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ABSTRACT2

3

How can researchers best measure infants’ motor experiences in the home? Body position—4
whether infants are held, supine, prone, sitting, or upright—is an important developmental5
experience. However, the standard way of measuring infant body position, video recording by6
an experimenter in the home, can only capture short instances, may bias measurements, and7
conflicts with physical distancing guidelines resulting from the COVID-19 pandemic. Here, we8
introduce and validate an alternative method that uses machine learning algorithms to classify9
infants’ body position from a set of wearable inertial sensors. A laboratory study of 15 infants10
demonstrated that the method was sufficiently accurate to measure individual differences in the11
time that infants spent in each body position. Two case studies showed the feasibility of applying12
this method to testing infants in the home using a contactless equipment drop-off procedure.13
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1 INTRODUCTION
Infants’ increasing ability to transition into and maintain balance in different body positions is a hallmark of15
the first year (Adolph and Franchak, 2017). At birth, newborns can only lay supine on their backs or prone16
on their bellies. Otherwise, they rely on caregivers to place them in different positions or hold them in their17
arms. With age, infants master the ability to sit independently, crawl in a prone position, stand upright, and18
walk. In this paper, we describe a new method to characterize infants’ body positions—held by caregivers,19
supine, prone, sitting, and upright—across an entire day using machine learning classification of wearable20
inertial motion sensors. We begin by describing the importance of understanding infant body position and21
then review existing measurement approaches. Afterwards, we present two studies: A laboratory validation22
study that shows how wearable sensors can be used to accurately categorize infant body position, and case23
studies that demonstrate how feasibly the method can be adapted to collect data from infants in the home24
while relying on caregivers to administer the procedure.25

Growing evidence suggests that acquiring more advanced control over body position augments infants’26
opportunities for learning and exploration (Gibson, 1988; Libertus and Hauf, 2017; Franchak, 2020). For27
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example, infants’ visual experiences differ according to body position: While prone, infants’ field of view is28
dominated by the ground surface and objects near the body, whereas upright infants have a more expansive29
view of their surroundings that includes distant objects and faces (Franchak et al., 2011; Kretch et al.,30
2014; Franchak et al., 2018; Luo and Franchak, 2020). Sitting facilitates visual and manual exploration31
of objects compared with laying prone or supine (Soska and Adolph, 2014; Luo and Franchak, 2020).32
Upright locomotion (walking) compared with prone locomotion (crawling) allows infants to travel farther,33
more easily carry objects, and elicits different social responses from caregivers (Gibson, 1988; Adolph34
and Tamis-LeMonda, 2014; Karasik et al., 2014). Accordingly, learning to sit and walk is linked with35
downstream improvements in language learning and spatial cognition (Soska et al., 2010; Oudgenoeg-Paz36
et al., 2012; Walle and Campos, 2014; He et al., 2015; Oudgenoeg-Paz et al., 2015; Walle, 2016; West37
et al., 2019, c.f. Moore et al., 2019). Presumably, these facilitative effects result from infants spending38
more time sitting, standing, and walking. For example, mastering the ability to sit independently nearly39
doubled the amount of time that 6-month-olds spent sitting (both independent and supported sitting) in daily40
life compared with 6-month-old non-sitters (Franchak, 2019). Infants who spend more time sitting have41
increased opportunities to explore objects. Yet, little data are available to describe how infants spend their42
time in different body positions across a typical day, and how the prevalence of different body positions43
changes with age and motor ability.44

Video observation is the gold standard for measuring body position. But, video observation comes with45
several costs, especially with respect to the goal of describing natural, home experiences across a full46
day. Whereas language researchers have profitably used day-long audio recordings to characterize the47
everyday language experiences of infants (e.g., Weisleder and Fernald, 2013; Bergelson et al., 2019),48
motor researchers have been limited to scoring body position recorded in relatively short (15-60 min)49
video observations (Karasik et al., 2011; Nickel et al., 2013; Karasik et al., 2015; Thurman and Corbetta,50
2017; Franchak et al., 2018). Although infants can wear an audio recorder that travels wherever they go,51
capturing infants’ movements requires an experimenter to follow the infant from place to place while52
operating a camcorder. Furthermore, the presence of the experimenter in the home may lead to reactivity—53
altering infants’ and caregivers’ behaviors when observed (Tamis-LeMonda et al., 2017; Bergelson et al.,54
2019)—which threatens generalizability. Another threat to external validity is how time is sampled: A55
short visit from an experimenter scheduled at a convenient time is unlikely to be representative of the full56
spectrum of daily activities (e.g., nap routines, meal times, play, and errands) that may moderate motor57
behavior (Fausey et al., 2015; Kadooka et al., 2021, April; de Barbaro and Fausey, 2021). Other limitations58
of video observation are practical rather than scientific. Video recording an infant for an entire hour is59
laborious; to do so for an entire day would not be feasible. Even if it were possible to capture full day60
video recordings of an infant, frame-by-frame coding of body position would be a gargantuan task—slow61
but feasible in a small sample, but intractable at a larger scale—and storage of large, full-day video files62
creates a nontrivial data management challenge. As with audio, collecting video data in the home across an63
entire day presents challenges for maintaining participant privacy (Cychosz et al., 2020). Finally, physical64
distancing guidelines during the COVID-19 pandemic mean that an experimenter may not be permitted in65
the home to operate a video camera.66

One alternative is to employ survey methods in lieu of direct observation. Surveys can be conducted67
remotely without an experimenter present in the home, addressing some limitations of video observation68
(i.e., reactivity, privacy, labor, data storage). Although retrospective diaries have been used to estimate69
infant body position and motor activity (Majnemer and Barr, 2005; Hnatiuk et al., 2013), their accuracy70
and reliability are questionable. For example, (Majnemer and Barr, 2005) asked caregivers to fill out a diary71
every 2-3 hours to indicate the infants’ position for each 5-minute interval since the last entry. However, by72
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12 months of age infants change position an average of 2-4 times per minute when playing (Nickel et al.,73
2013; Thurman and Corbetta, 2017). Thus, it seems unlikely that a caregiver could accurately estimate74
the time spent in body positions using a retrospective diary. Ecological momentary assessment (EMA) is75
one alternative: Sending text message surveys to ask caregivers to report on infants’ instantaneous body76
position every 1-2 hours across the day provides a sparse, but accurate report (Franchak, 2019; Kadooka77
et al., 2021, April). Although this method may better capture full-day experiences compared with short78
video observation (and more accurately compared with retrospective diaries), it lacks the real-time position79
data that are provided by video coding.80

Classifying body position from wearable sensors provides a third option that addresses the limitations81
of both video and survey methods. Lightweight inertial movement units (IMUs)—small sensors that82
contain an accelerometer and gyroscope—can be worn for the entire day or multiple days taped to the skin,83
embedded in clothing, or worn on a wristwatch (Cliff et al., 2009; Lobo et al., 2019; de Barbaro, 2019;84
Bruijns et al., 2020). Notably, an experimenter does need not to be present, and data can be recorded at a85
dense sampling rate in real time. Although video data must be collected and coded to train the classifier, the86
video-recorded portion can be brief (addressing privacy, data storage, and data coding labor concerns) while87
still providing a full-day measure of activity. Previous validation studies show that wearing lightweight88
sensors does not alter movements even in young infants (Jiang et al., 2018). Child and adult studies have89
successfully used wearable motion sensors to characterize the intensity of physical activity (e.g., sedentary90
versus moderate-to-vigorous) using either cut points that set thresholds for different activity levels (Trost91
et al., 2012; Kuzik et al., 2015; Hager et al., 2017; Armstrong et al., 2019) or by training machine-learning92
algorithms to classify activity into different levels (Hagenbuchner et al., 2015; Trost et al., 2018).93

