Store-n-Learn: Classification and Clustering with
Hyperdimensional Computing across Flash Hierarchy

SARANSH GUPTA, BEHNAM KHALEGHI, and SAHAND SALAMAT, University of California,
San Diego

JUSTIN MORRIS; University of California, San Diego, and San Diego State University
RANGANATHAN RAMKUMAR, JEFFREY YU, ANIKET TIWARI, and JAEYOUNG KANG,
University of California, San Diego

MOHSEN IMANI, University of California, San Diego, and University of California, Irvine

BARIS AKSANLI, San Diego State University

TAJANA SIMUNIC ROSING, University of California, San Diego

Processing large amounts of data, especially in learning algorithms, poses a challenge for current embedded
computing systems. Hyperdimensional (HD) computing (HDC) is a brain-inspired computing paradigm
that works with high-dimensional vectors called hypervectors. HDC replaces several complex learning com-
putations with bitwise and simpler arithmetic operations at the expense of an increased amount of data
due to mapping the data into high-dimensional space. These hypervectors, more often than not, cannot be
stored in memory, resulting in long data transfers from storage. In this article, we propose Store-n-Learn, an
in-storage computing solution that performs HDC classification and clustering by implementing encoding,
training, retraining, and inference across the flash hierarchy. To hide the latency of training and enable effi-
cient computation, we introduce the concept of batching in HDC. We also present on-chip acceleration for
HDC encoding in flash planes. This enables us to exploit the high parallelism provided by the flash hierar-
chy and encode multiple data points in parallel in both batched and non-batched fashion. Store-n-Learn also
implements a single top-level FPGA accelerator with novel implementations for HDC classification training,
retraining, inference, and clustering on the encoded data. Our evaluation over 10 popular datasets shows that
Store-n-Learn is on average 222X (543x) faster than CPU and 10.6X (7.3X) faster than the state-of-the-art
in-storage computing solution, INSIDER for HDC classification (clustering).

CCS Concepts: « Information systems — Flash memory; - Hardware — Biology-related information
processing; Emerging architectures;

Additional Key Words and Phrases: Hyperdimensional computing, in-storage computing, classification,
clustering

This work was supported in part by CRISP, one of six centers in JUMP, an SRC program sponsored by DARPA, in part by
SRC-Global Research Collaboration grants, and also NSF grants 1527034, 1730158, 1826967, 1911095, and 2003279.
Authors’ addresses: S. Gupta, B. Khaleghi, S. Salamat, R. Ramkumar, J. Yu, A. Tiwari, J. Kang, and T. S. Rosing, University
of California, San Diego, 9500 Gilman Dr, La Jolla, California, 92093, USA; emails: {sgupta, bkhalegh, sasalama, rramkuma,
jey070, artiwari, j5kang, tajana}@ucsd.edu; J. Morris, University of California, San Diego, 9500 Gilman Dr, La Jolla, Cali-
fornia, 92093, USA; email: justinmorris@ucsd.edu; M. Imani, University of California, San Diego, 9500 Gilman Dr, La Jolla,
California, 92093, USA; email: m.imani@uci.edu; B. Aksanli, San Diego State University, 5500 Campanile Dr, San Diego,
California, 92182, USA; email: baksanli@sdsu.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).
1539-9087/2022/07-ART22 $15.00
https://doi.org/10.1145/3503541

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:2 S. Gupta et al.

ACM Reference format:

Saransh Gupta, Behnam Khaleghi, Sahand Salamat, Justin Morris, Ranganathan Ramkumar, Jeffrey Yu, Aniket
Tiwari, Jaeyoung Kang, Mohsen Imani, Baris Aksanli, and Tajana Simuni¢ Rosing. 2022. Store-n-Learn: Clas-
sification and Clustering with Hyperdimensional Computing across Flash Hierarchy. ACM Trans. Embedd.
Comput. Syst. 21, 3, Article 22 (July 2022), 25 pages.

https://doi.org/10.1145/3503541

1 INTRODUCTION

The Internet of Things, the ever-increasing demand for new complex applications, and slowdown
of Moore’s law have pushed current processing systems to their limits. Running data-intensive
workloads with large datasets on traditional cores results in high energy consumption and slow
processing speed. Moreover, most Internet of Things applications today use state-of-the art ma-
chine learning algorithms that have severe energy requirements. With the growing importance of
achieving energy efficiency, there is a need to explore emerging computation models.

Brain-inspired Hyperdimensional Computing (HDC) is a computation paradigm that repre-
sents data in terms of extremely large vectors, called hypervectors. These hypervectors may have
tens of thousands of dimensions and present data in the form of a pattern of signals instead of
numbers. By representing data in high-dimensional space, HDC reduces the complexity of oper-
ations required to process data. HDC builds upon a well-defined set of operations with random
HDC vectors, making HDC extremely robust in the presence of failures, and offers a complete
computational paradigm that is easily applied to learning problems [25]. Prior work has shown
the suitability of HDC for various applications like activity recognition, face detection, language
recognition, and image classification, among others [12-14, 17, 28, 36, 38].

Although HDC provides improvements in performance and energy consumption over conven-
tional machine learning algorithms, it still involves fetching each and every data from mem-
ory/disk and processing it on CPUs/GPUs. Today, extremely large datasets are stored on disks.
In addition, the humongous amount of data generated while running HDC cannot always be fit
into the memory, eventually killing the process. Recent work has introduced computing capabil-
ities to solid-state disks (SSDs) to process data in storage [8, 24, 29, 39]. This not only reduces
the computation load from the processing cores but also processes raw data where it is stored.
However, the state-of-the-art in-storage computing (ISC) solutions either utilize a single big
accelerator for an SSD or limit the gains by using complex power-hungry accelerators down the
storage hierarchy [31]. Such architectures are not able to fully leverage its hierarchical design.

In this article, we propose an HDC system that spans multiple levels of the storage hierarchy.
We exploit the internal bandwidth and hierarchical structure of SSDs to perform HDC operations
over multiple data samples in parallel. Our main contributions are as follows:

e We present a novel ISC architecture for HDC that performs HDC classification and clustering
completely in storage. It enables computing at multiple levels of SSD hierarchy, allowing for
highly parallel ISC. Our hierarchical design provides parallelism and hides a significant part
of the performance cost of ISC in the storage read/write operations.

e We introduce the concept of batching in HDC and utilize it to make our ISC implementation
more efficient. During training, we batch together multiple data samples encoded in the HDC
domain in storage. This allows us to partially process data without accessing all encoded
hypervectors. Batching enables us to have a minimal aggregation hardware requirement.
Batching also reduces the amount of data sent out of storage.

e Store-n-Learn utilizes die-level accelerators to convert raw data into hypervectors locally in
all the flash planes in parallel. Unlike previous work [31], our accelerator is simpler and hides

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:3

its computation latency by the long read times of raw data from flash arrays. Our die-level
accelerators can perform both batched and non-batched encoding efficiently in flash planes.
For batched encoding, the accelerator processes multiple inputs in a page in parallel, whereas
it generates multiple dimensions corresponding to an input in parallel during non-batched
encoding. This flexibility is enabled by our innovative adder tree design.

e We present a top-level SSD accelerator, which aggregates the data from different flash dies.
This accelerator is implemented on an FPGA-based device controller. We implement new
and efficient FPGA designs for HDC training, retraining, inference, and clustering. Although
HDC training provides sufficiently accurate initial models, retraining significantly improves
the accuracy of the models by iterating over training data and updating the models multiple
times. Store-n-Learn inference allows the users to directly obtain the classification result
from the storage drive without sending the entire model to the host. Moreover, Store-n-
Learn clustering leverages the FPGA already present in storage and iteratively processes the
datasets multiple times to generate high-quality cluster centers.

e We also present host-side and drive-side primitives to enable the FPGA to work seamlessly
with the die-level accelerators.

e We evaluate Store-n-Learn over 10 popular classification and clustering datasets. Our ex-
perimental results show that Store-n-Learn is on average 222X (543X) faster than CPU and
10.6X (7.3X) faster than the state-of-the-art ISC solution, INSIDER for HDC classification
(clustering).

2 RELATED WORK

Hyperdimensional computing. Prior work applied the idea of HDC to a wide range of learning
applications, including language recognition [37], speech recognition [15], gesture detection [34],
human-brain interaction [35], and sensor fusion prediction [38]. For example, Rahimi et al. [36]
proposed an HD encoder based on random indexing for recognizing a text’s language by gener-
ating and comparing text hypervectors. In another work, Rahimi et al [34] proposed an encoding
method to map and classify biosignal sensory data in high-dimensional space. Imani et al. [12]
proposed a general encoding module that maps feature vectors into high-dimensional space while
keeping most of the original data. Prior work also designed different training framework to en-
able sparsity and quantization in HDC [11, 21]. Prior work also tried to design different hardware
accelerators for HDC. This included accelerating HDC on existing FPGA, ASIC, and processing
in-memory platforms [19, 41, 45]. However, these solutions do not scale well with the number of
classes and dimensions, primarily due to the data movement issue. In addition, the existing pro-
cessing in-memory architectures only accelerate the encoding, training, or associative search, and
they are not scaled with the number of classes of hypervector dimensions. Moreover, they work
with a binary hypervector, which has been shown to provide very low classification accuracy in
HD space [16]. In contrast, our proposed Store-n-Learn accelerates all the phases of HDC clas-
sification and clustering by fundamentally addressing data movement and memory requirement
issues. In addition, Store-n-Learn scales with the size of data and the complexity of the learning
task.

