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ABSTRACT

How can researchers best measure infants’ motor experiences in the home? Body position—
whether infants are held, supine, prone, sitting, or upright—is an important developmental
experience. However, the standard way of measuring infant body position, video recording by
an experimenter in the home, can only capture short instances, may bias measurements, and
conflicts with physical distancing guidelines resulting from the COVID-19 pandemic. Here, we
introduce and validate an alternative method that uses machine learning algorithms to classify
infants’ body position from a set of wearable inertial sensors. A laboratory study of 15 infants
demonstrated that the method was sufficiently accurate to measure individual differences in the
time that infants spent in each body position. Two case studies showed the feasibility of applying
this method to testing infants in the home using a contactless equipment drop-off procedure.

Keywords: motor development, posture, body position, wearable sensors, human activity recognition, machine learning

1 INTRODUCTION

Infants’ increasing ability to transition into and maintain balance in different body positions is a hallmark of
the first year (Adolph and Franchak, 2017). At birth, newborns can only lay supine on their backs or prone
on their bellies. Otherwise, they rely on caregivers to place them in different positions or hold them in their
arms. With age, infants master the ability to sit independently, crawl in a prone position, stand upright, and
walk. In this paper, we describe a new method to characterize infants’ body positions—held by caregivers,
supine, prone, sitting, and upright—across an entire day using machine learning classification of wearable
inertial motion sensors. We begin by describing the importance of understanding infant body position and
then review existing measurement approaches. Afterwards, we present two studies: A laboratory validation
study that shows how wearable sensors can be used to accurately categorize infant body position, and case
studies that demonstrate how feasibly the method can be adapted to collect data from infants in the home
while relying on caregivers to administer the procedure.

Growing evidence suggests that acquiring more advanced control over body position augments infants’
opportunities for learning and exploration (Gibson, 1988; Libertus and Hauf, 2017; Franchak, 2020). For
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example, infants’ visual experiences differ according to body position: While prone, infants’ field of view is
dominated by the ground surface and objects near the body, whereas upright infants have a more expansive
view of their surroundings that includes distant objects and faces (Franchak et al., 2011; Kretch et al.,
2014; Franchak et al., 2018; Luo and Franchak, 2020). Sitting facilitates visual and manual exploration
of objects compared with laying prone or supine (Soska and Adolph, 2014; Luo and Franchak, 2020).
Upright locomotion (walking) compared with prone locomotion (crawling) allows infants to travel farther,
more easily carry objects, and elicits different social responses from caregivers (Gibson, 1988; Adolph
and Tamis-LeMonda, 2014; Karasik et al., 2014). Accordingly, learning to sit and walk is linked with
downstream improvements in language learning and spatial cognition (Soska et al., 2010; Oudgenoeg-Paz
et al., 2012; Walle and Campos, 2014; He et al., 2015; Oudgenoeg-Paz et al., 2015; Walle, 2016; West
et al., 2019, c.f. Moore et al., 2019). Presumably, these facilitative effects result from infants spending
more time sitting, standing, and walking. For example, mastering the ability to sit independently nearly
doubled the amount of time that 6-month-olds spent sitting (both independent and supported sitting) in daily
life compared with 6-month-old non-sitters (Franchak, 2019). Infants who spend more time sitting have
increased opportunities to explore objects. Yet, little data are available to describe how infants spend their
time in different body positions across a typical day, and how the prevalence of different body positions
changes with age and motor ability.

Video observation is the gold standard for measuring body position. But, video observation comes with
several costs, especially with respect to the goal of describing natural, home experiences across a full
day. Whereas language researchers have profitably used day-long audio recordings to characterize the
everyday language experiences of infants (e.g., Weisleder and Fernald, 2013; Bergelson et al., 2019),
motor researchers have been limited to scoring body position recorded in relatively short (15-60 min)
video observations (Karasik et al., 2011; Nickel et al., 2013; Karasik et al., 2015; Thurman and Corbetta,
2017; Franchak et al., 2018). Although infants can wear an audio recorder that travels wherever they go,
capturing infants’ movements requires an experimenter to follow the infant from place to place while
operating a camcorder. Furthermore, the presence of the experimenter in the home may lead to reactivity—
altering infants’ and caregivers’ behaviors when observed (Tamis-LeMonda et al., 2017; Bergelson et al.,
2019)—which threatens generalizability. Another threat to external validity is how time is sampled: A
short visit from an experimenter scheduled at a convenient time is unlikely to be representative of the full
spectrum of daily activities (e.g., nap routines, meal times, play, and errands) that may moderate motor
behavior (Fausey et al., 2015; Kadooka et al., 2021, April; de Barbaro and Fausey, 2021). Other limitations
of video observation are practical rather than scientific. Video recording an infant for an entire hour is
laborious; to do so for an entire day would not be feasible. Even if it were possible to capture full day
video recordings of an infant, frame-by-frame coding of body position would be a gargantuan task—slow
but feasible in a small sample, but intractable at a larger scale—and storage of large, full-day video files
creates a nontrivial data management challenge. As with audio, collecting video data in the home across an
entire day presents challenges for maintaining participant privacy (Cychosz et al., 2020). Finally, physical
distancing guidelines during the COVID-19 pandemic mean that an experimenter may not be permitted in
the home to operate a video camera.

One alternative is to employ survey methods in lieu of direct observation. Surveys can be conducted
remotely without an experimenter present in the home, addressing some limitations of video observation
(i.e., reactivity, privacy, labor, data storage). Although retrospective diaries have been used to estimate
infant body position and motor activity (Majnemer and Barr, 2005; Hnatiuk et al., 2013), their accuracy
and reliability are questionable. For example, (Majnemer and Barr, 2005) asked caregivers to fill out a diary
every 2-3 hours to indicate the infants’ position for each 5-minute interval since the last entry. However, by
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12 months of age infants change position an average of 2-4 times per minute when playing (Nickel et al.,
2013; Thurman and Corbetta, 2017). Thus, it seems unlikely that a caregiver could accurately estimate
the time spent in body positions using a retrospective diary. Ecological momentary assessment (EMA) is
one alternative: Sending text message surveys to ask caregivers to report on infants’ instantaneous body
position every 1-2 hours across the day provides a sparse, but accurate report (Franchak, 2019; Kadooka
et al., 2021, April). Although this method may better capture full-day experiences compared with short
video observation (and more accurately compared with retrospective diaries), it lacks the real-time position
data that are provided by video coding.

