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As the size of data generated every day grows dramatically, the computational bottleneck of computer sys-

tems has shifted toward storage devices. The interface between the storage and the computational platforms

has become the main limitation due to its limited bandwidth, which does not scale when the number of stor-

age devices increases. Interconnect networks do not provide simultaneous access to all storage devices and

thus limit the performance of the systemwhen executing independent operations on different storage devices.

Offloading the computations to the storage devices eliminates the burden of data transfer from the intercon-

nects. Near-storage computing offloads a portion of computations to the storage devices to accelerate big data

applications. In this article, we propose a generic near-storage sort accelerator for data analytics, NASCENT2,

which utilizes Samsung SmartSSD, an NVMe flash drive with an on-board FPGA chip that processes data in

situ.

NASCENT2 consists of dictionary decoder, sort, and shuffle FPGA-based accelerators to support sorting

database tables based on a key column with any arbitrary data type. It exploits data partitioning applied by

data processing management systems, such as SparkSQL, to breakdown the sort operations on colossal tables

to multiple sort operations on smaller tables. NASCENT2 generic sort provides 2× speedup and 15.2× energy
efficiency improvement as compared to the CPU baseline. It moreover considers the specifications of the

SmartSSD (e.g., the FPGA resources, interconnect network, and solid-state drive bandwidth) to increase the

scalability of computer systems as the number of storage devices increases. With 12 SmartSSDs, NASCENT2

is 9.9× (137.2×) faster and 7.3× (119.2×) more energy efficient in sorting the largest tables of TPCC and TPCH
benchmarks than the FPGA (CPU) baseline.
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1 INTRODUCTION

With the explosive growth of data, processing this data has become the cornerstone of many big
data use cases, such as database and data analytics applications [1, 2]. As the size of the stored data
increases, the cost of loading and storing the data overweighs the computation cost and diminishes
performance. In some applications, such as database, graph processing, machine learning, and
statistical analysis, more than half of the execution time is spent on data transfer that shows the
impact of data communication on overall performance [3, 4]. The rapid development of solid-
state drives (SSDs) has shifted the bottleneck of data transfer time from the magnetic disks (i.e.,
seek and rotational latency) to interconnect bandwidth and operating system overhead [5, 6].
PCIe, the de facto I/O interconnect in conventional computer systems [7], provides limited simul-

taneous access to the storage devices, which limits the scalability of the system when independent
operations are called on different storage devices in parallel. Limited scalability and the low per-
formance of the interconnect bus increase the gap between the performance capacity of storage
devices and the interconnection buses [4, 8] that obliges us to move the computations closer to
where the data is stored [9]. The recent advancements in near storage computing devices have
made the computational storage devices more powerful and easier to deploy in computer systems
[5, 10–13].
Near-storage computing offloads a portion of computations to storage drives to accelerate big

data applications such as machine learning [14, 15] and database [13, 16–20]. Accordingly, new de-
vices have been developed to bring the computation power into the flash storage devices, such as
NGD Systems [12], ScaleFlux [11], and Samsung’s SmartSSD [10]. NGD Systems developed com-
putational storage with a multi-core ARM processor to perform in situ computations in NVMe
storage devices. ScaleFlux has developed computational storage devices with built-in GZIP com-
pression/decompression as well as customizable database engine accelerators. SmartSSD is an
NVMe flash drive with an on-board FPGA chip that processes data in situ. The FPGA, as the compu-
tation node of SmartSSD, provides a high degree of parallelismwith affordable power consumption
and reconfigurability to implement versatile applications. FPGAs run parallelizable applications
faster with less power compared to the general processing cores (host processor) [21–26]. The ad-
vantage of using SmartSSD over conventional storage devices is thus twofold; offloading tasks to
near-storage nodes increases overall performance by bridging the interconnect gap, and the FPGA
as an accelerator further boosts the applications with low power consumption [27].
Many of the database operations are principally read intensive such that in some applications,

90% of the total execution time is spent on I/O read [28]. In these applications, the system’s per-
formance is limited by the interconnect bandwidth; thus, these applications can be significantly
accelerated by offloading the operations to storage devices [4, 17, 29]. Therefore, recent data pro-
cessing management systems aim to offload the query processing to storage drives to the greatest
possible extent to minimize data transfer between the host and storage [13, 18, 28, 30]. Unlike
compute-intensive applications, I/O-bound applications do not benefit from high-performance
host processors, as their performance is limited by the host-to-storage bandwidth. Therefore, of-
floading I/O-bound applications to computational storage devices releases the host resources to
execute more compute-intensive tasks. As the size of the real-world databases is growing, stor-
ing databases requires multiple storage devices. Even though database tables may be significantly
large, data processing management systems, such as SparkSQL, partition data into multiple parti-
tions and break down the operations intomultiple independent operations on the partitions, where
each partition is usually less than hundreds of megabytes. Although these independent opera-
tions can be executed in parallel, host processors cannot fully utilize the partitioning opportunity
due to the storage-to-host bandwidth limitation. However, in computational storage devices, each
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storage device has its own computation resource directly connected to the SSD; hence, it executes
the independent operations in situ without occupying the storage-to-host interconnect.
Sort operations are widely used in database query processing as a stand-alone operation or as

the backbone of more complex database operations such as merge-join, distinct, order-by, and
group-by, to name a few [31]. In sorting a database table, all the columns are sorted based on a
single column, dubbed key column. After sorting the key column, the rest of the table needs to be
shuffled accordingly. Most of the FPGA-based accelerators only support sorting integer arrays due
to the high complexity of sorting non-integer arrays in general and string arrays in particular [32].
However, sorting a table based on non-integer columns is commonly used in databases. Figure 4
shows that TPCH benchmark queries require sorting tables based on 16 integer key columns and
12 non-integer key columns.
Data processing management systems often use data encoding to compress the stored data. Dic-

tionary encoding is a lossless one-to-one compression method, commonly used in database sys-
tems, that replaces attributes from a large domain with small numbers [22, 33, 34]. Since many
columns in database tables are highly repetitive, dictionary encoding effectively replaces the at-
tributes with a low-bit-width data type to compress the columns. In the TPCH benchmark, 48%
of all columns can be dictionary encoded, and 78% of the columns that will be sorted in different
queries can be dictionary encoded (shown in Section 3.3).
In this article, we propose NASCENT2, a near-storage sort accelerator for data analytics using

SmartSSDs that has FPGA-based accelerators (kernels) to execute sort, shuffle, and dictionary de-
coding operations. NASCENT2 sort kernel is based on bitonic sort, which is highly parallelized on
FPGA to deliver high performance. The shuffle kernel reorders the table rows based on the sorted
column, which is an IO-intensive operation. Therefore, NASCENT2 is designed to maximize band-
width utilization. If the table is stored in the encoded format, the NASCENT2 dictionary decoder
kernel decodes the key column. Then the sort kernel sorts the key column, and the shuffle kernel
reorders the table according to the sorted key column. NASCENT2 extends our previous work [35]
by supporting decoding variable-length data types and sorting non-integer columns.
Our earlier work [35] is limited to decoding only fixed-length variables and sorting integer

columns. However, variable-length columns (e.g., string columns) are an integral part of databases,
and dictionary encoding shows better compression in longer data types such as string. Moreover,
sorting non-integer columns is crucial due to its abundance in database queries. For instance, in
the TPCH benchmark, 42% of the key columns are non-integer, as shown in Section 3.3. Sorting
columns with different data types requires different sort kernels, which is not possible due to
SmartSSD limited resources. NASCENT2 proposes a novel generic sort method to sort that sup-
ports both integer and non-integer columns. It sorts dictionary encoded data by utilizing the sort
and the generic dictionary decoder kernels and leveraging the fact that dictionary encoding repre-
sents columns with any data type with integer values. NASCENT2 inherently addresses the data
transfer issue by carrying out computations near the storage system and exploiting storage-level
parallelism. It also embraces an FPGA-friendly implementation of dictionary decoding, sort, and
shuffle operations, all of which are parallelized to utilize FPGA available resources and maximize
the performance. A summary of the contributions of the article is listed as follows:

• We present NASCENT2, a near-storage accelerator to bring the computations closer to the
storage devices by leveraging SmartSSD.
• We propose a novel FPGA-friendly architecture for bitonic sort to highly benefit from FPGA
parallelism. The proposed architecture is scalable to sort various data size, outputs the sorted
indices, and can be scaled based on the available resources of the FPGA.
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• Data processing management systems often use dictionary encoding to compress the data.
NASCENT2 consists of a novel generic dictionary decoder kernel that supports both fixed-
and variable-length data types. The kernel is highly optimized tomaximize the SSD-to-FPGA
bandwidth utilization.
• Sorting non-integer columns is crucial in processing database queries. We propose a novel
generic sort method that supports sorting integer and non-integer columns. It utilizes the
proposed dictionary decoder kernel to support sorting non-integer key columns. It shows
2× (3.2×) speedup and 15.2× (23.8×) energy reduction in sorting a string (floating-point)
column as compared to CPU.
• Shuffling is the critical step of database sort and is I/O bounded. NASCENT2 accomplishes
table sort using the shuffle kernel that fully utilizes the SSD bandwidth to maximize the
performance of sorting database tables. We modify the storage pattern of the table to benefit
from the regular memory patterns in both shuffle and sort kernels.
• Our evaluations on different table sizes show that NASCENT2 on SmartSSD is 9.9× faster
and 7.3×more energy efficient than the same accelerator on conventional architectures com-
prising a stand-alone FPGA and storage devices where the FPGA is connected to the system
through a PCIe bus. NASCENT2 also shows 137.2× speedup and 119.2× energy reduction
as compared to the CPU baseline.