In-storage computing. The major bottlenecks in the current storage systems include the slow
flash array read latency and the SSD to host I/O latency [30]. To alleviate these issues, prior work
introduced ISC architectures [29, 42]. These works exploited the embedded cores present in the
SSD controller to implement ISC. Another set of works [8, 24, 31] used ASIC accelerators in SSD
for specific workloads. Ruan et al. [39] proposed a full-stack storage system to reduce the host-side
I/O stack latency. All of these works propose single-level computing in storage; however, Store-n-
Learn is the first work to push the computing all the way down to the flash die to extract maximum

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:4 S. Gupta et al.

parallelism. It also uses a top-level accelerator to provide an additional layer of computing. The
combination provides a faster implementation that overcomes the SSD to host transfer bottleneck
for HDC.

3 HYPERDIMENSIONAL COMPUTING

Brain-inspired HDC has been proposed as the alternative computing method that processes the
cognitive tasks in a more light-weight way [25, 37]. HDC offers an efficient learning strategy
without overly complex computation steps such as back propagation in neural networks. HDC
works by representing data in terms of extremely large vectors, called hypervectors, on the or-
der of 10,000 dimensions. HDC has been shown to incur minimal error rates, providing accuracy
similar to state-of-the-art learning algorithms like DNNs [10] and k-means [14]. However, the
high-dimensional space of HDC makes it robust to external noise sources and hardware-induced
errors like device failures [26], stuck-at-fault errors [45], errors from low-precision hardware [37],
and noisy communication [6]. Hence, in noisy and error-prone systems HDC proves superior to
algorithms like DNNs and k-means that incur large accuracy losses. HDC performs the learn-
ing task after mapping all training data into the high-dimensional space. The mapping procedure
is often referred to as encoding. Ideally, the encoded data should preserve the distance of data
points in the high-dimensional space. For example, if a data point is completely different from
another one, the corresponding hypervectors should be orthogonal in the HDC space. There are
multiple encoding methods proposed in literature [12, 36]. These methods have shown excellent
classification accuracy for different data types. In the following, we explain the details of HDC
classification steps.

3.1 Encoding

Let us consider an encoding function that maps a feature vector F = {fi, f2,..., fu}, with n
features (f; € N) to a hypervector H = {hy, hy,..., hp} with D dimensions (h; € {0,1}). We
first generate a projection matrix PM with D rows, and each row is a vector with n dimensions
randomly sampled from {—1, 1}. This matrix is generated once offline and is then used to encode
all of the data samples. We generate the resulting hypervector by calculating the matrix vector
multiplication product of the projection matrix with the feature vector:

H =PMxF. (1)

After this step, each element h; of a hypervector H” has a non-binary value. In HDC, binary (bipo-
lar) hypervectors are often used for the computation efficiency. We thus obtain the final encoded
hypervector by binarizing it with a sign function (H = sign(H’)) where the sign function assigns
all positive hypervector dimensions to 1 and zero/negative dimensions to —1. The encoded hyper-
vector stores the information of each original data point with D bits.

3.2 Training for Classification

In the training step, we combine all of the encoded hypervectors of each class using element-
wise addition. For example, in an activity recognition application, the training procedure adds all
hypervectors that have the “walking” and “sitting” tags into two different hypervectors. Where
H; = (hp, ..., hy) is encoded for the j*" sample in the i*" class, each class hypervector is trained
as follows:

ci=ZH;'=<c§,,...,c{>.)
7

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:5

3.3 Classification Retraining

HD classification training requires only a single pass over training data and delivers reasonable
accuracy. However, some critical applications and/or situations may demand higher accuracy. In
such cases, HD classification retraining can significantly improve the accuracy of the base trained
hypervectors by iterating over the training data multiple times. Considering a training input hyper-
vector H, that belongs to class j but is incorrectly assigned to class k, the retraining step proceeds
as follows:

Ci = C,’ - Hx, (3)
Cj = Cj + H,. (4)

This step can be repeated several times for the whole dataset until the desired accuracy is achieved.

3.4 Classification Inference

The main computation of inference is the encoding and associative search. We perform the same
encoding procedure to convert a test data point into a hypervector, called a query hypervector,
Q € {~1,1}P. Then, HDC computes the similarity of the query hypervector with all k class hyper-
vectors, {Cy, Cy, . . ., Cr}. We measure the similarity between a query and an i*" class hypervector
using §(Q, C;), where § denotes the similarity metric. The similarity metric most commonly used
is cosine similarity, as it provides the highest accuracy. However, other similarity metrics like dot
product and Hamming distance for binary class hypervectors are also used. After computing all
similarities, each query is assigned to a class with the highest similarity.

3.5 Clustering

The HD clustering algorithm is very similar to the popular k-means algorithm. HD clustering, like
k-means, first starts off with random centers. Each cluster center is assigned a unique hypervector.
Then, the algorithm iterates through all of the data points while comparing their corresponding
hypervectors with those of the cluster centers using the cosine similarity metric. Each data point
is assigned the center with maximum similarity. After all points are labeled, the new centers are
chosen by superimposing the corresponding points to form an updated set of cluster centers:

Ci''=) Hx, (5)

HxECli

where Hx € Cj indicates the set of all data points assigned to the cluster represented by Cy after
iteration t. The process is repeated until convergence or the maximum number of iterations is
reached. Convergence occurs when no point is assigned to a different cluster compared to the
previous iteration.

3.6 Applications beyond Classification and Clustering

In addition to the classification and clustering workloads discussed in this article, recent works
have used HDC for various types of applications. For example, the work on HyperRec [9] im-
plements a recommender system using HDC. GenieHD [27] uses HDC to implement DNA pattern
matching. It uses HDC’s high dimensionality to encode the entire DNA reference database, making
it easier to be searched. It then matches incoming chunks of HDC-encoded DNA with the reference
database. Asgarinejad et al. [1] and Imani et al. [18] used HDC to detect seizures and perform real-
time health analysis, respectively. In addition, Neubert et al. [32] demonstrated the application of
HDC to different robotic tasks like viewpoint invariant object recognition, place recognition, and
learning of simple reactive behaviors. To achieve this, they mapped high-dimensional vectors and

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:6 S. Gupta et al.

operations of HDC to the more widely studied vector symbolic architectures. These works show
that HDC has a wide applicability and can be used to perform a range of tasks.

3.7 Challenges

HDC is light-weight enough to run at acceptable speed on a CPU [16]. Utilizing a parallel archi-
tecture can significantly speed up the execution time of HDC [19]. However, with the constantly
increasing data sizes along with the explosion in data that occurs due to HDC encoding, running
this algorithm on current systems is highly inefficient. All of these platforms need to fetch the ex-
tremely large hypervectors from memory/disk to process them. They also require huge memory
space to store HDC hypervectors and train on them. With the available parallelism across thou-
sands of dimensions and simple operations needed, ISC is a promising solution to accelerate HDC
encoding and training.

General-purpose ISC solutions partially address the data transfer bottleneck but still are not able
to fully exploit the huge internal SSD bandwidth [39]. The state-of-the-art application-specific ISC
[31] tries to exploit the internal SSD bandwidth but provides only one level of computing, which
fails to accelerate applications that either (i) have a computing logic that is too complex to imple-
ment using the small accelerator or (ii) require post-processing computation steps. Store-n-Learn
aims to overcome these issues by breaking complex HDC algorithms into simpler, both data-size
and computation-wise, parallelizable tasks. Then, Store-n-Learn utilizes two levels of computa-
tion within the SSD, one at the chip-level and other at the SSD level, to efficiently implement those
tasks.

4 STORE-N-LEARN DESIGN

Store-n-Learn is an ISC design that performs HDC classification and clustering completely in stor-
age. It utilizes a two-level computing architecture. The first level encodes the raw data into HDC
data, whereas the second level processes this high-dimensional data. The expansion of data size
during encoding requires high bandwidth between the first and the second level of computing. In
addition, the second level of computing should be able to implement a variety of different com-
puting kernels based on the target application. To achieve that, we implement the first level of
computing at the flash chips, whereas the second level of computing is at the SSD controller in
the form of an FPGA. Although computing at flash chips can utilize the high internal parallelism
(multiple flash chips in SSD hierarchy) and internal bandwidth (higher channel bandwidth vs the
SSD output bandwidth), the FPGA allows us to implement configurable computing kernels.

Figure 1 shows an overview of the Store-n-Learn SSD architecture. A flash die consists of multi-
ple flash planes, each of which generates a page during a read cycle. Store-n-Learn inserts a simple
low-power accelerator, the die-level accelerator (in green on the right in Figure 1), in each plane to
encode every read page into a hypervector. These hypervectors are then sent to a top-level FPGA,
which accumulates these hypervectors in batches (in green on the bottom left in Figure 1). The
FPGA is also used for retraining, inference, and clustering on the encoded hypervectors received
from the flash planes. Store-n-Learn uses a scratchpad (in green on the top left in Figure 1) in the
controller to store the projection matrix, which it receives as an application parameter from the
host. Batching ensures that data generated by each SSD-wide read operation is used in training as
soon as it is available, without waiting for the remaining data.