Classifying body position from wearable sensors provides a third option that addresses the limitations
of both video and survey methods. Lightweight inertial movement units (IMUs)—small sensors that
contain an accelerometer and gyroscope—can be worn for the entire day or multiple days taped to the skin,
embedded in clothing, or worn on a wristwatch (CIiff et al., 2009; Lobo et al., 2019; de Barbaro, 2019;
Bruijns et al., 2020). Notably, an experimenter does need not to be present, and data can be recorded at a
dense sampling rate in real time. Although video data must be collected and coded to train the classifier, the
video-recorded portion can be brief (addressing privacy, data storage, and data coding labor concerns) while
still providing a full-day measure of activity. Previous validation studies show that wearing lightweight
sensors does not alter movements even in young infants (Jiang et al., 2018). Child and adult studies have
successfully used wearable motion sensors to characterize the intensity of physical activity (e.g., sedentary
versus moderate-to-vigorous) using either cut points that set thresholds for different activity levels (Trost
et al., 2012; Kuzik et al., 2015; Hager et al., 2017; Armstrong et al., 2019) or by training machine-learning
algorithms to classify activity into different levels (Hagenbuchner et al., 2015; Trost et al., 2018).

Body position may be a more challenging behavior to classify compared with physical activity intensity.
For example, an infant can be stationary or moving quickly while upright, suggesting that simple cut
points or thresholds may not be suitable (Kwon et al., 2019). However, results from previous studies using
machine learning to classify activity type in adults (Preece et al., 2008; Arif and Kattan, 2015) and children
(Nam and Park, 2013; Zhao et al., 2013; Ren et al., 2016; Stewart et al., 2018) are encouraging. For example,
Nam and Park (2013) used a support vector machine classifier to distinguish 11 activity types—including
rolling, standing still, walking, crawling, and climbing—in a laboratory study of 16- to 29-month-olds.
The classification accuracy was high (98.4%), suggesting that machine learning classification of wearable
sensors may be sufficiently sensitive to differentiate the activities of young children.

Despite an abundance of work with children and adults, only a handful of studies have investigated infants.
A number of studies have used sensors worn on the wrists or ankles to estimate the frequency of limb
movements in typical and atypical development (Smith et al., 2017; Jiang et al., 2018). Hewitt et al. (2019)
used commercially-available sensors to detect one type of body position, prone, to estimate caregivers’
adherence to “Tummy Time” recommendations. Greenspan et al. (2021) estimated body position angle
using pitch angle cut-points from a single sensor embedded in a garment in 3-month-olds. Yao et al. (2019)
used a pair of sensors, one worn by the infant and one worn by the caregiver, to train machine learning
models that were able to accurately classify the time infants spent held by caregivers. Notably, the Yao
et al. study validated their method “in the wild” by collecting data in the home rather than relying only on
a laboratory sample, which suggests the feasibility of this method for our proposed application. Finally,
one previous study measured body position in 7-month-old infants using a set of 4 IMUs embedded in a
garment (Airaksinen et al., 2020). With all 4 sensors (accuracy declined using a single sensor or a pair of
sensors), researchers were able to distinguish between supine, side-lying, and prone positions with 98%
accuracy using a machine learning model.

Frontiers 3
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Although recent work provides an encouraging outlook for measuring body position in infants (Yao et al.,
2019; Airaksinen et al., 2020; Greenspan et al., 2021), there are several open questions. First, because
past studies of body position (Airaksinen et al., 2020; Greenspan et al., 2021) did not include caregivers
holding infants as a category, it is unknown whether our proposed body position categories—prone, supine,
sitting, upright, and held by caregiver—can be accurately classified. Held by caregivers is critical because
infants’ bodies may seem to be configured in a similar way to another position while held (e.g., a caregiver
cradling an infant might be in a similar body position to when they are supine in a crib or on the floor). For
this reason, angle cut-points like those used in past work (Greenspan et al., 2021) are unlikely to capture
differences in the five positions we aim to classify. Unless we can accurately distinguish when infants
are held, it would not be possible to account for their body position across the day because infants are
held as much as 50% of the time in a typical day (as measured using EMA, Franchak, 2019). Although
the Yao et al. study measured caregiver holding time (but not other body positions), they used a pair of
sensors (one worn by the infant and one worn by the caregiver). It is unclear whether sensors worn only
by infants would be able to detect when they are held. Second, the Airaksinen et al. study’s categories
included sitting, however, sitting in daily life can take many forms—sitting on a caregiver’s lap, sitting
in a restrained seat, or sitting independently on the floor—that may make it harder to detect in the wild.
In the current study, we trained and tested sitting in a variety of forms to be sure that we can capture the
variability we expect to find across a full day in the home. Third, although a benefit of classifying behavior
from wearable sensors is that an experimenter does not need to be present for the entire day, the classifiers
still need to be trained on a set of manually-coded ground truth data (e.g., body positions coded from video
synchronized with sensor data). Given the regulatory issues arising from the COVID-19 pandemic, such as
physical distancing and sanitation, we investigated the feasibility of using a stationary camera and sensors
dropped off at participants’ doorstep for training and validating a classifier without the researcher entering
the home. But, it remains an open question whether an experimenter can remotely guide caregivers through
the complex procedure of applying the sensors, synchronizing the sensors to the camera, and eliciting
different body positions in view of the camera.

A remote drop-off procedure would have utility aside from addressing the immediate concerns of the
COVID-19 pandemic. For families who feel uncomfortable with an experimenter visiting their homes, a
remote drop-off provides a way to collect observational data without an experimenter’s presence. Removing
the need for an experimenter to spend an hour in the home—simply to pan a video camera—also reduces
the experimenter’s labor for collecting data. Most importantly, removing the experimenter’s presence from
the home—and the need to record video for long periods of time—can reduce reactivity. Indeed, caregivers
spoke more to infants when video-recorded by a stationary camera than during an audio-only recording
(Bergelson et al., 2019). Although our method uses a stationary camera, it is only needed for a brief video-
recorded period followed by a full-day motion measurement (without video or experimenter presence).
This will allow unobtrusive capture of behavior across a sufficiently long period to examine within-day
variability of behavior (de Barbaro and Fausey, 2021) with minimum reactivity. Such data are crucial
for testing the links between everyday experiences and subsequent development (Franchak, 2020). For
example, one potential mechanism to explain why the acquisition of independent walking predicts increases
in vocabulary development (Walle and Campos, 2014; Oudgenoeg-Paz et al., 2015) is that caregivers
provide different language input to infants when infants are crawling compared with when they are walking
(Karasik et al., 2014). However, since this difference was observed through experimenter-recorded video
in the home, it is unknown how it generalizes across the day or whether such a different persists when
the experimenter and video camera are absent. Simultaneously recording speech with an audio recorder
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synchronized with body classification from motion sensors would provide full-day, unobtrusively-collected
data to bear on this question.

2 LABORATORY STUDY: VALIDATING THE BODY POSITION CLASSIFICATION
METHOD

The goal of the laboratory study was to test whether mutually-exclusive body position categories suitable
for full-day testing—held by caregivers, supine, prone, sitting, and upright—could be accurately classified
from infant-worn inertial sensors. We collected synchronized video and inertial sensor data while infants
were in different body positions, and used those data to train classifiers and then validate them against the
gold standard (human coding from video observation). As in past work (Nam and Park, 2013; Yao et al.,
2019; Airaksinen et al., 2020), our aim was to determine whether the overall accuracy of classification
was high (> 90% of agreement between model predictions and ground truth data). Moreover, we assessed
whether the method could accurately detect individual differences in how much time infants spend in
different body positions, which is relevant for characterizing everyday motor experiences and their potential
downstream effects on other areas of development (e.g., Soska et al., 2010; Oudgenoeg-Paz et al., 2012;
Walle and Campos, 2014).