The rest of the article is organized as follows. In Section 2, we present the related work on near-
storage computing and FPGA-based accelerators for sort operations, and introduce the bitonic
sort. In Section 3, we introduce the architecture of the SmartSSD. We present the overall archi-
tecture of NASCENT2 and our hardware-software strategy as well as the architectural trade-offs.
We also elaborate on the proposed architecture for dictionary decoder, sort, and shuffle kernels. In
Section 4, we evaluate the performance of our proposed NASCENT2 on a system consisting of
multiple SmartSSDs, and finally, Section 5 offers concluding thoughts.

2 RELATEDWORK AND BACKGROUND

2.1 Near-Storage Computing

Previous studies on near-storage computing generally can be categorized as works that propose
(a) novel architectures, (b) emulation and/or analysis frameworks that investigate the performance
of near-storage systems, and (c) application-oriented case studies that evaluate the efficiency of
select applications mapped to specific near-storage systems.
Ruan et al. [8] introduced INSIDER, a computational storage platform equipped with an FPGA

drive controller. INSIDER also provides software abstractions to abstract the offloaded operations
with file operations. It reduces the required modifications in applications host code to enable of-
floading the operations on the computational storage. Lee et al. [36] propose ExtraV, an accel-
eration platform that consists of an FPGA-based “accelerator function unit” that is connected to
the storage devices and communicates with the processor and its main memory using a coherent
interface. The accelerator executes graph traversal functions that are central to various graph algo-
rithms. IBM’s Netezza is a near-storage computing architecture that utilizes FPGAs to reduce the
size of the data stream as early as possible by filtering out extraneous data while the data streams
out of the storage [30]. The platform supports four functions on the FPGA, namely compress,
project, restrict, and visibility, with the capability of expanding to further database operations. Jun
et al. [37] propose a homogeneous cluster of host servers that utilize SSDs with in situ processing
capability. They used an FPGA directly connected to the storage device to implement the process-
ing core and the controllers required to communicate with the host and network. The proposed
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system showed that using computational storage devices is more beneficial than using a system
with larger DRAM in improving the storage bandwidth and reducing the access latency.
As the computational storage devices are in the early stages, Ruan and Cong [4] provide an

emulation platform to estimate the extent an application can benefit by offloading operations on
FPGA-enabled computational storage devices. Speaking of the software support, Gu et al. [38]
present Biscuit, a near-storage processing framework that provides C++ APIs to allow users to
develop, distribute, and load data-intensive applications on the host and storage devices. Reis
et al. [28] examine the efficiency of near-storage systems by evaluating the expected performance
of particular database operations, namely scan, filter, and project, that are offloaded to storage de-
vices equipped with ARM core as the computation element. Wang et al. [13] explore offloading the
list intersection database operation, which is the core of many applications, such as search engines
on computational storage devices. Pei et al. [39] offload regular expression (regex) search (a search-
ing algorithm that looks for specific patterns in unstructured data) on computational storages. The
accelerator performs a regex search while a file is being transferred to the host.
Cho et al. [40] propose a computational storage prototype that utilizes a multi-core CPU in-

side the SSD controller. They use MapReduce to exploit storage-level parallelism. MapReduce is a
programming model developed by Google that can process parallelizable big data applications on
distributed systems [41]. Similarly, Park et al. [42] explore offloading the map step of MapReduce
to the computational storage devices. It implements the map function inside the SSD firmware
and then integrates it into Hadoop. Jo et al. [17] present a database system that integrates query
offloading to the computational storage devices. The work reduces data transfer between the stor-
age and the CPU by pushing down the filter operation to the computational storage devices and
solely transferring the filtered data to the CPU for further processing. The works of Do et al. [15]
and Torabzadehkashi et al. [43] propose computational storage devices equipped with multi-core
CPUs that are able to run operating systems such as Linux to reduce the efforts for executing the
existing applications on computational storage devices. The work of Do et al. [15], to highlight the
benefits of near-storage computing, runs various machine learning applications on the computa-
tional storage device. The work of Torabzadehkashi et al. [43] deploys and accelerates MapReduce
on computational storage devices.
Utilizing high-performance CPUs does not effectively speed up data-intensive workloads that

are typical of in-storage processing. These workloads inherently have simple but highly paralleliz-
able computations. Cho et al. [44] propose a new SSD architecture equipped with a graphics pro-
cessing unit (GPU). They utilize a GPU to provide higher parallelism compared to computational
storage devices with CPUs. They provide APIs based on theMapReduce framework to offload data-
intensive operations to the GPU of the computational storage devices. Equipping computational
storage devices with general-purpose processors (embedded CPUs and GPUs) provides generality
at the cost of limited performance and energy efficiency improvement compared to customized
hardware accelerators. FPGAs have been exploited in computational storage devices to provide
high performance and energy efficiency while providing reconfigurability. Woods et al. [45] use
an FPGA in the data path between the host CPU and the storage device to execute predicate and
group-by operations. However, since the FPGA occupies the storage-to-host bandwidth, the frame-
work lacks scalability when the number of storage devices increases.

2.2 FPGA-Based Sort Acceleration

Several works have attempted to accelerate various sort algorithms, such as bubble sort [46, 47],
insertion sort [48], heap sort [49], radix sort [50, 51], bitonic sort [35], and merge sort [52–54]
on FPGAs [55, 56]. The work of Mueller et al. [56] evaluates the performance of various sorting
algorithms on FPGAs, including even-odd [57] and the bitonic sorting network [58], as well as
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traditional bubble and insertion sorts. In the work of Mahony and Popovici [59], the resource
utilization and power consumption of various sort algorithm are studied. Although bitonic sort has
a slightly higher computation complexity (O (n log2 n)) compared to common sorting algorithms
(i.e., O (n logn in merge- and quick-sort), results show that bitonic sort can run faster than the
common sort algorithms thanks to its high, FPGA-friendly parallelism.
Chen et al. [60] propose an FPGA-based accelerator for sorting large datasets. They randomly

sample the input array and partition it to smaller buckets based on the distribution of data where
all the elements in the ith bucket are smaller than or equal to the elements of the i + 1th bucket
assuming the dataset is being sorted in ascending order. Then, each segment can be sorted inde-
pendently. The random sampling step is resource intensive and slow, as it requires random access
to the input data. Thus, they offload the sampling step to the host CPU, which limits the scalability
and applicability of the accelerator. The work of Jun et al. [61] proposed an in-storage accelerator
for sorting terabyte scale datasets. It proposed a hierarchical sorting architecture that first sorts
sub-arrays of the dataset that fits into the FPGA on-chip memory and writes the sorted pages into
the FPGA DRAM. It reads multiple partially sorted pages from the DRAM and merges them into
sorted super pages written into the storage device. Eventually, it merges super pages in storage
to sort the dataset globally. Although the size of the real-world database tables is in the order of
terabytes, data processing management systems usually partition the database into smaller parti-
tions. Additionally, the size of the table is significantly larger than the size of the key column that
is going to be sorted. Therefore, NASCENT2 aims to deliver high performance for megabyte scale
arrays.
The work of Samardzic et al. [52] proposes an adaptive merge tree sorting accelerator. It con-

siders the FPGA available resources as well as the off-chip memory configurations into account
to maximize the performance of sorting by choosing the optimal parameters of merge trees. It fo-
cuses on modeling the performance of different configurations of merge trees to find the optimal
configuration.
Our earlier work [35] proposes a near-storage accelerator for database sort on SmartSSD that

performs independent table sort on multiple storage devices simultaneously. It accelerates dictio-
nary decoding, sort, and shuffle operations on SmartSSD. However, the dictionary decoder kernel
was limited to fixed-length variables, whereas dictionary encoding is more effective on encoding
strings, as it replaces long strings with a small number. Most of the FPGA-based sort accelerators
only support numeric arrays and specifically sorting integer arrays. The work of Asiatici et al.
[32], to the best of our knowledge, is the only one that supports sorting string arrays. It presents
a hybrid CPU-FPGA system for accelerating string sort based on Super Scalar String Sample Sort
(S5) [62]. In S5, strings are classified into k buckets and then each bucket can be sorted indepen-
dently. S5, based on each bucket’s size, uses different sorting algorithms (e.g., multi-key quicksort,
insertion sort, sequential S5) to maximize performance. The work of Asiatici et al. [32] accelerates
the classifying step as well as the multi-key quicksort algorithm on FPGA and executes the rest of
the steps on the host CPU.
This article, NASCENT2, extends our previous work [35] by proposing a novel and generic

dictionary decoder architecture that handles both fixed- and variable-length data types. The ear-
lier work [35] is limited to sorting integer columns, whereas sorting non-integer columns is cru-
cial in database queries. In this work, we additionally propose a novel generic sort method that
leverages the generic dictionary decoder kernel to support sorting non-integer columns. In real-
world databases, the performance of the table sort usually is not dominated by the sort operation.
Therefore, unlike state-of-the-art FPGA-based sort accelerators that try to fully utilize the FPGA
resources to maximize the sorting performance, in this work we propose a platform that consists
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Fig. 1. Example of bitonic sort algorithm steps for an array of eight elements.

of dictionary decoder, shuffle, and sort kernels that maximize the performance of sorting the entire
table, including dictionary decoding, sorting the key column, and shuffling the table. Our proposed
bitonic sort kernel has a flexible architecture that keeps enough FPGA resources for the other two
kernels while providing high sorting performance. The NASCENT2 generic sort method, to the
best of our knowledge, is the first FPGA-based generic sort accelerator. In general, NASCENT2
increases the scalability of the system in the presence of multiple storage devices compared to
a system with a stand-alone FPGA. NASCENT2 is calibrated to maximize the storage bandwidth
utilization as we offload the computations to the storage devices. In contrast to the previous FPGA-
based sort accelerators that try to maximize the performance by fully utilizing the DRAM-to-FPGA
bandwidth, our goal is maximizing the storage bandwidth utilization, which is lower than the
DRAM bandwidth. We tackle the I/O bottleneck by prudently allocating the FPGA resources for
dictionary decoder kernel, multiple shuffle kernels, and the sort kernel.