Body position may be a more challenging behavior to classify compared with physical activity intensity.94
For example, an infant can be stationary or moving quickly while upright, suggesting that simple cut95
points or thresholds may not be suitable (Kwon et al., 2019). However, results from previous studies using96
machine learning to classify activity type in adults (Preece et al., 2008; Arif and Kattan, 2015) and children97
(Nam and Park, 2013; Zhao et al., 2013; Ren et al., 2016; Stewart et al., 2018) are encouraging. For example,98
Nam and Park (2013) used a support vector machine classifier to distinguish 11 activity types—including99
rolling, standing still, walking, crawling, and climbing—in a laboratory study of 16- to 29-month-olds.100
The classification accuracy was high (98.4%), suggesting that machine learning classification of wearable101
sensors may be sufficiently sensitive to differentiate the activities of young children.102

Despite an abundance of work with children and adults, only a handful of studies have investigated infants.103
A number of studies have used sensors worn on the wrists or ankles to estimate the frequency of limb104
movements in typical and atypical development (Smith et al., 2017; Jiang et al., 2018). Hewitt et al. (2019)105
used commercially-available sensors to detect one type of body position, prone, to estimate caregivers’106
adherence to “Tummy Time” recommendations. Greenspan et al. (2021) estimated body position angle107
using pitch angle cut-points from a single sensor embedded in a garment in 3-month-olds. Yao et al. (2019)108
used a pair of sensors, one worn by the infant and one worn by the caregiver, to train machine learning109
models that were able to accurately classify the time infants spent held by caregivers. Notably, the Yao110
et al. study validated their method “in the wild” by collecting data in the home rather than relying only on111
a laboratory sample, which suggests the feasibility of this method for our proposed application. Finally,112
one previous study measured body position in 7-month-old infants using a set of 4 IMUs embedded in a113
garment (Airaksinen et al., 2020). With all 4 sensors (accuracy declined using a single sensor or a pair of114
sensors), researchers were able to distinguish between supine, side-lying, and prone positions with 98%115
accuracy using a machine learning model.116
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Although recent work provides an encouraging outlook for measuring body position in infants (Yao et al.,117
2019; Airaksinen et al., 2020; Greenspan et al., 2021), there are several open questions. First, because118
past studies of body position (Airaksinen et al., 2020; Greenspan et al., 2021) did not include caregivers119
holding infants as a category, it is unknown whether our proposed body position categories—prone, supine,120
sitting, upright, and held by caregiver—can be accurately classified. Held by caregivers is critical because121
infants’ bodies may seem to be configured in a similar way to another position while held (e.g., a caregiver122
cradling an infant might be in a similar body position to when they are supine in a crib or on the floor). For123
this reason, angle cut-points like those used in past work (Greenspan et al., 2021) are unlikely to capture124
differences in the five positions we aim to classify. Unless we can accurately distinguish when infants125
are held, it would not be possible to account for their body position across the day because infants are126
held as much as 50% of the time in a typical day (as measured using EMA, Franchak, 2019). Although127
the Yao et al. study measured caregiver holding time (but not other body positions), they used a pair of128
sensors (one worn by the infant and one worn by the caregiver). It is unclear whether sensors worn only129
by infants would be able to detect when they are held. Second, the Airaksinen et al. study’s categories130
included sitting, however, sitting in daily life can take many forms—sitting on a caregiver’s lap, sitting131
in a restrained seat, or sitting independently on the floor—that may make it harder to detect in the wild.132
In the current study, we trained and tested sitting in a variety of forms to be sure that we can capture the133
variability we expect to find across a full day in the home. Third, although a benefit of classifying behavior134
from wearable sensors is that an experimenter does not need to be present for the entire day, the classifiers135
still need to be trained on a set of manually-coded ground truth data (e.g., body positions coded from video136
synchronized with sensor data). Given the regulatory issues arising from the COVID-19 pandemic, such as137
physical distancing and sanitation, we investigated the feasibility of using a stationary camera and sensors138
dropped off at participants’ doorstep for training and validating a classifier without the researcher entering139
the home. But, it remains an open question whether an experimenter can remotely guide caregivers through140
the complex procedure of applying the sensors, synchronizing the sensors to the camera, and eliciting141
different body positions in view of the camera.142

A remote drop-off procedure would have utility aside from addressing the immediate concerns of the143
COVID-19 pandemic. For families who feel uncomfortable with an experimenter visiting their homes, a144
remote drop-off provides a way to collect observational data without an experimenter’s presence. Removing145
the need for an experimenter to spend an hour in the home—simply to pan a video camera—also reduces146
the experimenter’s labor for collecting data. Most importantly, removing the experimenter’s presence from147
the home—and the need to record video for long periods of time—can reduce reactivity. Indeed, caregivers148
spoke more to infants when video-recorded by a stationary camera than during an audio-only recording149
(Bergelson et al., 2019). Although our method uses a stationary camera, it is only needed for a brief video-150
recorded period followed by a full-day motion measurement (without video or experimenter presence).151
This will allow unobtrusive capture of behavior across a sufficiently long period to examine within-day152
variability of behavior (de Barbaro and Fausey, 2021) with minimum reactivity. Such data are crucial153
for testing the links between everyday experiences and subsequent development (Franchak, 2020). For154
example, one potential mechanism to explain why the acquisition of independent walking predicts increases155
in vocabulary development (Walle and Campos, 2014; Oudgenoeg-Paz et al., 2015) is that caregivers156
provide different language input to infants when infants are crawling compared with when they are walking157
(Karasik et al., 2014). However, since this difference was observed through experimenter-recorded video158
in the home, it is unknown how it generalizes across the day or whether such a different persists when159
the experimenter and video camera are absent. Simultaneously recording speech with an audio recorder160
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synchronized with body classification from motion sensors would provide full-day, unobtrusively-collected161
data to bear on this question.162

2 LABORATORY STUDY: VALIDATING THE BODY POSITION CLASSIFICATION
METHOD

The goal of the laboratory study was to test whether mutually-exclusive body position categories suitable163
for full-day testing—held by caregivers, supine, prone, sitting, and upright—could be accurately classified164
from infant-worn inertial sensors. We collected synchronized video and inertial sensor data while infants165
were in different body positions, and used those data to train classifiers and then validate them against the166
gold standard (human coding from video observation). As in past work (Nam and Park, 2013; Yao et al.,167
2019; Airaksinen et al., 2020), our aim was to determine whether the overall accuracy of classification168
was high (> 90% of agreement between model predictions and ground truth data). Moreover, we assessed169
whether the method could accurately detect individual differences in how much time infants spend in170
different body positions, which is relevant for characterizing everyday motor experiences and their potential171
downstream effects on other areas of development (e.g., Soska et al., 2010; Oudgenoeg-Paz et al., 2012;172
Walle and Campos, 2014).173