In order to identify the most accurate method for classifying body position, we compared two modeling
techniques: individual models that were trained on each individual’s data versus group models that used a
single model trained on all but one of the participants. Group models are more commonly used in activity
recognition studies (e.g., Nam and Park, 2013; Yao et al., 2019; Airaksinen et al., 2020), and have several
practical benefits, such as reducing complexity (only needing to train/tune a single model) and providing a
generalizable method (group models can be used to classify data in participants for whom no ground truth
training data were collected). We reasoned that although individual models take more work to create, they
might lead to better accuracy in our use case for several reasons. First, individual models eliminated the
possibility that variability in sensor placement across infants could add noise to the data. Second, given
the wide range of ages (6-18 months), it allowed us to tailor models to the motor abilities of each infant.
For example, the upright category could be dropped for the youngest infants who were never standing or
walking. Moreover, the biomechanics of sitting likely differ between a 6-month-old and an 18-month-old,
which could result in different motion features. Third, training and validating a model for each infant allows
researchers to individually verify the data quality for each infant included in the analyses.

2.1 Materials and Methods
2.1.1 Participants

Participants were recruited from social media advertisements and local community recruitment events.
The final sample consisted of 15 infants between 6-18 months of age (7 male, 8 female, M age = 11.28
months). Caregivers reported the ethnicity of infants as Hispanic/Latinx (9) or not Hispanic/Latinx (6).
Caregivers reported the race of infants as White (10), More than One Race (2), Asian (1), and Other (1);
one caregiver chose not to answer. An additional 7 infants were run in the study but could not be analyzed
because of problems with the sensors (one or more sensors failed to record or stream data). Two additional
infants were run in the study but excluded due to video recording failures, and one additional infant started
the study but did not complete the session due to fussiness. Caregivers were compensated $10 and given a
children’s book for their infant. The study was reviewed and approved by Institutional Review Board of the
University California, Riverside. Caregivers provided their written informed consent to participate in this
study and gave permission to record video and audio for both themselves and their infant before the study
began.

Frontiers 5
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2.1.2 Materials

Three MetaMotionR (Mbientlab) inertial motion tracking units (IMUs) were placed at the right hip, thigh,
and ankle of infants and recorded accelerometer and gyroscope data at 50 Hz. Due to the high rate of
sensor failures resulting in participant exclusion, we do not recommend use of this sensor and chose a
different sensor for our subsequent projects. The IMU worn on the hip sat inside a clip fastened at the
top of the infant’s pant leg or diaper on the right side. The other two IMUs were placed in the pockets of
Velcro bands strapped to the infant’s right thigh (just above the knee) and right ankle. During the study, the
IMUs streamed data via Bluetooth to a Raspberry Pi computer running Metabase software (Mbientlab). A
camcorder (Sony HDRCX330) held by an experimenter recorded infants” movements throughout the study
so that body position could be coded later from video.

2.1.3 Procedure

The study started with synchronizing the three IMUs to the video. To create an identifiable synchronization
event in the motion tracking data, an experimenter raised all three sensors together and struck them against a
surface in view of the camcorder with both the camcorder and sensors recording. After the synchronization
event, the experimenter attached the three IMUs to the infant. The experimenter ensured the correct
orientation of the IMUs by checking the arrow indicator on each IMU which faced forward towards the
anterior plane with respect to the infant’s body position.

After placing the IMUs on the infant, the experimenter guided the caregiver to put the infant in the
following positions (assisted or non-assisted): standing upright, walking, crawling, sitting on the floor,
lying supine, lying prone, held by a stationary caregiver, held by caregiver walking in place, and sitting
restrained in a highchair. Each position lasted 1 minute, and the total guided activities lasted approximately
10 minutes. After the guided activities, the caregivers were asked to play with their infants freely with
toys for 5 minutes. During the free play portion, infants were permitted to move however they wished so
that we could record spontaneous body positions. For some infants, the free play portion preceded the
guided activities if the infant was fussy or resistant to the guided activities. An assistant held the camcorder
and followed the infants throughout the guided and free-play activities to make sure the infant’s body was
always in view. To check synchronization, a second synchronization event was captured at the end of the
study before turning off the video and IMU recordings.

2.1.4 Human Coding of Body Position

Human coders went through the third-person view videos recorded by the camcorder and identified the
infants’ position in each frame using Datavyu software (www.datavyu.org). Body positions were identified
as supine, prone, sitting, upright, or held by caregiver. Figure 1 shows an example timeline of position
codes over the session for one infant.

Supine was coded when the infant was lying on their back. Prone was coded when the infant was lying
flat on the stomach or in a crawling position (either stationary or locomoting). Sitting was coded when
the infant was sitting on a surface (e.g. a couch or floor, with or without support from the caregiver), the
highchair, or on the caregiver’s lap. Upright was coded when infants were standing, walking, or cruising
along furniture. Held by caregiver was coded when the infant was carried in the caregivers’ arms off the
ground, excluding times that they were seated on the caregiver’s lap. Positions that could not be identified
as any of these categories (such as times in transition between body positions) or times where the sensors
were briefly removed/adjusted were excluded from coding (i.e., gaps between data in Figure 1). Each video
was coded in its entirety by two coders. The interrater reliability between the two coders was high across
the 15 videos (overall agreement = 97.6%, kappa = .966).
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2.1.5 Machine-Learning Classification of Body Position

The data were processed in three steps. First, the timeseries of accelerometer and gyroscope data were
synchronized to the human-coded body position events. Second, we applied a moving window to the
synchronized timeseries to create 4-s long events, and extracted motion features that characterized each
event. Finally, we trained random forest classifiers (both individual models and group models) to predict
the body position categories for each participant based on the motion features in the 4-s windows.

2.1.5.1 Synchronization

A researcher plotted the accelerometer time series in Matlab and identified the timestamp that
corresponded to the acceleration peak at the moment the sensors were struck during the synchronization
event. That timestamp was subtracted from the other timestamps to define the synchronization event as
time 0. Likewise, Datavyu video coding software was used to find the moment the sensors were struck
against the surface in the video, and that time was defined as time O for body position codes. In doing so,
human-coded body position was synchronized with the motion data. The synchronization event at the end
of the session was used to confirm that the synchronization was correct and that no drift correction was
needed. The onsets and offsets of each human-coded body position were used to construct a 50 Hz time
series of body position categories, providing a body position code that corresponded to each sample of
motion data.

2.1.5.2 Window Creation and Feature Generation

As in previous studies in human activity recognition (Preece et al., 2009; Nam and Park, 2013; Airaksinen
et al., 2020), overlapping moving windows were applied to the synchronized motion and body position
timeseries in Matlab: 4-s windows were extracted every 1 s from the first synchronization point to the
end of the session. The magnified timeline at the bottom of Figure 1 shows examples of the overlapping
4-s windows. As such, each 4-s window contained 200 samples of 50 Hz motion data. We omitted any
window during which a position category was present for less than 3 s of the 4-s window to avoid analyzing
windows that included transition movements between positions or a mix of two different body positions.