2.3 Bitonic Sort Background

Bitonic sort, proposed by Batcher [63], is a sorting network that can be run in parallel. In a sorting
network, the number of comparisons and the order of comparisons are predetermined and data
independent. Having a predefined number and order of comparisons, bitonic sort can be efficiently
parallelized on FPGAs by utilizing a fixed network of comparators. Bitonic sort first converts an
arbitrary sequence of numbers into multiple bitonic sequences. Merging two bitonic sequences
creates a longer bitonic sequence and proceeds until sorting the entire input sequence. A sequence
of length n is a bitonic sequence if there is an i (1 ≤ i ≤ n) such that all the elements before the ith

are sorted ascending and all the elements after that are sorted descending—that is,

x1 ≤ x2 ≤ · · · ≤ xi ≥ xi+1 ≥ · · · ≥ xn . (1)

Figure 1 shows the steps to sort an example input sequence of length n = 8 that consists of n
2

bitonic sequences of length 2. The initial unsorted sequence passes through a series of comparators
that swap two elements to be in either increasing (red/filled circles) or decreasing (blue/unfilled
circles) order. The output of the first step is n

4 bitonic sequences each of length 4. Applying a bitonic
merge on these n

4 sequences creates
n
2 bitonic sequences. The output sequence after applying log2 n

bitonic merge produces the sorted sequence.
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Generally, in the bitonic merge at the ith step (starting from i = 1), n
2i
bitonic sequences of length

2i are merged to create n
2i+1

bitonic sequences of length 2i+1. The ith bitonic merge step itself con-
sists of i sequential sub-steps of element-wise comparison (e.g., in Figure 1, the last/third rectangle
is the third step and has three sequences of comparisons). In the first sub-step of the ith step, ele-
ment k is compared with the element k+2i−1, whereas the first 2i elements are sorted in ascending
order and the next 2i elements are sorted in descending order (the sorting direction changes after
every 2i element). In the aforementioned example, in the first sub-step of the last/third step, the 1st

element (has a value of 2) is compared with the 1+23−1 = 5th element (with a value of 7). Generally,
in the jth sub-step (1 ≤ j ≤ i) of the ith main step, element k is compared with the element k + 2i−j .
Thus, in the second sub-step of the third step, the first element (with a value of 2) is compared to
the 1 + 23−2 = 3rd element (which has a value of 3 that is updated in the first sub-step).

3 NASCENT2 DESIGN

Data analytics tasks are primarily constrained by disk performance, as operations on a database
require a tremendous amount of data. Data encoding is frequently used to compress the table
stored in the storage system. Dictionary encoding is a popular encoding method widely used in
database management systems. It maps a key to each unique value and replaces values with their
corresponding keys. Dictionary encoding is used when the number of unique elements is lim-
ited; therefore, dictionary encoding compresses data by representing each value with fewer bits.
Unlike byte-oriented compression methods (i.e., gzip, snappy, run-length encoding) that require
decompression before query execution, dictionary encoding supports parallel decoding, and in situ
query processing for many operations [33]. NASCENT2 is able to execute database sort directly
on the dictionary encoded data. However, if the key column is of the integer (32-bit or 64-bit) type,
NASCENT2 first decodes the data and then sorts the table due to slightly better performance. In this
section, we explain NASCENT2 integer sort and NASCENT2 generic sort and their building FPGA
kernels. In the rest of the article, sort and integer sort are used interchangeably, whereas generic sort
refers to sorting a key column with any data type. After sorting the table, NASCENT2 reorders the
rows of the table based on the sorted key column. NASCENT2 consists of three kernels—dictionary
decoder, sort, and shuffle—to execute each step. It performs all the computations on SmartSSD to
eliminate host-storage communication. In the following sections, we introduce the architecture of
SmartSSD, explain the overall architecture of NASCENT2, and propose the NASCENT2 generic
sort method. We then propose the architecture of NASCENT2 sort, shuffle, and dictionary decoder
accelerators in Sections 3.4 through 3.6.

3.1 SmartSSD Architecture

Figure 2 demonstrates the general architecture of SmartSSD. It consists of general SSD components,
including the SSD controller and NAND array, in addition to an FPGA accelerator, FPGA DRAM,
and PCIe switch to set up the communication between the NAND array and the FPGA. The link
between the FPGA and the SSD provides direct communication between them and the host. The
SSD used by SmartSSD is a 4-TB one connected to a Xilinx KU15P Kintex UltraScale FPGA (with
523K look-up tables and 1,045K flip-flops) through a PCIe Gen3 x4 bus interface.
The host processor is connected to SmartSSD through a PCIe Gen3 x4 bus and is able to issue

common SSD commands such as SSD read/write requests to the SSD controller through the SSD
driver. Furthermore, the CPU is also able to issue FPGA computation and FPGA DRAM read/write
requests via the FPGA driver. In addition to host-driven commands, SmartSSD supports data move-
ment over the internal data path between its NVMe SSD and the FPGA by using the FPGA DRAM
and on-board PCIe switch, which we refer to as peer-to-peer (P2P) communication. As shown
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Fig. 2. Overview of SmartSSD architecture.

in Figure 2, FPGA DRAM is exposed to the host PCIe address space so that NVMe commands can
securely stream data to FPGA via the P2P communication. P2P brings the computations close to
where the data is permanently residing, thereby reducing or eliminating the host-to-storage and
the host-to-accelerator PCIe traffic as well as related round-trip latencies and performance degra-
dations. SmartSSD provides a development environment and runtime stack such as the runtime
library, API, compiler, and drivers to implement the FPGA-based designs.

3.2 NASCENT2 Overall Architecture

In conventional storage systems, the host processor communicates with the storage devices, reads
the data to the memory hierarchy, and performs computations. When an accelerator is present in
the system, either the host reads the data from the storage system and transfers it to the accelera-
tor’s memory or the accelerator may have a P2P communication with the storage devices to read
the data directly. In the former case, the data should pass through the host memory to reach the
accelerator’s memory (FPGA DRAM in this concept). Thus, the latency of transferring the data
through the host is significantly larger than when the accelerator reads the data directly. In addi-
tion, P2P communication between the accelerator and the storage devices, unlike the former case,
does not occupy the host resources for data transfer.
Although current FPGAs support P2P communicationwith storage devices, such an architecture

still suffers from performance scalability when data is stored in multiple storage devices. Real-
world databases need multiple devices to store the data. These databases are larger than what cur-
rent commodity hardware platforms can cope with. Thus, data processing management systems
partition the data into smaller chunks such that the computation nodes can execute the computa-
tions on each partition independently and in a timely affordable manner. Thereafter, the manage-
ment systems combine the result of each partition to generate the final result. Assuming the data
is stored inM SSDs, the tables of each SSD can be divided into a certain number of partitions.
To sort the entire database, we can sort all the partitions of each SSD and merge them through
a merge tree. Locally sorting each partition is independent of the other partitions; therefore, we
can locally sort different partitions in parallel. Our focus is on the partition-level acceleration of
sorting the data, as it is the backbone of the main computation.
In sorting a database table, NASCENT2 performance goal is fully utilizing the storage band-

width. Therefore, parallelizing multiple partitions on a single SSD is not beneficial, as it does not
increase the performance, since in this case the FPGAwould need to frequently switch between the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 16. Pub. date: January 2022.



16:10 S. Salamat et al.

