracy of HD Classification as the SNR varies with different encodings and data representations.

involves the dot product operation while retraining includes addition operations to adjust the HD model. Due to
relying on nor based operations in digital PIM, execution time scales quadratically for multiplications. Therefore,
because analog PIM directly implements multiply and accumulate, HyDREA achieves better speed up during
inference and retraining.

5.5 HyDREA and the Impact of SNR on HD Classification

Figure 12 shows the impact of SNR on model accuracy in our analog PIM architecture. We can load in low bitwidth
models when the channel has a high SNR to achieve the best energy consumption and execution time. However,
during high network traffic, longer communication distance, or other factors that incur a high amount of noise
on the wireless channel, we need to load in the higher bitwidth models to maintain accuracy. This is because our
highly quantized models are taking advantage of HD’s robustness to noise by effectively adding more noise to
the computation. Therefore, if the environment, in this case wireless communication, is also adding noise, the
robust property of HD does not hold up. However, if we adaptively switch which model is loaded based on the
SNR, we can maintain high accuracy and achieve significant energy and execution time savings when possible.

Figure 13 shows the impact of SNR on model accuracy for two different encodings as well as different datatype
representations. Results from all datasets show a similar pattern with increasing bit error rate. HD using integer
and binary hypervectors is much more robust to noise as compared to floating-point representations. Since
floating-point numbers are represented with mantissa and exponent, if the exponent bits are flipped because of
an error, the number itself changes significantly. We additionally compare to a DNN for the ISOLET dataset [40].
The DNN model uses a 16bit floating point representation for its weights, so we can observe the same problem

ACM Trans. Embedd. Comput. Syst.

Fig. 13. Accuracy of HD Classification as the SNR varies with different encodings and data representations

s the dot product operation while retraining includes addition operations to adjust the HD model.
on nor based operations in digital PIM, execution time scales quadratically for multiplications. Th
e analog PIM directly implements multiply and accumulate, HyDREA achieves better speed up
ce and retraining.

yDREA and the Impact of SNR on HD Classification

12 shows the impact of SNR on model accuracy in our analog PIM architecture. We can load in low b
when the channel has a high SNR to achieve the best energy consumption and execution time. H
high network traffic, longer communication distance, or other factors that incur a high amount o
wireless channel, we need to load in the higher bitwidth models to maintain accuracy. This is beca
quantized models are taking advantage of HD’s robustness to noise by effectively adding more n
mputation. Therefore, if the environment, in this case wireless communication, is also adding no
property of HD does not hold up. However, if we adaptively switch which model is loaded based
e can maintain high accuracy and achieve significant energy and execution time savings when p

18 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

Fig. 14. Comparison of the Robustness of HD to other Classifiers

Design Exact Accuracy 2.21 SNR Accuracy Latency(s) Energy(J)

HyDREA 93.4% 92.1% 9.98 × 10−6𝑠 8.02 × 10−7 𝐽

Q-PIM [41] 98.5% 10% 4.1 × 10−3𝑠 4 × 10−4 𝐽

Table 4. Comparison of HyDREA with the State-of-the-Art DNN PIM Accelerator Q-PIM [41]

with robustness in DNNs. The data also demonstrates that the random projection (RP) encoding offers similar
robustness to noise as the ID-level encoding with binary values. This is likely because our implementation
of random projection also encodes hypervectors to binary values (through a final sign function), so both the
random projection and quantized ID-level encodings lead to similarly robust binary hypervectors. Lastly, random
projection achieves on average, the same accuracy as ID-level, but beats ID-level in some datasets, such as ISOLET,
while loses in accuracy to others, such as CARDIO and EMG, as both of them are time-series signals, which
random projection does not classify well.

5.6 HD vs. Other Classifiers

We also compared HD to state-of-the-art classifiers (Linear Regression (LR), MultiLayer Perceptron (MLP),
Perceptron, Support Vector Classification (SVC)) and evaluated its robustness to noise on our 4 datasets. Figure
14 shows the results for 1) data with no noise, and 2) data corrupted with SNR of 2.21. We choose an SNR or
2.21 because it is the worst practical scenario in our ns-3 setup. All classifiers have comparable accuracy with no
noise. While HD stays robust with a significant amount of noise, the other classifiers become very inaccurate.
The high-dimensional nature of the hypervectors used in HD leads to significant redundancy in representation
which improves its robustness to noise by 48× compared to other classifiers at 2.21 SNR. In other words, HD loses
48× less accuracy compared to the other classifiers. This gives us a metric where noise robustness is defined by
how well the model maintains accuracy with the added wireless noise.

