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Stochastic computing (SC) reduces the complexity of computation by representing numbers with long streams
of independent bits. However, increasing performance in SC comes with either an increase in area or a loss in
accuracy. Processing in memory (PIM) computes data in-place while having high memory density and support-
ing bit-parallel operations with low energy consumption. In this article, we propose COSMO, an architecture
for computing with stochastic numbers in memory, which enables SC in memory. The proposed architecture
is general and can be used for a wide range of applications. It is a highly dense and parallel architecture that
supports most SC encodings and operations in memory. It maximizes the performance and energy efficiency
of SC by introducing several innovations: (i) in-memory parallel stochastic number generation, (ii) efficient
implication-based logic in memory, (iii) novel memory bit line segmenting, (iv) a new memory-compatible
SC addition operation, and (v) enabling flexible block allocation. To show the generality and efficiency of our
stochastic architecture, we implement image processing, deep neural networks (DNNs), and hyperdimensional
(HD) computing on the proposed hardware. Our evaluations show that running DNN inference on COSMO is
141× faster and 80× more energy efficient as compared to GPU.
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1 INTRODUCTION

The era of the Internet of Things (IoT) brings together billions of inter-connected devices, which
are expected to double every year [5, 63]. This results in generating a huge amount of raw data,
which is processed by algorithms such as machine learning, most of which are computationally ex-
pensive [8, 71]. To ensure network scalability, security, and system efficiency, the majority of IoT
data processing needs to run at least partly on the devices at the edge of the internet [12, 76, 90].
However, running data intensive workloads on traditional cores results in high energy consumption
and slow processing speed due to a large amount of data movement between memory and process-
ing units. Although processor technology has evolved to serve computationally complex tasks in
a more efficient way, data transfers between processor and memory still hinder the efficiency of
application performance [11, 61]. This has changed the metrics used to describe a system from
being performance focused (OPS/sec) to being efficiency focused (OPS/sec/mm2, OPS/sec/W ). Re-
stricted by these metrics, IoT devices either implement extremely simple versions of these complex
algorithms, while trading a lot of accuracy, or transmit data to cloud for computation while incurring
huge communication latency costs.

Interestingly, new computing paradigms have shown the capability to perform complex compu-
tations at lower area and power costs [30, 42, 92]. Stochastic Computing (SC) [24] is one such
paradigm, which represents each data point in the form of a bit-stream, where the probability of
having “1”s corresponds to the value of the data [6, 7, 75]. Representing data in such a format in-
creases the size of data, with SC requiring 2n bits to precisely represent an n-bit number. However,
it comes with the benefit of extremely simplified computations and tolerance to noise [7, 31]. For
example, a multiplication operation in SC requires a single logic gate as opposed to the huge and
complex multiplier in integer domain. This simplification provides low area footprint and power
consumption. However, with all its positives, SC comes with some disadvantages. (i) Generating
stochastic numbers is expensive and is a key bottleneck in SC designs, consuming as much as 80%
[69] of the total design area. (ii) Increasing the accuracy of SC requires increasing the bit-stream
length, resulting in higher latency and area. (iii) Increasing the speed of SC comes at the expense
of more logic gates, resulting in larger area. These pose a big challenge that cannot be solved with
today’s CMOS technology.

Processing In-Memory (PIM) is an implementation approach that uses high-density memory
cells as computing elements [4, 21, 26, 60, 77]. Specifically, PIM with non-volatile memories
(NVMs) like resistive random accessible memory (ReRAM) has shown great potential for per-
forming in-place computations and hence, achieving huge benefits over conventional computing
architectures [21, 37, 77]. ReRAM boasts of (i) small cell sizes, making it suitable to store and
process large bit-streams, (ii) low energy consumption for binary computations, making it suitable
for a huge number of bitwise operations in SC, (iii) high bit-level parallelism, making it suitable for
bit-independent operations in memory, and (iv) stochastic nature at sub-threshold level, making it
suitable for generating stochastic numbers.

The basic motivation behind this article is to combine the benefits of SC and PIM to obtain a
system which not only has high computational ability but also meets the area and energy constraints
of IoT devices. We propose COSMO, an architecture for computing with stochastic numbers in
memory. The main contributions of the article are as follows:

— To the best of the authors’ knowledge, COSMO is the first generalized ReRAM processing
in memory architecture which brings together the benefits of both ReRAM devices and SC to
efficiently support various SC encoding techniques and operations. It can accelerate a wide
range of tasks.

— It is a highly parallel architecture which efficiently scales with the size of SC computations.
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— COSMO combines the basic properties of ReRAM and SC to make implementation of SC
on PIM highly efficient. First, COSMO exploits the stochastic nature of ReRAM devices
to propose a new stochastic number generation scheme. This completely eliminates the use
of stochastic number generators which can consume up to 80% area on a SC chip. Second,
COSMO uses the analog nature of ReRAM PIM to present a novel SC addition that is highly
compatible with memory. It is low in complexity but delivers high accuracy.

— It implements, for the first time, implication logic in regular crossbars. This enables COSMO
to combine various logic families to execute logic operations more efficiently. COSMO im-
plementation of basic SC operators using implication logic are faster and more efficient than
state-of-the-art.

— The article presents detailed implementations of two learning algorithms, deep neural net-
works (DNNs), and hyperdimensional (HD) computing, on the proposed COSMO architec-
ture. COSMO is highly suitable and scalable for both of them.

We evaluate COSMO over six general image processing applications, DNNs, and HD computing
to show the generality of COSMO. Our evaluations show that running DNNs on COSMO is 141×
faster and 80× more energy efficient as compared to GPU.

2 BACKGROUND AND RELATEDWORK

2.1 Stochastic Computing

SC represents numbers in terms of probabilities using long independent bit-streams. For example,
a sequence x = 0010110001 represents 0.4 since the probability of a random bit in the sequence
to be “1”, px is 0.4. Various encodings like unipolar, bipolar, extended stochastic logic [15], sign-
magnitude stochastic computing (SM-SC) [91], and so on have been proposed, which allow con-
verting both unsigned and signed binary number to a stochastic representation. To represent num-
bers beyond the range [0,1] for signed and [−1,1] for unsigned number, a pre-scaling operation is
performed. Arithmetic operations in stochastic representation involve simple logic operations on
uncorrelated and independently generated input bit-streams. For example, multiplication for unipo-
lar and SM-SC encodings is implemented by ANDing the two input bit-streams x1 and x2 bitwise
[24]. Here, all bitwise operations are independent of each other. The output bit-stream represents
the product px1 × px2 . For bipolar numbers, multiplication is performed using XNOR operation.