4.1 Batched HDC Training in Store-n-Learn

The size of raw data (number of data points) combined with the size of each hypervector (size of
each encoded data point) makes it unrealistic to store all of the encoded hypervectors and then
perform HDC training over them. Hence, we employ batching to perform partial training with the

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:7

2
CONTROLLER I
CTRL. | | | | | | // D §
CHIP CHIP CHIP
P—
t \ IDIE ACCEL.I IDIE ACCEL.I
FIRMWARE CTRL. | | | = | | | | 1
FLASH| |FLAsH| |FLASH| |FLASH
3 . CHIP Curp CHIP CHIP LAk 00 2 LLA
*
TOP ACCEL. |t o 000 =|
______ [[S —
Cnavnin) BLock | | BLOCK
I 1 |_|—|_|_| =)
X CTRL. \ P = P
FLASH| |FLASH| |FLAsH| |FrLasH| |V =GB =GB
DMA STORAGE CHIP CHIP CHIP CHIP '\ r~——"1 b~
UNIT

Fig. 1. Store-n-Learn SSD overview. The components added by Store-n-Learn are shown in green.

hypervectors available at any given moment. As mentioned in Section 3, the initial HDC training
algorithm to create a class hypervector (2) is to add up all of the encoded samples belonging to a
given class. This summation can be split up into batches of partial sums and maintain the same
result. For example, say there are s samples for each class—the total sum can be split up into k
partial sums or batches and the batch size defined as b = s/k, as shown in Equation (6).

b 2b s
CI=ZH;+Z+~--+ Z H; (6)
j=1 j=b+1 j=((s—1)b)+1

Batching allows Store-n-Learn to process a subset of encoded hypervectors together. Store-n-
Learn chip-level accelerators encode raw data into hypervectors and send them to the top-level
SSD FPGA accelerator for further processing. All flash chips operate in parallel to encode some of
their data, send the hypervectors to the FPGA, and operate on the next set. Each of these hypervec-
tors belongs to a specific class. For an application with C classes, we allocate enough memory in
the top-level accelerator to store C model hypervectors, each assigned to a class. We batch all incom-
ing hypervectors from flash that belong to the same class together and bundle the result with the
corresponding model hypervector. This is continued until all required data has been encoded and
used to train model hypervectors. In the end, the top-level model hypervectors represent a fully
trained model of the data. Batching provides us with two benefits. First, it minimizes the memory
requirement during training. Second, it reduces its effective latency by combining hypervectors as
soon as they are generated. This hides a major part of training latency with the time taken to read
data from flash.

What if the size of model hypervectors is too large to store at top-level FPGA accelerator? Some
applications may need too many dimensions or have too many classes to store all model hypervec-
tors at the FPGA, which at best may have few megabytes of blocked RAMs (BRAMs). In such
a case, even with balanced data, it will not be possible to train the model completely in storage.
However, Store-n-Learn can still perform training in batches and reduce the amount of data sent
to the host for processing. Now, instead of allocating FPGA BRAM:s for all model hypervectors,
it is dynamically allocated according to the encoded input hypervectors available at a time. If an
input hypervector does not belong to one of the present models, a model hypervector is sent out
to the CPU host and an empty model hypervector corresponding to the class associated with the
incoming hypervector is allocated instead. The implementation details are presented in Section 4.3.
The host is then responsible for combining various batched training hypervectors together.

In this operating mode, Store-n-Learn still reduces the amount of data movement compared to
sending the raw low-dimensional data. Here, we define n as the number of features or dimension-
ality of the original data, D, as the dimensionality of the encoded hypervectors, and b as the batch

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:8 S. Gupta et al.

size. When nb > D, the total data movement of the resulting batched hypervectors is less than
the amount of original data sent in low-dimensional space when the batched hypervector uses the
same bitwidth as the original data. However, we can utilize lower bitwidth representations as we
encode the data into a hypervector whose elements are {—1, 1} and then bundle the hypervectors
with element-wise addition. Therefore, the range of data in any given dimension can be defined
by the normal distribution with a mean of 0 and standard deviation of Vb. We can represent each
dimension of the batched hypervector with (log, 4Vb) + 1 bits while maintaining an accurate rep-
resentation. We multiply by 4 to capture 4 standard deviations away and add 1 to account for the
sign bit. In this case, assuming the original data is represented with 32 bits, Store-n-Learn sends
less data than the data movement required to send the original data in low-dimensional space

when 32nb > D(log, (4Vb) + 1).

4.2 Encoding Near Data via Flash Hierarchy

The modern SSD architecture is hierarchical in nature. An SSD has multiple channels. Each channel
is shared by four to eight flash chips as shown in Figure 1. The flash chip may consist of several
flash dies that are further divided into flash planes, each plane consisting of a group of blocks,
each of which store multiple pages. Each plane has a page buffer to write the data to. Operations
in the SSD happen in page granularity where the size of pages usually ranges from 2 to 16 KB
[4]. Throughout this article, “B” represents bytes. To fully utilize the flash hierarchy, we introduce
accelerators for each flash plane as shown in Figure 1. The aim of this added computing primitive
is to process the data where it has no conflict or competition for resources.

4.2.1 Chip-Level Accelerator Design. The Store-n-Learn plane accelerator encodes an entire
page with raw data to generate a D-dimensional hypervector. Let us assume the SSD page size
to be 4 KB (ps) with each data point being 4 bytes (d;). This translates to 1K data points (ps/d;). Let
the feature vector contain 1K features. Assuming that the feature vectors are page aligned, each
page stores one feature vector. HDC encoding multiplies an n-size feature vector with a projection
matrix containing D X n 1-bit elements. Our accelerator calculates the dot product between two
page-long vectors, one read from the flash array and another being a row vector of the projection
matrix. This involves element-wise multiplication of the two vectors and adding together all el-
ements in the product. Since the weights in the projection matrix € {1, -1}, we reduce the bits
required to store the weights by mapping them such that 1 — 1 and (-1) — 0. We use 2’s com-
plement to break the multiplication into an inversion using XNOR gates and then adding the total
number of inverted inputs to the accumulated sum of XNOR outputs. The accelerator is shown in
Figure 2. It consists of an array of 32K XNOR gates followed by a 1K input tree adder (labeled CSA
in Figure 2). The tree adder is a pruned version of the Wallace carry save tree, where the operand
size throughout the tree is fixed to 4B. It reduces 1,024 inputs to 2, which is followed by a carry
look-ahead addition (labeled CLA in Figure 2). This gives us the dot product of the two vectors.
It is the value of one dimension of the encoded hypervector. The accelerator is iteratively run D
times to generate D dimensions. Depending upon the power budget, Store-n-Learn may employ
multiple parallel instances of this accelerator to reduce the total number of iterations. Since D is
generally large, the generated D-dimensional vector is multi-page output. Store-n-Learn writes
the output of the accelerator to the page buffer of the plane, which serves as the response to the
original SSD read request.

4.2.2 Storing Input Data. The preceding accelerator assumed the size of the feature vectors to
be exactly the same as that of a page. However, this is rarely the case. State-of-the-art ISC designs
use page-aligned feature vectors, which may lead to poor storage utilization if the feature vector

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:9

PLANE p—m—————— ——— — — 7 BUFFER

[| PM Row Reg CSA |

| N words R |
inartls‘ 1 N:2 o CLA | »
| XNOR Array reduce [Ords |

Fig. 2. Store-n-Learn die accelerator.

1T e (1111 0111

Data 0 Data 1 Data 2 Data 3 Data 4
PLANE 0 PLANE 1 PLANE 2 PLANE 3

%29 1000

F ‘ | L1
Pagep ‘ Pagep Pagep Page p

i 2 B]
1| | | |

Projection
Matrix

Fig. 3. Data storage scheme in Store-n-Learn and the corresponding segmentation of the projection matrix.
Data represents a feature vector.

size is too small or just larger than the page size. For example, in a page-aligned feature vector
setting, a 4-KB page may fit only one 512-B feature instead of eight. In addition, a 5-KB feature
vector may occupy two complete pages. To alleviate the issue, we propose a cross-plane storing
scheme, which considers all planes in a chip when storing data, with the goal of increasing the
traditional ISC storage utilization while being accelerator-friendly. We first describe the case when
the size of the feature vector is smaller than the page size. The scheme, shown in Figure 3 on the
left, divides an n-sized feature vector into n, equal segments such that the most efficient storage
is given when

argmax (cx n + d.n/n, Sps),
c

where c is the number of complete n-sized feature vectors in a ps-sized page, n, is the number of
planes per chip, and d € {0,1,...n,}. Hence, a page would contain ¢ X n, + d segments in total.
Having n, equal segments instead of any variable segmentation allows the accelerator to have
a simple segment-wise weight allocation. Each row vector in the projection matrix of a plane is
divided into the same-sized segments as the feature vector as shown in Figure 3 on the right. This
allows Store-n-Learn to increase storage efficiency while minimizing the control overhead of the
accelerator.

If the size of the feature vector is less than the page size, Store-n-Learn uses the same segmen-
tation size. However, the number of segments in a page are given by

argmax (d.n/np < ps).
d

A drawback of this scheme is that individual reads for small feature vectors may require reading
two pages instead of one. However, our main purpose is to obtain trained vectors and not raw
feature vector values. Moreover, since a feature split across two planes shares the same block and
page number, they are both read at the same time.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:10 S. Gupta et al.

4.2.3 Encoding on Store-n-Learn Flash Chips. Although the new data storing scheme improves
the page utilization, it does not suit well the chip-level accelerator. As proposed before, our accel-
erator is a dot-product engine. It processes an entire page from the flash array to generate values
of different dimensions of the corresponding hypervector. In the new data storage scheme, this
would result in an encoded hypervector consisting of multiple and also partial feature vectors. An
easy fix would be to just process one feature vector at a time by setting the remaining inputs of the
accelerator to 0. However, this would increase the total latency of the accelerator. The situation is
worse if the size of feature vectors is very small. We address this problem by extending the concept
of batching in Store-n-Learn.

As detailed in Section 4.1, a set of encoded hypervectors can be added dimension-wise with-
out interfering with the HDC training process as long as they belong to the same final trained
hypervector, such as the same class model. An encoded dimension (d;) of a feature vector (FV)
is obtained by a dot product between the feature values (FV;) and the corresponding row of the
projection matrix (PM)—that is,

di =FVy XPM,',O + FV; XPMigl + - FV,4 XPMi,(n—l)'

Now, to add multiple feature vectors together, we just need to make sure that an element in a
feature vector is being multiplied with the corresponding weight of the projection matrix. In that
case, we would achieve the same effect as batching, only at a lower level of abstraction. This
also works when we have partial features. In this case, the encoded hypervector for the current
page would just have partial information and may not correctly represent the data. Some part of
this information is contained in the encoded hypervector of another page. However, all of these
hypervectors will be added together during training. Hence, the final hypervector will contain all
of the information.