5.7 HyDREA vs State-of-the-Art PIM DNN Accelerator

In Table 4 we compareHyDREAwith a State-of-the-Art DNN PIM accelerator Q-PIM [41]. The results show that
State-of-the-Art DNNs are able to achieve higher accuracy on more complex datasets such as MNIST. However, in
the presence of wireless communication errors, HD Computing is able to maintain its accuracy, while traditional

ACM Trans. Embedd. Comput. Syst.

Fig. 14. Comparison of the Robustness of HD to other Classifiers

Design Exact Accuracy 2.21 SNR Accuracy Latency(s) Energy(J)

HyDREA 93.4% 92.1% 9.98 × 10−6𝑠 8.02 × 10−7 𝐽

Q-PIM [41] 98.5% 10% 4.1 × 10−3𝑠 4 × 10−4 𝐽

Table 4. Comparison of HyDREA with the State-of-the-Art DNN PIM Accelerator Q-PIM [41]

bustness in DNNs. The data also demonstrates that the random projection (RP) encoding offers
ness to noise as the ID-level encoding with binary values. This is likely because our impleme
om projection also encodes hypervectors to binary values (through a final sign function), so b
projection and quantized ID-level encodings lead to similarly robust binary hypervectors. Lastly,
on achieves on average, the same accuracy as ID-level, but beats ID-level in some datasets, such as I
oses in accuracy to others, such as CARDIO and EMG, as both of them are time-series signals
m projection does not classify well.

D vs. Other Classifiers

o compared HD to state-of-the-art classifiers (Linear Regression (LR), MultiLayer Perceptron
ron, Support Vector Classification (SVC)) and evaluated its robustness to noise on our 4 datasets
ws the results for 1) data with no noise, and 2) data corrupted with SNR of 2.21. We choose an
cause it is the worst practical scenario in our ns-3 setup. All classifiers have comparable accuracy w
While HD stays robust with a significant amount of noise, the other classifiers become very ina
h-dimensional nature of the hypervectors used in HD leads to significant redundancy in represe
mproves its robustness to noise by 48× compared to other classifiers at 2.21 SNR. In other words, H
s accuracy compared to the other classifiers. This gives us a metric where noise robustness is defi
ell the model maintains accuracy with the added wireless noise.

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 19

Baseline 8 4 2 1
Bitwidth

10-8

10-6

10-4

10-2

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

 (
n

J)

(a) Energy

Baseline 8 4 2 1
Bitwidth

10-8

10-6

10-4

E
xe

cu
ti

o
n

 T
im

e
(

s)

(b) Execution Time

Fig. 15. Energy consumption and execution time of HyDREA for one Clustering iteration using different model bitwidths

with an ADC bitwidth of 2.

Fig. 16. Comparison of HD Clustering with K-means Accuracy With no Bit Errors

DNNs become unreliable and return random classification results. Furthermore, due to HD Computing’s light
weight operation, HyDREA achieves a 411× speedup and 498× energy efficiency improvement over Q-PIM.
5.8 HyDREA Architecture Impact on Clustering Energy Consumption and Execution Time

Figure 15 shows the impact of our analog PIM architecture with 2 bit ADCs and varying model bitwidths on
energy consumption and execution time for HD Clustering. Our proposed architectural changes drastically
improve the energy efficiency and execution time of HD Clustering. Our proposed architecture uses 2 bit ADCs
and 1 bit models, and achieves 32× speed up and 289× higher energy efficiency than the baseline architecture
during Clustering. Also, in high SNR cases, just like for Classification, these models achieve comparable accuracy
to full precision models.

5.9 HD Clustering Accuracy and Robustness vs K-means

We also compared HD to a state of the art Clustering algorithm, K-means, and evaluated its robustness to noise.
As can be seen from Figure 16, K-means has a comparable accuracy to HD when there are no bit errors in the
dataset. To measure Clustering accuracy, we use a metric based on the mutual information between the cluster
assignments returned by our algorithm and ground truth cluster labels. The metric is one when the predicted

ACM Trans. Embedd. Comput. Syst.

Baseline 8 4 2 1
Bitwidth

(a) Energy

Baseline 8 4 2 1
Bitwidth

10E
x

(b) Execution Time

Energy consumption and execution time of HyDREA for one Clustering iteration using different model b

ADC bitwidth of 2.