Fig. 3. The overall architecture of NASCENT2 (right) as compared to the conventional systems equipped

with an FPGA accelerator (left). The blue arrow represents the data flow of the database sort, and the green

arrow shows that of the generic sort.

partitions, as it cannot simultaneously access different partitions. Thus, NASCENT2 parallelizes
the computations in SSD level (shown in Figure 3), which is not possible in conventional archi-
tecture. In conventional architectures, the FPGA is connected to the storage devices using a PCIe
bus that cannot provide simultaneous access to multiple SSDs. NASCENT2 deploys SmartSSDs
that enable P2P connection between the FPGA and the SSD. Each SmartSSD, therefore, can sort an
SSD-level partition independent of the others, which significantly accelerates the overall system
performance as the number of storage devices grows.
Figure 3(b) shows the building kernels of NASCENT2. It utilizes these kernels to perform data-

base sort. In Figure 3, the blue arrow shows the sequence of operations to sort a database table.
Additionally, the green arrow shows the flow of data for the generic sort method proposed to sort
non-integer columns. As NASCENT2 consists of multiple different kernels, it deals with a trade-off
between allocating resources to these kernels. The dictionary decoder kernel is able to saturate the
storage-to-FPGA bandwidth in decoding fixed-length variables, and in decoding variable-length
data types, operations cannot be parallelized, as the lengths of the decoded outputs are not known
before decoding; thus, NASCENT2 meets the performance goal by instantiating a single dictio-
nary decoder kernel. A single shuffle kernel cannot fully utilize the SSD-to-FPGA bandwidth due
to the fact that, although in NASCENT2 we have proposed a new table storage format that enables
reading a row in a sequential pattern, reading the next row still requires random memory access,
which has a high latency. Therefore, we aim to maximize the total input bandwidth (SSD-to-FPGA
bandwidth) for all the shuffle kernels to maximize the performance.
Due to the fact that the shuffle operation is I/O intensive and the size of the table is significantly

larger than the size of the key column, the performance of the shuffle operation is determinative of
the overall performance. Thus, we instantiate multiple instances of the shuffle kernel (as shown in
Figure 3) to fully leverage the storage-to-FPGA bandwidth and a single instance of the dictionary
decoder kernel and dedicate the rest of the resources to the sort kernel. Based on our evaluations,
we found out that we can fully utilize the storage-to-FPGA bandwidth in the shuffle and dictionary
decoder kernel while still having sufficient resources to have a high-throughput sort. The sort
kernel uses a considerable portion of FPGA BRAMs to store the arrays and provide parallelism.
Additionally, the dictionary decoder kernel requires on-chip memory to store the dictionary table
locally to provide high throughput. Therefore, the NASCENT2 dictionary decoder primarily uses
FPGA Ultra RAMs (URAMs) to balance the overall resource utilization of NASCENT2.
NASCENT2 program is split between a host program and the FPGA-based kernels with a

communication channel between them. NASCENT2 provides OpenCL APIs for users to execute
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Fig. 4. The number of sort operations in different queries and the number of columns that can be dictionary

encoded.

database sort on SmartSSD. The host program runs on the host CPU and calls OpenCL APIs to
invoke the FPGA-based kernel run on the FPGA of SmartSSD. The API calls, managed by Xil-
inx Runtime Library (XRT), are used to process transactions between the host program and the
FPGA on SmartSSD. These communications include transferring the control signals to/from the
NASCENT2 kernels as well as transferring the data from/to the host CPU to/from the FPGADRAM.
In the case of a P2P communication between the FPGA and the SSD, the host program only sends
the address and the size of data in the storage to the FPGA. Then the FPGA directly initiates the
data transfer from the SSD to the FPGA kernels.

3.3 Generic Sort in NASCENT2

Database queries frequently require sorting non-integer columns. Sorting different data types re-
quire different hardware and even different operations, such as in string sort. Figure 4 shows the
number of columns in each table of the TPCH [64] benchmark that have less than 216 unique values
and can be dictionary encoded as well as the total number of columns in each table. As illustrated
in the figure, on average, 48% of the columns can be dictionary encoded. Additionally, some of
the plain format columns are not used in query processing, such as the comment columns. Hence,
database management systems frequently use dictionary encoding to store the data. NASCENT2
leverages the fact that key columns are usually dictionary encoded to perform both integer and
non-integer sort, so-called generic sort, using the existing kernels in NASCENT2. Figure 4 also
represents the frequency of calling the sort function on integer and non-integer columns in all
of the 22 queries of TPCH. In all queries, 16 integer columns and 12 non-integer columns need
to be sorted. As the number of non-integer key columns is comparable to the number of integer
columns, supporting sorting non-integer columns is crucial for accelerating the database sort. As
illustrated in the figure, for different queries, 16 integer columns will be sorted, among which 10
can be dictionary encoded. TPCH queries also need to sort 12 non-integer columns, of which 11 of
those columns can be dictionary encoded. Developing a dedicated sort kernel for each data type
requires an immense amount of resources, more than the total available resources on SmartSSD.
However, most of the database columns can be dictionary encoded since most of the columns have
limited unique values, specifically columns that need to be sorted (key columns). NASCENT2 not
only supports all the integer sorts but also supports 11 out of the 12 non-integer sorts by utilizing
the existing kernels with negligible overhead.
NASCENT2 proposes a novel method to sort dictionary encoded columns by leveraging the

proposed sort and dictionary decoder kernels. Note that even for applications where the size of
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Fig. 5. (a) Architecture of the NASCENT2 generic sort. (b) Example of sorting an array of string.

the dictionary table is larger than the FPGA available on-chip memory, NASCENT2 is still able
to perform the generic sort by offloading the dictionary decoding, which is the very last step, to
the host CPU. Figure 5(a) shows the architecture of the NASCENT2 generic sort method. The
table is stored in the storage system, and the key column is dictionary encoded. The rest of the
columns can be stored in either dictionary encoded or in plain format. First, NASCENT2 reads the
dictionary page of the key column on the host server. Generally, the size of the dictionary page is
significantly smaller than the size of the data page. The dictionary page’s size is at most 128 KB (216

16-bit elements). Hence, NASCENT2 takes advantage of the host server to sort the dictionary table
due to the efficiency of sorting small arrays on CPUs. The host server sorts the dictionary table
based on the values and assigns the index of each value in the sorted dictionary page as its new
key, called NKey. The host server also generates the “key mapping table” that maps the original
dictionary page’s keys to the NKeys. The sorted dictionary page and the key mapping table are
used in the generic sort method. NASCENT2 uses the key mapping table to map the input data
to the “Mapped Key array.” In this mapping, the keys’ order is the same as the order of the sorted
values. For instance, if we sort a column in ascending order, greater keys correspond to greater
values in the sorted data.
The host program transfers both the sorted dictionary page and key mapping table to the FPGA

DRAM. NASCENT2 reads the data page directly from the storage device to eliminate the overhead
of transferring the data page through the host server. NASCENT2 loads the key mapping table and
then streams the data page into the FPGA. NASCENT2 then maps the input keys to NKeys using
the key mapping table. It then initiates the sort kernel to sort the Mapped Key array, which is
analogous to sorting the original data page since the order of the NKeys is the same as the order
of the values in the sorted data. NASCENT2 sorts the Mapped Key array and writes it into the
“sorted Mapped Key array.” It uses the dictionary decoder kernel to decode the sorted Mapped Key
array to the sorted array in the original data type.
Figure 5(b) shows an example of sorting a column of strings. The string column is dictionary

encoded, and the data page is stored in the storage as {0, 2, 4, 1, 3} along with the dictionary page.
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In this example, for the sake of simplicity, we use a small column; however, in real-world appli-
cations, the data page size is significantly larger than the dictionary page. The host server sorts
the dictionary page and generates the key mapping table as shown in Figure 5(b). In the original
dictionary encoded data, string USA is mapped to key 0. After sorting the dictionary table, the
value USA is the last element between all the values. The key mapping table maps key 0 to NKey 5.
NASCENT2 reads the data page ({0, 2, 4, 1, 3}) and maps each element to its corresponding to gen-
erate the Mapped Key array = {5, 2, 3, 4, 0}. It then sorts the Mapped Key array. It uses the sorted
dictionary table to decode the sorted Mapped array to the original data type. For instance, key 3
in the original dictionary page corresponds to the dictionary value Brazil. Since Brazil comes first
in the sorted data, NASCENT2 maps key 3 to NKey 0. Then in the sorted Mapped Key array, the
element 0 becomes the first element. NASCENT2 decodes the sorted Mapped Key array, so the
first element would be decoded to Brazil.

3.4 NASCENT2 Sort Kernel

To sort a database table, NASCENT2 begins with sorting the key column. As mentioned earlier,
the sequence of operations in bitonic sort are predefined, data independent, and parallelizable.
Therefore, NASCENT2 takes advantage of FPGA characteristics to accelerate the bitonic sort. The
input sequence is stored in the FPGADRAM, also referred to as off-chipmemory. ThenNASCENT2
streams the input sequence into the FPGA through the AXI ports, with an interface data width of
512 bits (sixteen 32-bit integers). The AXI port writes the data to the input buffer, which has a
capacity of P = 2m integer numbers. To have a regular sort network, without lack of generality
P, the size of bitonic sort kernel, is a power-of-2 number (we can use padding if the total data
elements is not a multiple of P). If P is greater than 16, it takes multiple cycles to fill the input
buffer. Whenever the input buffer fills up, it passes the buffered inputs to the P-sorter module.
P-sorter is implemented in parallel and consists of log2 P steps. The module is highly pipelined

to meet the timing requirement of FPGA and able to provide a throughput of one sorted sequence
(of size P) per cycle. As explained in Section 2.3, the first step in the P-sorter compares elements
of even indices (2k-indexed elements) with their successor element. Thus, the first step requires
P
2 compare-and-swap (CS) modules. During the second step, it first compares and swaps the
elements with indices 4k with 4k + 2, and 4k + 1 with 4k + 3. Afterward, it compares and swaps
2k elements with 2k + 1 elements of the updated array (see Figure 1). Therefore, the second step
in the P-sorter requires P2 + P2 = P instances of the CS module. Analogously, the ith step in the