To support this strategy in the Store-n-Learn accelerator, the flash controller segments the pro-
jection matrix in the same way as the feature vectors in the planes and sends the corresponding
segments to the accelerator in each plane. It is important to note that only the features belonging
to the same class are added together in batches. Thus, a chip-level accelerator performs a bitwise
comparison between the labels of feature vectors in a page and only processes those belonging to
the same final model together.

4.2.4 Encoding without Batching. The encoding acceleration discussed previously works well
while training class hypervectors for classification because training input samples can be batched
together. However, other tasks like clustering, retraining, and inference operate on individual data
samples. Hence, they cannot utilize batched hypervectors and require access to individual ones.

As discussed before, encoding individual data points is slow and does not fully utilize the adder
tree present in the encoding accelerator. Hence, unlike batched encoding where we could get away
with generating just one dimension per iteration of the accelerator, here we need to generate mul-
tiple dimensions in parallel. Since each dimension is independent, one way to improve the latency
of encoding individual vectors would be to introduce multiple adder trees, each computing one
dimension. However, this would linearly increase the power and area of the accelerator. Moreover,
the optimal size and number of trees would differ for each application.

Instead, we preserve the current single adder tree and introduce carry look-ahead adders
(CLAs) at intermediate stages as shown in Figure 4. The figure shows only a part of our complete
20-stage adder tree. Our 32-bit CLA implementation has a latency similar to four sequential carry
save additions—that is, four stages of the carry save adder (CSA) tree. Hence, we generate our tree
using 4-stage CSAs. We also add CLAs after every 4 stages, as shown with blue and purple boxes
in Figure 4. For example, a 16 (20)-stage CSA consists of 113 (455) smaller and independent 4-stage,

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:11

9inputs 9 inputs 9 inputs 9 inputs

2 outputs |l 2 outputs|Hl 2 outputs |l 2 outputs|l]

1output| |1 output

8-Stage
e 8-Stage CSA* | |8-Stage CSA* | [8-Stage C5A* | |8-Stage CsA* |
™ [] |m |I [
g 1 output 1 output
12-Stage -
CSA* 2 outputs

Fig. 4. Modified CSA in the die accelerator to encode individual feature vectors in Store-n-Learn. The blue
and purple squares represent intermediate CLAs.

24 (97) 8-stage, 4 (19) 12-stage, and 1 (3) 16-stage CSAs. We insert a 32-bit CLA for each of these
independent CSAs. This results in a total of 141 (574) intermediate 32-bit CLAs. Each of these CLA-
enabled independent trees can generate one output (dimension) each. Hence, in the case when the
size of feature vector is significantly smaller than the page size and less than the input size of any
of the CLA-enabled smaller trees, these trees can generate a dimension each. Thus, if a feature
vector has a size of, say, 32 (8), we utilize the stage 8 (stage 4) CLAs (i.e., the blue (purple) boxes in
Figure 4). For a 1,024-input adder, we can generate 24 dimensions of the hypervector corresponding
to this feature vector in parallel. To enable this, the feature vector is input to each smaller CSA.
Moreover, the projection submatrix corresponding to the 24 dimensions is flattened and supplied to
the accelerator. The preceding modification allows us to generate multiple dimensions in parallel,
significantly boosting the performance of single-feature vector encoding.

4.3 Accelerating HD Data Processing at the Controller

The encoded hypervectors from flash chips are used for further processing (learning in our case)
in the top-level accelerator, which is implemented on an FPGA present in the SSD controller. We
use the FPGA because it is flexible with the application parameters and can be configured using
the primitives provided by INSIDER [39]. Previous works perform data encoding on the FPGA to
avoid storing the encoded data, which requires more storage space. Supporting HD encoding on
the FPGA consumes a lot of FPGA resources and thus limits the performance of the accelerator.
Store-n-Learn uses flash chips to encode the data in real time that saturates the internal SSD band-
width. Thus, Store-n-Learn dedicates all FPGA resources for HD training, inference, and retraining,
thereby providing higher performance as conventional FPGA-based accelerators. The initial train-
ing iteration builds the HD model, a class hypervector for each class. However, to fine-tune the
HD model and increase accuracy, multiple retraining iterations may be needed.

4.3.1 |Initial Training. In the FPGA, we first allocate memory for the final class hypervectors.
For each class, the FPGA has an input queue, where the input hypervectors belonging to that
class are indexed, and an accumulator, which serially accumulates the vectors in the input queue
to generate the final class hypervector. The introduction of class-wise input queues removes the
input data dependency of the accumulator by pre-processing class labels. An accumulator simply
needs to read the input index from its queue and operate on the corresponding data. It makes the

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:12 S. Gupta et al.

Actual Classification

Label (AL)

Encoded
HV

Classa HV
| “assa TV, 4
[[Jewsow] [[T] Updated
Updated
check [*7[[Jaassv] | [[|*Classy Av
d v Classp HV _
[[Encoded v [| | Inference Result EE‘:'I‘(‘:S [[Joossarl [[[] Updated
] Classp, HV

HVo ‘

v |
HD Model
[[wel]

Clustering
Encoded HV

Similarity
Check

Predicted
Label (PL)

‘ CentroidgHV ‘

[centormea] |

[centroid: hv |

HVo

HV,

HD Model Copy
L[[wel [T]
‘T’ Model Update

‘ Temp Centroid HV. ‘

e
Updated I
Centroidp, HV

‘ Temp Centroid; HV ‘

Update the HD model
at the end of each
training iteration

(@) (b)

‘ Temp Centroid.; HV ‘

Fig. 5. Store-n-Learn top-level FPGA design. (a) Retraining and inference for HD classification. (b) HD clus-
tering as compared to the retraining step in HD classification.

computation for different classes independent and parallelizable. The accumulators for each class
then operate in parallel to add an input hypervector from the queue to the corresponding class
hypervector. We divide the hypervectors into partitions to allow partial parallelism.

4.3.2 Retraining and Inference. As explained in Section 3.3, the retraining step consists of read-
ing the encoded hypervectors from the storage, performing the inference, comparing the classifica-
tion output with the data label, and adjusting the HD model in case of misprediction. To adjust the
model, the encoded hypervector is added to the class it belongs to and is subtracted from the mis-
predicted class hypervector. Figure 5(a) shows the architecture of the Store-n-Learn FPGA-based
accelerator for HD retraining and inference. The encoded hypervector is read from the storage
device and stored into the encoded hypervector buffer.

During HD inference, Store-n-Learn in every clock cycle reads d dimensions of the encoded
hypervector, and since HD operations can be parallelized in the dimension level, it calculates the
partial similarity metric between the dimensions of the encoded hypervector and corresponding
dimensions of the class hypervectors. In HD inference, in every clock cycle, Store-n-Learn calcu-
lates the similarity metric between d dimensions of the encoded hypervector and d dimensions
of C class hypervectors. For each class, Store-n-Learn performs d multiplications and accumulates
the multiplication results in a tree adder with d inputs. At the end, the class with the maximum
similarity is the inference result. In each cycle, Store-n-Learn calculates a part of similarity metric
and the entire inference is executed in % cycles.

To perform HD retraining, Store-n-Learn first performs HD inference and compares the predic-
tion label with the original data label. As illustrated in Figure 5(a), for each misprediction, one
addition and one subtraction is needed. Since during the retraining stage an entire encoded hyper-
vector is needed, Store-n-Learn locally stores it on FPGA BRAMs. If Store-n-Learn predicts the label
correctly, it reads the next encoded input; otherwise, it performs the model adjustment in % cycles.

4.3.3 Clustering. Multiple clustering iterations are required for HD clustering model to con-
verge. In each clustering iteration, HD uses the existing centroids to clusters the input data, and
uses the clustered data, at the end of iteration, to update the cluster centroids. Store-n-Learn uses
the average of the encoded hypervectors assigned to a cluster as the cluster centroid, giving us

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:13

the initial clustering model. This is followed by multiple clustering iterations. For each iteration,
Store-n-Learn uses a copy of the latest HD clustering model to update the centroids. In an iteration,
Store-n-Learn uses the clustering model to perform a similarity check for each encoded input and
assigns a cluster to it. Then, the corresponding input hypervector is added to the predicted cluster
centroid of the iteration’s copy of the HD clustering model. At the end of each clustering iteration
(i.e., after processing all the input data), the HD clustering model is replaced by the updated copy
of the HD clustering model.

Figure 5(b) highlights the differences between Store-n-Learn HD retraining and HD clustering.
To support HD clustering, Store-n-Learn reuses the similarity check module of HD classification
to find the predicted cluster. It also needs a copy of the HD model to update the centroids. As
illustrated in the figure, Store-n-Learn requires a duplicate of the HD model memory to support HD
clustering, and it reuses the adder array to update the cluster centroids. Therefore, Store-n-Learn
supports HD clustering with double BRAM utilization and with minimal logic overhead, only for
generating related control signals. In each cycle, similar to classification inference, the similarities
between the encoded hypervector and the clustering centroid hypervectors are calculated. Finding
the closest cluster takes % cycles. Then, Store-n-Learn uses the predicted clusters to update the
centroids. Updating the centroids takes another % cycles.