Fig. 16. Comparison of HD Clustering with K-means Accuracy With no Bit Errors

become unreliable and return random classification results. Furthermore, due to HD Computing
operation, HyDREA achieves a 411× speedup and 498× energy efficiency improvement over Q-P
yDREA Architecture Impact on Clustering Energy Consumption and Execution Time

15 shows the impact of our analog PIM architecture with 2 bit ADCs and varying model bitwi
consumption and execution time for HD Clustering. Our proposed architectural changes dra
e the energy efficiency and execution time of HD Clustering. Our proposed architecture uses 2 bi
it models, and achieves 32× speed up and 289× higher energy efficiency than the baseline archi
Clustering. Also, in high SNR cases, just like for Classification, these models achieve comparable a
precision models.

20 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

Fig. 17. Accuracy of HD Clustering as the SNR varies with different encodings and data representations vs K-means.

labels are perfectly correlated with the ground truth and zero when they are totally uncorrelated. Although
accuracy is similar without errors, when we introduce errors HD Clustering is significantly more robust. Our
proposed system also looses less than 1% in the mutual information score, even in scenarios with an SNR under
7𝑑𝐵, which is 57× more robust to noise than K-means.

Figure 17 compares HD Clustering vs K-means Robustness to bit error rates. K-means has similar robustness
to bit error rates as HD using integer and floating point representations, until a breaking point around 10−3 bit
error rate for most datasets. This is especially clear with the Isolet dataset, which is the biggest dataset we use.
HD Clustering is able to maintain accuracy for much larger bit error rates than K-means when running Isolet.
HD gains this additional robust property from the high-dimensional nature of the hypervectors used in HD
computing leading to significant redundancy in the representation which improves robustness to noise similar to
our Classification results.

Additionally, similar to our Classification results, the results from all datasets show a similar pattern where HD
using integer and binary hypervectors is much more robust to noise as compared to floating-point. Since floating-
point numbers are represented with mantissa bits and exponent bits, if the exponent bits are flipped because of an

ACM Trans. Embedd. Comput. Syst.

7. Accuracy of HD Clustering as the SNR varies with different encodings and data representations vs K-m

are perfectly correlated with the ground truth and zero when they are totally uncorrelated. Al
cy is similar without errors, when we introduce errors HD Clustering is significantly more robu
ed system also looses less than 1% in the mutual information score, even in scenarios with an SNR
hich is 57× more robust to noise than K-means.
re 17 compares HD Clustering vs K-means Robustness to bit error rates. K-means has similar rob
rror rates as HD using integer and floating point representations, until a breaking point around
ate for most datasets. This is especially clear with the Isolet dataset, which is the biggest dataset
ustering is able to maintain accuracy for much larger bit error rates than K-means when runnin

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 21

Fig. 18. Impact of Dimensionality on DecodingQuality.

error, the number itself changes significantly, thus incurring more noise. Integer representation performs closer
to binary. Random projection provides similar accuracy to binarized ID-Level as random projection encodes
hypervectors to binary values as well. Binary representation is the most robust as each individual bit flip incurs
the same proportion of noise.

5.10 Impact of Bit Error Rates on Decoding

Some HD Computing encoding methods have the property where the encoded HV can be decoded back into the
original feature vector. For instance, with access to the ID and LV HV banks used to encode the HV in ID-Level,
one can decode the encoded HV to get back the original feature vector with some errors [42]. In Figure 18, we
show the impact of dimensionality on the quality of the recovered feature vector using the ID-Level encoding.
The y-axis shows the mean-squared-error of the original feature vector with the decoded one. We test against a
range of bit error rates that could be seen in wireless communication as well as across different dimensions. The
results indicate that with higher dimensionality, we are able to recover a better quality sample in the original
feature space. Additionally, as the bit error rate increases, our decoding quality decreases. The decoded feature
vectors become drastically different after bit error rates of around 0.001 for both 5, 000 and 10, 000 dimensions.