Unlike multiplication, stochastic addition, or accumulation, is not a simple operation. Several
methods have been proposed which involve a direct tradeoff between the accuracy and complexity
of operation. The simplest way is to OR x1 and x2 bitwise. Since the output is “1” in all but one
case, it incurs high error, which increases with the number of inputs. The most common stochastic
addition passes N input bit-streams through a multiplexer (MUX) [14]. The MUX uses a randomly
generated number in range 1 to N to select one of the N input bits at a time. The output, given by
(px1 +px2 + · · ·+ pxN )/N represents the scaled sum of the inputs. It has better accuracy due to random
selection. The most accurate way is to count, sometimes approximately, the N bits at any bit position
to generate a stream of binary numbers [44, 67, 87]. It introduces large area and latency bottleneck
due to addition at each bit position. For subtraction, which is only required for bipolar encoding,
the subtrahend is first inverted bitwise. Any additional technique can then be used. Many arithmetic
functions like trigonometric, logarithmic, and exponential functions can be approximated in stochas-
tic domain with acceptable accuracy [14, 58, 68, 69]. A function f(x) can be implemented using a
Bernstein polynomial [69], based on the Bernstein coefficients, bi. The work in [14] implements f(x)
using FSMs. For example, tanh K

2 x can be implemented using K-state FSM in SC domain, where
x is the stochastic input. Another work [68] uses truncated Maclaurin series representation of f(x),
converting them into a series of stochastic multiplications and additions.
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Fig. 1. Digital PIM operations. The red (green) section shows the voltage applied across RRAM device for
RESET (SET) operations. The blue section shows voltages applied to obtain outputs oi for bitwise operations
on inputs ai and bi. The arrows (>) point to the state of the same memory cells after voltage application. The
memory cells with modified states are highlighted in color.

SC is enabled by stochastic number generators (SNGs), which perform binary to stochastic
conversion. It compares the input with a random, or pseudo random, number generated every cycle
using a comparator. The output of the comparator is a bit-stream representing the input. The ran-
dom number generator, generally a counter or a linear feedback shift register (LFSR) [27], and
comparator have large area footprint, using as much as 80% of the total chip resources [69].

SC re-emerged as an active area of research with the introduction of IoT, where devices are
small, less complex, and need low latency. There are recent work in multiple directions. Some try
to improve the efficiency of SC operations by proposing new approximate implementations [44, 67,
87]. The work in [15, 59, 91] propose new encoding schemes for SC which are more accurate than
traditional encoding. Some work also optimize SC for different applications [43, 54, 59, 75, 81, 91].

2.2 Digital Processing in Memory

A large number of recent designs enabling PIM in ReRAM are based on analog computing [21, 23,
70, 77, 83, 86]. Each element of array is a programmable multi-bit ReRAM device. In computing
mode, digital input data is transferred to analog domain using digital to analog converters (DACs)
and passed through a crossbar memory. The accumulated current in each memory bitlines is sensed
by a analog to digital converter (ADC), which outputs a digital number. The ADCs based designs
have high power and area requirements. For example, for the accelerators ISAAC [77] and IMP
[23], the ReRAM crossbar consumes just takes 8.7% (1.5%) and 19.0% (1.3%) of the total power
(area) of the chip. Moreover, these designs cannot support many bitwise operations, restricting their
use for SC.

However, some recent work has demonstrated ways to implement logic using ReRAM switch-
ing [13, 28, 39, 48, 85]. Digital PIM exploits variable switching of memristor to implement a variety
of logic functions inside memory [28, 48]. Figure 1 details the execution of digital PIM operations in
RRAM. It works on the principle that a memory device switches whenever the voltage across it ex-
ceeds a threshold [49]. The red (green) section of Figure 1 shows the voltage applied across RRAM
device for RESET (SET) operations. For example, in case of a RESET operation, a voltage equiva-
lent to logical gnd (generally 0V) is applied at the column/bitline of the memory device, whereas a
voltage greater than the device off-threshold voltage, vo f f , is applied at the row/wordline. The blue
section of Figure 1 shows the implementation of bitwise operations in digital PIM. A voltage V1

(V2) is applied at the wordlines with inputs ai (bi), while voltage Vo is applied at the output word-
line. As shown, these operations can be implemented in parallel over multi-bits ([o0 = a0 Op b0],
[o1 = a1 Op b1]), even the entire row of memory. The output of operation changes with the applied
voltage [28]. The table shows voltages applied to obtain outputs oi for bitwise operations (NOR,
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Fig. 2. (a) Change in latency for binary multiplication with the size of inputs in state-of-the-art PIM tech-
niques. (b) The increasing block size requirement in binary multiplication.

NAND, and OR) on inputs ai and bi. Digital PIM allows high-density operations within memory
without reading out the data. In this article, we utilize digital PIM to implement a majority of sto-
chastic operations. In addition, we also introduce, for the first time, support for an entire class of
digital logic, i.e., implication logic, in regular crossbar memory using digital PIM.

3 WHY STOCHASTIC ON PIM?

In this section, we present the motivation behind COSMO. We discuss the challenges faced by the
current ReRAM-based PIM techniques. We then explore how the properties of ReRAM are suitable
for SC. We also show some inefficiencies associated with the direct adoption of SC to the PIM and
show how the memory compatible operations in COSMO can help alleviate them.

PIM on Conventional or Stochastic Data: The digital PIM designs, discussed in Section 2.2,
use the conditional switching of ReRAM devices to implement logic functions in memory. A se-
ries of these switching operations is used to implement more complex functions like addition and
multiplication. This results in large latency, which increases with the size of the inputs. Figure 2(a)
shows the way the latency increases with the bit-length of inputs for binary multiplication in current
PIM techniques [29, 37, 80, 85]. There is an approximately exponential increase in the latency, con-
suming at least 164 (254) cycles for 8-bit (16-bit) multiplication. As shown in the previous section,
multiplication in stochastic domain just requires bitwise AND/XOR of the inputs. With stochas-
tic bits being independent from each other, increasing the bit-length in stochastic domain does not
change the latency of operation, requiring just two cycles for both 8-bit and 16-bit multiplications.

PIM-based SNG: Another major bottleneck or overhead in most SC based designs is the SNG.
SNGs may take up to 80% of the total area of a stochastic design [69]. This poses a big issue for
energy aware applications. The work in [46] shows that the stochastic nature of ReRAM inherently
supports generations of stochastic numbers. Moreover, this does not require any major addition
to the memory periphery since it uses the trivial circuits like voltage controllers, pulse generation
circuits, and so on, most of which are already present.

PIM Parallelism: Digital PIM is often limited by the size of the memory block, particularly the
width. Figure 2(b) shows how the size of operands increases the demand for larger memory blocks
in binary multiplication. SC is uniquely able to overcome this issue. Since each bit in stochastic
domain is independent, the bits may be stored over different blocks without changing the logical
perspective.

Although the stochastic operations are simple, parallelizing stochastic computation in conven-
tional (CMOS) implementations comes at the cost of a direct, sometimes linear, increase in the
hardware requirement. However, the independence between stochastic bits allows for extensive bit-
level parallelism which many PIM techniques support.
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Fig. 3. COSMO overview.

4 COSMO OVERVIEW

In this article, we present COSMO, a digital ReRAM-PIM based architecture for SC. It is a general
stochastic platform, which supports all SC computing techniques. It combines the complementary
properties of ReRAM-PIM and SC as discussed in Section 3. COSMO architecture consists of
multiple ReRAM crossbar memory blocks grouped into multiple banks (Figure 3(a)). A memory
block is the basic processing element in COSMO, which performs stochastic operations using digital
ReRAM-PIM. The feature with enables COSMO to perform stochastic operations is the support for
flexible block allocation.