Across the 200 samples in a window, we calculated 10 summary statistics—the mean, standard deviation,
skew, kurtosis, minimum, median, maximum, 25th percentile, 75th percentile, and sum—for each
combination of 3 sensor locations (ankle, thigh, and hip), 2 sensor signals (acceleration, gyroscope),
and 3 axes (X, Y, Z for acceleration; roll, pitch, yaw for gyroscope). For example, 10 summary statistics
described the ankle’s acceleration in the Z dimension. In total, 10 statistics X 3 sensor locations x 2 sensor
signals x 3 axes resulted in 180 features. In addition, we calculated the sum and magnitude of movement
in each axis across the 3 sensor locations and the sum and magnitude of movement across axes within each
sensor. Finally, we calculated correlations and difference scores between each pair of axes within a sensor
and between each pair of sensors for a given axis. These cross-sensor and cross-axis features brought the
motion feature total to 204.

2.1.5.3 Model Training

To train and validate individual models, each participant’s data were separated into a training set that was
used to train the model, and a testing set that was held out for validation. In order to mimic the intended use
of this method—using video coded at the start of the day to train a model for predicting body position over
the rest of the day, we used the first 60% of each participant’s data as the training set and the remaining
40% as the testing set. However, because of the sequential nature of our guided activities, selecting the first
60% chronologically would include some activities and exclude others. Thus, we selected the first 60% of
data within each body position category for the training set to ensure that there were sufficient data to train
the models on all positions. To train and validate group models, we used a leave-one-out cross-validation

Frontiers 7
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technique. A group model was trained using all of the data from 14/15 participants, and then the remaining
participant’s data served as the testing set. In this way, we could report classification accuracy for each
participant (as predicted from a model trained on all other participants). As in Airaksinen et al. (2020) we
excluded windows in which the primary and reliability coders disagreed to ensure that only unambiguous
events were used in training across both types of models.

Machine learning models were trained in R using the randomForest package to create random forest
classifiers (Liaw et al., 2002). The random forest algorithm (Breiman, 2001) uses an ensemble of many
decision trees—each trained on a random subset of motion features and a random subset of the training
data—to avoid overfitting and improve generalization to new cases (Strobl et al., 2009). Prior work shows
random forests are well-suited to classifying motor activity (Trost et al., 2018; Yao et al., 2019). By training
hundreds of trees on different subsets of features, the classifier detects which features (of our set of 204)
are most useful in classifying the categories we chose. In a preliminary step, we optimized two parameters,
the number of trees and the “mtry” parameter, by training and testing classification accuracy across a range
of parameter values. The optimal number of trees trained in the model was 750 (using more trees took
longer processing time without significant gains in model accuracy). The “mtry” parameter refers to how
many features are randomly selected in each tree, and the default value was optimal (square root of total
number of features). Regardless, performance varied little depending on the values of these parameters.
Using the optimal parameters, a random forest model was created based on each participant’s training data
(individual model) and from all but one participants’ data (group model). The predict function was then
used to apply the model to the motion features in the testing data set to classify each window, and provide
a set of predicted categories to compare to the human-coded categories. For individual models, the testing
set was the 40% of data held for testing; for group models, the testing set was the “left out” participant. In
both cases, testing data were independent from data used to train the model that was validated and included
behavior from both the guided activities and the free play portion.

2.2 Results

To validate models, we compared the classifier prediction to the ground truth (human-coded body position
categories) for each window in the testing data set. The overall accuracy (across body position categories)
for each participant was calculated as the percentage of windows in which the model prediction matched the
human-coded position. Because windows were of equal length (4 s), accuracy can likewise be interpreted
as the percentage of time that was correctly predicted by the model. Table 1 shows the accuracy for each
participant for the individual and the group models. For individual models, overall accuracy averaged M =
97.9% (SD = 2.37%, ranging from a minimum of 92.4% to a maximum of 100%), similar to or exceeding
the accuracy reported in related investigations (Nam and Park, 2013; Yao et al., 2019; Airaksinen et al.,
2020). For group models, overall accuracy was lower (M = 93.2%, SD = 0.053), but still strong. A paired
samples t-test confirmed that individual models yielded superior accuracy, #(14) = -3.28, p = .0055.

Although the overall accuracy was excellent, it can overestimate the performance of the model if it does
better at predicting more prevalent categories (e.g. sitting) and misses less prevalent categories (e.g. prone).
Despite attempting to elicit each body position for a set amount of time for each infant during the guided
session, not all infants exhibited each behavior (e.g., infants who could roll might refuse to remain supine
and/or prone). Every infant sat and every infant was held by a caregiver, but the prevalence varied greatly
across infants of different ages and motor abilities. Figure 2 and Table 2 show the mean prevalence (% of
session spent in each position). Infants spent the most time sitting (M = 45.98%, 0.9% to 70.2%) followed
by held (M = 33.75%, 21.6% to 84.8%). Upright positions were recorded in 10/15 infants with an average
of M =16.02% (out of infants who were upright), and ranged from a minimum of 2.8% to a maximum of
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55.5% of the session. Supine (9/15 infants) and prone (11/15 infants) were observed least often. Infants
were supine M = 8.61% of the time (1.8% to 17.7%) and were prone M = 6.04% of the time (0.4% to
13.1%).

To account for differences in prevalence, we calculated Cohen’s Kappa, a measurement of agreement
for classification data that controls for the base rate of different classes. Table 1 shows the Kappa values
for each participant, which were significantly higher on average for the individual models (M = 0.95, SD
= 0.076) compared with the group models (M = 0.82, SD = 0.129, t(14) = -3.36, p = .0047). As in past
work (Greenspan et al., 2021), we interpreted the Kappa values according to Landis and Koch (1977)
ranges: 0.81-1.00 “Almost Perfect, 0.61-0.80 “Substantial”, 0.41-0.60 “Moderate”, 0.21-0.40 “Fair”,
0-0.20 “Slight to Poor”. Based on those guidelines, 14/15 participants’ classifications from the individual
models were Almost Perfect and 1/15 was Substantial. In contrast, 9/15 participants’ classifications from
the group models were Almost Perfect, 4/5 were Substantial, and 2/15 were Moderate. Given the better
performance of individual models, across both accuracy metrics (overall accuracy and Kappa), we opted to
use individual models (and focus solely on those models for the remaining results).

2.2.1 Sensitivity and Positive Predictive Value by Body Position

To better understand the classification performance within each body position, we calculated the sensitivity
(the proportion of actual occurrences of each body position that were correctly predicted; also referred
to as recall) and the positive predictive value (the proportion of predictions for a given category that
corresponded to actual occurrences; also referred to as precision). Table 2 summarizes sensitivity and
positive prediction value (PPV) by position using the individual models.