5.11 HD Computing vs Error Correcting Codes (ECC)

In conventional systems, the transmitter performs three steps to generate the wireless signal from data: source
coding, channel coding, and modulation. First, a source encoder removes the redundancies and compresses the
data. Then, to protect the compressed bitstream against the impairments introduced by the channel, a channel
code is applied. The coded bitstream is finally modulated with a modulation scheme which maps the bits to
complex-valued samples (symbols), transmitted over the communication link. The receiver inverts the above
operations, but in the reverse order. A demodulator first maps the received complex-valued channel output to a
sequence of bits. This bitstream is then decoded with a channel decoder to obtain the original compressed data;
however, it might be possibly corrupted due to the channel impairments. Lastly, the source decoder provides a
(usually inexact) reconstruction of the transmitted data by applying a decompression algorithm.

In this work we deal with robust learning over unreliable communication channels, so we focus only on the
channel coding techniques from this pipeline for our comparison. Error correcting codes (ECC) are used in
channel coding for controlling errors in data over unreliable and noisy communication channels. The central

ACM Trans. Embedd. Comput. Syst.

Fig. 18. Impact of Dimensionality on DecodingQuality.

he number itself changes significantly, thus incurring more noise. Integer representation perform
ry. Random projection provides similar accuracy to binarized ID-Level as random projection e
ectors to binary values as well. Binary representation is the most robust as each individual bit flip
me proportion of noise.

mpact of Bit Error Rates on Decoding

HD Computing encoding methods have the property where the encoded HV can be decoded back i
l feature vector. For instance, with access to the ID and LV HV banks used to encode the HV in ID
n decode the encoded HV to get back the original feature vector with some errors [42]. In Figure
he impact of dimensionality on the quality of the recovered feature vector using the ID-Level en
xis shows the mean-squared-error of the original feature vector with the decoded one. We test ag
f bit error rates that could be seen in wireless communication as well as across different dimensio
indicate that with higher dimensionality, we are able to recover a better quality sample in the o
space. Additionally, as the bit error rate increases, our decoding quality decreases. The decoded
become drastically different after bit error rates of around 0.001 for both 5, 000 and 10, 000 dime

HD Computing vs Error Correcting Codes (ECC)

entional systems, the transmitter performs three steps to generate the wireless signal from data
channel coding, and modulation. First, a source encoder removes the redundancies and compres
hen, to protect the compressed bitstream against the impairments introduced by the channel, a c
applied. The coded bitstream is finally modulated with a modulation scheme which maps the
x-valued samples (symbols), transmitted over the communication link. The receiver inverts the
ons, but in the reverse order. A demodulator first maps the received complex-valued channel outp

22 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

Fig. 19. Simulated communication setups

idea is the sender encodes the message with redundant information in the form of an ECC. This redundancy
allows the receiver to detect a limited number of errors that may occur anywhere in the message, and often to
correct these errors without retransmission. We implement the setups depicted in Fig. 19 and compare channel
codes to our method. We refer to the framework shown in Fig. 6 with the evaluation setup described in Section
4, and evaluate the inference robustness of the different communcation systems. For all experiments we have
an Additive White Gaussian Noise (AWGN) channel, over a range of SNR values, and the modulation type is
QAM. In the first setup, there is no channel coding and raw data samples are transmitted over the channel. The
HD classifier at the receiver side uses these raw data samples corrupted by bit errors to do inference. In the
second setup, we add channel coding to the configuration. In the third setup, we apply HD encoding to data at
the transmitter side and transmit hypervectors. In this case we don’t need to do encoding at the receiver, only a
simple similarity check for HD Inference on the corrupted hypervectors suffices. In the fourth setup, we add
channel coding on top of HD encoded hypervectors to further add redundancy.
In Fig. 20a, we compare a rate 1

2 convolutional channel code with HD encoding. Viterbi decoder is used to
decode the transmitted bitstreams at the centralized receiver. Both channel codes and HD encoding are applied
directly to raw data samples, as illustrated in 2nd and 3rd communication setups respectively. The results
show that HD encoding has better performance at similar coding rates than convolutional codes. At 35% BER,
HD still has around 90% accuracy with 10k dimension hypervectors whereas convolutional code quickly loses
accuracy then completely fails. In Fig. 20b, we compare HD encoding with high dimension hypervectors to using
channel codes combined with lower dimension hypervectors. HD encoding alone performs better at the same
overall coding rate, meaning that channel codes do not provide extra protection to the hypervectors. The above
results can be explained by Fig. 20c, for which we refer to [43]. All the plotted coding methods are rate 1

2 as the
convolutional code used in the previous experiments. We show the SNR vs BER curves for both the exact (dashed)
and approximate (solid) decoding algorithms of the considered methods. As implied by the plots, channel coding
gains are significant at moderate to high SNRs. However, BER performance of channel coding converges to that of
uncoded communication at low SNRs, for which we perform our experiments. In such cases, particularly where
BER is greater than 10%, HD encoding is more robust. Moreover, channel codes aim at correcting the errors
and reconstructing the original data. Since we are only interested in using the received data for classification or
clustering, the exact reconstructions are not necessarily needed. HD encodings are more suitable for this purpose,

ACM Trans. Embedd. Comput. Syst.