P-sorter where 1 ≤ i ≤ log2 P needs i × P2 CS modules. The total number of required CS modules
for the P-sorter can be estimated as follows:

nCS =
P
2
+

(
2 × P

2

)
+ · · · +

(
logP × P

2

)
� P

4
log2 P . (2)

NASCENT2 orchestrates the sort operation on the entire data by leveraging the P-sorter mod-
ules and FPGA’s fast on-chip memory, called block RAMs (BRAMs). First, when sorting every
P elements, P-sorter toggles between ascending and descending orders. The sorted output of P-
sorter modules are written into the sequence memory, which consists of two sub-memory blocks,
say M1 and M2, that are made up of FPGA BRAMs. Initially the ascending and descending sorts
are respectively written inM1 andM2 (see step 1 in Figure 6(b)). Each row ofM1 andM2 contains
P elements that together form a bitonic row (as the first half is ascending and the second half is
descending) in the sequence memory with a length of 2P. Note that by row, we mean adjacent
placements of items in a sequence, not necessarily a physical row of a BRAM that can just fit one
or two integers. Since the 2P sequence is just a single bitonic array, using a merging procedure
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Fig. 6. (a) NASCENT2 scheduling to sort the sequence memory. (b) The content of the memory at each step.

similar to the last (third) step of Figure 1, the 2P bitonic array can be sorted using P × log(2P ) CS
units.
Figure 6(a) lists the steps of merging the results of P-sorters, and Figure 6(b) illustrates the

results after each step. Indeed, merging the results of P-sorters is itself a bitonic-like procedure
but on sorted arrays rather than scalar elements. In other words, similar to step 1 in bitonic sort,
step 1 in Figure 6(a), (b) merges the adjacent arrays. Step 2 of Figure 6 also is similar to the second
step of the simple bitonic sort that compares and swaps every item i with item i +2 using parallel
compare-and-swap (PCS) units, followed by comparing item i with item i + 1 in the modified
array. Thus, we can consider the entire sort as intra-array followed by inter-array bitonic sort.
When NASCENT2 accomplishes sorting the entire sequence memory, it writes it back into the
off-chip DRAM and uses the same flow to fetch and sort another chunk of the input sequence
repetitively and then merges them to build larger sorted chunks.
To provide the required bandwidth for the parallelization, each of theM1 andM2 memory blocks

use the P column of BRAMs in parallel, so P integers can be fetched at once (the data width of
FPGA BRAMs is 32 bit or one integer). In addition, in each memory block, L rows of BRAMs
are placed vertically (e.g., in Figure 6(b), L = 8), so the results of L sorters can be compared
simultaneously. The number of BRAMs and their capacity in terms of 32-bit integers number can
be formulated as follows.

nBRAM = 2 × P × L
CBRAMs = 1024 × 2 × P × L (3)

Note that BRAMs have a 1024 (depth) × 32 bit (width) configuration. At each iteration,
CBRAMs = 2048PL integers are sorted and written back to the off-chip DRAM.
To sort a database table, the rest of the table rows have to be reordered based on the sorted

key column’s indices, called sorted indices. Thus, we also need to generate the sorted indices that
will later be used by the shuffle kernel to sort the entire table. To this end, when reading the
input sequence from the DRAM, we assign an index to each element and store the indices in
an index memory that has the same capacity as the sequence memory. When reading from the
sequence memory and feeding inputs to the P-sorter, NASCENT2 reads the corresponding index
and concatenates to the value. The CS units of P-sorters perform the comparison merely based on
the value part of the concatenated elements, but the entire concatenated element, if required, will
be swapped. NASCENT2 therefore stores the sorted indices in the DRAM as well.
Figure 7 demonstrates a tangible implementation of the discussed steps of the bitonic sort kernel.

The P-sorter module sorts chunks of P elements and stores in the following sequence memory.
TheM1 memory group stores the ascending sorts whileM2 stores the descending sorted elements.
There are P BRAMs at every row of the M1 (and M2) memory, so the sorted P elements are
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Fig. 7. Architecture of the NASCENT2 bitonic sort kernel.

partitioned element-wise for subsequent parallel operations. In the PCS sub-steps, two P-element
arrays from the same memory (either M1 or M2, e.g., arrays 1 and 3 from M1, or 2 or 4 from M2

shown in Figure 6(a)) are fetched, whereas in the last sub-step (i.e., merge), a P-element array from
M1 and another fromM2 are fetched and sorted/merged. In our architecture, this is enabled using
L-to-1 multiplexers that are connected to all L BRAM groups and select up to two arrays from
each M1 and M2. As shown in the architecture, the PCS and merge modules’ outputs are written
back in the sequence memory to accomplish the next steps.

3.5 NASCENT2 Shuffle Kernel

After sorting the key column and generating the sorted indices array, NASCENT2 uses the shuffle
kernel to reorder the table rows. To do so, the shuffle kernel reads the first element of the sorted
indices array, which is a row index in the original table. Then it reads all the entries of the original
row that the index points to and writes it as the first row of the new sorted table. Analogously,
to generate the ith row of the sorted table, NASCENT2 reads the ith element of the sorted indices
sequence. The index represents the index of the row in the original table. Thus, we can formulate
the mapping between the original table and the sorted one as follows.

SortedTable[i] = OriginalTable(SortedIndices[i]) (4)

Evidently, the shuffle kernel does not perform any computation; hence, the kernel’s performance
is bounded by the memory access time. Storing the tables in the storage therefore directly affects
the performance of the kernel. Typically, tables are stored in either column-wise or row-wise for-
mat. In the column-wise format, elements of every column are stored in consecutive memory ele-
ments, which is shown in Figure 8(a). In the row-wise format, all the elements of a row are placed
in successive memory elements (see Figure 8(b)). Consecutive memory elements can be transferred
to the FPGA from its DRAM in the burst mode, significantly faster than scattered (random) access.
Storing the table in column-wise format results in sequential/burst memory access pattern in

the sort kernel (since it needs access to the consecutive elements of the key column, denoted by
Ck in Figure 8). However, the shuffle kernel will have random access patterns (as the shuffle kernel
needs access to the consecutive elements of the same row, which are placed distantly in the column-
wise arrangement). Analogously, storing the table in row-wise format enables sequential access
patterns to read a single row (suitable for the shuffle kernel) but reading the next row (required
in sort kernel) issues random memory access. To optimize the access patterns of both kernels,
NASCENT2 uses a hybrid technique for storing the table in the storage. As shown in Figure 8(c),
we store the key column (Ck ) column-wise while the rest of the table is stored in row-based format.
Therefore, both kernels can benefit from sequential memory access. Note that NASCENT2 natively
supports all row-wise, column-wise, and the proposed data layout. However, the proposed data
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Fig. 8. Storing the table in column-wise (a), (b) row-wise (b), and our proposed (c) format.

layout provides higher performance since both row-wise and column-wise data layouts impose
significantly higher numbers of random memory access than the proposed data layout.

3.6 NASCENT2 Dictionary Decoder Kernel

Dictionary encoding is one of the most widely used compression techniques, used either as a stand-
alone compression technique [33] or as a step combined with other compression techniques such
as in Parquet [22].
Dictionary encoding is a lossless compression technique that maps each “value” to a “key.” As

entries in a column usually have the same data type and repetitive values, dictionary encoding
is usually applied to each column independently. Applying dictionary encoding on a column is
beneficial when the size of the encoded data plus the size of the dictionary table is smaller than
the original data—in other words, when the number of entries in the column is significantly higher
than the number of unique values (U ) in the column. Each unique value is represented by a k-bit
key, where k = loд2 (U ). Database management systems only apply dictionary encoding when the
size of the encoded data plus the dictionary table size is considerably smaller than the original
data. Dictionary encoding is more effective on columns with large data types, such as strings.
NASCENT2 provides a generic dictionary decoder that supports input with various bit widths and
outputs with different data types (both fixed- and variable-length data types) and bit widths that
can be configured during the runtime.
NASCENT2 uses the dictionary decoder kernel during the database sort flow if the key col-

umn is stored in dictionary encoded format. Figure 9(a) shows the proposed architecture of the
NASCENT2 dictionary decoder. The NASCENT2 dictionary decoder first reads the “dictionary
page,” which is stored along with the encoded data, from global memory or directly from the stor-
age system. It stores the dictionary page in FPGA local memories to provide fast access to decode
the inputs. In decoding variable-length data types, the length of the dictionary values may be differ-
ent. Thus, to maximize the utilization of the FPGA on-chip memories, NASCENT2 concatenates
the dictionary values and stores them in the dictionary table. The NASCENT2 dictionary table
consists of R rows where each row is LMax bytes. LMax sets the upper bound for the length of the
longest dictionary value in bytes. In other words, the NASCENT2 dictionary decoder can execute
dictionary decoding operations where the lengths of the dictionary values are less than or equal
to LMax bytes.
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Fig. 9. (a) Architecture of the NASCENT2 dictionary decoder. (b) Example of the dictionary page and data

page. (c) Intermediate values in the NASCENT2 dictionary decoder kernel running the example of (b).