Figure 3 shows the sensitivity of classifications by body position, and each individual point shows
one participant’s data (size is scaled to the prevalence of the position, with larger symbols indicating
greater frequency). Although mean sensitivity was generally high (Ms > .91), there was variability among
participants and positions. For example, one infant’s supine sensitivity was .71 (indicated by the gray
arrow), indicating that of the 31 actual supine 4-s windows, the model only predicted 22 supine windows.
The worst outlier was one infant’s sitting position that had a sensitivity of O (indicated by the black arrow).
Possibly, sensitivity related to prevalence. For that infant, there were only 2 windows in the testing dataset
to classify and both were missed. Because training datasets were similarly limited by the number of
windows containing sitting, there were likely insufficient data to train the sitting category for that infant.

Whereas sensitivity varied among individuals and positions, positive prediction value (PPV) was
uniformly high (Table 2). As Figure 4 shows, upright had the worst average PPV (M = 0.976) and
lowest minimum (0.778). For the participant with the lowest PPV, a value of 0.778 meant that of 9 detected
upright windows, only 7 corresponded to actual upright behavior.

Overall, the high (> 0.90) average sensitivity and PPV within each class indicate that the classifiers
performed well for each position despite varying prevalence. However, there were a few concerning
individual outliers for sensitivity. Although outliers such as these might be addressed in future work by
collecting and testing with a larger dataset, it is important to know what impact they might have on the
interpretation of the data, and in particular, for revealing individual differences in position durations.

2.2.2 Capturing Individual Differences in Position Duration

The intended use of this method is to describe individual differences in the relative amounts of time that
infants spend in different body positions. To what extent did the prediction of accumulated time spent in
each position reflect the actual time spent in each position? We calculated each participant’s predicted
prevalence as the proportion of 4-s windows classified in each category divided by the total number of
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windows in their testing dataset. Figure 5 shows scatterplots of actual versus predicted prevalence for each
position. Correlations (shown in the titles of each scatterplot) were very strong (rs > .987), indicating
excellent consistency between model classification and human coding in detecting individual differences
in position prevalence. It is interesting to note that even the most extreme outlier for sensitivity (sitting
participant indicated by the black arrow whose sensitivity was 0) did not disrupt the correlation. Since
outliers were for participants/positions with low prevalence, missing events (or even missing every event)
still resulted in a good-enough predicted value for the purpose of capturing individual differences in posture
duration between infants.

3 CASE STUDY: FEASIBILITY OF CONTACTLESS HOME DATA COLLECTION

The home data collection procedure described below addresses challenges we faced in adapting the
laboratory protocol to measuring body position in the home during the COVID-19 pandemic. The risk of
COVID-19 transmission between people in an indoor space, especially over prolonged periods of time,
meant that the two experimenters could not enter the family’s home to place the IMUs, guide the family
through the procedures, and control the video camera. Instead, we developed a new, contactless protocol in
which the experimenter dropped off equipment outside the family’s door and guided the caregiver through
procedures over the phone. However, relying on the caregiver to place the IMUs correctly, position the
video camera to record infant behavior, and create synchronization events raises additional opportunities
for error. Below, we detail several new procedures we developed to address those concerns: designing
a customized pair of leggings with embedded IMUs to ensure the sensors are placed correctly by the
caregiver, using a 360° camera to capture whole-room video even when camera placement is sub-optimal,
and asking caregivers to record daily events that might disrupt IMU recording (i.e., diaper changes and
naps).

Although the procedure is similar in many ways to the laboratory study, testing the the new method on
two case study participants helps to show whether it is feasible to collect high quality data despite major
changes to how the procedure was implemented. Major differences between the laboratory study and the
home data collection include: using a different set of IMU sensors embedded in a pair of leggings (rather
than strapped to the infant), relying on caregivers to correctly place the leggings on the infant, using a fixed
camera rather than an experimenter-operated camera to collect training/testing data, asking caregivers to
elicit infant body positions and perform synchronization checks in view of the video camera, and collecting
data over long periods of time (8 hours of home data versus 15 minutes of laboratory data). With the
experimenter only able to communicate with the caregiver over the phone, any mistakes in equipment
placement, synchronization, or body position tasks would not be caught by the experimenter until many
hours later when the equipment was retrieved and the experimenter could check the video. As such, we
report case study data from two participants to show the feasibility of collecting data (of sufficient quality
to build body position classification models) after making these changes. Although we report classification
accuracy for those two participants, validation data from a larger sample will be needed to determine if the
method consistently allows for accurate body position classification.

3.1 Materials and Methods
3.1.1 Participants

Two participants, an 11-month-old infant (Participant A) and an 10.5-month-old infant (Participant B),
were tested using the new contactless procedure. Neither infant could walk independently, but both could
stand, cruise along furniture, and walk while supported with a push toy or caregivers’ assistance.
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3.1.2 Materials

To adapt the position classification method for testing in the home during the COVID-19 pandemic,
data collection was conducted through a “guided drop-off” procedure. The caregiver received sanitized
equipment in a sealed bucket left by the experimenter at their door. The bucket contained 4 Biostamp IMUs
(MC10) embedded in a pair of customized infant leggings, a 360° camera on a tripod (Insta360 One R),
sanitizing supplies, and paperwork.

The 4 IMUs were placed at the hip and ankle of the infants on both the right and left legs (testing from
the lab study revealed that the thigh sensor was the least informative). The Biostamp IMUs are designed
for full day recording: They have a long battery life (about 14 hours) and record to onboard memory
without the need to stream to a device or connect to the internet. Each IMU sensor recorded motion from
an accelerometer and gyroscope at 62.5 Hz.

To minimize the possibility of caregivers placing the IMUs incorrectly on infants, a pair of customized
leggings were fabricated with 4 small pockets sewn inside the hip and ankle positions of each leg. The snug,
elastic fabric kept each sensor tight against the body so that they would not bounce or move independently
from the body. The experimenter placed the sensors inside the garment before drop-off to ensure that
sensors were oriented and labelled correctly (i.e., sensor A corresponded to the right hip location). The
front and back of the garment were clearly labelled so that caregivers would put them on infants in the
correct orientation.

We previously relied on an experimenter to operate a handheld camera so that the infant was always in
view for body position coding. Without an experimenter in the home, the camera needed to be placed on
a tripod. However, that could lead to sub-optimal views and high portions of the time where the infant
is out of the video. To address this limitation, we used a camera that recorded in 360° (Insta360 One R).
The caregivers were instructed to place the camera on a tabletop tripod in the room where their infants
would spend the majority of the day, and were asked to move the camera if the infant left the room for
an extended period of time. Since the camera simultaneously records in all directions, the placement of
the camera in the room mattered less compared to using a traditional camera with a limited field of view
(however, view of the infant could still be obstructed by furniture or people moving around in the room).
After the study, the experimenter used specialized camera software to digitally orient the camera so that it
exported a video with the infant in view at all times.

The paperwork included the consent form, instructions for how to set up the camera and put on the
leggings, and a form that caregivers used to document times when the IMUs were taken off the infants
(e.g., diaper changes, naps, excursions out of the home).