Now, due to the limitations of crossbar memory [64, 89], the size of each block is restricted to, say,
1,024× 1,024 ReRAM cells in our case. In a conventional architecture, if the length of stochastic
bit-streams, bl , is less than 1,024, it results in under-utilization of memory. Lengths of bl > 1,024
could not be supported. COSMO on the other hand allocates blocks dynamically. It divides a mem-
ory block (if bl < 1,024), or groups multiple blocks together (if bl > 1,024) to form a logical block
(Figure 3(b)). A logical block has a logical row-size of bl cells. This logical division and grouping
is done dynamically by the bank controller. All the blocks in a bank work with the same bit-stream
length, bl . However, different banks can configure logical blocks independently, enabling simulta-
neous multi-bl support. In addition, COSMO uses a within-a-block partitioning approach where a
memory block is divided into 32 smaller partitions by segmenting the memory bitlines. The seg-
mentation is performed by a novel buried switch isolation technique. The switches, when turned-off,
isolate the segments from each other. This results in 32 smaller partitions, each of which behaves
like a block of size 32×1,024. This increases the intra-block parallelism in COSMO by up to 32×.

Any stochastic application has three major phases, (i) binary to stochastic conversion (B2S),
(ii) stochastic logic computation, (iii) stochastic to binary (S2B) conversion. COSMO follows bank
level division where all the blocks in a bank work in the same phase at a time. The stochastic na-
ture of ReRAM cells allows COSMO memory blocks to inherently support B2S conversion. Digital
PIM techniques combined with memory peripherals enable logic computation in memory and S2B
conversion in COSMO. S2B conversion over multiple physical blocks is enabled by accumulator-
enabled bus architecture of COSMO (Figure 3(c)).

5 STOCHASTIC PIM

In this section, we present the hardware innovations which make COSMO efficient for SC. First, we
present a PIM-B2S conversion technique. Then, we propose a new way to compute logic in memory.
Next, we show how we bypass the physical limitations of previous PIM designs to achieve a highly
parallel architecture. Last, we show the implementation of different SC operations in COSMO.
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Fig. 4. Generation of stochastic numbers using (a) group write [46], (b) COSMO row-parallel generation.

5.1 Stochastic Number Generation

The ReRAM device switching is probabilistic at sub-threshold voltages, with the switching time fol-
lowing a Poisson distribution [40]. For a fixed voltage, the switching probability of a memristor can
be controlled by varying the width of the programming pulse. The group writes technique presented
in [46] showed that stochastic numbers of large sizes can be generated over multiple bits of a column
in parallel. It first deterministically programs all the memory cells to zero (RESET) and then stochas-
tically, based on the input number, programs them to one (SET). However, since digital PIM is
row-parallel; it is desirable to generate such a number over a row. This can be achieved in two ways:

ON→OFF Group Write: To generate a stochastic number over a row, we need to apply the same
programming pulse to the row. As shown before in Figure 1, the bipolar nature of memristor allows
it to switch only to “0” by applying a voltage at the wordline. Hence, a ON→OFF group write
is needed. Stochastic numbers can be generated over rows by applying stochastic programming
pulses at word lines instead of bitlines. However, a successful stochastic number generation requires
us to SET all the rows initially. This results in a large number of SET operations. The SET phase is
both slower as well as more energy consuming than the RESET phase, making this approach very
inefficient. Hence, we propose a new generation method.

COSMO Row-Parallel Generation: The switching of memristor is based on the effective
voltage across its terminals. In order to achieve low static energy for initialization, we RESET
all the rows like the original group write. However, instead of applying different voltage pulses,
vt1,vt2, . . . ,vtn, to different bitlines, we apply a common pulse, vt ′ , to all the bitlines. A pulse, vtx,
applies a voltage v with a time width of tx. Now, we apply pulses, vt1′ ,vt2′ , . . . ,vtn′ , to different
wordlines such that vtx = vt ′ −vtx′ . It generates stochastic numbers over multiple rows in parallel, as
shown in Figure 4(b).

COSMO’s stochastic number generation alleviates the need for special resource allocation for
SNG by enabling it in a standard memory crossbar. Hence, each memory crossbar in COSMO can
generate stochastic numbers independently without having an effect on the latency of other parts of
the memory. This is in contrast with CMOS-based SC accelerators, where single or limited number
of SNGs may introduce a latency bottleneck wherein all inputs utilize the same SNG(s). In CMOS-
based SC designs, there exists a tradeoff between amortizing the area overhead of SNG by sharing
it for multiple inputs and increasing the parallelism in design.

5.2 Efficient PIM Operations

SC multiplication with bipolar (unipolar, SM-SC) numbers involves XNOR (AND). While the dig-
ital PIM discussed in Section 2.2 implements these functions; they are inefficient in terms of la-
tency, energy consumption, memory requirement, number of device switches. We propose to use
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Table 1. Comparison of the Proposed XNOR and and with State-of-the-art Techniques

Latency Energy Memory Req. Device Sw.
(cycles) (fJ) (# of cells) (# of cells)

XNOR AND XNOR AND XNOR AND XNOR AND
COSMO 2 2 37.1 45.2 1 2 ≤2 ≤2

FELIX [28] 3 2 53.7 48.8 2 2 ≤3 ≤2
MAGIC [48] 5 3 120.29 64.1 5 3 ≤5 ≤5

Fig. 5. (a) Implication in a column/row, (b) XNOR in a column.

an implication-based logic. Implication (→, where A → B = A′ +B) combined with false (always
zero) presents a complete logic family. XNOR and AND are implemented using implication very
efficiently, as described in Table 1. Some previous work implemented implications in ReRAM
[13, 50, 55]. However, they required additional resistors of specific value to be added to the memory
crossbar. Instead, COSMO enables, for the first time, implication-based logic in conventional cross-
bar memory, with the same components as the basic digital PIM. Hence, COSMO supports both
implication and basic digital PIM operations.

COSMO Implication in-memory: As discussed in Section 2.2, a memristor requires a voltage
greater than vo f f (−von) to switch from “1” (“0”) to “0” (“1”) to high resistive state (HRS) (HRS,
logical “0”). We exploit this switching mechanism to implement implication logic in memory. Con-
sider three cells, two input cells, and an output cell, in a row of crossbar memory as shown in
Figure 5(a). We apply an execution voltage, V0, at the bitline corresponding to one of the inputs
(in1) while ground the other input (in2) and the output cell (out). Let out be initialized to “1”. In this
configuration, out switches to “0” only when the voltage across it is greater or equal to vo f f . For all
the cases when in1 is “0”, most of the voltage drop is across in1, resulting in a negligible voltage
across out. In case in1 is “1”, the voltage across out is ~V0/3 and ~V0/2 when in2 is “1” and “0”,
respectively. If 2∗ vo f f ≤V0 < 3∗ vo f f , then out switches only when in1 is “1” and in2 is “0”. This
results in the truth table shown in Figure 5(a), corresponding to in1 → in2. To execute in2 → in1, V0

is applied to in2 while in1 and out are grounded.
COSMO XNOR in-memory: XNOR (�) can be represented as, A�B =(A → B).(B → A). In-

stead of calculating in1 → in2 and in2 → in1 separately and then ANDing them, we first calculate
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Fig. 6. Buried switch technique for array segmenting.

in1 → in2 and then use its output cell to implement in2 → in1 as shown in Figure 5(b). In this way,
we eliminate separate execution of AND operation.