4.4 Software Support

The top-level FPGA uses an INSIDER acceleration cluster [39] to implement all HDC operations
other than encoding. We utilize INSIDER’s software stack to connect Store-n-Learn to the rest
of the system. We modify the SSD drivers and the INSIDER virtual files mechanism to enable
computing in flash chips and make it visible to the FPGA. Store-n-Learn derives its base system
architecture from INSIDER [39]. The INSIDER framework is an API what, while being compatible
with POSIX, allows us to implement an ISC accelerator cluster. The INSIDER API takes a C++ or
RTL code as an input and programs the acceleration cluster (running on drive FPGA) accordingly.
The drive program interface has three FIFOs. The data input (output) FIFO takes in the input (out-
put) data that is needed (generated) by the accelerator. The parameter FIFO contains the runtime
parameters for the FPGA that are sent by the host. INSIDER keeps control and data planes of ISC
separated. The drive control and standard operations are handled by the SSD firmware while all
compute data from flash chips are intercepted by the top-level FPGA accelerator for computing.
The FPGA does not care about the source and/or destination of the data.

4.4.1 Store-n-Learn Host-Side Support. The INSIDER API uses POSIX-like I/O functionality to
communicate with the driver. INSIDER has a standard block device driver with changes made
to the virtual read and write functionalities to accommodate for the programmable accelerator
clusters in the drive. However, the current abstraction allow us to pass directive/parameters only
to the ISC FPGA and not the drive. We define a new API, send_mode, which defines the mode for
read and write operations, further discussed in Section 4.4.2. It passes a single integer, mode, to
the drive firmware while opening a virtual file. For a non-ISC read/write from the drive, mode is
set to 0. During an ISC read, mode represents the expansion factor (EF). EF defines the increase
in the size of raw data after encoding. For example, EF = 5 means that each page of raw data
generates five pages of encoded data (due to large D). In this case, mode is set to 5. This parameter
is necessary to enable the drive to read the required number of pages from the flash chips. Since
EF is dependent on the number of features of the data and dimensionality requirement of the
application, it remains constant for an entire run. Similarly, a non-zero mode signifies ISC write.
In this case, the data being sent to the drive contains the elements of the HDC projection matrix

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:14 S. Gupta et al.

and is written to the controller scratchpad. No data is written to the flash chips. During write, we
only care about whether mode is zero or non-zero.

4.4.2 Store-n-Learn Drive-Side Architecture. Store-n-Learn implements its top-level accelerator
described in Section 4.3 as an INSIDER acceleration cluster, which enables the final training step.
However, the INSIDER system does not support Store-n-Learn’s die-level acceleration because the
standard read/write drive operations cannot readily accommodate on-the-fly change in data size
while reading encoded pages and writing projection matrix elements to the on-die accelerator.

Store-n-Learn introduces the processing capability between flash planes and page buffers, but
sometimes only raw data may be required. Hence, Store-n-Learn employs two read modes: normal
and compute. It uses the die-level accelerator in multiplexed mode where a read page is sent to the
accelerator for processing only in compute mode, shown in Figure 6. In normal mode, the plane
directly writes the original page to the page buffer. Moreover, response type in the two modes also
differs. A normal read results in just one page, whereas a compute read responds with multiple
but fixed number of pages. Store-n-Learn uses application specifications such as feature vector
size and dimensionality requirement to generate an expansion factor, which is supplied to the SSD
firmware by the host, as explained in Section 4.4.1. The firmware uses this factor to calculate the
response size for page read commands in compute mode.

Store-n-Learn also employs two write modes: normal and compute. The compute mode is used
to supply projection matrix data to the on-die accelerators. In normal mode, data is written in the
data buffer and then programmed in the flash array. In compute mode, the data in data buffer is sent
to the accelerators as shown in Figure 6. The writes in compute mode are fast since the data is just
latched in CMOS registers instead of flash arrays. Unlike a compute mode read, where the same
command can be issued to all of the chips, compute mode write requires individual commands for
each plane to configure their respective on-die accelerators. This follows from Figure 3. Each plane
gets the same segments, but their positions may differ for different planes. A write configuration
command is separately issued for each plane. For each plane, it configures the size of segment
(segs), number of input segments (seg;,), actual number of segments in the plane (seg,.;), and
the ID of the first segment (segon.). The format of the command is [segs, segin, S€gact, S€gone]. For
example, the command for plane 0 and plane 2 in Figure 3 would be [200, 4, 5, 0] and [200, 4, 5, 2],
respectively. Although sequential, this step has negligible latency overhead because it can be per-
formed in parallel for all of the flash chips.

As discussed briefly in Section 4.2, the flash controller sends the projection matrix elements
to the respective accelerators. SSD receives the projection matrix from the host. We introduce a
dedicated scratchpad in the flash controller to store the matrix. The controller sends the elements
in page-sized frames to the die accelerators. The frames consist of multiple segments and are used
by the die accelerators according to the configuration command, as shown in Figure 3.

4.5 Store-n-Learn Is More Than Just a HDC Accelerator

We envision Store-n-Learn as a system that, in addition to performing all functions of a standard
SSD, can accelerate HDC. However, since Store-n-Learn is based on the INSIDER system stack,
it can perform a variety of different computations. The FPGA present in the controller can be
configured to perform any computation task on the data read from the drive. The hierarchical
nature of Store-n-Learn makes the FPGA and die-level accelerators independent of each other. If
the target application/computation does not require die-level accelerators, then the Store-n-Learn
can operate in normal read mode and supply raw data to the SSD controller, which the FPGA
can compute upon. Moreover, the die-level accelerator that performs HD encoding is essentially a

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:15

Plane Plane Plane Plane P Plane
[N [N '
Bl;t:fer Bl;f'fer [Buffer | Buffer
Read Write Normal Read ~ ComputeRead Normal Write Compute Write

(@) (b)

Fig. 6. Different read and write modes in standard SSD (a) and Store-n-Learn (b). The components in red are
active during the operation.

dot-product engine. Dot product is one of the major computations in applications like neural net-
works. Hence, applications other than HDC can use Store-n-Learn either fully or partially.

5 RESULTS
5.1 Experimental Setup

We developed a simulator for Store-n-Learn that supports parallel read and write accesses to the
flash chips. We utilized Verilog and Synopsys Design Compiler to implement and synthesize our
die-level accelerator at 45 nm and scale it down to 22 nm. The top-level FPGA accelerator has been
synthesized and simulated in Xilinx Vivado. For Store-n-Learn drive simulation, we assume the
characteristics similar to the 1-TB Intel DC P4500 PClIe-3.1 SSD connected to an Intel Xeon CPU
E5-2640 v3 host. The parameters for Store-n-Learn are shown in Table 2.

We compare Store-n-Learn with a seventh-generation, 2.4-GHz Kaby Lake Intel Core i5 CPU
with 8 MB of RAM and 256 GB of SSD. We also compare it with a 3.5-GHz Intel Xeon CPU E5-
2640 v3 CPU server with 256 GB of RAM and 2 TB of local disk. In addition, we compare with
a CUDA implementation of the HDC pipeline on an Nvidia GTX 1080 Ti GPU. We also compare
Store-n-Learn with INSIDER [39] and DeepStore [31], the state-of-the art ISC solutions. INSIDER
is a full-stack storage system and uses a top-level FPGA accelerator in the drive for ISC. DeepStore
is an ISC implementation for query-based workloads that employs specialized accelerators in the
SSD. For all of our experiments, including those for other ISC solutions, the data is assumed to be
channel striped and stored using Store-n-Learn’s proposed scheme.

5.2 Workloads

5.2.1 Classification. We evaluate the efficiency of Store-n-Learn on five popular classification
applications, as summarized in Table 1 and listed next:

Speech recognition (ISOLET): The goal is to recognize voice audio of the 26 letters of the Eng-
lish alphabet [23].

Face recognition (FACE): We exploit the Caltech dataset of 10,000 web faces [7]. Negative train-
ing images (i.e., non-face images) are selected from the CIFAR-100 and Pascal VOC 2012
datasets [5].

Activity recognition (UCIHAR): The dataset includes signals collected from motion sensors for
eight subjects performing 19 different activities [44]. Medical diagnosis (CARDIO): This dataset
provides a medical diagnosis based on cardiotocography information about each patient [3].
Gesture recognition (EMG): The dataset contains EMG readings for five different hand
gestures [2].

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:16 S. Gupta et al.

Table 1. Workload Summary

Dataset Features | Classes | Batch Size Dataset Features | Clusters | Batch Size
ISOLET 617 26 6 Hepta 3 7 1,365
FACE 608 2 6 Tetra 3 4 1,365
UCIHAR 561 12 7 TwoDiamonds 2 2 2,048
CARDIO 21 2 195 WingNut 2 2 2,048
EMG 4 5 1,024 Iris 4 3 1,024
Synthetic (DS) 512 10 8 Synthetic (DS) 512 10 8

Table 2. Store-n-Learn Parameters

Capacity 1TB Channels 32
Page Size 16KB Chips/Channel 4
External BW | 3.2GBps Planes/Chip 8
BW/Channel | 800MBps Blocks/Plane 512
Flash Latency 53us Pages/Block 128
FPGA XCKUO025 || Scratchpad Size | 4MB
Avg Power/DA 8mW DA Latency 1.02ns

DA: Die accelerator.

5.2.2 Clustering. We evaluate Store-n-Learn on FCPS, the fundamental clustering problem
suite [43], which has been widely used in the literature. We also evaluate HD clustering on the
pattern recognition dataset [22]. The specific datasets used are summarized in Table 1 and listed
next:

FCPS Hepta [43]: The three-dimensional Hepta dataset consists of seven clusters that are
clearly separated by distance, one of which has a much higher density.

FCPS Tetra [43]: The Tetra dataset consists of 400 data points in four clusters that have large
intra-cluster distances. The clusters are nearly touching each other, resulting in low inter-
cluster distances.

FCPS TwoDiamonds [43]: The data consists of two clusters of two-dimensional points. Inside
each “diamond,” the values for each data point were drawn independently from uniform dis-
tributions.

FCPS WingNut [43]: The WingNut dataset consists of two symmetric data subsets of 500
points each. Each of these subsets is an overlay of equally spaced points with a lattice distance
of 0.2 and random points with a growing density in one corner.