Since the NASCENT2 dictionary decoder concatenates the dictionary values, bytes of a dictio-
nary value may split into two consecutive rows of the dictionary table. Each row’s length is greater
than or equal to the length of every dictionary value; consequently, each value is either stored in
a single row or split into two consecutive rows. To find the location and length of the value corre-
sponding to every key, the NASCENT2 dictionary decoder constructs the “index memory” while
loading the dictionary table. The index memory stores the byte address and the length of every
dictionary value in the dictionary table. For each value, the byte address is the accumulation of all
the previous lengths, and the length represents the size of the value in bytes.
The NASCENT2 dictionary decoder, after loading the dictionary, and constructing the index

memory, streams the data page using the AXI interface. For the sake of design simplicity and
AXI compatibility, the NASCENT2 dictionary decoder limits the input bit widths, k , to power-of-
2 numbers greater than 8. AXI interface reads the encoded data page elements and writes them
in the “input buffer.” The NASCENT2 dictionary decoder also gets an input from the user, which
determines if the output data type is of a fixed-length or variable-length data type. If the output
is of a variable-length data type, the input keys may be associated with values with different bit
widths. Thus, parallelizing the decoding process is not possible, whereas decoding fixed-length
data types is parallelized to maximizing performance.
NASCENT2 at every clock cycle reads a key from the input buffer (it reads multiple keys in case

of decoding fixed-length data types) and looks up the byte address and length of the correspond-
ing value in the dictionary table from the index memory. As there is multiple access to both index
memory and dictionary table in every clock cycle, NASCENT2 uses on-chip memory to store these
two tables. The index memory outputs the byte address of the first byte of the value in the dic-
tionary table as well as the length of the value. NASCENT2 uses the byte address to find the row
address of the dictionary table that contains the value. A dictionary value is either entirely stored
in a row or split into two consecutive rows. Therefore, for each key, the address generator outputs
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the row address that contains the first byte of the value and the next row. To get the row address,
it shifts the byte address to right for loд2 (LMax ) bits, as shown in Equation (5). NASCENT2 then
uses the row address and row address +1 to read the dictionary value.

Row address = byte address >> loд2 (LMax )

O f f set = byte address[loд2 (LMax ) − 1 : 0] (5)

NASCENT2 reads two rows of the dictionary table and writes them into the “output filtering”
module. The output filtering uses the byte address along with the length of the value to find
and filter the value corresponds to the input key. As shown in Equation (5), the byte address
[LMax − 1 : 0] is used as the offset in the output filtering module to get the first byte of the
value from the two rows, read from the dictionary table. It then outputs the value and writes it
into multiple parallel buffers of the “output buffer” module.
In the output buffer module, NASCENT2 uses multiple parallel buffers to increase the output

bandwidth utilization and consequently increase the performance by writing multiple bytes into
the FPGADRAM in each cycle through an AXI port. The bit width of each AXI transaction directly
affects the bandwidth utilization and consequently the performance of dictionary decoding. The
bit width of each transaction can be up to 512 bits, equal to 64 bytes. Therefore, the NASCENT2
dictionary decoder uses parallel buffers to utilize the AXI interface more efficiently. The output
buffer module concatenates the consecutive values and writes them into B parallel buffers, and
whenever all the B buffers have at least an element in them, it transfers the B bytes into the FPGA
DRAM. B will be set as the minimum of LMax and 64, because in each cycle, the output of the
output filtering module will be at most LMax bytes and providing a higher number of buffers than
LMax does not increase the performance. However, when LMax > 64, the AXI interface can only
read up to 64 bytes per cycle; having more buffers increases the kernel’s complexity.
Figure 9(b) and (c) show an example of the NASCENT2 dictionary decoder for a dictionary page

of strings. The dictionary page and the input page are shown in Figure 9(b). In this example, based
on the dictionary page’s values, the maximum length of the values is set to 8 bytes, so each row of
the dictionary table contains 8 bytes (LMax = 8). Figure 9(c) shows sample contents of the memory
and buffer at runtime. NASCENT2 constructs the content of the index memory while reading the
dictionary page. The first value in the dictionary page is USA, which starts at address 0 and is
3 bytes long. The next value, Iran, starts at address 3 in the dictionary table and is 4 bytes long.
NASCENT2 loads the dictionary table and constructs the index memory as explained. To decode
the last input (3), for instance, the byte address and the length parameters are 14 and 6 respectively.
The first byte of the corresponding value, Brazil, starts at address 14. The address generator shifts
the byte address to the right for 3 bits (byte address >> 3 = 1), namely the corresponding value is
in rows 1 and 2 of the dictionary table. NASCENT2 reads rows 1 and 2, as shown in the following,
from the dictionary table and writes them into the output filtering module.

Row[1] = ROATIABR

Row[2] = AZILGHAN

Bytes [2:0] of the byte address are used as the offset from the first byte of the first read row.
The value starts at byte offset and ends after length bytes. In this example, the offset is equal to 6,
and the length is equal to 6. Hence, the value is from bytes 6 to 11 of the read rows. The filtering
module extracts the value from the read rows and writes it into parallel output buffers. Note that
decoding fixed-length data types is a special case of variable-length decoding where the output
bit width of all values is the same. Therefore, NASCENT2 parallelizes the operations and decodes
multiple input keys per cycle.
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Table 1. Characteristics of SmartSSD Resources and the Breakdown of

NASCENT2 Kernels’ Resource Utilization

LUT BRAM URAM DSP DRAM D2FPGA BW S2FPGA BW Storage
SmartSSD Resources 522K 984 128 1959 4 GB 19 GB/s 3 GB/s 4 TB
Sort 39% 74% 0% 1% –
Dictionary decoder 1% 0% 85% 0% –
Shuffle (6 kernels) 3% 2% 0% 1% –
Platform 32% 14% 0% 0% –
NASCENT2 75% 90% 85% 2% –

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

We implement the dictionary decoder, sort, and shuffle kernels on the FPGA available on SmartSSD
to evaluate the efficiency of NASCENT2. Each SmartSSD consists of a 4-TB SSD directly con-
nected to a Kintex UltraScale+ FPGA, XCKU15P, through a PCIe Gen3 x4 bus. Table 1 summarizes
the available resources of SmartSSD. In this table, D2FPGA BW stands for DRAM-to-FPGA band-
width, and S2FPGA BW indicates the SSD-to-FPGA bandwidth (the bandwidths are also shown in
Figure 2). The table also shows the resource utilization of each kernel. NASCENT2 kernels are
written in C++ and optimized to deliver high performance. The kernels are synthesized using the
Vivado High-Level Synthesis (HLS) tool and integrated with the host code using Xilinx Vitis Accel
2019.2. The host code is written in OpenCL, which is responsible for initiating the kernels and
passing the tables’ location in the storage. The SmartSSD FPGA has a P2P communication with
the SSD, and all communications between the storage and the FPGA will happen internally with-
out involving the host. To measure the performance of the entire database sort and also individual
kernels, we used OpenCL event profiling. We report end-to-end execution times, including the
P2P communication between the FPGA and the SSD in the SmartSSD to transfer the data, and the
computation time, unless otherwise stated. To evaluate the energy efficiency of NASCENT2, we
measure the power consumption of the FPGA, including its off-chip DRAM, without including the
power of SSD since we use the same SSD for all deployments.

4.2 Kernel Evaluation

In this section, we compare NASCENT2 with the CPU-based sort baseline to specifically exam-
ine the performance of NASCENT2’s sort kernel architecture. For the baseline CPU sort, we
use the quicksort implementation developed in the C++ standard library (std::qsort()), which
is generally considered as one of the fastest single-threaded sort algorithms. We next com-
pare NASCENT2’s performance against the multi-threaded block sort from the Boost library
(boost::sort::block_indirect_sort()) [65]. We also developed a multi-threaded implementation of
the shuffle and dictionary decoding using the pthread library. The software implementations run
on the Intel Core i7-8700 processor (12 threads) with a clock frequency of up to 4.6 GHz.
Table 1 shows the resource utilization of each kernel. As explained in Section 3.2, NASCENT2

utilizes a single dictionary decoder and six independent shuffle kernels to saturate the storage-to-
FPGA bandwidth. It dedicates the rest of the resources to the sort kernel. Both sort and dictionary
decoder kernels utilize FPGA on-chip memories. The sort kernel uses FPGA BRAMs while the
dictionary decoder kernel stores the dictionary tables in FPGA URAMs to balance the resource uti-
lization. The Platform row shows the resources used to implement the AXI interfaces and stream-
ing buffers used by NASCENT2 kernels. As illustrated in the table, FPGA on-chip memory is a
limiting resource. The performance of the dictionary decoder and shuffle kernels is limited by the
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Fig. 10. Execution time and relative energy efficiency of theNASCENT2 sort kernel compared to the quicksort

andmulti-threaded block sort from the Boost library running onCPUwhen the data is available in theDRAM

of CPU and FPGA. The Y axis is in logarithmic scale.

storage-to-host bandwidth. Thus, having an FPGA with a larger on-chip memory only increases
the performance of the sort kernel, whereas using a more advanced interface between the FPGA
and the SSD can increase the performance of both shuffle and dictionary decoder kernels.