COSMO AND in-memory: AND (.) is represented as, A.B =(A → B′)′. The inversion uses NOT
presented in [50]. Similar to the implementation presented in Section 2.2, all bitwise operations
proposed in this section can be executed for all the columns (rows) of a row (column) in parallel.

5.3 Memory Bitline Segmentation

As discussed in Section 2.2, digital PIM supports row-level parallelism, where an operation can be
applied between two or threes row for the entire row-width in parallel. However, parallelism between
multiple sets of rows is not possible. We enable multiple-row parallelism in COSMO by segmenting
memory blocks. As shown in Figure 6(a), a row of segmenting switches physically divides two
segments of memory block, preventing the interference of currents from different segments. Prior
works have segmented the array blocks using conventional transistors for the same purpose [25, 28,
53, 74, 79], which utilizes a planar-type transistor. This type of structure has mainly two drawbacks:
(1) large area overhead and (2) off-leakage due to short channel length. As shown in Figure 6(b), the
area of a single transistor with the planar type structure is impacted by gate length, via contact area,
gate to via space, via to adjacent-WL space in pairs for side of gate. On the other hand, we design
a novel bitline isolation technique using buried switches. Figure 6(c) and (d) describe the cross
sectional view of X-cut and Y-cut of the proposed design, respectively. COSMO utilizes a conductor
on silicon, called silicide, to design the switch. This allows COSMO to fabricate the switch using a
simple trench process [34]. Here, instead of independent switches for different bitlines, we have a
single row-width wide switch.
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Fig. 7. (a) Area overhead and (b) leakage current comparison of proposed segmenting switch to the conven-
tional design.

From the perspective of area, COSMO segmenting needs only a trench width in lateral direction.
Figure 7(a) shows the change in area overhead due to segmentation as the number of segments
increases. The estimated area from Cadence p-cell data with 45 nm process shows that COSMO has
7.2× less silicon footprint as compared to conventional MOSFET-based isolation [53, 74]. Due to
its highly efficient segmentation, COSMO with 32 partitions results in just 3% crossbar area over-
head. In addition, the buried switch makes channel length longer than the conventional switch, as
shown in Figure 6(d). This suppresses the short channel effect of conventional switches. As a result,
COSMO achieves 70× lower leakage current in the subthreshold region (Figure 7(b)), enabling
robust isolation. Switches can be selectively turned-off or on to achieve the required configuration.
For example, alternate switches can be turned-on to have 16 partitions of size 64×1024 each.

5.4 SC Arithmetic Operations in COSMO

Here, we explain how COSMO implements SC operations. The operands are either generated using
the B2S conversion technique in Section 5.1 or are pre-stored in memory as outputs of previous
operations. They are present in different rows of the memory, with their bits aligned. The output is
generated in the output row, bit-aligned with the inputs.

Multiplication: As explained in Section 2, multiplication of two numbers in stochastic domain
involves a bitwise XNOR (AND) between bipolar (unipolar, SM-SC) numbers across the bit-stream
length. This is implemented in COSMO using the PIM technique explained in Section 5.2.

Conventional Addition/Subtraction/Accumulation: Implementations of different stochastic N-
input accumulation techniques (OR, MUX, and count-based) discussed in Section 2 can be gener-
alized to addition by setting the number of inputs to two. In case of subtraction, the subtrahend is
first inverted using a single digital PIM NOT cycle. Then, any addition technique can be used. The
OR operation is supported by COSMO using the digital PIM operations [28], generating OR of N
bits in single cycle. The operation can be executed in parallel for the entire bit-stream, bl , and takes
just one cycle to compute the final output. To implement MUX-based addition in memory, we first
stochastically generate bl random numbers between 1 to N using B2S conversion in Section 5.1.
Each random number selects one of the N inputs for a bit position. The selected input bit is read
using the memory sense amplifiers and stored in the output register. Hence, MUX-based addition
takes one cycle to generate one output bit, consuming bl cycles for all the output bits. To implement
parallel count (PC)-based addition in memory, one input bit-stream (bl bits) is read out by the
sense amplifier every cycle and sent to counters. This is done for N inputs sequentially, consuming
N cycles. In the end, the counters store the total number of ones at each bit position in the inputs.
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Fig. 8. COSMO addition and accumulation in parallel across bit-stream. (a) Discharging of bitlines through
multiple rows (rows 1,3, . . . ,x here), (b) linear COSMO addition with counter value to output relation, and
(c) non-linear COSMO addition centered around 0.5.

COSMO Addition: Count-based addition is the most accurate but also the slowest of the previ-
ously proposed methods for stochastic addition. Instead, we use the analog characteristics of mem-
ory to generate a stream of bl binary numbers representing the sum of the inputs. As shown in
Figure 8(a), the execution of addition in COSMO takes place in two phases. In the first phase, all
the bitlines are pre-charged. In the second phase, only those wordlines or rows which contain the
inputs of addition are grounded, while the rest of the wordlines are kept floating. This results in
discharging of the bitlines. However, the speed of discharging depends upon the number of low
resistive paths, i.e., the number of “1”s. Hence, more is the number of “1”s in a bitline, faster is
the discharging. To detect the discharge edges, we use the traditional 1-bit sense amplifier, along
with a time-controlled latch. We set the circuit to latch at eight different time steps, generating 3-bit
(log28) outputs (Figure 8(b)). The accuracy of this addition can be increased by having non-linear
time steps as in Figure 8(c). We tested the accuracy of the proposed COSMO addition by generat-
ing 1M random binary numbers. We then calculated the average absolute errors. The accuracy of
the COSMO addition is very close to the count-based addition (accuracy loss of 1.92% for bl = 16,
which decreases to 0.34% for bl = 128). Increasing the number of time steps further increases the
accuracy but at the cost of significant area overheads of increased latching and counting circuit.

Other Arithmetic Operations: COSMO supports trigonometric, logarithmic, and exponential
functions using truncated Maclaurin Series expansion [68]. The expansion approximates these func-
tions using a series of multiplications and additions. With just 2–5 expansion terms, it has been
shown to produce more accurate results [68] than most other stochastic methods [14, 69].

6 COSMO ARCHITECTURE

A COSMO chip is divided into 128 banks, each consisting of 1,024 ReRAM memory blocks. A
memory block is the basic processing element in COSMO. Each block is a 1,024 × 1,024-cell
ReRAM crossbar. A block has a set of row and column drivers, which are responsible for applying
appropriate voltages across the memory cells to read, write, and process the data. They are controlled
by the memory controller.

COSMO Bank: A bank has 1,024 memory blocks arranged in 32 lanes with 32 blocks each. A
bank controller issues command to the memory blocks. It also performs the logical block allocation
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Fig. 9. A COSMO block.

in COSMO. Each bank has a small memory that decodes the programming time for B2S conversions.
Using this memory, the bank controller sets the time corresponding to an input binary number for
a logical block. The memory blocks in a bank lane are connected with a bus. Each lane bus has an
accumulator to add the results from different physical blocks.