In order to identify the most accurate method for classifying body position, we compared two modeling174
techniques: individual models that were trained on each individual’s data versus group models that used a175
single model trained on all but one of the participants. Group models are more commonly used in activity176
recognition studies (e.g., Nam and Park, 2013; Yao et al., 2019; Airaksinen et al., 2020), and have several177
practical benefits, such as reducing complexity (only needing to train/tune a single model) and providing a178
generalizable method (group models can be used to classify data in participants for whom no ground truth179
training data were collected). We reasoned that although individual models take more work to create, they180
might lead to better accuracy in our use case for several reasons. First, individual models eliminated the181
possibility that variability in sensor placement across infants could add noise to the data. Second, given182
the wide range of ages (6-18 months), it allowed us to tailor models to the motor abilities of each infant.183
For example, the upright category could be dropped for the youngest infants who were never standing or184
walking. Moreover, the biomechanics of sitting likely differ between a 6-month-old and an 18-month-old,185
which could result in different motion features. Third, training and validating a model for each infant allows186
researchers to individually verify the data quality for each infant included in the analyses.187

2.1 Materials and Methods188

2.1.1 Participants189

Participants were recruited from social media advertisements and local community recruitment events.190
The final sample consisted of 15 infants between 6-18 months of age (7 male, 8 female, M age = 11.28191
months). Caregivers reported the ethnicity of infants as Hispanic/Latinx (9) or not Hispanic/Latinx (6).192
Caregivers reported the race of infants as White (10), More than One Race (2), Asian (1), and Other (1);193
one caregiver chose not to answer. An additional 7 infants were run in the study but could not be analyzed194
because of problems with the sensors (one or more sensors failed to record or stream data). Two additional195
infants were run in the study but excluded due to video recording failures, and one additional infant started196
the study but did not complete the session due to fussiness. Caregivers were compensated $10 and given a197
children’s book for their infant. The study was reviewed and approved by Institutional Review Board of the198
University California, Riverside. Caregivers provided their written informed consent to participate in this199
study and gave permission to record video and audio for both themselves and their infant before the study200
began.201
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2.1.2 Materials202

Three MetaMotionR (Mbientlab) inertial motion tracking units (IMUs) were placed at the right hip, thigh,203
and ankle of infants and recorded accelerometer and gyroscope data at 50 Hz. Due to the high rate of204
sensor failures resulting in participant exclusion, we do not recommend use of this sensor and chose a205
different sensor for our subsequent projects. The IMU worn on the hip sat inside a clip fastened at the206
top of the infant’s pant leg or diaper on the right side. The other two IMUs were placed in the pockets of207
Velcro bands strapped to the infant’s right thigh (just above the knee) and right ankle. During the study, the208
IMUs streamed data via Bluetooth to a Raspberry Pi computer running Metabase software (Mbientlab). A209
camcorder (Sony HDRCX330) held by an experimenter recorded infants’ movements throughout the study210
so that body position could be coded later from video.211

2.1.3 Procedure212

The study started with synchronizing the three IMUs to the video. To create an identifiable synchronization213
event in the motion tracking data, an experimenter raised all three sensors together and struck them against a214
surface in view of the camcorder with both the camcorder and sensors recording. After the synchronization215
event, the experimenter attached the three IMUs to the infant. The experimenter ensured the correct216
orientation of the IMUs by checking the arrow indicator on each IMU which faced forward towards the217
anterior plane with respect to the infant’s body position.218

After placing the IMUs on the infant, the experimenter guided the caregiver to put the infant in the219
following positions (assisted or non-assisted): standing upright, walking, crawling, sitting on the floor,220
lying supine, lying prone, held by a stationary caregiver, held by caregiver walking in place, and sitting221
restrained in a highchair. Each position lasted 1 minute, and the total guided activities lasted approximately222
10 minutes. After the guided activities, the caregivers were asked to play with their infants freely with223
toys for 5 minutes. During the free play portion, infants were permitted to move however they wished so224
that we could record spontaneous body positions. For some infants, the free play portion preceded the225
guided activities if the infant was fussy or resistant to the guided activities. An assistant held the camcorder226
and followed the infants throughout the guided and free-play activities to make sure the infant’s body was227
always in view. To check synchronization, a second synchronization event was captured at the end of the228
study before turning off the video and IMU recordings.229

2.1.4 Human Coding of Body Position230

Human coders went through the third-person view videos recorded by the camcorder and identified the231
infants’ position in each frame using Datavyu software (www.datavyu.org). Body positions were identified232
as supine, prone, sitting, upright, or held by caregiver. Figure 1 shows an example timeline of position233
codes over the session for one infant.234

Supine was coded when the infant was lying on their back. Prone was coded when the infant was lying235
flat on the stomach or in a crawling position (either stationary or locomoting). Sitting was coded when236
the infant was sitting on a surface (e.g. a couch or floor, with or without support from the caregiver), the237
highchair, or on the caregiver’s lap. Upright was coded when infants were standing, walking, or cruising238
along furniture. Held by caregiver was coded when the infant was carried in the caregivers’ arms off the239
ground, excluding times that they were seated on the caregiver’s lap. Positions that could not be identified240
as any of these categories (such as times in transition between body positions) or times where the sensors241
were briefly removed/adjusted were excluded from coding (i.e., gaps between data in Figure 1). Each video242
was coded in its entirety by two coders. The interrater reliability between the two coders was high across243
the 15 videos (overall agreement = 97.6%, kappa = .966).244
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2.1.5 Machine-Learning Classification of Body Position245

The data were processed in three steps. First, the timeseries of accelerometer and gyroscope data were246
synchronized to the human-coded body position events. Second, we applied a moving window to the247
synchronized timeseries to create 4-s long events, and extracted motion features that characterized each248
event. Finally, we trained random forest classifiers (both individual models and group models) to predict249
the body position categories for each participant based on the motion features in the 4-s windows.250

2.1.5.1 Synchronization251

A researcher plotted the accelerometer time series in Matlab and identified the timestamp that252
corresponded to the acceleration peak at the moment the sensors were struck during the synchronization253
event. That timestamp was subtracted from the other timestamps to define the synchronization event as254
time 0. Likewise, Datavyu video coding software was used to find the moment the sensors were struck255
against the surface in the video, and that time was defined as time 0 for body position codes. In doing so,256
human-coded body position was synchronized with the motion data. The synchronization event at the end257
of the session was used to confirm that the synchronization was correct and that no drift correction was258
needed. The onsets and offsets of each human-coded body position were used to construct a 50 Hz time259
series of body position categories, providing a body position code that corresponded to each sample of260
motion data.261

2.1.5.2 Window Creation and Feature Generation262

As in previous studies in human activity recognition (Preece et al., 2009; Nam and Park, 2013; Airaksinen263
et al., 2020), overlapping moving windows were applied to the synchronized motion and body position264
timeseries in Matlab: 4-s windows were extracted every 1 s from the first synchronization point to the265
end of the session. The magnified timeline at the bottom of Figure 1 shows examples of the overlapping266
4-s windows. As such, each 4-s window contained 200 samples of 50 Hz motion data. We omitted any267
window during which a position category was present for less than 3 s of the 4-s window to avoid analyzing268
windows that included transition movements between positions or a mix of two different body positions.269