Sort Kernel. Figure 10 compares the performance and the energy efficiency of NASCENT2’s
sort kernel with quick-sort and parallel block sort from the Boost library (referred to as Boost in the
figure) on CPUwhen the data is available in the DRAMmemory of both CPU and FPGA. The execu-
tion time includes reading the input array from theDRAM, sorting the array, andwriting the sorted
array into the platform DRAM. The input sequences are randomly generated with the lengths of
1,000 elements (1K) to 8,000,000 elements (8M). As NASCENT2will be integratedwith data process-
ing management systems such as SparkSQL, our goal is to provide higher performance in tables
smaller than hundreds of megabytes, which is the typical partition size in SparkSQL. In such ta-
bles, the key column has typically less than 8M elements. Therefore, we only compare NASCENT2
with software baselines for arrays smaller than 8M elements. The sort kernel of NASCENT2 con-
sistently delivers higher performance than the CPU implementations. NASCENT2 sort kernel fits
up to 128K elements inside the FPGA on-chip BRAM blocks. Therefore, input sequences smaller
than 128K elements are sorted in a single iteration.
For a larger number of inputs, NASCENT2 sorts the first 128K elements, writes them back to the

DRAM, and fetches another 128K of data until it (partially) sorts the entire input sequence. Eventu-
ally, the sort kernel merges the sorted chunks stored in the DRAM. Because the DRAM communi-
cation is slower than reading from the on-chip BRAMs, the relative performance improvement of
the sort kernel shrinks for inputs larger than 128K elements (from 20× in the case of sorting 128K
elements to 6.8× for sorting 256K elements). The quicksort implementation shows a better per-
formance than the multi-threaded block sort for arrays smaller than 256k elements. However, for
larger arrays, the block sort provides better performance than quicksort. NASCENT2 sort kernel’s
performance improvement hovers around ∼ 1.5× for inputs with larger than 1M elements com-
pared to the block sort from the Boost library. SmartSSD is using a relatively small and low-power
∼ 7.5W FPGA. NASCENT2 shows 199× improvement of energy consumption for sorting inputs
of 1K elements. With the reduction of the speed-up in larger sequences, the energy improvement
saturates at ∼ 14.1× for inputs larger than 1M elements compared to the block sort.
Figure 11 compares the performance of NASCENT2’s sort kernel and the CPU baseline when the

data resides in the SSD. When the data is available in the DRAM, CPU can readily prefetch a major
portion of the inputs into the cache and thereby has better performance compared to when it reads
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Fig. 11. Execution time and relative energy efficiency of theNASCENT2 sort kernel compared to the quicksort

and multi-threaded block sort from the Boost library running on the CPU baseline when the data is stored

in the storage devices.

Fig. 12. Input and total bandwidth of the NASCENT2 dictionary decoder kernel for 2-, 4-, and 8-byte fixed-

length data types and variable-length data types with maximum length 8, 16, and 32 bytes for input bit

widths of 1 and 2 bytes.

the data from the SSD, for which the SSD-to-DRAM latency cannot be hidden since it is larger than
the computation latency. Thus, the NASCENT2 sort kernel is faster when both platforms read the
data from storage. The sort kernel of NASCENT2 is 9.2× faster for 1K data chunks and saturates
at ∼ 3.6× when reading and sorting 8M elements. The energy consumption (excluding the SSD
energy) also similarly increases from 31.2× to 80×.
Dictionary Decoder Kernel. Figure 12 shows the performance of the NASCENT2 dictionary

decoder kernel as compared to multi-core execution of the dictionary decoder on CPU for 1- and
2-byte data pages and outputs with 2, 4, and 8 byte widths. Both NASCENT2 and CPU implemen-
tation directly read the data page and dictionary page from the storage system and temporarily
store them into the device DRAM, decode the input, and write the decoded data into the device
DRAM. Since the dictionary decoding is only beneficial when the bit width of the encoded values
is less than the original value, we only consider 1- and 2-byte inputs. Note that if the size of the
dictionary becomes greater than 64k unique elements (2-byte inputs), the database management
system will not use dictionary encoding and stores the plain data. As the dictionary decoding is an
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I/O-bounded application, we measured the performance as the input bandwidth from the storage
devices to the computing platform (SmartSSD or CPU). The performance target is fully utilizing
the SSD bandwidth to the computing platform, capped at 3 GB/s. Additionally, the total bandwidth
shows the DRAM to FPGA/CPU bandwidth, including reading the data page and writing the de-
coded data to the DRAM. In Figure 12, the left axis shows the input bandwidth and the right axis
shows the total bandwidth from DRAM to the computing platform.
The NASCENT2 dictionary decoder provides higher performance in decoding fixed-length data

types. When the lengths of the decoded elements are fixed, NASCENT2 parallelizes the dictionary
decoding, by instantiating multiple copies of the dictionary table, to maximize the performance.
When the lengths of the decoded elements are not fixed, NASCENT2 decodes a single element per
cycle. In fixed-length decoding, the NASCENT2 dictionary decoder kernel in all the cases, except
for the 1-byte input and 8-byte output case, achieves 3 GB/s input bandwidth, which saturates
the SSD-to-FPGA bandwidth. When the data page is 1-byte encoded data, and the values are 8-
byte data, the output size would be 8× of the input; consequently, the total bandwidth reaches the
maximum DRAM-to-FPGA bandwidth to write the decoded values. Therefore, it cannot saturate
the input bandwidth due to the DRAM-to-FPGA bandwidth limitation. In this case, the kernel
achieves 1.8-GB/s SSD-to-FPGA bandwidth. The multi-core CPU implementation of the dictionary
decoder is unable to saturate the CPU-to-SSD bandwidth in most cases. In fixed-length data types,
the number of dictionary decodings per second, when running on CPU, is independent of the
input bit width (1- and 2-byte inputs) and consequently of the dictionary size since the dictionary
access has constant time as the dictionary tables can fit into the CPU cache. Therefore, the input
bandwidth for 2-byte inputs is double that for the 1-byte inputs.
In decoding variable-ength data types, the NASCENT2 dictionary decoder kernel decodes an

element per cycle, thereby achieving 300-MB/s input bandwidth for 1-byte input data and 600
MB/s for 2-byte input data. In Figure 12, we tested the performance of both the NASCENT2 and
CPU dictionary decoder for randomly generated string sequences. We used strings with maximum
length of 8, 16, and 32 bytes to show the effectiveness of NASCENT2 in decoding string values
with different lengths. The total memory bandwidth depends on the size of the output data (since
the length of the strings are different). As shown in Figure 12, for string values with maximum
length 8 bytes, NASCENT2 achieves 1.8-GB/s total bandwidth. In decoding strings with maximum
length 32 bytes, NASCENT2 achieves 8.1-GB/s total bandwidth. Since the number of dictionary
decoding per second is constant, the total bandwidth only depends on the bit width of the inputs
and outputs. The CPU implementation of variable-length dictionary decoding cannot be paral-
lelized, and thus it achieves lower performance than the fixed-length decoding. On average, the
NASCENT2 dictionary decoder provides 1.4× higher input bandwidth in fixed-length decoding as
compared to the CPU implementation. NASCENT2 shows higher performance improvement in de-
coding variable-length values, and it provides 21.4× higher input bandwidth compared to the CPU
implementation.
NASCENT2 uses the dictionary decoder for both integer and generic sort. In integer sort, to

eliminate the host involvement, the dictionary decoder first decodes the data and then the sort
kernel sorts the decoded data. Figure 13 shows the breakdown of the execution time of sorting an
integer column stored in the dictionary encoded format in the storage system. The figure shows
two cases when 8-bit numbers are decoded to 32-bit and 64-bit numbers. First, the NASCENT2
dictionary decoder kernel decodes the data to the 32-bit and 64-bit numbers, and then it sorts the
decoded column. The NASCENT2 sort kernel can sort 64-bit long numbers with minimal changes
in the CSmodules. Due to FPGA resource limitation, both 32-bit and 64-bit NASCENT2 sort kernels
utilize the same amount of BRAMs; therefore, the 64-bit sort kernel fits up to 64k long (64-bit)
numbers in the on-chip memory, as opposed to fitting 128k 32-bit elements. For larger input arrays,
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Fig. 13. Execution time for dictionary decoding and sorting an integer column with different numbers of

rows when the stored data are 8-bit numbers and the outputs are 32-bit or 64-bit numbers. The Y axis is

logarithmic.

Fig. 14. Execution time for sorting tables with different numbers of rows and columns. The Y axis is

logarithmic.

the NASCENT2 sort kernel uses off-chip DRAM to store the partially sorted arrays. For sorting
input arrays smaller than 64k elements, both 32-bit and 64-bit NASCENT2 sort kernels deliver the
same performance. For larger input sizes, the 64-bit NASCENT2 sort kernel provides slightly lower
performance than the 32-bit sort kernel due to higher DRAM access. As illustrated in Figure 13,
the execution time of the NASCENT2 dictionary decoder kernel linearly increases with the size of
the input array since the dictionary decoder kernel performance is data independent.

Shuffle Kernel. Figure 14 shows the breakdown of the execution time of NASCENT2 when
sorting database tables of various sizes when the plain data is stored in the storage system. We
generated static tables with a different number of rows and columns from 1k to 1M. Note that the
content of the columns is not limited to integer types and can be any type of variable or strings. For
tables with 100k and 1M rows, we only considered 1k and 10k columns, as otherwise the table size
becomes larger than the typical size of the partitions. For tables with the same number of rows, the
sort kernel takes exactly the same time since the bitonic sort execution time is data independent.
For a given number of rows, the execution time of the shuffle kernel increases with the number

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 16. Pub. date: January 2022.