COSMO Block: Each block is a crossbar memory of 1,024×1,024 cells (Figure 9). Each block
can be segmented into up to 32 partitions using the buried switch isolation of Section 5.3. In addition
to the memory sense amplifiers, block peripheral circuits include a 10-bit (log21024) counter per
32 columns to implement accumulation. Each block also use an additional 10-bit counter to support
pop count across rows/columns.

Variation-Aware Design: ReRAM device properties show variations with time, temperature, and
endurance, most of which change the device resistance. To make COSMO more resilient to resis-
tance drift, we use only single-level RRAM cells (RRAM-SLCs) whose large off/on resistance
ratio makes them distinguishable even under large resistance drifts [88]. Moreover, the probabilistic
nature of SC makes it resilient to small noise/variations. To deal with large variations due to over-
time decay or major temperature variations, COSMO implements a simple feedback enabled timing
mechanism, as shown in Figure 9. One dummy column in a memory block is allocated to implement
this approach. The cells in the designated column are activated and the total current through them
is fed to a tuner circuit. The circuit outputs Δt, which is used to change the pulse widths for input
generation and sense amplifier operations.

COSMO parallelism with bit-stream length: COSMO implements operations using digital
PIM logic, where computations across the bit-stream can be performed in parallel. This results
in proportional increase in performance, while consuming similar energy and area as bit-serial im-
plementation. In contrast, the traditional CMOS implementations scale linearly with the bit-stream
length, incurring large area overheads. Moreover, the dynamic logical block allocation allows the
parallelism to extend beyond the size of block.

COSMO parallelism with number of inputs: COSMO can operate on multiple inputs and ex-
ecute multiple operations in parallel within the same memory block. This is enabled by COSMO
memory segmentation. When the segmented switches are turned-off, the current generated flowing
through a bitline of a partition is isolated from currents of any other partition. Hence, COSMO can
execute operations in different partitions in parallel.

7 LEARNING ON COSMO

Here, we study the implementation of two types of learning algorithms, DNNs and brain-inspired
hyper-dimensional (HD) computing, on COSMO. The goal is to show the generality of COSMO

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 37. Pub. date: January 2022.



COSMO: Computing with Stochastic Numbers in Memory 37:13

Fig. 10. Implementing fully connected layer, convolution layer, and HD computing on COSMO.

by implementing a compute-intensive algorithm like DNN as well as more hardware-friendly algo-
rithm, HD computing. Figure 10 summarizes the discussion in this section.

7.1 Deep Neural Networks Inference

There has been some interest in implementing DNNs using SC [10, 43, 56, 59, 75, 91]. They provide
high performance but that performance comes at the cost of huge silicon area. Here, we show the
way COSMO can be used to accelerate DNN applications. We describe COSMO implementation of
different layers of neural networks, namely fully connected, convolution, and pooling layers.

Fully-Connected (FC) Layer: A FC layer with n inputs and p outputs is made up of p neurons.
Each neuron has a weighted connection to all the n inputs generated by the previous layer. All the
weighted inputs for a neuron are then added together and passed through an activation function,
generating the final result. COSMO distributes weights and inputs over different partitions of one or
more blocks. Say, a neural network layer, j, receives input from layer i. The weighted connections
between them can be represented with a matrix, wi j (•1 ). Each input (ix) and its corresponding
weights (wx j) are stored in a partition (•2 ). Inputs are multiplied with their corresponding weights
using XNOR and the outputs are stored in the respective partition (•3 ). Multiplication happens
serially within a partition but in parallel across multiple partitions and blocks. Then, all the products
corresponding to a neuron are selected and accumulated using COSMO addition (•4 ). If 2p+1 (one
input, p weights, p products) is less than the rows in a partition, the partition is shared by multiple
inputs. If 2p+1 is greater than the number of rows, then wx j are distributed across multiple partitions.

Activation: Activation function brings non-linearity to the system and generally consists of non-
linear functions like tanh, sigmoid, ReLU , and so on. Of these, ReLU is the most widely used
operation. It is a threshold-based function, where all numbers below a threshold value (vT ) are set
to vT .The output of FC accumulation is pop counter and compared to vT . All the numbers to be
thresholded are replaced with stochastic vT . Other activation functions like tanh and sigmoid, if
needed, are implemented using the Maclaurin series-based operations discussed in Section 5.4.

Convolution Layer: Unlike FC layer, instead of a single big set of weights, convolution has
multiple smaller sets called weight kernels. A kernel moves through the input layer, processing a
same-sized subset (window) of the input at a time and generates one output data point for each (•6 ).
A multiply and accumulate (MAC) operation is applied between a kernel and a window of the
input at a time. Say, a convolution layer convolves an input layer (of width wi, height hi and depth di)
with do weight kernels (of width ww, height hw, and depth di) and generates an output with depth do.

We first show how a convolution between a single depth of input and weight kernel maps to
COSMO. In•5 , a 4× 4 input is convolved with a 2× 2 weight kernel. To completely parallelize
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multiplication in a convolution window, we distribute input such that all input elements in any
window are stored in separate partitions. Same colored inputs in•5 go to the same partitions as
shown in•7 . Each partition further has all the weights. To generalize, COSMO splits input into
hw×ww partitions (part11, part12, . . . , parthwww ). A partition, parti j, has all the weights in the kernel
and the input elements at every hwth column and wwth row starting from (i, j). A partition may be
distributed over multiple physical COSMO segments as described in Section 5.3.

The MAC operation in a window is similar to the fully connected layer explained before. Since
all the inputs in a window are mapped to different partitions (•7 ), all multiplication operations
for one window happen in parallel. The rows corresponding to all the products for a window are
then activated and accumulated. The accumulated results undergo activation function (Atvn. in•8 )
and then, are written to the blocks for next layer. While all the windows for a unit depth of input
are processed serially, different input depth levels and weight kernel depth levels are evaluated in
parallel in different blocks•8 . Further, computations for do weight kernels are also parallelized over
different blocks.

Pooling: A pooling window of size hp ×wp is moved through the previous layer, processing
one subset of input at a time. MAX, MIN, and average pooling are the three most commonly used
pooling techniques. While average pooling is same as applying COSMO addition over a subset
of the inputs in pooling window, MAX/MIN operations are implemented using the discharging
concept used in COSMO addition. The input in the subset discharging the first (last) corresponds to
the maximum (minimum) number.

Batch Normalization: During inference, all parameters of batch normalization are fixed and
known in advance. This reduces batch normalization to a simpler linear transformation operation,
where the mean of the batch is subtracted using COSMO subtraction, followed by multiplication
with the inverse of the variance. The remaining scaling and addition operations are performed with
COSMO multiplication and addition.

7.2 Hyperdimensional Computing

HD computing tries to mimic human brain and computes with patterns of numbers rather than
the numbers themselves [41]. It is a hardware efficient algorithm that provides extremely high paral-
lelism. HD represents data in the form of high-dimension (thousands) vectors, where the dimensions
are independent of each other. The long bit-stream representation and dimension-wise independence
make HD very similar to SC. HD computing consists of two main phases: encoding and similarity
check [36, 72, 73].