Fig. 19. Simulated communication setups

the sender encodes the message with redundant information in the form of an ECC. This redu
the receiver to detect a limited number of errors that may occur anywhere in the message, and o
these errors without retransmission. We implement the setups depicted in Fig. 19 and compare c
o our method. We refer to the framework shown in Fig. 6 with the evaluation setup described in
evaluate the inference robustness of the different communcation systems. For all experiments w
itive White Gaussian Noise (AWGN) channel, over a range of SNR values, and the modulation
n the first setup, there is no channel coding and raw data samples are transmitted over the chann
ssifier at the receiver side uses these raw data samples corrupted by bit errors to do inference
setup, we add channel coding to the configuration. In the third setup, we apply HD encoding to
nsmitter side and transmit hypervectors. In this case we don’t need to do encoding at the receiver
similarity check for HD Inference on the corrupted hypervectors suffices. In the fourth setup,
l coding on top of HD encoded hypervectors to further add redundancy.
g. 20a, we compare a rate 1

2 convolutional channel code with HD encoding. Viterbi decoder is
the transmitted bitstreams at the centralized receiver. Both channel codes and HD encoding are
y to raw data samples, as illustrated in 2nd and 3rd communication setups respectively. The
hat HD encoding has better performance at similar coding rates than convolutional codes. At 35
l has around 90% accuracy with 10k dimension hypervectors whereas convolutional code quick
y then completely fails. In Fig. 20b, we compare HD encoding with high dimension hypervectors t
l codes combined with lower dimension hypervectors. HD encoding alone performs better at th
coding rate, meaning that channel codes do not provide extra protection to the hypervectors. Th
can be explained by Fig. 20c, for which we refer to [43]. All the plotted coding methods are rate
utional code used in the previous experiments. We show the SNR vs BER curves for both the exact (

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 23

10

10

10

10

10

10

10-5

10-4

10-3

10-2

10-1

100

0 0.5 1 1.5 2 2.5 3 3.5 4-0.5

-610

Fig. 20. a) Comparison of HD encoding to channel coding (setup 1,2, and 3), b) combined HD encoding and channel coding

(setup 3 and 4), c) channel coding performance at low SNRs, exact (dashed) and approximate (solid) decoding algorithms.

as the holographic representation property allows to maintain as much information as possible when part of the
data is lost.

6 CONCLUSION

In this paper, we proposedHyDREA, an HD computing system that is Robust, Efficient, and Accurate. We proposed
a PIM architecture that adaptively changes the bitwidth of the model based on the SNR of the incoming sample
to maintain the robustness of the HD model while achieving high accuracy and energy efficiency. Our results
indicate that our proposed system loses less than 1% Classification accuracy even in scenarios with an SNR under
7𝑑𝐵. Our PIM architecture is also able to achieve 255× better energy efficiency and speed up execution time by
28× compared to the baseline PIM architecture. We evaluated the feasibility of HyDREA in a “Federated learning”
environment, by utilizing a popular network simulator, NS-3, to model the communication between devices
and simulate wireless noise. We compared HyDREA with other light-weight ML algorithms in the same noisy
environment. Our results demonstrated that HyDREA is 48× more robust to noise than other comparable ML
algorithms. We additionally tested the robustness of HD Clustering in the same network simulation scenarios and
found that our proposed system also looses less than 1% in the mutual information score, even in scenarios with
an SNR under 7𝑑𝐵, which is 57× more robust to noise than K-means. Finally, we extended our PIM architecture
to support Clustering and our results show that we are able to achieves 289× higher energy efficiency and 32×
speed up compared to the baseline architecture during Clustering.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six centers in JUMP, an SRC program sponsored by DARPA,
in part by SRC-Global Research Collaboration grant Task No. 2988.001, and also NSF grants 1527034, 1730158,
1826967, 1911095, and 2003277.

REFERENCES

[1] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning:
Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[2] Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional
random vectors. Cognitive Computation 1, 2 (2009), 139–159.