Across the 200 samples in a window, we calculated 10 summary statistics—the mean, standard deviation,270
skew, kurtosis, minimum, median, maximum, 25th percentile, 75th percentile, and sum—for each271
combination of 3 sensor locations (ankle, thigh, and hip), 2 sensor signals (acceleration, gyroscope),272
and 3 axes (X, Y, Z for acceleration; roll, pitch, yaw for gyroscope). For example, 10 summary statistics273
described the ankle’s acceleration in the Z dimension. In total, 10 statistics × 3 sensor locations × 2 sensor274
signals × 3 axes resulted in 180 features. In addition, we calculated the sum and magnitude of movement275
in each axis across the 3 sensor locations and the sum and magnitude of movement across axes within each276
sensor. Finally, we calculated correlations and difference scores between each pair of axes within a sensor277
and between each pair of sensors for a given axis. These cross-sensor and cross-axis features brought the278
motion feature total to 204.279

2.1.5.3 Model Training280

To train and validate individual models, each participant’s data were separated into a training set that was281
used to train the model, and a testing set that was held out for validation. In order to mimic the intended use282
of this method—using video coded at the start of the day to train a model for predicting body position over283
the rest of the day, we used the first 60% of each participant’s data as the training set and the remaining284
40% as the testing set. However, because of the sequential nature of our guided activities, selecting the first285
60% chronologically would include some activities and exclude others. Thus, we selected the first 60% of286
data within each body position category for the training set to ensure that there were sufficient data to train287
the models on all positions. To train and validate group models, we used a leave-one-out cross-validation288
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technique. A group model was trained using all of the data from 14/15 participants, and then the remaining289
participant’s data served as the testing set. In this way, we could report classification accuracy for each290
participant (as predicted from a model trained on all other participants). As in Airaksinen et al. (2020) we291
excluded windows in which the primary and reliability coders disagreed to ensure that only unambiguous292
events were used in training across both types of models.293

Machine learning models were trained in R using the randomForest package to create random forest294
classifiers (Liaw et al., 2002). The random forest algorithm (Breiman, 2001) uses an ensemble of many295
decision trees—each trained on a random subset of motion features and a random subset of the training296
data—to avoid overfitting and improve generalization to new cases (Strobl et al., 2009). Prior work shows297
random forests are well-suited to classifying motor activity (Trost et al., 2018; Yao et al., 2019). By training298
hundreds of trees on different subsets of features, the classifier detects which features (of our set of 204)299
are most useful in classifying the categories we chose. In a preliminary step, we optimized two parameters,300
the number of trees and the “mtry” parameter, by training and testing classification accuracy across a range301
of parameter values. The optimal number of trees trained in the model was 750 (using more trees took302
longer processing time without significant gains in model accuracy). The “mtry” parameter refers to how303
many features are randomly selected in each tree, and the default value was optimal (square root of total304
number of features). Regardless, performance varied little depending on the values of these parameters.305
Using the optimal parameters, a random forest model was created based on each participant’s training data306
(individual model) and from all but one participants’ data (group model). The predict function was then307
used to apply the model to the motion features in the testing data set to classify each window, and provide308
a set of predicted categories to compare to the human-coded categories. For individual models, the testing309
set was the 40% of data held for testing; for group models, the testing set was the “left out” participant. In310
both cases, testing data were independent from data used to train the model that was validated and included311
behavior from both the guided activities and the free play portion.312

2.2 Results313

To validate models, we compared the classifier prediction to the ground truth (human-coded body position314
categories) for each window in the testing data set. The overall accuracy (across body position categories)315
for each participant was calculated as the percentage of windows in which the model prediction matched the316
human-coded position. Because windows were of equal length (4 s), accuracy can likewise be interpreted317
as the percentage of time that was correctly predicted by the model. Table 1 shows the accuracy for each318
participant for the individual and the group models. For individual models, overall accuracy averaged M =319
97.9% (SD = 2.37%, ranging from a minimum of 92.4% to a maximum of 100%), similar to or exceeding320
the accuracy reported in related investigations (Nam and Park, 2013; Yao et al., 2019; Airaksinen et al.,321
2020). For group models, overall accuracy was lower (M = 93.2%, SD = 0.053), but still strong. A paired322
samples t-test confirmed that individual models yielded superior accuracy, t(14) = -3.28, p = .0055.323

Although the overall accuracy was excellent, it can overestimate the performance of the model if it does324
better at predicting more prevalent categories (e.g. sitting) and misses less prevalent categories (e.g. prone).325
Despite attempting to elicit each body position for a set amount of time for each infant during the guided326
session, not all infants exhibited each behavior (e.g., infants who could roll might refuse to remain supine327
and/or prone). Every infant sat and every infant was held by a caregiver, but the prevalence varied greatly328
across infants of different ages and motor abilities. Figure 2 and Table 2 show the mean prevalence (% of329
session spent in each position). Infants spent the most time sitting (M = 45.98%, 0.9% to 70.2%) followed330
by held (M = 33.75%, 21.6% to 84.8%). Upright positions were recorded in 10/15 infants with an average331
of M = 16.02% (out of infants who were upright), and ranged from a minimum of 2.8% to a maximum of332
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55.5% of the session. Supine (9/15 infants) and prone (11/15 infants) were observed least often. Infants333
were supine M = 8.61% of the time (1.8% to 17.7%) and were prone M = 6.04% of the time (0.4% to334
13.1%).335

To account for differences in prevalence, we calculated Cohen’s Kappa, a measurement of agreement336
for classification data that controls for the base rate of different classes. Table 1 shows the Kappa values337
for each participant, which were significantly higher on average for the individual models (M = 0.95, SD338
= 0.076) compared with the group models (M = 0.82, SD = 0.129, t(14) = -3.36, p = .0047). As in past339
work (Greenspan et al., 2021), we interpreted the Kappa values according to Landis and Koch (1977)340
ranges: 0.81-1.00 “Almost Perfect“, 0.61-0.80 “Substantial”, 0.41-0.60 “Moderate”, 0.21-0.40 “Fair”,341
0-0.20 “Slight to Poor”. Based on those guidelines, 14/15 participants’ classifications from the individual342
models were Almost Perfect and 1/15 was Substantial. In contrast, 9/15 participants’ classifications from343
the group models were Almost Perfect, 4/5 were Substantial, and 2/15 were Moderate. Given the better344
performance of individual models, across both accuracy metrics (overall accuracy and Kappa), we opted to345
use individual models (and focus solely on those models for the remaining results).346

2.2.1 Sensitivity and Positive Predictive Value by Body Position347

To better understand the classification performance within each body position, we calculated the sensitivity348
(the proportion of actual occurrences of each body position that were correctly predicted; also referred349
to as recall) and the positive predictive value (the proportion of predictions for a given category that350
corresponded to actual occurrences; also referred to as precision). Table 2 summarizes sensitivity and351
positive prediction value (PPV) by position using the individual models.352