16:24 S. Salamat et al.

Fig. 15. Execution time for sorting string columns with different numbers of rows for two different maximum

lengths of the strings. The Y axis is logarithmic.

of columns. Due to the fact that the overall size of the table is significantly larger than the size
of the input sequence to the sort kernel (which deals with one column, i.e., the key column), the
execution time of the shuffle kernel dominates the total time. The shuffle kernel fully utilizes the
bandwidth of the PCIe bus from the SSD to the FPGA to minimize the shuffling time. Thus, the
execution time of NASCENT2 increases almost linearly with the size of the table.

Generic Sort. To evaluate the performance of NASCENT2 generic sort, we used 4-byte floating-
point and string columns with different sizes from 1,000 (1k) elements to 2,000,000 (2M) elements.
In string columns, each element is a randomly generated string with maximum string lengths of 16
and 32 bytes. Columns are dictionary encoded and stored as 16-bit integers, namely the dictionary
page has 64,000 unique elements. Figure 15 shows the execution of sorting the columns on CPU
and NASCENT2 generic sort (left axis). It also shows the performance improvement and energy
efficiency of NASCENT2 over the CPU baseline (right axis). Note that for the CPU implementation,
we first decode the column and then use Python built-in string sort function to sort the decoded
column. NASCENT2 generic sort shows slightly less performance when the data page size is rel-
atively small compared to the dictionary page. For a key column with 1k elements, NASCENT2
is 20% slower than sorting the column on CPU, due to NASCENT2’s overhead of reading the dic-
tionary page and sorting it on the host server. Although NASCENT2 is slightly slower in sorting
a column with 1k elements, it still increases the energy efficiency by 5.8×. For columns bigger
than 1k elements, which is more often in real-world databases, NASCENT2 provides higher per-
formance than the CPU baseline. On average, it delivers 2× higher performance and 15× higher
energy efficiency than the CPU baseline. In sorting floating-point columns, NASCENT2 delivers
3.2× speedup and 23.8× energy efficiency as compared to sorting the column on CPU. The effi-
ciency of the proposed generic sort comes from the fact that NASCENT2 sorts the integer key
columns and then decodes the sorted column while the CPU is first decoding the column and then
sorts a column of strings. As illustrated in the figure, the execution time of NASCENT2 is inde-
pendent of the maximum string length of the column elements, whereas the execution time of the
CPU baseline is greater for the case with maximum string length of 32 bytes.

4.3 System Evaluation

To evaluate the scalability of NASCENT2, in Figure 16 we show the execution time of the CPU,
typical FPGA-equipped systems (see Figure 3), and NASCENT2 when the number of SSD instances
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Fig. 16. Execution time of NASCENT2 as compared to the CPU and FPGA baseline for sorting 1024 × 1024
tables, each stored in an SSD. The left Y axis is in logarithmic scale.

increases from 1 to 12 (12 SSDs is the limitation incurred by the number of slot counts of the host
machine). For the CPU baseline, we use quicksort (as it is faster than block sort for 1k arrays) and
multi-threaded implementation of shuffle and dictionary decoder. Each SSD contains a table with
1024 rows and an average row size of 4 KB,which is a typical table size in SparkSQL partitions. Orig-
inally, the key columns consist of 32-bit integer numbers, but the key column in the storage system
is stored as 16-bit dictionary encoded elements. Although in real-world applications different SSDs
would sort different sizes of tables, here we assume all the tables have the same dimensions and
size. As we showed in Figure 14, the execution time of NASCENT2 increases linearly with the size
of the table (for a specific number of rows) since it fully utilizes the SSD-to-FPGA bandwidth. Each
SSD contains multiple tables that are going to be sorted. Note that the bitonic sort’s performance
is data independent, and sort operations on different SSDs are executed independently. Thus, we
can assume that all SSDs contain the same table without loss of generality.
As Figure 16 reveals, the FPGA-equipped system baseline and SmartSSD are both faster than the

CPU baseline. The bottleneck of all the platforms is the storage bandwidth, and the memory hier-
archy of the processor increases the execution time. Comparing the FPGA-equipped system with
SmartSSD, when the system has only one storage device, the stand-alone FPGA shows slightly
better performance as it is larger than the SmartSSD’s FPGA, so it contains more kernels.1 Nev-
ertheless, as the number of storage devices increases, the execution time of NASCENT2 remains
the same, as it sorts the tables independently. The CPU and FPGA baselines, however, are not
able to parallelize the operations on different SSDs, and consequently their runtime increases lin-
early with the number of SSDs. In SmartSSD, every storage device is equipped with an FPGA,
so it consumes more power than a conventional SSD. However, the power consumption of the
SSD is higher than the FPGA’s power, which shrinks the per-device overhead of SmartSSD. In
Figure 16, we also show the energy efficiency of NASCENT2 versus the FPGA-equipped system
(FPGA baseline). As the number of storage devices increases, both the performance and energy
efficiency of NASCENT2 also improve. With 12 SmartSSDs, NASCENT2 is 7.6× (147.2×) faster
and 5.6× (131.4×) more energy efficient than the FPGA (CPU) baseline.
Figure 17 shows the efficiency of NASCENT2 compared to an FPGA-equipped system and

a multi-threaded software implementation on CPU. The speedup and energy efficiency of

1The baseline FPGA-equipped system uses from the Xilinx’s Alveo U250 with 1,728K LUTs (compared to 391K in

SmartSSD’s FPGA) 64 GB of DRAM, 77 GB/s of DRAM-to-FPGA bandwidth, and on-chip BRAMs totaling 57 MB (com-

pared to 16 MB in SmartSSD’s FPGA).
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Fig. 17. Execution time of NASCENT2 compared to the FPGA-equipped baseline storage when sorting multi-

ple copies of the largest table of TPCH and TPCC benchmarks on 12 storage devices. The scale factor denotes

the scaling up of the number of benchmark rows.

NASCENT2 compared to the FPGA-equipped (CPU SW) system is denoted as Energy/FPGA (En-
ergy/CPU) and Speedup/FPGA (Speedup/CPU), respectively. In this experiment, we sort a copy
of the largest tables of TPCH (line-item) and TPCC (order-line) benchmarks in each SSD [64, 66].
As explained earlier, the performance of sorting the table of the same size is data independent, so
having multiple copies of the same benchmark is analogous to having same-size tables with dif-
ferent entries. We evaluate the performance of NASCENT2 when sorting the largest tables on the
TPCH and TPCC benchmarks for four different scale factors {0.1, 1, 2, 5} that scale the number of
rows. We limit our experiments to scale factor 5 since, in most cases, data processing management
systems partition each table into small partitions that can be executed independently. The lineitem
table in the TPCH benchmark with scale factor of 5 is ∼ 3.2GB. Partition sizes are rarely larger
than this. Compared to the FPGA baseline, NASCENT2 is on average 9.2× faster and has 6.8×
less energy consumption when using 12 SmartSSDs to run the TPCC benchmark and 10.6× faster
and 7.8× lower energy consumption for the TPCH benchmark. NASCENT2 shows higher perfor-
mance improvement in executing shuffle operation. The average size of the rows in the TPCH
table is greater than in the TPCC table, so the performance improvement of NASCENT2 for the
TPCH benchmark is slightly higher than that for the TPCC benchmark. The shuffle operation is
more dominant in the TPCH benchmark. NASCENT2 shows roughly constant improvement as the
table scales. The performance of sort kernel does not scale linearly, so the overall improvement,
which is dominated by shuffling performance, is near-constant. NASCENT2 compared to multi-
threaded execution of table sort on CPU shows 127.4× and 147.1× speedup as well as 111.5× and
126.9× energy reduction in TPCC and TPCH benchmarks, respectively.

5 CONCLUSION AND FUTUREWORK

In this article, we present NASCENT2, a near-storage sort accelerator for data analytics on
SmartSSD based on the bitonic sort. The proposed generic sort method supports sorting the
table based on integer and non-integer key columns. It shows 2× (3.2×) speedup and 15.2×
(23.8×) energy reduction in sorting a string (floating-point) column as compared to CPU. More-
over, NASCENT2 tackles the data transfer limitations in current interface connections between
storage devices and computation platforms. NASCENT2 comprises FPGA-based accelerators with
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specific kernels to accelerate dictionary decoder, sort, and subsequent shuffling operations to sort
a database table. NASCENT2 increases the scalability of computer systems by enabling simulta-
neous operations on different storage devices. With 12 SmartSSDs, NASCENT2 is 9.9× faster and
7.3× more energy efficient than the same accelerator on conventional architectures comprising
a stand-alone FPGA and storage devices. NASCENT2 also shows 137.2× speedup and 119.2× en-
ergy reduction as compared to sorting the database table on the host CPU. In our future work,
we are going to integrate NASCENT2 with SparkSQL, which is one of the most widely used data
processing management systems. In this work, we showed end-to-end execution of table sort on
SmartSSD with two orders of magnitude energy reduction, which highlights the potential of sig-
nificant speedup and energy reduction in end-to-end execution of a query when NASCENT2 is
integrated into SparkSQL.
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