Encoding: The encoding uses a set of orthogonal hypervectors, called base hypervectors, to
map each data point into the HD space with d dimensions. As shown in •9 , each feature of a
data point (feature vector) has two base hypervectors associated with it: identity hypervector, ID,
and level hypervector, Lv [38]. Each feature in the data point has a corresponding ID hypervector.
The different values which each feature can take have corresponding L hypervectors. The ID and
L hypervector for a data point are XNORed together. Then, the XNORs for all the features are
accumulated to get the final hypervector for the data point [28].

The value of d is usually large, 1,000s to 10,000s, which makes conventional architectures in-
efficient for HD computing. COSMO, being build for SC, presents the perfect platform for HD
computing. The base hypervectors are generated just once. COSMO creates the orthogonal base hy-
pervectors by generating d-bit long vectors with 50% probability, as described in Section 5.1. It is
based on the fact that randomly generated hypervectors are orthogonal. For each feature in data, the
corresponding ID and L are selected and then XNORed using COSMO XNOR (•10 ). The outputs
of XNOR for different features are stored together. Then, all the XNOR results are selected and
accumulated using COSMO addition (•11 ) and further sent for similarity check.
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Similarity Check: HD computes the similarity of the unseen test data point with pre-stored
hypervectors. The pre-stored hypervectors may represent different classes in case of classification
applications. COSMO computes the similarity of a test hypervector with k class hypervectors by
performing k dot products between vectors in d dimensions. The hypervector with the highest dot
product is selected as the output. To implement the dot product, the encoded d-dimension feature
vector is first bitwise XNORed, using COSMO XNOR, with k d-dimension class hypervectors. It
generates k product vectors of length d. COSMO then finds the maximum of the product hypervec-
tors using the discharging mechanism of COSMO addition.

8 EVALUATION

8.1 Experimental Setup

We develop C++-based cycle-accurate simulator which emulates the functionalities of COSMO.
The simulator uses the performance and energy characteristics of the hardware are obtained from
circuit level simulations for a 45 nm CMOS process technology using Cadence Virtuoso. We use
VTEAM memristor model [49] for our memory design simulation with RON and ROFF of 10kΩ
and 10MΩ respectively and a switching delay of 1.1 ns. This forms the COSMO’s design cycle. All
COSMO operations have been designed to meet the memory cycle constraint of 1.1 ns. We imple-
ment logic operations using digital PIM operations [28] discussed in brief in Section 2.2 and shown
in Figure 1. In doing so, some operations, like NOR, take one cycle while others take multiple
cycles. For example, implementing XOR operation in COSMO takes three cycles. For other opera-
tions, like COSMO-addition, we take the simulator estimate of sense-amplifier read time as 1.1 ns
even though it is much faster than that. We simulate a memory block under various conditions for
different operations in Virtuoso. We record the latency and energy consumption at different settings
and use them in our simulator. Our simulator maps the application over many memory blocks and
utilizes the results obtained from memory block simulation to calculate the latency and the average
power consumption of our design.

We compare the efficiency of the proposed COSMO with state-of-the-art processor NVIDIA
GPU GTX 1080 Ti. While reporting the execution time for GPU, we preload the data onto GPU and
report only the GPU execution time. We utilize nvprof with Nvidia Visual Profiler (NVVP) to get
the execution time for individual kernels and consider only the kernels corresponding to application
computations while comparing GPU performance with COSMO. However, GPU has certain GPU-
side overheads like context switching, hardware scheduling, and so on, which may increase its
execution time.

We consider COSMO efficiency on several image processing and learning applications. For im-
age processing, we used four general applications, including: Sobel, Robert, Prewitt, and BoxSharp.
We use random images from Caltech 101 [57] library. For learning application, evaluate COSMO
efficiency on DNN and HD computing applications. As Table 2 shows, we test COSMO efficiency
and accuracy on four popular networks running on large-scaled ImageNet dataset [47]. The GPU
evaluations for DNNs were done using their PyTorch [1] implementations. We used Brevitas library
from Xilinx to obtain their integer models [66]. For HD computing, we evaluated COSMO accu-
racy and efficiency on four practical applications including speech recognition (ISOLET), face de-
tection (FACE), activity recognition (UCIHAR), and security detection (SECURITY). To compare
COSMO with GPUs, we developed a GPU-optimized version of the CPU implementation presented
in [35]. HD similarity check-in GPU implements dot product between two 10,000 dimension vectors.
This operation is the same for all datasets because the encoded input hypervector has dimensionality
of 10,000 for each dataset. For an inference input, we instantiate k such operations, where k is the
number of classes. Table 2 compares the baseline accuracy (32-bit integer values) and the quality
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Table 2. DNN and HD Computing Workloads

Deep Neural Networks Hyperdimensional Computing (10,000 dimensions)
ImageNet
Networks

Base Top-5
Accuracy

Quality
Loss Apps # Classes

Base Top-1
Accuracy

Quality
Loss

AlexNet [16, 47] 80.3% 1.32% ISOLET [22] 26 96.4% 0.72%
ResNet-18 [18, 33] 87.6% 0.76% FACE [45] 2 95.3% 0.29%
VGG-16 [19, 82] 89.3% 1.18% UCIHAR [9] 12 93.1% 0.49%

GoogleNet [17, 32] 90.8% 1.61% SECURITY [62] 10 93.2% 1.20%

loss of the applications running on COSMO using 32-bit SM-SC [91] encoding. Our evaluation
shows that COSMO can result only about 1.5% and 1% quality loss on DNN and HD computing.

8.2 COSMO Tradeoffs

COSMO, and SC in general, depends on the length of bit-stream. The greater the length, higher is
the accuracy. However, this increase in accuracy comes at the cost of increased area and energy con-
sumption. As the length is increased, more area (both memory and CMOS) is required to store and
process the data, requiring more energy. It may also result in higher latency for some operations like
MUX-based additions, for which the latency increases linearly with bit-stream length. To evaluate
the effect of bit-stream length at operation level, we generate random inputs for each operation and
take the average of 100 such samples. Each accumulation operation inputs 100 stochastic numbers.
Moreover, the results here correspond to unipolar encoding. However, all other encodings have sim-
ilar behavior with slight change in accuracy. An increase in bit-stream length has a direct impact
on the accuracy, area, and energy at operation level. While the latency of the design remains same
for all operations except MUX-based addition, Bernstein polynomial, and FSM-based operations.
It happens because these operations process each bit sequentially. While COSMO supports MUX-
based addition, it uses the proposed COSMO-addition (Section 5.4) by default, which does not scale
linearly with latency. When implemented with a bit-stream length of 256, all operations have on an
average 4× improvement in area and energy consumption as compared to the corresponding im-
plementation with a bit-stream length of 1,024 and incur 3.6% quality loss. For the same change
in bit-stream length, the latency of MUX-based addition, Bernstein polynomial, and FSM-based
operations differ on an average by 3.95×.

To evaluate the effect at application level, we implement the general applications listed above us-
ing COSMO with an input dataset of size 1 kB. The results shown here use unipolar encoding with
AND-based multiplication, COSMO addition, and Maclaurin series-based other arithmetic func-
tions. Since all these operations are scalable with the bit-stream length, the latency of the operations
does not change. The minor increase in the latency at application level with the length is due to the
time taken by stochastic-to-binary conversion circuits. However, this change is negligible. Figure 11
shows the impact of bit-stream length on different applications. On an average, both the area and en-
ergy consumption of the applications increase by 8×, when the bit-stream length increases from 512
to 4,096, with an average 6.1 dB PSNR gain. As shown in Figure 12, with a PSNR of 29 dB, the out-
put of Sobel filter with bit-stream length of 4,096 is visibly similar to that of the exact computation.