Figure 3 shows the sensitivity of classifications by body position, and each individual point shows353
one participant’s data (size is scaled to the prevalence of the position, with larger symbols indicating354
greater frequency). Although mean sensitivity was generally high (Ms > .91), there was variability among355
participants and positions. For example, one infant’s supine sensitivity was .71 (indicated by the gray356
arrow), indicating that of the 31 actual supine 4-s windows, the model only predicted 22 supine windows.357
The worst outlier was one infant’s sitting position that had a sensitivity of 0 (indicated by the black arrow).358
Possibly, sensitivity related to prevalence. For that infant, there were only 2 windows in the testing dataset359
to classify and both were missed. Because training datasets were similarly limited by the number of360
windows containing sitting, there were likely insufficient data to train the sitting category for that infant.361

Whereas sensitivity varied among individuals and positions, positive prediction value (PPV) was362
uniformly high (Table 2). As Figure 4 shows, upright had the worst average PPV (M = 0.976) and363
lowest minimum (0.778). For the participant with the lowest PPV, a value of 0.778 meant that of 9 detected364
upright windows, only 7 corresponded to actual upright behavior.365

Overall, the high (> 0.90) average sensitivity and PPV within each class indicate that the classifiers366
performed well for each position despite varying prevalence. However, there were a few concerning367
individual outliers for sensitivity. Although outliers such as these might be addressed in future work by368
collecting and testing with a larger dataset, it is important to know what impact they might have on the369
interpretation of the data, and in particular, for revealing individual differences in position durations.370

2.2.2 Capturing Individual Differences in Position Duration371

The intended use of this method is to describe individual differences in the relative amounts of time that372
infants spend in different body positions. To what extent did the prediction of accumulated time spent in373
each position reflect the actual time spent in each position? We calculated each participant’s predicted374
prevalence as the proportion of 4-s windows classified in each category divided by the total number of375
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windows in their testing dataset. Figure 5 shows scatterplots of actual versus predicted prevalence for each376
position. Correlations (shown in the titles of each scatterplot) were very strong (rs > .987), indicating377
excellent consistency between model classification and human coding in detecting individual differences378
in position prevalence. It is interesting to note that even the most extreme outlier for sensitivity (sitting379
participant indicated by the black arrow whose sensitivity was 0) did not disrupt the correlation. Since380
outliers were for participants/positions with low prevalence, missing events (or even missing every event)381
still resulted in a good-enough predicted value for the purpose of capturing individual differences in posture382
duration between infants.383

3 CASE STUDY: FEASIBILITY OF CONTACTLESS HOME DATA COLLECTION
The home data collection procedure described below addresses challenges we faced in adapting the384
laboratory protocol to measuring body position in the home during the COVID-19 pandemic. The risk of385
COVID-19 transmission between people in an indoor space, especially over prolonged periods of time,386
meant that the two experimenters could not enter the family’s home to place the IMUs, guide the family387
through the procedures, and control the video camera. Instead, we developed a new, contactless protocol in388
which the experimenter dropped off equipment outside the family’s door and guided the caregiver through389
procedures over the phone. However, relying on the caregiver to place the IMUs correctly, position the390
video camera to record infant behavior, and create synchronization events raises additional opportunities391
for error. Below, we detail several new procedures we developed to address those concerns: designing392
a customized pair of leggings with embedded IMUs to ensure the sensors are placed correctly by the393
caregiver, using a 360o camera to capture whole-room video even when camera placement is sub-optimal,394
and asking caregivers to record daily events that might disrupt IMU recording (i.e., diaper changes and395
naps).396

Although the procedure is similar in many ways to the laboratory study, testing the the new method on397
two case study participants helps to show whether it is feasible to collect high quality data despite major398
changes to how the procedure was implemented. Major differences between the laboratory study and the399
home data collection include: using a different set of IMU sensors embedded in a pair of leggings (rather400
than strapped to the infant), relying on caregivers to correctly place the leggings on the infant, using a fixed401
camera rather than an experimenter-operated camera to collect training/testing data, asking caregivers to402
elicit infant body positions and perform synchronization checks in view of the video camera, and collecting403
data over long periods of time (8 hours of home data versus 15 minutes of laboratory data). With the404
experimenter only able to communicate with the caregiver over the phone, any mistakes in equipment405
placement, synchronization, or body position tasks would not be caught by the experimenter until many406
hours later when the equipment was retrieved and the experimenter could check the video. As such, we407
report case study data from two participants to show the feasibility of collecting data (of sufficient quality408
to build body position classification models) after making these changes. Although we report classification409
accuracy for those two participants, validation data from a larger sample will be needed to determine if the410
method consistently allows for accurate body position classification.411

3.1 Materials and Methods412

3.1.1 Participants413

Two participants, an 11-month-old infant (Participant A) and an 10.5-month-old infant (Participant B),414
were tested using the new contactless procedure. Neither infant could walk independently, but both could415
stand, cruise along furniture, and walk while supported with a push toy or caregivers’ assistance.416
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3.1.2 Materials417

To adapt the position classification method for testing in the home during the COVID-19 pandemic,418
data collection was conducted through a “guided drop-off” procedure. The caregiver received sanitized419
equipment in a sealed bucket left by the experimenter at their door. The bucket contained 4 Biostamp IMUs420
(MC10) embedded in a pair of customized infant leggings, a 360o camera on a tripod (Insta360 One R),421
sanitizing supplies, and paperwork.422

The 4 IMUs were placed at the hip and ankle of the infants on both the right and left legs (testing from423
the lab study revealed that the thigh sensor was the least informative). The Biostamp IMUs are designed424
for full day recording: They have a long battery life (about 14 hours) and record to onboard memory425
without the need to stream to a device or connect to the internet. Each IMU sensor recorded motion from426
an accelerometer and gyroscope at 62.5 Hz.427

To minimize the possibility of caregivers placing the IMUs incorrectly on infants, a pair of customized428
leggings were fabricated with 4 small pockets sewn inside the hip and ankle positions of each leg. The snug,429
elastic fabric kept each sensor tight against the body so that they would not bounce or move independently430
from the body. The experimenter placed the sensors inside the garment before drop-off to ensure that431
sensors were oriented and labelled correctly (i.e., sensor A corresponded to the right hip location). The432
front and back of the garment were clearly labelled so that caregivers would put them on infants in the433
correct orientation.434

We previously relied on an experimenter to operate a handheld camera so that the infant was always in435
view for body position coding. Without an experimenter in the home, the camera needed to be placed on436
a tripod. However, that could lead to sub-optimal views and high portions of the time where the infant437
is out of the video. To address this limitation, we used a camera that recorded in 360o (Insta360 One R).438
The caregivers were instructed to place the camera on a tabletop tripod in the room where their infants439
would spend the majority of the day, and were asked to move the camera if the infant left the room for440
an extended period of time. Since the camera simultaneously records in all directions, the placement of441
the camera in the room mattered less compared to using a traditional camera with a limited field of view442
(however, view of the infant could still be obstructed by furniture or people moving around in the room).443
After the study, the experimenter used specialized camera software to digitally orient the camera so that it444
exported a video with the infant in view at all times.445

The paperwork included the consent form, instructions for how to set up the camera and put on the446
leggings, and a form that caregivers used to document times when the IMUs were taken off the infants447
(e.g., diaper changes, naps, excursions out of the home).448