3.1.3 Procedure

The procedure consists of a prior-day orientation call, a morning equipment drop-off, an experimenter-
guided video session, and a sensor-only recording period for the rest of the day.
3.1.3.1 Prior Day Orientation Call

The participant was contacted a day before participation day to confirm their appointment. During
this phone call the experimenter explained the contactless drop-off procedure, gave an overview of the
equipment, and explained the consent form to prepare for the participation day.
3.1.3.2 Contactless Equipment Drop-off

On the participation day, the experimenter brought the equipment bucket—containing sterilized,
preconfigured equipment and paperwork—to the participant’s home. Importantly, the IMUs were already
set to record and were placed correctly within the leggings. When arriving at the participant’s door, the
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experimenter started recording the 360° camera and created a synchronization point by striking the leggings
(with the IMUs inside) in view of the camera. Afterwards, the experimenter went back to their vehicle and
notified the participant over the phone that the equipment was ready to be picked up.

3.1.3.3 Guided Video Task

While on the phone with the experimenter, the caregiver was asked to open the bucket and then read and
sign the consent form. Next, the caregiver was asked to place the 360° camera in an optimal location for
video capture (e.g. a coffee table or TV stand). Then, the experimenter asked the caregiver to dress the
infant in the leggings and provided prompts to check that the garment was worn correctly.

With all equipment recording, the experimenter (via phone) guided the caregiver through a set of
procedures to elicit different body positions for training and testing the classification model. These tasks
were the same as the laboratory tasks, but administered by the caregiver instead of the experimenter. The
series of guided tasks involved the caregiver placing the infant in different positions: lying on their back
(supine), lying on their stomach while stationary (prone), sitting on the floor (with support, if needed),
crawling on the floor (if able), walking (if able, caregiver providing support if needed), standing still (if
able, caregiver providing support if needed), picking up and holding child off the ground, sitting in a
restrained seat (e.g., high chair). Each position last approximately 1 minute.

Afterwards, the researcher asked the caregiver to create another synchronization event by removing the
leggings from their infant, holding the leggings up in the air in view of the camera, and dropping them to
the floor. Next, the caregiver was instructed to place the leggings back on their infant and spend 10 minutes
playing with the infant in view of the camera. After receiving those instructions, the phone call with the
experimenter ended.

3.1.3.4 Sensor-only Recording and Material Pick-up

After the 10 minutes of free play, the caregiver and infant went about their day as usual with the IMUs
continuing to record for the next 8 hours or until the experimenter had to pick up the equipment. The only
responsibility for the caregivers during the rest of the day was to indicate every time they removed the
leggings from the child for any reason (e.g. diaper changes, naps) on the paper log form. This allowed us to
omit periods of the day during which the IMUs should not be analyzed.

The 360° camera continued to record until the battery ran out, so the caregiver was asked to position
the camera in the room with the infant until the camera stopped recording. The camera could record 90
minutes to 180 minutes depending on camera settings we used (in the second case study session we lowered
the recording quality to increase recording time). However, because the experimenter started the camera
recording before dropping off the equipment on the doorstep, the portion with the infant in view of the
camera could vary substantially. For Participant A, the recording lasted 90 minutes with approximately 45
minutes of footage of the infant (there was a delay between dropping off the equipment and the camera
recording the infant, and the infant went out of view towards the end of recording). For Participant B, we
adjusted the settings to record a longer video (the recording lasted 180 minutes), and the infant was in view
for almost the entire 180-minute period.

Caregivers could call the experimenter during the day if they encountered any problems. The experimenter
scheduled a time to pick up the equipment bucket from the participant’s door in the evening or the following
morning. All materials were then sterilized following CDC protocols in preparation for the next participant.

3.1.4 Video Processing and Coding

To prepare video data to be coded in Datavyu, an experimenter needed to manually edit the video footage
to create a regular field of view video from the 360° video, which was in a proprietary format consisting
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of two hemispherical video files. Insta360 Studio software allowed the research to select a portion of the
360° video to bring into view. Camera orientations could be tagged at specific times, essentially allowing
the researcher to pan the video camera—after the fact—to maintain the infant in view. After exporting a
regular field of view video with the infant in view, the coders then identified the infant’s position in each
frame using the same coding categories as before: supine, prone, sitting, upright, or held by caregiver.

3.2 Case Study Results

Each participant’s video was coded and synchronized with data from the 4 IMUs worn in the leggings.
Data from the guided session (15 minutes of elicited body positions plus 10 minutes of free play) were
combined and then divided into training and testing datasets. As before, individual models were created
using the first 60% of each position type for training the model and the remaining 40% for testing. We
compared the predicted positions from the random forest model to the actual coded positions in the testing
data to assess the performance of the classifier. The overall accuracy was 85.2% for Participant A (Kappa =
0.80) and 86.6% for Participant B (Kappa = 0.76). Table 3 shows the prevalence, sensitivity, and PPV for
each of the five body positions for each participant. Overall, accuracy, Kappas, and sensitivity were weaker
compared to the laboratory study, but still within acceptable levels (e.g., Yao et al., 2019; Greenspan et al.,
2021).

As in the laboratory study, we found that the models performed well at detecting relative differences
in the durations of different body positions even when sensitivity was less than ideal. To get a sense of
differences in relative durations of positions over time within each infant, we used all available video
that followed the guided tasks and free play (e.g., until the battery ran out or the infant was no longer on
camera) to code the durations of every body position in 7.5-minute intervals. For Participant A, 30 min
of video were available (4 7.5-minute periods), and for Participant B, 127.5 min of video were available
(17 7.5-minute periods). Within each period, we calculated the percentage of time in each body position
predicted by the model compared to the actual percentage of time coded by hand. Correlations between
actual versus predicted percentages were strong: r = .911 across positions for Participant A and r = .976
for Participant B. Within-position scatterplots and correlations are shown in Figure 6 for Participant B, for
whom sufficient data were available. Although the correlations were weaker compared to the laboratory
study, they suggest that these models can distinguish changes in the relative duration of different positions
throughout the day.

Figure 7 shows a timeline of actual and predicted body positions during the entire recording session for
Participant B, providing an example of the type of data afforded by this method. The sensors were synced
and applied to the infant after her morning nap, and from 10:30am to 11:00am the infant and caregiver
participated in the guided activities and the required free play portion that were used as training data.
The next two hours (until 1:15pm when the camera battery ran out) were recorded on video and used to
calculate the correlations in Figure 6 and the validation statistics in 3. We were able to use the video to
confirm two notable events in the timeline: A long period of sitting while the infant had lunch in a high
chair, and a long period of supine while the infant watched TV in a rocking cradle. The sensors continued
to record until the infant took a second nap at 3:00pm, and were picked up by the experimenter following
the nap. The legend in Figure 7 shows the proportion of each body position predicted by the model across
the entire sensor recording period.