8.3 Learning on COSMO and GPU

COSMO Configurations: We compare COSMO with GPU for the DNNs and HD computing
workloads detailed in Table 2. We use SM-SC encoding with a bit-stream length of 32 [91] to
represent the inputs and weights in DNNs and value of each dimension in HD computing on
COSMO. Also, evaluation is performed while keeping the COSMO area and technology node
the same as GPU. We analyze COSMO in five different configurations to evaluate the impact
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Fig. 11. Effect of bit-stream length on the accuracy and
energy consumption for different applications.

Fig. 12. Visualization of quality of computa-
tion in Sobel application, using different bit-
stream lengths.

of the various techniques proposed in this work at application level. Of these configurations,
COSMO-ALL is the best configuration and applies all the stochastic PIM techniques proposed in
this work. As compared to COSMO-ALL, COSMO-PC, and COSMO-MUX do not implement
the new addition technique proposed in Section 5.4 but use the conventional PC and MUX-based
addition/accumulation, respectively. COSMO-NP implements all the techniques except the memory
bitline segmentation, which eliminates block partitioning. Finally, COSMO-FX replaces the XNOR
operation in COSMO-ALL with the XNOR implementation of [28].

Comparison of different COSMO Configurations: Comparing different COSMO configura-
tions in Figure 13, we observe that COSMO-PC addition is on an average 240× and 647× slower
than COSMO-ALL for DNNs and HD computing. This happens since COSMO-PC reads each and
every data sequentially for accumulation as compared to COSMO-ALL which performs a highly
parallel single cycle accumulation. This effect is seen very clearly in case of DNNs, where COSMO-
ALL is 810× and 140× faster than COSMO-PC for AlexNet and VGG-16, both of which have large
FC layers. On the other hand, COSMO-ALL is just 3.8× and 7.7× better than COSMO-PC for
ResNet-18 and GoogleNet which have one fairly small FC layer each accumulating {512×1,000}
and {1,024×1,000} data points. The latency of COSMO-MUX scales linearly with the bit-stream
length. For our 32-bit DNN implemenatation, COSMO-ALL is 5.1× faster than COSMO-MUX.
COSMO-ALL really shines over COSMO-MUX in the case of HD computing and is 188× faster.
COSMO-MUX becomes a bottleneck in similarity check phase when the products for all dimen-
sions need to be accumulated. COSMO-ALL provides the maximum theoretical speedup of 32×
over COSMO-NP. In practice, COSMO-ALL is on an average 11.9× faster than COSMO-NP for
DNNs. Further, COSMO-ALL is 20% faster and 30% more energy efficient than COSMO-FX for
DNNs. This shows the benefits of COSMO over previous digital PIM operations.

Comparison with GPU for DNNs: COSMO benefits from three factors: simpler computations
due to SC, high density storage and processing architecture, and less data movement between pro-
cessor and memory due to PIM. From Figure 13, we observe that COSMO-ALL is on an average
141× faster than GPU for DNNs. COSMO latency majorly depends upon the convolution operations
in a network. As discussed before, while COSMO parallelizes computations over input channels and
weights depth in a convolution layer, the convolution of a weight window over an individual input
channel still serializes the sliding of windows through the input. This means that the latency of a
convolution layer in COSMO is directly proportional to its output size. It is reflected in the results
where COSMO achieves higher acceleration in case of AlexNet (362×) and ResNet-18 (130×) as
compared to VGG-16 (29×) and GoogleNet (41×). Here, even though ResNet-18 is deeper than
VGG-16, its execution is faster because it reduces the size of the output of its convolution signifi-
cantly faster than VGG-16. Also, COSMO-ALL is 80× more energy efficient than GPU. This is due
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Fig. 13. Speedup and energy efficiency improvement of COSMO running (a) DNNs, (b) HD computing.

to the low-cost SC operations and the reduced data movement in COSMO, where the DNN models
are pre-stored in memory.

To justify our experimental results, we also present a qualitative comparison between GPU and
COSMO. Here, we consider the ideal performance of 11.34 TOPS/s for NVIDIA GTX 1080 Ti [2].
We account only for the core TDP of 250W of the GPU and not the entire system power. This trans-
lates to an ideal computational (power) efficiency of 10 GOPS/s/mm2 (46 GOPS/s/W). In contrast,
COSMO-ALL (in 45 nm process node) has computational (power) efficiency of 525 GOPS/s/mm2

(908 GOPS/s/W). For a fair comparison, we normalized COSMO-ALL to 16 nm process node,
same as GTX 1080 Ti. While scaling down, we consider area and power changes [84]. We do not
reduce COSMO’s latency since it depends on the switching behavior of ReRAM which may not
scale sufficiently. We observe that the COSMO’s computational and power efficiency increase to
4151 GOPS/s/mm2 and 3681 GOPS/s/W, respectively. However, COSMO has on average 1.2% ac-
curacy loss as compared to GPUs running in 32-bit integer representation, as shown in Table 2.
Moreover, COSMO is not meant for DNN training, owing to its stochastic nature. Also, COSMO
cannot perform online model re-training as GPU. Instead, we train DNN models on GPUs and load
the trained and quantized model to COSMO. However, the data loading happens just once and is
amortized over several test inputs. The time for loading inference model is common to both GPU
and COSMO, and is excluded from our performance estimates.

Comparison with GPU for HD Computing: COSMO-ALL is on an average 156× faster than
GPU for HD classification tasks. The computation in a HD classification task is directly propor-
tional to the number of output classes. However, computation for different classes are independent
from each other. The high parallelism (due to the dense architecture and configurable partitioning
structure) provided by COSMO makes the execution time of different applications less dependent
on the number of classes. However, in the case of GPU, the restricted parallelism ( 4,000 cores in
GPU vs 10,000 dimensions in HD) makes the latency directly dependent on the number of classes.
The energy consumption of COSMO-ALL scales linearly with classes while being on an average
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Fig. 14. (a) Relative performance per area of COSMO as compared to different SC accelerators with and
without COSMO addition and (b) comparison of computational and power efficiency of running DNNs on
COSMO and previously proposed DNN accelerators.

2,090× more energy efficient than GPU. This is majorly due to the reduced data movement in
COSMO, where the huge class models are pre-stored in the memory. Moreover, HD computing
consists of simple bitwise and addition operations. Unlike COSMO, GPU is not able to fully exploit
the simplicity of operations that HD provides. GPU performs hundreds of thousands of MAC opera-
tions to implement HD dot product, whereas COSMO just uses simple XNORs and highly efficient
accumulation.