3.1.3 Procedure449

The procedure consists of a prior-day orientation call, a morning equipment drop-off, an experimenter-450
guided video session, and a sensor-only recording period for the rest of the day.451

3.1.3.1 Prior Day Orientation Call452

The participant was contacted a day before participation day to confirm their appointment. During453
this phone call the experimenter explained the contactless drop-off procedure, gave an overview of the454
equipment, and explained the consent form to prepare for the participation day.455

3.1.3.2 Contactless Equipment Drop-off456

On the participation day, the experimenter brought the equipment bucket—containing sterilized,457
preconfigured equipment and paperwork—to the participant’s home. Importantly, the IMUs were already458
set to record and were placed correctly within the leggings. When arriving at the participant’s door, the459
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experimenter started recording the 360o camera and created a synchronization point by striking the leggings460
(with the IMUs inside) in view of the camera. Afterwards, the experimenter went back to their vehicle and461
notified the participant over the phone that the equipment was ready to be picked up.462

3.1.3.3 Guided Video Task463

While on the phone with the experimenter, the caregiver was asked to open the bucket and then read and464
sign the consent form. Next, the caregiver was asked to place the 360o camera in an optimal location for465
video capture (e.g. a coffee table or TV stand). Then, the experimenter asked the caregiver to dress the466
infant in the leggings and provided prompts to check that the garment was worn correctly.467

With all equipment recording, the experimenter (via phone) guided the caregiver through a set of468
procedures to elicit different body positions for training and testing the classification model. These tasks469
were the same as the laboratory tasks, but administered by the caregiver instead of the experimenter. The470
series of guided tasks involved the caregiver placing the infant in different positions: lying on their back471
(supine), lying on their stomach while stationary (prone), sitting on the floor (with support, if needed),472
crawling on the floor (if able), walking (if able, caregiver providing support if needed), standing still (if473
able, caregiver providing support if needed), picking up and holding child off the ground, sitting in a474
restrained seat (e.g., high chair). Each position last approximately 1 minute.475

Afterwards, the researcher asked the caregiver to create another synchronization event by removing the476
leggings from their infant, holding the leggings up in the air in view of the camera, and dropping them to477
the floor. Next, the caregiver was instructed to place the leggings back on their infant and spend 10 minutes478
playing with the infant in view of the camera. After receiving those instructions, the phone call with the479
experimenter ended.480

3.1.3.4 Sensor-only Recording and Material Pick-up481

After the 10 minutes of free play, the caregiver and infant went about their day as usual with the IMUs482
continuing to record for the next 8 hours or until the experimenter had to pick up the equipment. The only483
responsibility for the caregivers during the rest of the day was to indicate every time they removed the484
leggings from the child for any reason (e.g. diaper changes, naps) on the paper log form. This allowed us to485
omit periods of the day during which the IMUs should not be analyzed.486

The 360o camera continued to record until the battery ran out, so the caregiver was asked to position487
the camera in the room with the infant until the camera stopped recording. The camera could record 90488
minutes to 180 minutes depending on camera settings we used (in the second case study session we lowered489
the recording quality to increase recording time). However, because the experimenter started the camera490
recording before dropping off the equipment on the doorstep, the portion with the infant in view of the491
camera could vary substantially. For Participant A, the recording lasted 90 minutes with approximately 45492
minutes of footage of the infant (there was a delay between dropping off the equipment and the camera493
recording the infant, and the infant went out of view towards the end of recording). For Participant B, we494
adjusted the settings to record a longer video (the recording lasted 180 minutes), and the infant was in view495
for almost the entire 180-minute period.496

Caregivers could call the experimenter during the day if they encountered any problems. The experimenter497
scheduled a time to pick up the equipment bucket from the participant’s door in the evening or the following498
morning. All materials were then sterilized following CDC protocols in preparation for the next participant.499

3.1.4 Video Processing and Coding500

To prepare video data to be coded in Datavyu, an experimenter needed to manually edit the video footage501
to create a regular field of view video from the 360o video, which was in a proprietary format consisting502
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of two hemispherical video files. Insta360 Studio software allowed the research to select a portion of the503
360o video to bring into view. Camera orientations could be tagged at specific times, essentially allowing504
the researcher to pan the video camera—after the fact—to maintain the infant in view. After exporting a505
regular field of view video with the infant in view, the coders then identified the infant’s position in each506
frame using the same coding categories as before: supine, prone, sitting, upright, or held by caregiver.507

3.2 Case Study Results508

Each participant’s video was coded and synchronized with data from the 4 IMUs worn in the leggings.509
Data from the guided session (15 minutes of elicited body positions plus 10 minutes of free play) were510
combined and then divided into training and testing datasets. As before, individual models were created511
using the first 60% of each position type for training the model and the remaining 40% for testing. We512
compared the predicted positions from the random forest model to the actual coded positions in the testing513
data to assess the performance of the classifier. The overall accuracy was 85.2% for Participant A (Kappa =514
0.80) and 86.6% for Participant B (Kappa = 0.76). Table 3 shows the prevalence, sensitivity, and PPV for515
each of the five body positions for each participant. Overall, accuracy, Kappas, and sensitivity were weaker516
compared to the laboratory study, but still within acceptable levels (e.g., Yao et al., 2019; Greenspan et al.,517
2021).518

As in the laboratory study, we found that the models performed well at detecting relative differences519
in the durations of different body positions even when sensitivity was less than ideal. To get a sense of520
differences in relative durations of positions over time within each infant, we used all available video521
that followed the guided tasks and free play (e.g., until the battery ran out or the infant was no longer on522
camera) to code the durations of every body position in 7.5-minute intervals. For Participant A, 30 min523
of video were available (4 7.5-minute periods), and for Participant B, 127.5 min of video were available524
(17 7.5-minute periods). Within each period, we calculated the percentage of time in each body position525
predicted by the model compared to the actual percentage of time coded by hand. Correlations between526
actual versus predicted percentages were strong: r = .911 across positions for Participant A and r = .976527
for Participant B. Within-position scatterplots and correlations are shown in Figure 6 for Participant B, for528
whom sufficient data were available. Although the correlations were weaker compared to the laboratory529
study, they suggest that these models can distinguish changes in the relative duration of different positions530
throughout the day.531

Figure 7 shows a timeline of actual and predicted body positions during the entire recording session for532
Participant B, providing an example of the type of data afforded by this method. The sensors were synced533
and applied to the infant after her morning nap, and from 10:30am to 11:00am the infant and caregiver534
participated in the guided activities and the required free play portion that were used as training data.535
The next two hours (until 1:15pm when the camera battery ran out) were recorded on video and used to536
calculate the correlations in Figure 6 and the validation statistics in 3. We were able to use the video to537
confirm two notable events in the timeline: A long period of sitting while the infant had lunch in a high538
chair, and a long period of supine while the infant watched TV in a rocking cradle. The sensors continued539
to record until the infant took a second nap at 3:00pm, and were picked up by the experimenter following540
the nap. The legend in Figure 7 shows the proportion of each body position predicted by the model across541
the entire sensor recording period.542