4 DISCUSSION

The current studies demonstrate the validity and feasibility of classifying infant body positions from
wearable inertial sensors. Moving beyond past work that classified only holding events (Yao et al., 2019)
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or body positions that omitted holding and upright as categories (Airaksinen et al., 2020), our laboratory
study classified five body positions that be applied full-day behavior in the home, across activities that may
include different forms of each body position (e.g., sitting on the floor during play, sitting in a high chair
during a meal). Although sensitivity varied among participants and body positions, the classification system
was able to reveal individual differences in time spent between different body positions between infants.
The case studies went a step further to provide a proof-of-concept of how the method could be employed in
the home across a long recording period. For both case study participants, we successfully collected video
and motion data in the home by guiding caregivers through a contactless equipment drop-off procedure.
The resulting body position classifiers—trained from data in which no experimenter entered the home or
operated the equipment—were sufficiently accurate to measure intra-individual changes in body position
over time, suggesting that the procedure could be carried out successfully by caregivers who received
instructions over the phone.

Full-day recordings of body position have the potential to transform our understanding of everyday motor
behavior in a similar way that wearable audio recorders have changed the study of language development.
Wearable audio recorders capture the entire day (or even multiple days) of language input in the home
(Weisleder and Fernald, 2013). The language input infants receive differs between the lab and real life,
depends on the activity context, and can be biased by the presence of an experimenter (Tamis-LeMonda
et al., 2017; Bergelson et al., 2019). Moreover, recorders such as the LENA automatically score metrics
about language input to reduce the need for laborious transcription. Although our method of body position
classification still depends on collecting and scoring video data, a 30-minute training period at the start of
the day is enough to then turn off the cameras and unobtrusively record and classify body position for the
remainder of the day (or in the future, multiple days).

As real-time, full-day motor experience data become available, what might we learn? Although Figure 7
shows “only” 8 hours in the life of one infant, it is striking to observe the heterogeneity in motor activities
across the day. The late morning and early afternoon were marked with frequent changes between different
positions as the infant engaged in unrestrained play. In contrast, the lunch and TV times created long,
interrupted bouts of a single body position. As more data become available from infants of different
ages, motor abilities, and caregivers, we expect to see large inter- and intra-individual differences in body
position. Indeed, our ongoing work using ecological momentary assessment to record infants’ activities
(e.g., play, feeding, media viewing, errands, etc.) shows that play is more frequent than any other activity
for 11- to 13-month-olds (feeding is the second most prevalent), but play time differs greatly between
infants (Kadooka et al., 2021, April). Some infants played for one third of the waking day, whereas others
played for two thirds. Most likely, differences in daily activities provide a partial explanation for why
body position rates measured in laboratory play (Thurman and Corbetta, 2017; Franchak et al., 2018) do
not correspond to those measured in full-day EMA surveys (Franchak, 2019). Full-day timelines from
wearable sensors will be even better suited to explain differences between the laboratory and the home
because they provide dense, real-time data (tens of thousands of samples a day) compared with the 8-10
total samples yielded through EMA notifications every hour.

Although the results of our validation and case studies are promising, there is still reason to be cautious
as we apply the method to full-day testing in the home. In both the laboratory and home case studies,
sensitivity was poor for few positions for a few participants. Although it was encouraging that those cases
did not preclude us from observing inter- and intra-individual differences, more testing—particularly in
a larger set of home participants—will be needed to know how robustly our method can deal with poor
classifications. Whereas outliers in many measures used to assess individual differences must simply be

This is a provisional file, not the final typeset article 14



589
590
591
592
593
594
595
596
597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

629
630
631
632

Franchak et al. Body position classification

trimmed based on a distributional assumption (e.g., extreme CDI scores, Walle and Campos, 2014), our
method relies on collecting ground truth data for every individual. Since each individual infant’s model
can be validated, we have a principled way of excluding outliers based on the prediction accuracy for
each infant, each body position, and each session. But, training individual models comes with a cost: It
relies on collecting video data for every participant, training those videos, and fitting individual models.
It is possible that when a larger set of training data are available, that the accuracy of group models will
approach that of individual models. Or, sub-group models could be made to make predictions in infants of
the same age (or who share the same repertoire of motor behaviors). Unfortunately, insufficient data were
collected in infants of different age groups to test a sub-group approach.

Regardless, future work should investigate why those fits were poor with an eye towards reducing
erroneous predictions (instead of excluding data post hoc). One possibility is that not enough data were
available to train the model for those positions. Although we attempted to elicit different body positions
in every infant, infants were not always cooperative. For example, infants who can crawl and walk may
be unhappy lying on their backs for minutes at a time. As the time of recording becomes longer, it also
creates greater opportunity for errors to arise (such as a caregiver putting on the leggings the wrong way
after a diaper change or nap). We hope that by asking caregivers to document such events, we will be able
to exclude portions of the day with erroneous data. In the future, collecting validation data (with video)
intermittently through the day or at the end of a session could provide a more objective way to check the
robustness of the classifier. Given the complexity of testing behavior in the wild, decrements in accuracy for
the case study participants (from 98% in the laboratory to 85% in the home) were to be expected. Although
it is encouraging that accuracy was still at an acceptable level in the case study participants, more data will
be needed to demonstrate whether the method is accurate across a larger sample of participants in the home.
Individual differences in infants’ motor repertoires and daily routines/activities likely add to heterogeneity
in body position frequency, and whether such variability can be captured across a large sample in the home
remains to be tested.

Generalizing from training data—a portion of which contained elicited positions—to unconstrained,
free-flowing behavior is a significant challenge. As noted, it is especially difficult when sufficient data for
all categories to train and test the models are not available for every infant. One strategy that we used to
deal with the unpredictable nature of infant data collection was to design a two-part training procedure—a
guided task that attempted to gather data from a fixed list of behaviors followed by a free-play procedure
that gathered data from infants in more free-flowing, self-selected positions. Ideally, this two-pronged
approach would provide complementary data: In the guided section, caregiver would place infants in
positions that would be rare in free play, such as holding infants and restraining them in a high chair, and
free play would capture more naturalistic behavior. However, a limitation of this approach is that we trained
and tested models using both guided and free play data, but a stronger test would have been to assess
model performance on a set of completely naturalistic data (such as a period of free play or home life that
excluded any elicited behaviors). Because our approach relied on training models using both types of data,
we could not do this in our dataset—there was not enough free play data collected to hold it in reserve for
testing. In future work, collecting a separate set of naturalistic testing data would provide a more stringent
test of how well models will generalize to body position in daily life.

In addition to providing proof-of-concept data, our two home case studies also highlight the utility of a
contactless equipment drop-off procedure for studying infant home behavior. Many infant development
researchers—especially those who use looking time metrics—can turn to video conferencing or toolboxes
such as Lookit (Scott and Schulz, 2017) for a substitute for in-person studies. In contrast, for researchers
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who study gross motor behaviors, such as walking and crawling, it may be difficult or impossible to
make the paradigm fit on a computer screen. Cameras fixed on a tripod are not ideal for capturing motor
behavior, which is why home observation studies typically rely on an experimenter to record infants as
they move from place to place (Karasik et al., 2011). Although the 360° cameras we used in the home
case studies cannot follow the infant from room to room, they do provide a way to digitally pan and
follow the infant. Moreover, the sensors themselves move with infants from place to place, obviating the
need for an experimenter to follow infants around. There is no doubt that this method would be easier
to implement in person. Although caregivers successfully placed the cameras and leggings on infants,
having an experimenter in the home would reduce the burden on the caregiver. In the ideal scenario, the
experimenter would briefly visit the home to place the equipment, and then data could be recorded for the
rest of the day without the experimenter present.