[3] Mohsen Imani et al. 2021. Revisiting HyperDimensional Learning for FPGA and Low-Power Architectures. In HPCA. IEEE.
[4] Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana Rosing. 2018. Hierarchical hyperdimensional computing for energy efficient

classification. In Proceedings of the 55th Annual Design Automation Conference. ACM, 108.
[5] Mojan Javaheripi, Mohammad Samragh, Tara Javidi, and Farinaz Koushanfar. 2020. GeneCAI: Genetic Evolution for Acquiring Compact

AI. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO ’20). Association for Computing Machinery,
350–358. DOI:http://dx.doi.org/10.1145/3377930.3390226

ACM Trans. Embedd. Comput. Syst.

a) Comparison of HD encoding to channel coding (setup 1,2, and 3), b) combined HD encoding and channe

and 4), c) channel coding performance at low SNRs, exact (dashed) and approximate (solid) decoding algo

holographic representation property allows to maintain as much information as possible when par
lost.

NCLUSION

paper, we proposedHyDREA, an HD computing system that is Robust, Efficient, and Accurate. We pr
rchitecture that adaptively changes the bitwidth of the model based on the SNR of the incoming
ntain the robustness of the HD model while achieving high accuracy and energy efficiency. Our
e that our proposed system loses less than 1% Classification accuracy even in scenarios with an SNR
ur PIM architecture is also able to achieve 255× better energy efficiency and speed up execution
mpared to the baseline PIM architecture. We evaluated the feasibility of HyDREA in a “Federated le
nment, by utilizing a popular network simulator, NS-3, to model the communication between
mulate wireless noise. We compared HyDREA with other light-weight ML algorithms in the sam
nment. Our results demonstrated that HyDREA is 48× more robust to noise than other compara
hms. We additionally tested the robustness of HD Clustering in the same network simulation scenar
hat our proposed system also looses less than 1% in the mutual information score, even in scenari
under 7𝑑𝐵, which is 57× more robust to noise than K-means. Finally, we extended our PIM arch
ort Clustering and our results show that we are able to achieves 289× higher energy efficiency a
p compared to the baseline architecture during Clustering.

OWLEDGEMENTS

ork was supported in part by CRISP, one of six centers in JUMP, an SRC program sponsored by D
by SRC-Global Research Collaboration grant Task No. 2988.001, and also NSF grants 1527034, 1
7, 1911095, and 2003277.

ENCES

ub Konečny, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2016. Federated`
tegies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).
tti Kanerva. 2009. Hyperdimensional computing: An introduction to computing in distributed representation with high-dim

24 • Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, and Tajana Rosing

[6] Mohsen Imani, Abbas Rahimi, Deqian Kong, Tajana Rosing, and Jan M Rabaey. 2017. Exploring hyperdimensional associative memory.
In High Performance Computer Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 445–456.

[7] Sahand Salamat et al. 2019. F5-HD: Fast Flexible FPGA-based Framework for Refreshing Hyperdimensional Computing. In FPGA. ACM,
53–62.

[8] Saransh Gupta et al. 2018. FELIX: fast and energy-efficient logic in memory. In ICCAD. ACM, 55.
[9] Mohsen Imani et al. 2020. DUAL: Acceleration of Clustering Algorithms using Digital-based Processing In-Memory. In IEEE/ACM

MICRO. IEEE, 356–371.
[10] Mohammad Samragh, Mojan Javaheripi, and Farinaz Koushanfar. 2020. Encodeep: Realizing bit-flexible encoding for deep neural

networks. ACM Transactions on Embedded Computing Systems (TECS) 19, 6 (2020), 1–29.
[11] Ali Shafiee et al. 2016. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In ISCA. IEEE,

14–26.
[12] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph Kopena. 2008. Network simulations with the ns-3

simulator. SIGCOMM demonstration 14, 14 (2008), 527.
[13] Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. 2017. VoiceHD: Hyperdimensional Computing for Efficient Speech

Recognition. In International Conference on Rebooting Computing (ICRC). IEEE, 1–6.
[14] Mohsen Imani et al. 2019. BRIC: Locality-based Encoding for Energy-Efficient Brain-Inspired Hyperdimensional Computing. InACM/IEEE

Design Automation Conference (DAC). IEEE, 1–6.
[15] Abbas Rahimi, Simone Benatti, Pentti Kanerva, et al. 2016. Hyperdimensional biosignal processing: A case study for EMG-based hand

gesture recognition. In 2016 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 1–8.
[16] Mohsen Imani et al. 2019. HDCluster: An Accurate Clustering Using Brain-Inspired High-Dimensional Computing. In DATE. IEEE/ACM.
[17] Mohsen Imani et al. 2019. A Binary Learning Framework for Hyperdimensional Computing. In DATE. IEEE/ACM.
[18] Chao Li et al. 2020. A Scalable Design of Multi-Bit Ferroelectric Content Addressable Memory for Data-Centric Computing. In IEDM.