4 DISCUSSION
The current studies demonstrate the validity and feasibility of classifying infant body positions from543
wearable inertial sensors. Moving beyond past work that classified only holding events (Yao et al., 2019)544
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or body positions that omitted holding and upright as categories (Airaksinen et al., 2020), our laboratory545
study classified five body positions that be applied full-day behavior in the home, across activities that may546
include different forms of each body position (e.g., sitting on the floor during play, sitting in a high chair547
during a meal). Although sensitivity varied among participants and body positions, the classification system548
was able to reveal individual differences in time spent between different body positions between infants.549
The case studies went a step further to provide a proof-of-concept of how the method could be employed in550
the home across a long recording period. For both case study participants, we successfully collected video551
and motion data in the home by guiding caregivers through a contactless equipment drop-off procedure.552
The resulting body position classifiers—trained from data in which no experimenter entered the home or553
operated the equipment—were sufficiently accurate to measure intra-individual changes in body position554
over time, suggesting that the procedure could be carried out successfully by caregivers who received555
instructions over the phone.556

Full-day recordings of body position have the potential to transform our understanding of everyday motor557
behavior in a similar way that wearable audio recorders have changed the study of language development.558
Wearable audio recorders capture the entire day (or even multiple days) of language input in the home559
(Weisleder and Fernald, 2013). The language input infants receive differs between the lab and real life,560
depends on the activity context, and can be biased by the presence of an experimenter (Tamis-LeMonda561
et al., 2017; Bergelson et al., 2019). Moreover, recorders such as the LENA automatically score metrics562
about language input to reduce the need for laborious transcription. Although our method of body position563
classification still depends on collecting and scoring video data, a 30-minute training period at the start of564
the day is enough to then turn off the cameras and unobtrusively record and classify body position for the565
remainder of the day (or in the future, multiple days).566

As real-time, full-day motor experience data become available, what might we learn? Although Figure 7567
shows “only” 8 hours in the life of one infant, it is striking to observe the heterogeneity in motor activities568
across the day. The late morning and early afternoon were marked with frequent changes between different569
positions as the infant engaged in unrestrained play. In contrast, the lunch and TV times created long,570
interrupted bouts of a single body position. As more data become available from infants of different571
ages, motor abilities, and caregivers, we expect to see large inter- and intra-individual differences in body572
position. Indeed, our ongoing work using ecological momentary assessment to record infants’ activities573
(e.g., play, feeding, media viewing, errands, etc.) shows that play is more frequent than any other activity574
for 11- to 13-month-olds (feeding is the second most prevalent), but play time differs greatly between575
infants (Kadooka et al., 2021, April). Some infants played for one third of the waking day, whereas others576
played for two thirds. Most likely, differences in daily activities provide a partial explanation for why577
body position rates measured in laboratory play (Thurman and Corbetta, 2017; Franchak et al., 2018) do578
not correspond to those measured in full-day EMA surveys (Franchak, 2019). Full-day timelines from579
wearable sensors will be even better suited to explain differences between the laboratory and the home580
because they provide dense, real-time data (tens of thousands of samples a day) compared with the 8-10581
total samples yielded through EMA notifications every hour.582

Although the results of our validation and case studies are promising, there is still reason to be cautious583
as we apply the method to full-day testing in the home. In both the laboratory and home case studies,584
sensitivity was poor for few positions for a few participants. Although it was encouraging that those cases585
did not preclude us from observing inter- and intra-individual differences, more testing—particularly in586
a larger set of home participants—will be needed to know how robustly our method can deal with poor587
classifications. Whereas outliers in many measures used to assess individual differences must simply be588
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trimmed based on a distributional assumption (e.g., extreme CDI scores, Walle and Campos, 2014), our589
method relies on collecting ground truth data for every individual. Since each individual infant’s model590
can be validated, we have a principled way of excluding outliers based on the prediction accuracy for591
each infant, each body position, and each session. But, training individual models comes with a cost: It592
relies on collecting video data for every participant, training those videos, and fitting individual models.593
It is possible that when a larger set of training data are available, that the accuracy of group models will594
approach that of individual models. Or, sub-group models could be made to make predictions in infants of595
the same age (or who share the same repertoire of motor behaviors). Unfortunately, insufficient data were596
collected in infants of different age groups to test a sub-group approach.597

Regardless, future work should investigate why those fits were poor with an eye towards reducing598
erroneous predictions (instead of excluding data post hoc). One possibility is that not enough data were599
available to train the model for those positions. Although we attempted to elicit different body positions600
in every infant, infants were not always cooperative. For example, infants who can crawl and walk may601
be unhappy lying on their backs for minutes at a time. As the time of recording becomes longer, it also602
creates greater opportunity for errors to arise (such as a caregiver putting on the leggings the wrong way603
after a diaper change or nap). We hope that by asking caregivers to document such events, we will be able604
to exclude portions of the day with erroneous data. In the future, collecting validation data (with video)605
intermittently through the day or at the end of a session could provide a more objective way to check the606
robustness of the classifier. Given the complexity of testing behavior in the wild, decrements in accuracy for607
the case study participants (from 98% in the laboratory to 85% in the home) were to be expected. Although608
it is encouraging that accuracy was still at an acceptable level in the case study participants, more data will609
be needed to demonstrate whether the method is accurate across a larger sample of participants in the home.610
Individual differences in infants’ motor repertoires and daily routines/activities likely add to heterogeneity611
in body position frequency, and whether such variability can be captured across a large sample in the home612
remains to be tested.613

Generalizing from training data—a portion of which contained elicited positions—to unconstrained,614
free-flowing behavior is a significant challenge. As noted, it is especially difficult when sufficient data for615
all categories to train and test the models are not available for every infant. One strategy that we used to616
deal with the unpredictable nature of infant data collection was to design a two-part training procedure—a617
guided task that attempted to gather data from a fixed list of behaviors followed by a free-play procedure618
that gathered data from infants in more free-flowing, self-selected positions. Ideally, this two-pronged619
approach would provide complementary data: In the guided section, caregiver would place infants in620
positions that would be rare in free play, such as holding infants and restraining them in a high chair, and621
free play would capture more naturalistic behavior. However, a limitation of this approach is that we trained622
and tested models using both guided and free play data, but a stronger test would have been to assess623
model performance on a set of completely naturalistic data (such as a period of free play or home life that624
excluded any elicited behaviors). Because our approach relied on training models using both types of data,625
we could not do this in our dataset—there was not enough free play data collected to hold it in reserve for626
testing. In future work, collecting a separate set of naturalistic testing data would provide a more stringent627
test of how well models will generalize to body position in daily life.628

In addition to providing proof-of-concept data, our two home case studies also highlight the utility of a629
contactless equipment drop-off procedure for studying infant home behavior. Many infant development630
researchers—especially those who use looking time metrics—can turn to video conferencing or toolboxes631
such as Lookit (Scott and Schulz, 2017) for a substitute for in-person studies. In contrast, for researchers632
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who study gross motor behaviors, such as walking and crawling, it may be difficult or impossible to633
make the paradigm fit on a computer screen. Cameras fixed on a tripod are not ideal for capturing motor634
behavior, which is why home observation studies typically rely on an experimenter to record infants as635
they move from place to place (Karasik et al., 2011). Although the 360o cameras we used in the home636
case studies cannot follow the infant from room to room, they do provide a way to digitally pan and637
follow the infant. Moreover, the sensors themselves move with infants from place to place, obviating the638
need for an experimenter to follow infants around. There is no doubt that this method would be easier639
to implement in person. Although caregivers successfully placed the cameras and leggings on infants,640
having an experimenter in the home would reduce the burden on the caregiver. In the ideal scenario, the641
experimenter would briefly visit the home to place the equipment, and then data could be recorded for the642
rest of the day without the experimenter present.643