In summary, characterizing the inputs for development—what infants do and experience on a daily
basis—strengthens our ability to build theories (Dahl, 2017; Oakes, 2017; Franchak, 2020). We identified
a new way of capturing one type of input, body position, and expect that measuring daily body position
experiences will help reveal how infants’ burgeoning motor skills are linked with cascading effects on
language and spatial cognition (Soska et al., 2010; Oudgenoeg-Paz et al., 2012; Walle and Campos, 2014;
Oudgenoeg-Paz et al., 2015; West et al., 2019). In the future, wearable sensors may be used to build
machine learning classifiers for other behaviors, such as locomotion (time spent crawling and walking) and
manual activities. In combination with other wearable equipment, such as “headcams” and audio recorders,
we may better understand how infants shape the multi-modal inputs for learning through their own actions.
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Figure 1. Example timeline showing human-coded body position (colored bars at the top) synchronized
with example IMU data (gray and black lines) for one 12-month-old (non-walking) participant’s entire
session. Two example IMU signals were selected (acceleration in the X and Y axes from the hip sensor) to
demonstrate differences in motion data over time in different body positions. The black rectangle shows
a 30-s subset of data that are magnified in the bottom timeline. The green and orange lines illustrate 4-s
long windows that are shifted in 1-s steps throughout the session to capture discrete body position events.
Motion features were calculated within each 4-s window from the raw data to characterize movement in
each window for training and prediction. The activities before 7:30 were from the free play portion, and
the activities following 7:30 were from the guided portion of the study.
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Figure 2. Prevalence of each position observed in the laboratory study. Each individual circle is the
prevalence (% of time) for one participant; gray circles indicate participants for whom a position was not
observed. Horizontal black lines show the mean prevalence for each position among infants for whom that
position was observed.
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Figure 3. Sensitivity of classification by position in the laboratory study. Each individual circle is the
sensitivity for one participant; the size of the point is scaled by the prevalence of that position for that
participant (colors indicate body position). Horizontal black lines show the mean sensitivity for each
position. Arrows indicate outliers with poor sensitivity that are discussed in text.
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Figure 4. Positive predictive value (PPV) of classification by position in the laboratory study. Each
individual circle is the PPV for one participant; the size of the point is scaled by the prevalence of that
position for that participant (colors indicate body position). Horizontal black lines show the mean PPV for

each position.
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Figure 5. Predicted position prevalence from classification (y-axis) plotted against actual position
prevalence from human coding of body position (x-axis) in the laboratory study. Each graph shows
one body position (colors indicate body position), and each symbol represents one participant (titles
indicate the r value for the correlation between actual and predicted within each position category). The
black arrow in the sitting figure shows the outlier participant with the worst sensitivity from Figure 3.
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Figure 6. Predicted position prevalence from classification (y-axis) plotted against actual position
prevalence from human coding of body position (x-axis) for home case study Participant B. Each point
represents the proportion of time the infant spent in each position during each of 17 7.5-min periods that
were video recorded following the end of the training session (titles indicate the r value for the correlation
between actual and predicted within each position category). Note that several points are overlapping (e.g.,
the infant was supine and sitting 100% of the time for multiple periods and was held 0% of the time for
multiple periods). The overall correlation between actual and predicted prevalence across positions/periods
was r = .976.
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Figure 7. Timeline from Participant B’s entire data collection showing actual position codes (top row)
compared with model predictions of body position (bottom row). The legend indicates the bar color for
each body position and lists the model’s prediction of how much time the infant spent in each position over
the 4.5-hour session. The sensors were placed on the infant after the first nap (at 10:30 am). From 10:30am
to 11:00am, the infant and caregiver were guided through the scripted activities over the phone by the
experimenter and completed the prescribed free play in front of the camera. Data from those 30 minutes
were used to train the machine learning classifier. The remaining period (11am until the camera stopped at
1:15pm) was used for validation. The video recording allowed us to verify that the 40-min period of sitting
(from approximately 12pm-12:40pm) corresponded to a meal with the infant sitting in a high chair and that
the period of supine (from approximately 12:45pm-1:15pm) corresponded to a period of TV viewing while
the infant reclined in a seating device. The infant continued to wear the sensors until a nap at 3pm, which
was the last recorded time before the experimenter picked up the equipment at Spm.
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TABLES

Table 1. Unweighted, overall accuracy and Cohen’s Kappa for each individual participant in the lab
validation study. Accuracy is reported separately for individual versus grouped models. Bottom row shows

average overall accuracy and Kappa values across participants.

Individual Group
Accuracy Kappa Accuracy Kappa
0.92 0.91 0.95 0.94
0.94 0.90 0.95 0.91
0.96 0.94 0.84 0.56
0.96 0.96 0.82 0.82
0.97 0.70 0.94 0.81
0.97 0.94 0.99 0.79
0.98 0.94 0.90 0.60
0.99 0.97 1.00 1.00
0.99 0.98 0.98 0.95
0.99 0.99 0.99 0.98
1.00 1.00 0.89 0.84
1.00 1.00 0.91 0.75
1.00 1.00 0.95 0.73
1.00 1.00 0.92 0.88
1.00 1.00 0.94 0.78
0.98 0.95 0.93 0.82
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Table 2. Prevalence, sensitivity, and positive predictive value by body position for the lab validation study

testing dataset.

Sensitivity Pos. Pred. Value
Position Prevalence M SD  Min Max M SD  Min Max
Supine 8.61 0912 0.182 0.500 1.000 1.000 0.000 1.000 1.000
Prone 6.04 0993 0.022 0926 1.000 1.000 0.000 1.000 1.000
Sitting 45.98 0.928 0.257 0.000 1.000 0.981 0.036 0.865 1.000
Upright 16.02 0974 0.043 0.889 1.000 0.967 0.070 0.778 1.000
Held 33.75 0.959 0.064 0.772 1.000 0.976 0.034 0.886 1.000
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Table 3. Prevalence, sensitivity, and positive predictive value by body position for the testing datasets

used to assess case studies (Participants A and B).

Participant A Participant B
Position Prevalence Sensitivity PPV  Prevalence Sensitivity PPV
Supine 6.91 1.000 1.000 22.74 0.973 0.877
Prone 10.22 0.676 0.833 10.14 0.671 0.728
Sitting 53.59 0.951 0.846 44.29 0.881 0.906
Upright 16.71 0.595 0.758 19.00 0.892 0.835
Held 12.57 0.846 0.928 3.83 0.453 0.837
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