IEEE.
[19] Mohsen Imani et al. 2019. Floatpim: In-memory acceleration of deep neural network training with high precision. In ISCA. IEEE,

802–815.
[20] Mohsen Imani et al. 2020. Deep Learning Acceleration with Neuron-to-Memory Transformation. In HPCA. IEEE, 1–14.
[21] Soroush Ghodrati, Hardik Sharma, et al. 2020. Mixed-signal charge-domain acceleration of deep neural networks through interleaved

bit-partitioned arithmetic. In Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques.
399–411.

[22] Abbas Rahimi, Pentti Kanerva, Luca Benini, and Jan M Rabaey. 2018. Efficient biosignal processing using hyperdimensional computing:
Network templates for combined learning and classification of ExG signals. Proc. IEEE 107, 1 (2018), 123–143.

[23] Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. 2016. A robust and energy-efficient classifier using brain-inspired hyperdimensional
computing. In Proceedings of the International Symposium on Low Power Electronics and Design. ACM, 64–69.

[24] Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. 2017. Voicehd: Hyperdimensional computing for efficient speech
recognition. In 2017 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 1–8.

[25] Mohsen Imani et al. 2019. QuantHD: A quantization framework for hyperdimensional computing. IEEE TCAD (2019).
[26] Haitong Li et al. 2016. Hyperdimensional computing with 3D VRRAM in-memory kernels: Device-architecture co-design for energy-

efficient, error-resilient language recognition. In IEDM. IEEE, 16–1.
[27] Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. 2017. Low power wide area networks: An overview. ieee communications

surveys & tutorials 19, 2 (2017), 855–873.
[28] IEEE 802.11n-2009 - IEEE Standard for Information technology– Local and metropolitan area networks. https://standards.ieee.org/

standard/802_11n-2009.html. ([n. d.]).
[29] IEEE 802.15.4-2020 - IEEE Standard for Low-Rate Wireless Networks. https://standards.ieee.org/standard/802_15_4-2020.html. ([n. d.]).
[30] Theodore S Rappaport et al. 1996. Wireless communications: principles and practice. Vol. 2. prentice hall PTR New Jersey.
[31] Arturas Medeisis and Algimantas Kajackas. 2000. On the use of the universal Okumura-Hata propagation prediction model in rural

areas. In VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No. 00CH37026), Vol. 3. IEEE, 1815–1818.
[32] International Telecommunication Union. https://www.itu.int//. ([n. d.]).
[33] Orion Afisiadis, Matthieu Cotting, Andreas Burg, and Alexios Balatsoukas-Stimming. 2019. On the error rate of the LoRa modulation

with interference. IEEE Transactions on Wireless Communications 19, 2 (2019), 1292–1304.
[34] UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities. ([n. d.]).
[35] UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/cardiotocography. ([n. d.]).
[36] Gregory Griffin, Alex Holub, and Pietro Perona. 2007. Caltech-256 object category dataset. (2007).
[37] UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets/ISOLET. ([n. d.]).
[38] Alfred Ultsch. 2005. U* C: Self-organized Clustering with Emergent Feature Maps.. In LWA. Citeseer, 240–244.

ACM Trans. Embedd. Comput. Syst.

26.
mas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph Kopena. 2008. Network simulations with
ulator. SIGCOMM demonstration 14, 14 (2008), 527.
hsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. 2017. VoiceHD: Hyperdimensional Computing for Efficien
ognition. In International Conference on Rebooting Computing (ICRC). IEEE, 1–6.
hsen Imani et al. 2019. BRIC: Locality-based Encoding for Energy-Efficient Brain-Inspired Hyperdimensional Computing. InA
gn Automation Conference (DAC). IEEE, 1–6.
as Rahimi, Simone Benatti, Pentti Kanerva, et al. 2016. Hyperdimensional biosignal processing: A case study for EMG-ba
ure recognition. In 2016 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 1–8.
hsen Imani et al. 2019. HDCluster: An Accurate Clustering Using Brain-Inspired High-Dimensional Computing. In DATE. IEE
hsen Imani et al. 2019. A Binary Learning Framework for Hyperdimensional Computing. In DATE. IEEE/ACM.
o Li et al. 2020. A Scalable Design of Multi-Bit Ferroelectric Content Addressable Memory for Data-Centric Computing
E.
hsen Imani et al. 2019. Floatpim: In-memory acceleration of deep neural network training with high precision. In IS