Pattern recognition (Iris) [22]: The dataset consists of samples from each of three species of
Iris with four features are present from each sample. One class is linearly separable from the
other two; the latter are not linearly separable from each other.

5.3 Comparison with CPU and CPU Server

We first compare Store-n-Learn with CPU and CPU-based server running state-of-the-art imple-
mentations of HDC classification and clustering over the five datasets with D = 10k. In addition,
we generate a synthetic dataset with 10 classes and each data sample having 512 features. We vary
the size DS (number of data points) of the synthetic dataset from 10% to 107.

5.3.1 HDC Classification with Single-Pass Training. The runtime of single-pass classification
for different platforms is shown in Figure 7. We observe that Store-n-Learn is on average
3,405% and 1, 612X faster than CPU and CPU server, respectively. Our evaluations show that the

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:17

improvements from Store-n-Learn increases linearly with an increase in the dataset size. This
happens because more data samples result in more huge hypervectors to generate and process.
In conventional systems, this translates to a huge amount of data transfers between the core
and memory. It should be noted that the CPU system runs out of memory while encoding for
10° samples and kills the process. The CPU server faces a similar situation for 10’ samples. In
contrast, since Store-n-Learn generates hypervectors (encoding) while reading data out of the
slow flash arrays and processes (training) them on the disk itself, there is minimal data movement
involved.

Store-n-Learn (No Batch) in Figure 7 shows the latency of HDC training on Store-n-Learn with-
out applying batching. We see that batching reduces the latency of Store-n-Learn on average by
6.5%. The effective speedup due to batching in CARDIO and EMG datasets is significantly less than
the batch size. This is because CARDIO and EMG are small datasets and the number of training
samples are not enough to bring forth the complete advantage from batching. This is evident from
the synthetic data (DS), where DS = 10° samples achieves 4.1x speedup from batching, whereas
DS = 10° samples is able to achieve 7.99x speedup from batching.

Figure 7 also shows the size of raw input data in each case normalized to the size of the corre-
sponding trained class hypervectors. Store-n-Learn only sends class hypervectors from drive to
the host, whereas CPU-based systems fetch all data samples from the disk. We observe that the
ratio increases linearly with an increase in the data size. In fact, the size of class hypervectors does
not change with an increase in data size as long as the number of classes and required dimensions
remain the same.

5.3.2 HDC Classification with Retraining. Figure 8 shows the runtime of HD classification with
50 epochs of retraining for different platforms. We observe that Store-n-Learn is on average 222X,
81X, and 28.3x faster than CPU, CPU server, and GPU, respectively. The improvements are lower
than those in case of single-pass classification because now FPGA-based retraining, specifically
the search component of retraining, is the major latency bottleneck. Our evaluations also show
that the performance of Store-n-Learn classification with retraining increases with an increase in
either the dataset size or the number of classes. In addition to processing more hypervectors for
a larger dataset, more classes increase the total number of the latency critical search operations.
Store-n-Learn is able to process much larger datasets than CPU and CPU server, both of which run
out of memory while working with 10° data samples. The trend for total SSD to host data transfers
remains similar to that of single-pass training, where the amount of data transfers saved increases
linearly with an increase in the data size.

5.3.3 HDC Clustering. Figure 9 shows the runtime of HDC with 50 epochs of clustering for
different platforms. We observe that Store-n-Learn is on average 543X and 187X faster than CPU
and CPU server, respectively. Moreover, the latency of Store-n-Learn clustering increases with
both dataset size and the number of classes. However, the relative improvements from Store-n-
Learn also increase with an increase in dataset size. Store-n-Learn is able to process much larger
datasets than CPU and CPU server, both of which run out of memory while clustering 10° data
samples.

The amount of data transfers saved increases linearly with an increase in the data size. For
very small clustering datasets [22, 43], transferring hypervectors of cluster centers instead of raw
data increases the data transfers between SSD and host. However, data transfers become a system
bottleneck for large datasets, in which case Store-n-Learn significantly reduces the total transfers.
For example, Store-n-Learn transfers ~5000X less data compared to CPU-based systems for the
synthetic dataset with 1 million samples.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:18 S. Gupta et al.

Bl CPU 7] Store-n-Learn (No Batch) M Data Size

[CPU Server [Store-n-Learn @
—_ i J N
L 107 %]
w] . 4

£ 7 @4110° 3
= 0 M : 7 ©
= 107 . | ¢ 0 Q
& | 1 7 ; Mo
S 1072} / 7 7 7 | | % 2
2 7 . ’ ’ 7 i N ? M 110° ®
x 10| I/ g g M M1 / é 0 5
L / % / % 4 / 1A / / / 2

CARDIO EM FACE ISOLET UCIHAR DS =10° DS =10* DS=10° DS=10° DS =10
Dataset

Fig. 7. Runtime comparison of HDC encoding and single-pass classification training in Store-n-Learn with
other platforms. The bars in red show the size of raw data normalized to the total size of corresponding class
hypervectors in Store-n-Learn. Store-n-Learn (No Batch) represents the latency of Store-n-Learn without

applying batching.

B cPU GPU B Data Size

[CPUServer [Store-n-Learn .
= 104 ‘) ‘ 9 ? a
~ / / 110* n
() 7 7 9 ©
7 7 % -
E 107 | 5
= : % 17 i 7 7 (a]

'E % g é 9 [v 0 é é 110?
9 / ’ 2 9 v / / 7 o
© 10°% ’ . % 7 / V 7 / 7 0
b= 7 ’ . ’ ’ 7 i / / 7 N
2 18 B B B B B A

Z Z 7 7 7 Z 2 7 % 7
@ 102 B / 7 . 7 ’ 7 0 4 0 £
x 10 / / 4 / ¢ z I\ \ / . e
w 0) 2 ? / é 7 / 2 ? S
EMG EMG FACE ISOLET UCIHAR DS =10° DS =10* DS =10° DS =10° DS =10’

Dataset

Fig. 8. Runtime comparison of HDC classification with retraining in Store-n-Learn with other platforms.
The bars in red show the size of raw data normalized to the total size of corresponding class hypervectors in
Store-n-Learn.

5.4 Store-n-Learn Efficiency

Figure 10 shows the breakdown of Store-n-Learn single-pass classification latency normalized to
the total latency. Here, I/O shows the time spent in sending the generated class hypervectors to the
host. For small datasets, CARDIO and EMG, the latency is dominated by the encoding. However, as
the data size increases, the internal SSD channel bandwidth becomes a bottleneck. This indicates
that Store-n-Learn is able to completely utilize and saturate the huge internal SSD bandwidth. In
addition, a significant amount of time spent in training and some part of the encoding is hidden
by the SSD channel latency. As a result, the combined latency is less than sum of the latency for
individual stages. For the example of the FACE dataset, even though the training takes more than
half of the total latency, a negligible portion of it actually contributes to the overall latency. It
shows that Store-n-Learn stages are able to hide some of their latency. This is in contrast to IN-
SIDER [39], where the runtime is dominated by the latency of encoding and training in the FPGA.
Figure 11 shows the breakdown of latency of different stages in INSIDER. FPGA-based processing
(i.e., encoding and training) takes on average 97% of the total INSIDER runtime. However, in the

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:19

|- CPU B cPUServer B Store-n-Learn M Data Size |
o)

— ; ; ; ' ‘ N
L 104 110* »
2 8

£ 107 10" &
5 2

S 10 100 N
©

8 -2 -2 E

x 10 1107 <

w]

2

Hepta Tetra Two WingNut Iris DS =10° DS =10 DS=10° DS=10° DS =10’
Diamonds

Dataset

Fig. 9. Runtime comparison of HDC clustering in Store-n-Learn with other platforms. The bars in red
show the size of raw data normalized to the total size of corresponding cluster center hypervectors
in Store-n-Learn.

|l Encoding B SSDChannel [Training L] 1o
1.0 ‘ . ‘ ‘
>
2
S 08| -
-
©
- 06
T
8
= 04
]
£
502
Z
CARDIO EMG FACE ISOLET UCIHAR
Dataset

Fig. 10. Breakdown of latency of different stages of HDC single-pass classification normalized to the total
latency.

case of HD retraining and clustering, the top-level FPGA accelerator becomes the latency bottle-
neck. This happens due to the iterative nature of these algorithms.

To demonstrate the scalability provided by Store-n-Learn, we evaluate it over a synthetic dataset
with 10* samples each with 512 features. We vary the dimensions D from 10° to 10°. Figure 12(a)
shows that the latency of Store-n-Learn increases linearly with an increase in the number of
dimensions, showing that Store-n-Learn is able to scale with D. Additionally, an increase in D
results in longer class hypervectors for the same input data. Hence, the ratio of raw data to hy-
pervector size decreases with an increase in dimensions, falling from from 512 for D = 1k to 2.5
for D = 10°.

We also scale the dataset with the number of classes while keeping its size fixed to 10* samples
and D as 10%. Figure 12(b) shows that the Store-n-Learn latency has minor changes with the number
of classes when we have fewer than 50 classes. This is because our FPGA has enough resources
to train up to 54 classes with D = 10k dimensions. The latency almost doubles for 100 classes.
However, when the number of classes increases further, the size of model hypervectors is too large
to store in the FPGA. Hence, partially trained hypervectors are then sent to the host for further
processing. This can be seen by a jump in the latency for 500 classes in Figure 12(b). In addition to

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:20 S. Gupta et al.

|l SSD Channel [Encoding & Training Z 110
1.0——— — \ — : — —
Py
2
S 08
-
©
= 0.6
e
Q
N4l
©
€ ool
50
z
rrrrn L —— L — I
CARDIO EMG FACE ISOLET UCIHAR
Dataset

Fig. 11. Breakdown of INSIDER’s [39] latency of different stages of HDC single-pass classification normal-
ized to the total latency.