In summary, characterizing the inputs for development—what infants do and experience on a daily644
basis—strengthens our ability to build theories (Dahl, 2017; Oakes, 2017; Franchak, 2020). We identified645
a new way of capturing one type of input, body position, and expect that measuring daily body position646
experiences will help reveal how infants’ burgeoning motor skills are linked with cascading effects on647
language and spatial cognition (Soska et al., 2010; Oudgenoeg-Paz et al., 2012; Walle and Campos, 2014;648
Oudgenoeg-Paz et al., 2015; West et al., 2019). In the future, wearable sensors may be used to build649
machine learning classifiers for other behaviors, such as locomotion (time spent crawling and walking) and650
manual activities. In combination with other wearable equipment, such as “headcams” and audio recorders,651
we may better understand how infants shape the multi-modal inputs for learning through their own actions.652
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Figure 1. Example timeline showing human-coded body position (colored bars at the top) synchronized
with example IMU data (gray and black lines) for one 12-month-old (non-walking) participant’s entire
session. Two example IMU signals were selected (acceleration in the X and Y axes from the hip sensor) to
demonstrate differences in motion data over time in different body positions. The black rectangle shows
a 30-s subset of data that are magnified in the bottom timeline. The green and orange lines illustrate 4-s
long windows that are shifted in 1-s steps throughout the session to capture discrete body position events.
Motion features were calculated within each 4-s window from the raw data to characterize movement in
each window for training and prediction. The activities before 7:30 were from the free play portion, and
the activities following 7:30 were from the guided portion of the study.

Frontiers 21



Franchak et al. Body position classification

− −

− −
−

0
Not

Observed

25

50

75

100

Supine Prone Sitting Upright Held

P
re

va
la

nc
e 

%

Figure 2. Prevalence of each position observed in the laboratory study. Each individual circle is the
prevalence (% of time) for one participant; gray circles indicate participants for whom a position was not
observed. Horizontal black lines show the mean prevalence for each position among infants for whom that
position was observed.
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Figure 3. Sensitivity of classification by position in the laboratory study. Each individual circle is the
sensitivity for one participant; the size of the point is scaled by the prevalence of that position for that
participant (colors indicate body position). Horizontal black lines show the mean sensitivity for each
position. Arrows indicate outliers with poor sensitivity that are discussed in text.
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Figure 4. Positive predictive value (PPV) of classification by position in the laboratory study. Each
individual circle is the PPV for one participant; the size of the point is scaled by the prevalence of that
position for that participant (colors indicate body position). Horizontal black lines show the mean PPV for
each position.
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Figure 5. Predicted position prevalence from classification (y-axis) plotted against actual position
prevalence from human coding of body position (x-axis) in the laboratory study. Each graph shows
one body position (colors indicate body position), and each symbol represents one participant (titles
indicate the r value for the correlation between actual and predicted within each position category). The
black arrow in the sitting figure shows the outlier participant with the worst sensitivity from Figure 3.
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Figure 6. Predicted position prevalence from classification (y-axis) plotted against actual position
prevalence from human coding of body position (x-axis) for home case study Participant B. Each point
represents the proportion of time the infant spent in each position during each of 17 7.5-min periods that
were video recorded following the end of the training session (titles indicate the r value for the correlation
between actual and predicted within each position category). Note that several points are overlapping (e.g.,
the infant was supine and sitting 100% of the time for multiple periods and was held 0% of the time for
multiple periods). The overall correlation between actual and predicted prevalence across positions/periods
was r = .976.
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Figure 7. Timeline from Participant B’s entire data collection showing actual position codes (top row)
compared with model predictions of body position (bottom row). The legend indicates the bar color for
each body position and lists the model’s prediction of how much time the infant spent in each position over
the 4.5-hour session. The sensors were placed on the infant after the first nap (at 10:30 am). From 10:30am
to 11:00am, the infant and caregiver were guided through the scripted activities over the phone by the
experimenter and completed the prescribed free play in front of the camera. Data from those 30 minutes
were used to train the machine learning classifier. The remaining period (11am until the camera stopped at
1:15pm) was used for validation. The video recording allowed us to verify that the 40-min period of sitting
(from approximately 12pm-12:40pm) corresponded to a meal with the infant sitting in a high chair and that
the period of supine (from approximately 12:45pm-1:15pm) corresponded to a period of TV viewing while
the infant reclined in a seating device. The infant continued to wear the sensors until a nap at 3pm, which
was the last recorded time before the experimenter picked up the equipment at 5pm.
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TABLES

Table 1. Unweighted, overall accuracy and Cohen’s Kappa for each individual participant in the lab
validation study. Accuracy is reported separately for individual versus grouped models. Bottom row shows
average overall accuracy and Kappa values across participants.

Individual Group

Accuracy Kappa Accuracy Kappa

0.92 0.91 0.95 0.94
0.94 0.90 0.95 0.91
0.96 0.94 0.84 0.56
0.96 0.96 0.82 0.82
0.97 0.70 0.94 0.81
0.97 0.94 0.99 0.79
0.98 0.94 0.90 0.60
0.99 0.97 1.00 1.00
0.99 0.98 0.98 0.95
0.99 0.99 0.99 0.98
1.00 1.00 0.89 0.84
1.00 1.00 0.91 0.75
1.00 1.00 0.95 0.73
1.00 1.00 0.92 0.88
1.00 1.00 0.94 0.78

0.98 0.95 0.93 0.82
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Table 2. Prevalence, sensitivity, and positive predictive value by body position for the lab validation study
testing dataset.

Sensitivity Pos. Pred. Value

Position Prevalence M SD Min Max M SD Min Max

Supine 8.61 0.912 0.182 0.500 1.000 1.000 0.000 1.000 1.000
Prone 6.04 0.993 0.022 0.926 1.000 1.000 0.000 1.000 1.000
Sitting 45.98 0.928 0.257 0.000 1.000 0.981 0.036 0.865 1.000
Upright 16.02 0.974 0.043 0.889 1.000 0.967 0.070 0.778 1.000
Held 33.75 0.959 0.064 0.772 1.000 0.976 0.034 0.886 1.000
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Table 3. Prevalence, sensitivity, and positive predictive value by body position for the testing datasets
used to assess case studies (Participants A and B).

Participant A Participant B

Position Prevalence Sensitivity PPV Prevalence Sensitivity PPV

Supine 6.91 1.000 1.000 22.74 0.973 0.877
Prone 10.22 0.676 0.833 10.14 0.671 0.728
Sitting 53.59 0.951 0.846 44.29 0.881 0.906
Upright 16.71 0.595 0.758 19.00 0.892 0.835
Held 12.57 0.846 0.928 3.83 0.453 0.837
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