–815.
hsen Imani et al. 2020. Deep Learning Acceleration with Neuron-to-Memory Transformation. In HPCA. IEEE, 1–14.
oush Ghodrati, Hardik Sharma, et al. 2020. Mixed-signal charge-domain acceleration of deep neural networks through in
partitioned arithmetic. In Proceedings of the ACM International Conference on Parallel Architectures and Compilation Te

–411.
as Rahimi, Pentti Kanerva, Luca Benini, and Jan M Rabaey. 2018. Efficient biosignal processing using hyperdimensional co
work templates for combined learning and classification of ExG signals. Proc. IEEE 107, 1 (2018), 123–143.
as Rahimi, Pentti Kanerva, and Jan M Rabaey. 2016. A robust and energy-efficient classifier using brain-inspired hyperdim
puting. In Proceedings of the International Symposium on Low Power Electronics and Design. ACM, 64–69.
hsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. 2017. Voicehd: Hyperdimensional computing for efficien
gnition. In 2017 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 1–8.
hsen Imani et al. 2019. QuantHD: A quantization framework for hyperdimensional computing. IEEE TCAD (2019).
tong Li et al. 2016. Hyperdimensional computing with 3D VRRAM in-memory kernels: Device-architecture co-design fo
ient, error-resilient language recognition. In IEDM. IEEE, 16–1.MM

man Raza, Parag Kulkarni, and Mahesh Sooriyabandara. 2017. Low power wide area networks: An overview. ieee commu

veys & tutorials 19, 2 (2017), 855–873.
E 802.11n-2009 - IEEE Standard for Information technology– Local and metropolitan area networks. https://standards
dard/802_11n-2009.html. ([n. d.]).
E 802.15.4-2020 - IEEE Standard for Low-Rate Wireless Networks. https://standards.ieee.org/standard/802_15_4-2020.html.
odore S Rappaport et al. 1996. Wireless communications: principles and practice. Vol. 2. prentice hall PTR New Jersey.
uras Medeisis and Algimantas Kajackas. 2000. On the use of the universal Okumura-Hata propagation prediction mode
s. In VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No. 00CH37026), Vol. 3. IEEE, 1815
rnational Telecommunication Union. https://www.itu.int//. ([n. d.]).
on Afisiadis, Matthieu Cotting, Andreas Burg, and Alexios Balatsoukas-Stimming. 2019. On the error rate of the LoRa m

HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System • 25

[39] Saransh Gupta, Justin Morris, Mohsen Imani, Ranganathan Ramkumar, Jeffrey Yu, Aniket Tiwari, Baris Aksanli, and Tajana Šimunić
Rosing. 2020. THRIFTY: Training with Hyperdimensional Computing across Flash Hierarchy. (2020).

[40] Mohammad Samragh, Mohammad Ghasemzadeh, and Farinaz Koushanfar. 2017. Customizing neural networks for efficient FPGA
implementation. In 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
85–92.

[41] Yun Long, Edward Lee, Daehyun Kim, and Saibal Mukhopadhyay. 2020. Q-pim: A genetic algorithm based flexible dnn quantization
method and application to processing-in-memory platform. In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[42] Mohsen Imani, Yeseong Kim, Sadegh Riazi, John Messerly, Patric Liu, Farinaz Koushanfar, and Tajana Rosing. 2019. A framework for
collaborative learning in secure high-dimensional space. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE,
435–446.

[43] Bashar Tahir, Stefan Schwarz, and Markus Rupp. 2017. BER comparison between Convolutional, Turbo, LDPC, and Polar codes. In 2017

24th international conference on telecommunications (ICT). IEEE, 1–7.

ACM Trans. Embedd. Comput. Syst.

har Tahir, Stefan Schwarz, and Markus Rupp. 2017. BER comparison between Convolutional, Turbo, LDPC, and Polar code
international conference on telecommunications (ICT). IEEE, 1–7.