[l Latency B Data Size| [l Latency B Data Size|

qN’ 0 d 2 qN,
P 10 110 1]
@ 1072 110 8 @ 40 T
a (a] a (=]
< L S 1072 {10° 3
2 10 {10t N 3 N
3 g 3o 10" 8
£ £
107 10° 2 107 102 2
10° ,& AC 10° ,& O 10° 5 10 50 100 500 1000
it Ogt® Tl A®
(a) Dimensions (b) Number of Classes

Fig. 12. Change in HDC runtime and raw data size to hypervector ratio with dimensions (a) and number of
classes (b).

the time spent in training, transferring the class hypervectors to host creates a major bottleneck.
This is also evident from the data size ratio that declines for a large number of classes. A ratio of
less than 1 signifies that the size of generated hypervectors is larger than the raw data.

5.5 Store-n-Learn vs Other Algorithms

We compare Store-n-Learn with the best existing algorithms for classification and clustering. For
classification, we compare our work with the state-of-the-art DNN network for ISOLET [20]. In
our evaluation, Store-n-Learn runs HDC classification with 50 epochs of retraining, whereas DNN
is trained on the CPU. We observe that Store-n-Learn is 9.4x faster than DNN while incurring
less than 1% accuracy loss. We also compare our design with DNN running on FPGA. No FPGA
implementation completely trains DNNss due to the complexity of operations and lack of sufficient
on-board resources. Hence, we compare the inference performance of our design with that of DNN
running on FPGA [40]. Store-n-Learn is 17.7X faster than FPGA for the ISOLET dataset, with less
than 1% accuracy loss.

For clustering, we compare Store-n-Learn with the k-means algorithm [33] for the five clustering
datasets on CPU. Store-n-Learn runs HDC clustering with 50 epochs of clustering. The quality

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:21

Il Store-n-Learn Latency [INSIDER Latency DeepStore Latency
>'.- Store-n-Learn Data Size INSIDER Data Size DeepStore Data Size
‘ i ; : ‘ N
3) N
S 10° 7 110° @
Q Z 7 /]
g / 7 | - , 8
3 107 . - . é 1102 @

b 7 ? - a0 7

o o -1 0 7 »n 3
.ﬂ 101 L g o] g g é F é g ; g g] 101 s
T - P | - - s

E | | 1 . 1 1 .
S 10° w7 N L m M S mn| {10° E
S iz NEAE i N B | s
CARDIO EMG FACE ISOLET UCIHAR z

Dataset

Fig. 13. Runtime and data transfer size comparison of Store-n-Learn classification without retraining with
INSIDER [39] and DeepStore [31].

of clustering is measured in terms of mutual information score, which is 1 when the predicted
labels are perfectly correlated with the ground truth and 0 when they are totally uncorrelated.
Store-n-Learn is on average 1.3X faster than k-means on CPU while providing the same mutual
information score. We also compare Store-n-Learn clustering with k-means running on FPGA and
observe that Store-n-Learn is 47X faster. Store-n-Learn is faster than the state-of-the-art algorithms
for both classification and clustering due to the latency overhead of data transfers in traditional
systems. Moreover, the higher complexity of operations in traditional algorithms further makes
them slower on FPGA.

5.6 Comparison with Existing ISC Solutions

We compare the performance and data transfer efficiency of Store-n-Learn with state-of-the-art
ISC designs INSIDER [39] and DeepStore [31]. In our experiments, INSIDER performs both encod-
ing and training/clustering using the FPGA accelerator in SSD and sends the class hypervectors
to the host. Since DeepStore was intended for a completely different application, we replace its
accelerator with Store-n-Learn die-level accelerator. During ISC, DeepStore encodes the raw data
into hypervectors and sends those hypervectors to the host for training/clustering.

5.6.1 HDC Single-Pass Classification. Figure 13 shows the change in latency and data transfer
size of single-pass classification for the three ISC solutions. We observe that Store-n-Learn is on
average 14.4x and 446.8x faster than INSIDER and DeepStore, respectively. Although encoding in
DeepStore takes the same time as Store-n-Learn, transferring hypervector from SSD to host and
further training on them on CPU increases the execution time of DeepStore significantly. However,
the SSD channel bottleneck faced by Store-n-Learn is relaxed in the case of INSIDER since it only
transfers raw data. However, the FPGA-based HDC encoding+training are on average 21X slower
compared to FPGA-based training. In addition, since INSIDER performs training in the SSD, it
transfers the same amount of data to the host as Store-n-Learn. However, by transferring untrained
hypervectors, DeepStore increases the amount of data transferred on average by 397X compared
to Store-n-Learn.

5.6.2 HDC Classification with Retraining. Figure 14 shows the change in latency and data trans-
fer size for complete HDC classification. We observe that Store-n-Learn is on average 10.6x and
179x faster than INSIDER and DeepStore, respectively. For DeepStore, transferring hypervector
from SSD to host and further retraining on them for 50 epochs on CPU increases the execu-
tion time of DeepStore significantly. INSIDER’s FPGA-based HDC encoding and retraining are on

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:22 S. Gupta et al.

Il Store-n-Learn Latency [l INSIDER Latency DeepStore Latency

B Store-n-Learn Data Size INSIDER Data Size DeepStore Data Size
D 10%F ‘ ‘ o ; ‘ 110* N
c 0 n
2 10° 110° S
- a
T 10 110* 5
Q
N Q
= 10" 110" &
E “
S 10° 110° g
Z Z

Dataset

Fig. 14. Runtime and data transfer size comparison of Store-n-Learn classification with retraining with
INSIDER [39] and DeepStore [31].

Il Store-n-LearnLatency [INSIDER Latency DeepStore Latency
>'.- . Store-n-Learn Data Size INSIDER Data Size 72 DeepStore Data Sige o
10 ‘ ‘ ‘ ' ‘ 110° N
3) N
c 7 7 7
3 : ; q 2 | S
4+ 2| 7 7 %) 7 Z - PR

10 7 g . Y 7 10
s o e
- 2 U a7 | - - o

S0l - - - 7 o
S 1 e bl b e el e el e e 10 §
= B . . | . . N
© o0 |- . e . =
/ il v ' 2 U . ©
E 10 é é . % ;_ é 2 {100 E
s 1 Rl A Bl o S
Z o % _I7) 1817 117 1817 . 1% N7 =}
Hepta Tetra TwoDiamonds WingNut Iris =

Dataset

Fig. 15. Runtime and data transfer size comparison of Store-n-Learn clustering with INSIDER [39] and
DeepStore [31].

average 10.7X slower compared to Store-n-Learn’s FPGA-based retraining because encoding con-
sumes a significant amount of FPGA resources, leaving fewer resources to accelerate latency crit-
ical retraining. INSIDER transfers the same amount of data to the host as Store-n-Learn, whereas
DeepStore increases the amount of data transferred on average by 2,510X compared to Store-
n-Learn. This is 6.3X worse than the data transferred in single-pass classification because in
retraining hypervectors are sent for individual data points, eliminating the gains from batched
encoding.

5.6.3 HDC Clustering. Figure 15 shows the change in latency and data transfer size for HDC
clustering. We observe that Store-n-Learn is on average 7.3X and 187X faster than INSIDER and
DeepStore, respectively. The latency results follow the same trends and reasoning as those for
HDC classification with retraining. For data transfers, DeepStore increases the amount of data
transferred on average by 217x compared to Store-n-Learn. The data transfer overhead of Deep-
Store worsens with an increase in the dataset size.

6 CONCLUSION

In this article, we proposed an in-storage HDC system that spans multiple levels of the storage
hierarchy. We exploited the internal bandwidth and hierarchical structure of SSDs to perform

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:23

HDC classification and clustering in-storage. We proposed batched HDC training to enable partial
processing of HDC hypervectors. We further proposed a die-level accelerator for HDC encoding
and top-level FPGA accelerators for HDC training, retraining, inference, and clustering. Our
evaluation shows that Store-n-Learn is on average 222X (543X) faster than CPU and 10.6X (7.3X)
faster than the state-of-the-art ISC solution INSIDER for HDC classification (clustering).

REFERENCES
[1] Fatemeh Asgarinejad, Anthony Thomas, and Tajana Rosing. 2020. Detection of epileptic seizures from surface EEG

[10

[11

[12

[13

(14

[15

(16

[17

—

—

—

[t

—

—

—

—

using hyperdimensional computing. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC’20). IEEE, Los Alamitos, CA, 536—-540.

Simone Benatti, Elisabetta Farella, Emanuele Gruppioni, and Luca Benini. 2014. Analysis of robust implementation of
an EMG pattern recognition based control. In Proceedings of the 2014 International Conference on Bio-inspired Systems
and Signal Processing (BIOSIGNALS’14). 45-54.

UCI Machine Learning Repository. 2010. Cardiotocography Data Set. Retrieved February 17, 2022 from https://archive.
ics.uci.edu/ml/datasets/cardiotocography.

Wooseong Cheong, Chanho Yoon, Seonghoon Woo, Kyuwook Han, Dachyun Kim, Chulseung Lee, Youra Choi, et al.
2018. A flash memory controller for 15us ultra-low-latency SSD using high-speed 3D NAND flash with 3us read
time. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC’18). IEEE, Los Alamitos, CA,
338-340.

Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman.
2015. The Pascal Visual Object Classes Challenge: A retrospective. International Journal of Computer Vision 111, 1
(2015), 98-136.

Lulu Ge and Keshab K. Parhi. 2020. Classification using hyperdimensional computing: A review. IEEE Circuits and
Systems Magazine 20, 2 (2020), 30-47.

Gregory Griffin, Alex Holub, and Pietro Perona. 2007. Caltech-256 Object Category Dataset. Retrieved February 17,
2022 from https://authors library.caltech.edu/7694/.

Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, et al. 2016.
Biscuit: A framework for near-data processing of big data workloads. ACM SIGARCH Computer Architecture News 44,
3 (2016), 153-165.

Yunhui Guo, Mohsen Imani, Jaeyoung Kang, Sahand Salamat, Justin Morris, Baris Aksanli, Yeseong Kim, and Tajana
Rosing. 2021. HyperRec: Efficient recommender systems with hyperdimensional computing. In Proceedings of the 2021
26th Asia and South Pacific Design Automation Conference (ASP-DAC’21). IEEE, Los Alamitos, CA, 384-389.

Saransh Gupta, Mohsen Imani, and Tajana Rosing. 2018. Felix: Fast and energy-efficient logic in memory. In Proceed-
ings of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD’18). IEEE, Los Alamitos, CA,
1-7.

Mohsen Imani, Samuel Bosch, Sohum Datta, Sharadhi Ramakrishna, Sahand Salamat, Jan M. Rabaey, and Tajana
Rosing. 2020. QuantHD: A quantization framework for hyperdimensional computing. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39, 10 (2020), 2268-2278.

Mohsen Imani, Chenyu Huang, Degian Kong, and Tajana Rosing. 2018. Hierarchical hyperdimensional computing for
energy efficient classification. In Proceedings of the 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC’18).
IEEE, Los Alamitos, CA, 1-6.

Mohsen Imani, Yeseong Kim, Sadegh Riazi, John Messerly, Patric Liu, Farinaz Koushanfar, and Tajana Rosing. 2019.
A framework for collaborative learning in secure high-dimensional space. In Proceedings of the 2019 IEEE 12th Inter-
national Conference on Cloud Computing (CLOUD’19). IEEE, Los Alamitos, CA, 435-446.

Mohsen Imani, Yeseong Kim, Thomas Worley, Saransh Gupta, and Tajana Rosing. 2019. HDCluster: An accurate
clustering using brain-inspired high-dimensional computing. In Proceedings of the 2019 Design, Automation, and Test
in Europe Conference and Exhibition (DATE 19). IEEE, Los Alamitos, CA, 1591-159%4.

Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. 2017. VoiceHD: Hyperdimensional computing for
efficient speech recognition. In Proceedings of the 2017 IEEE International Conference on Rebooting Computing (ICRC’17).
IEEE, Los Alamitos, CA, 1-8.

Mohsen Imani, John Messerly, Fan Wu, Wang Pi, and Tajana Rosing. 2019. A binary learning framework for hyper-
dimensional computing. In Proceedings of the 2019 Design, Automation, and Test in Europe Conference and Exhibition
(DATE’19). IEEE, Los Alamitos, CA, 126-131.

Mohsen Imani, Tarek Nassar, Abbas Rahimi, and Tajana Rosing. 2018. HDNA: Energy-efficient DNA sequencing using
hyperdimensional computing. In Proceedings of the 2018 IEEE EMBS International Conference on Biomedical and Health
Informatics (BHI’18). IEEE, Los Alamitos, CA, 271-274.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

22:24 S. Gupta et al.

(18]

(19]

[20]

[21]

[25]
[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Mohsen Imani, Tarek Nassar, and Tajana Rosing. 2019. Brain-inspired hyperdimensional computing for real-time
health analysis. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical and Health Informatics
(BHI'19). IEEE, Los Alamitos, CA.

Mohsen Imani, Abbas Rahimi, Deqgian Kong, Tajana Rosing, and Jan M. Rabaey. 2017. Exploring hyperdimensional as-
sociative memory. In Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA’17). IEEE, Los Alamitos, CA, 445-456.

Mohsen Imani, Mohammad Samragh Razlighi, Yeseong Kim, Saransh Gupta, Farinaz Koushanfar, and Tajana Rosing.
2020. Deep learning acceleration with neuron-to-memory transformation. In Proceedings of the 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA’20). IEEE, Los Alamitos, CA, 1-14.

Mohsen Imani, Sahand Salamat, Behnam Khaleghi, Mohammad Samragh, Farinaz Koushanfar, and Tajana Rosing.
2019. SparseHD: Algorithm-hardware co-optimization for efficient high-dimensional computing. In Proceedings of the
2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM’19). IEEE,
Los Alamitos, CA, 190-198.

UCI Machine Learning Repository. 1988. Iris Data Set. Retrieved February 17, 2022 from https://archive.ics.uci.edu/
ml/datasets/iris.

UCI Machine Learning Repository. 1994. ISOLET Data Set. Retrieved February 17, 2022 from http://archive.ics.uci.edu/
ml/datasets/ISOLET.

Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho, Daniel D. G. Lee, and Jaeheon Jeong. 2016.
YourSQL: A high-performance database system leveraging in-storage computing. Proceedings of the VLDB Endowment
9,12 (2016), 924-935.

Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to computing in distributed representation with
high-dimensional random vectors. Cognitive Computation 1, 2 (2009), 139-159.

Geethan Karunaratne, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abbas Rahimi, and Abu Sebastian. 2020.
In-memory hyperdimensional computing. Nature Electronics 3, 6 (2020), 327-337.

Yeseong Kim, Mohsen Imani, Niema Moshiri, and Tajana Rosing. 2020. GenieHD: Efficient DNA pattern matching
accelerator using hyperdimensional computing. In Proceedings of the 2020 Design, Automation, and Test in Europe
Conference and Exhibition (DATE 20). IEEE, Los Alamitos, CA, 115-120.

Yeseong Kim, Mohsen Imani, and Tajana S. Rosing. 2018. Efficient human activity recognition using hyperdimensional
computing. In Proceedings of the 8th International Conference on the Internet of Things. 1-6.

Gunjae Koo, Kiran Kumar Matam, I. Te, H. V. Krishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven Swanson, and Murali
Annavaram. 2017. Summarizer: Trading communication with computing near storage. In Proceedings of the 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’17). IEEE, Los Alamitos, CA, 219-231.

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yonggiang Xiong, Andrew Putnam, Enhong Chen, and Lintao
Zhang. 2017. KV-Direct: High-performance in-memory key-value store with programmable NIC. In Proceedings of the
26th Symposium on Operating Systems Principles. 137-152.

Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Garcia De Gonzalo, Youjie Li, Hubertus
Franke, Jinjun Xiong, Jian Huang, and Wen-Mei Hwu. 2019. DeepStore: In-storage acceleration for intelligent queries.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 224-238.

Peer Neubert, Stefan Schubert, and Peter Protzel. 2019. An introduction to hyperdimensional computing for robotics.
KI-Kiinstliche Intelligenz 33, 4 (2019), 319-330.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, et al. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12 (2011), 2825-
2830.

Abbas Rahimi, Simone Benatti, Pentti Kanerva, Luca Benini, and Jan M. Rabaey. 2016. Hyperdimensional biosignal
processing: A case study for EMG-based hand gesture recognition. In Proceedings of the 2016 IEEE International Con-
ference on Rebooting Computing (ICRC’16). IEEE, Los Alamitos, CA, 1-8.

Abbas Rahimi, Pentti Kanerva, José del R. Millan, and Jan M. Rabaey. 2017. Hyperdimensional computing for nonin-
vasive brain-computer interfaces: Blind and one-shot classification of EEG error-related potentials. In Proceedings of
the 10th EAI International Conference on Bio-inspired Information and Communications Technologies.

Abbas Rahimi, Pentti Kanerva, and Jan M. Rabaey. 2016. A robust and energy-efficient classifier using brain-inspired
hyperdimensional computing. In Proceedings of the 2016 International Symposium on Low Power Electronics and Design.
ACM, New York, NY, 64-69.

Abbas Rahimi, Pentti Kanerva, and Jan M. Rabaey. 2016. A robust and energy-efficient classifier using brain-inspired
hyperdimensional computing. In Proceedings of the 2016 International Symposium on Low Power Electronics and Design.
ACM, New York, NY, 64-69.

O. Rasanen and J. Saarinen. 2016. Sequence prediction with sparse distributed hyperdimensional coding applied to
the analysis of mobile phone use patterns. IEEE Transactions on Neural Networks and Learning Systems 27, 9 (2016),
1878-1889. https://doi.org/10.1109/TNNLS.2015.2462721

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

Store-n-Learn: Classification and Clustering with Hyperdimensional Computing 22:25

[39]

[40]

[41

—

[42]

[43]
[44]

[45]

Zhenyuan Ruan, Tong He, and Jason Cong. 2019. INSIDER: Designing in-storage computing system for emerging
high-performance drive. In Proceedings of the 2019 USENIX Annual Technical Conference. 379-394.

Mohammad Samragh, Mohammad Ghasemzadeh, and Farinaz Koushanfar. 2017. Customizing neural networks for
efficient FPGA implementation. In Proceedings of the 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM’17). IEEE, Los Alamitos, CA, 85-92.

Manuel Schmuck, Luca Benini, and Abbas Rahimi. 2019. Hardware optimizations of dense binary hyperdimensional
computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory. ACM Jour-
nal on Emerging Technologies in Computing Systems 15, 4 (2019), 1-25.

Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven
Swanson. 2014. Willow: A user-programmable SSD. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation. 67-80.

Michael C. Thrun and Alfred Ultsch. 2020. Clustering benchmark datasets exploiting the fundamental clustering prob-
lems. Data in Brief 30 (2020), 105501.

UCI Machine Learning Repository. 2012. Daily and Sports Activities Data Set. Retrieved February 17, 2022 from https:
//archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities.

Tony F. Wu, Haitong Li, Ping-Chen Huang, Abbas Rahimi, Jan M. Rabaey, H.-S. Philip Wong, Max M. Shulaker, and
Subhasish Mitra. 2018. Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimen-
sional computing case study. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC’18).
IEEE, Los Alamitos, CA, 492-494.

Received February 2021; revised September 2021; accepted December 2021

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 22. Publication date: July 2022.