8.4 COSMO vs Previous Accelerators

Stochastic Accelerators: We first compare COSMO with four state-of-the-art SC accelerators
[43, 75, 81, 91]. To demonstrate the benefits of COSMO, we first implement the designs pro-
posed by them on COSMO hardware. Figure 14(a) shows the relative performance per area of
COSMO as compared to them. We present the results for two configurations. In the first, we use the
same bitstream length and logic for multiplication, addition, and other functions that the correspond-
ing accelerators use. In the second, we replace the additions and accumulations in all the designs
with COSMO addition. Irrespective of the configuration, COSMO consumes 7.9×, 1,134×, 474×,
2,999× less area as compared to [43, 75, 81, 91], respectively. While comparing with previous de-
signs in their original configuration, we observe that COSMO does not perform better than three
of the designs [43, 81, 91]. The high area benefits provided by COSMO are overshadowed by the
high latency addition used in these designs. It requires popcounting each data point either exactly
or approximately, both of which require reading out data. Unlike previous accelerators, COSMO
uses memory block as processing elements. Multiple data read-outs from a memory block need to
be done sequentially, resulting in high execution times, with COSMO being on an average 6.3×
and maximum 7.9× less efficient. Moreover, the baseline performance figures for these accelerators
used to compare COSMO are optimized for small workloads which do not scale with the complexity
and size of operations (a 200-input neuron for [43] and a 8× 8× 8 MAC unit for [81, 91], while
ignoring the overhead of SNGs). However, when COSMO addition is used for these accelerators,
COSMO is on an average 11.5× and maximum 20.1× more efficient than these designs.

On the other hand, when the workload size and complexity is increased, as in case of SC-DNN
[75] which implements LeNet-5 [52] neural network for MNIST dataset [51], COSMO is better
than SC-DNN even in their original configuration, being 3.7× more efficient for the most accurate
SC-DNN design. Further, when COSMO addition and accumulation is used on the same design,
COSMO becomes 10.4× more efficient.

DNN Accelerators: We also compare the computational (GOPS/s/mm2) and power efficiency
(GOPS/s/W ) of COSMO with state-of-the-art DNN accelerators [20, 77, 83]. Here, DaDianNao
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[20] is a CMOS-based ASIC design, while ISAAC [77] and PipeLayer [83] are ReRAM based PIM
designs. Unlike these designs, which have a fixed processing element (PE) size, the high flexibil-
ity of COSMO allows it to change the size of its PE according to the workload and operation to
be performed. For example, a 3×3 convolution (2000×100 FC layer) is spread over 9 (2000) log-
ical partitions, each of which may further be split into multiple physical partitions as discussed in
Section 7.1. As a result, COSMO does not have theoretical figures for computational and power
efficiency. However, to compare COSMO with these accelerators, we run the four neural networks
shown in Table 2 on COSMO and report their average efficiency in Figure 14(b). We observe that
COSMO is more power efficient than all DNN accelerators, being 3.2×, 2.4×, and 6.3× better than
DaDianNao, ISAAC, and PipeLayer, respectively. This is due to three main reasons, reducing the
complexity of each operation, reducing the number of intermediate reads and writes to the memory,
and eliminating the use of power hungry conversions between analog and digital domains.

We also observe that COSMO is computationally more efficient than DaDianNao and ISAAC,
being 8.3× and 1.1× better respectively. This is due to the high parallelism that COSMO provides,
processing different input and outputs channels in parallel. COSMO is still 2.8× computationally
efficient as compared to PipeLayer. It happens because even though COSMO parallelizes computa-
tion within a convolution window, it serializes sliding of a window over the convolution operation.
On the other hand, PipeLayer makes a large number of copies of weights to parallelize computation
within the entire convolution operation. However, computational efficiency is inversely effected by
the size of accelerator, which makes the comparatively old technology node of COSMO an invisible
overhead in computational efficiency. To give an intuition for the benefits which COSMO can pro-
vide, we scale all the accelerators to the same technology, i.e., 28 nm. DaDianNao and PipeLayer
are already reported at 28 nm node. On scaling ISAAC and COSMO to 28nm, their computational
efficiency increase to 625 GOPS/s/mm2 and 1,355 GOPS/s/mm2 respectively. This shows that
COSMO can be as computational efficient as the best DNN accelerator while providing significantly
better power efficiency.

Embedded Devices: We compare the power efficiency of COSMO with the state-of-the-art im-
plementations of DNN inference on NVIDIA Tegra Jetson X1 GPU [65], FPGA [78], and Edge-
TPU [3]. For the inference task on AlexNet, Tegra X1 (FPGA) achieves a power efficiency of
45 images/s/W (16 images/s/W), while COSMO achieves 506 images/s/W. For VGG-16, COSMO
achieves power efficiency of 1,112 images/s/W as opposed to 66 images/s/W for Edge-TPU.

8.5 COSMO and Memory Non-Idealities

Bit-Flips: SC is inherently immune to singular bit-flips in data. COSMO, being based on it, enjoys
the same immunity. Here, we evaluate the quality loss in COSMO with increase in the number of
bit-flips. We evaluate the general applications with the same configuration as in Section 8.2 with
a bit-stream length of 1024. The quality loss is measured as the difference between accuracy with
and without bit-flips. Figure 15(a) shows that with 10% bit-flips, the average quality loss is meagre
0.27%. When the bit-flips increase to 25%, applications lose only 0.66% in accuracy.

Memory Lifetime: COSMO uses the switching of ReRAM cells, which are known to have low
endurance. Higher switching per cell may result in reduced memory lifetime and increased unreli-
ability. Previous work [29, 37, 50] uses an iterative process to implement multiplication and other
complex operations. The more the iterations, higher is the number of operations and so is the per
cell switching count. COSMO reduces this complex iterative process to just one logic gate, in case
of multiplication, while it breaks down other complex operations into a series of simple operations.
Hence, achieving less switching count per cell. Figure 15(b) shows that for multiplication, COSMO
increases the lifetime of memory by 5.9× and 6.6× on an average as compared to APIM [37] and
Imaging [29], respectively.
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Fig. 15. COSMO’s resilience to (a) memory bit-flips
and (b) endurance.

Fig. 16. COSMO’s area breakdown.

8.6 Area Breakdown

COSMO completely eliminates the overhead of SNGs, which typically consume 80% of the total
area in a SC system. However, the COSMO addition, which significantly accelerates SC addition
and accumulation and overcomes the effect of slow PIM operations, requires significant changes to
the memory peripheral circuits. Adding SC capabilities to the crossbar incurs ~26% area overhead
to the design, as shown in Figure 16. This comes in the form of 3-bit counters (9.6%), 1-bit latches
(9.38%), modified SAs (1.76%), and accumulators (1.3%). We use buried switches to physically
partition a memory block, which contributes 3% to the total area overhead. Our variation aware
SA tuning mechanism costs an additional 1.5% overhead. The remaining 73.4% of COSMO area is
consumed by traditional memory components.

9 CONCLUSION

In this article, we proposed COSMO, a general in-memory processing architecture for SC on
ReRAM. COSMO is a highly parallel architecture which scales with the size of SC. To achieve this,
COSMO proposes a variety of novel techniques including, flexible block allocation, in-memory sto-
chastic number generation, implication in memory, memory bitline segmenting, a new SC addition.
It supports all SC encoding schemes and operations fully in memory. We implemented image pro-
cessing, DNNs, and HD computing to show the generality of COSMO. Our evaluations over six
general applications show that COSMO is 141× faster and 80× more energy efficient than GPU.
COSMO illustrated that error-tolerant applications can benefit from the fast but not so precise SC.
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