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Abstract—Transformer-based models are state-of-the-art for
many machine learning (ML) tasks. Executing Transformer
usually requires a long execution time due to the large memory
footprint and the low data reuse rate, stressing the memory
system while under-utilizing the computing resources. Memory-
based processing technologies, including processing in-memory
(PIM) and near-memory computing (NMC), are promising
to accelerate Transformer since they provide high memory
bandwidth utilization and extensive computation parallelism.
However, the previous memory-based ML accelerators mainly
target at optimizing dataflow and hardware for compute-
intensive ML models (e.g., CNNs), which do not fit the
memory-intensive characteristics of Transformer. In this work,
we propose TransPIM, a memory-based acceleration for
Transformer using software and hardware co-design. In the
software-level, TransPIM adopts a token-based dataflow to
avoid the expensive inter-layer data movements introduced by
previous layer-based dataflow. In the hardware-level, TransPIM
introduces lightweight modifications in the conventional high
bandwidth memory (HBM) architecture to support PIM-
NMC hybrid processing and efficient data communication for
accelerating Transformer-based models. Our experiments show
that TransPIM is 3.7x to 9.1x faster than existing memory-
based acceleration. As compared to conventional accelerators,
TransPIM is 22.1x to 114.9x faster than GPUs and provides
2.0x more throughput than existing ASIC-based accelerators.

Keywords-Processing in-memory; Near-data processing;
Transformer; Domain-specific acceleration; Software-hardware
co-design.

I. INTRODUCTION

Attention mechanism has emerged as a powerful tool
to model long-term dependencies in sequential data [41].
Attention-based models, such as Transformer [41] and its
enhanced variants [10], [36], have dramatically improved the
accuracy of important machine learning tasks, like natural
language processing [30], computer vision [6], [11], and
video analysis [5]. However, these benefits come at the cost
of long execution time due to the large memory footprint and
low computation to memory ratio. Existing CNN-oriented
accelerators are designed for compute-intensive operations
(e.g., convolution), making them sub-optimal for processing
Transformers [15], [42]. To accelerate Transformer models,

YEqual contribution

there have been several domain-specific accelerators, such
as SpAtten [42] and A3 [15], that offload either the key
operation (i.e., self-attention) or the whole Transformer from
conventional systems (e.g., GPU). However, these ASIC-
based accelerators still suffer from the constrained parallelism
and limited off-chip memory bandwidth that bound the
performance of acceleration.

Memory-based acceleration, including processing in-
memory (PIM) and near-memory computing (NMC), is
promising to accelerate Transformer models as it supports
extensive parallelism, low data movement cost, and scalable
memory bandwidth [1], [12], [14], [18], [29], [47], [49],
[50]. Although there have been many memory-based neural
network accelerators [12], [17], [27], [29], [37], their dataflow
and hardware are mainly optimized for compute-intensive
CNNs, which may be incompatible with memory-intensive
Transformers. Specifically, the dataflows of existing memory-
based accelerators [12], [17], [29] are determined in a
layer-level granularity, such that either utilize the whole
memory to process one layer at a time [12], [29] or allocate
mutually exclusive memory resources to different layers [17].
Such layer-based dataflows introduce large non-compute
overhead in Transformers because of the large amount of
input data and weights that need to be loaded or transferred
between layers. On the hardware side, Transformer’s complex
operations (such as reduction and Softmax), which require
both parallel computation and fine-grained intra-memory
data reorganization, would be the performance bottleneck for
memory-based accelerators. Our experiments (Section II-C)
show that the layer-based dataflows spend over 60% of
execution time on data movements when accelerating a
widely-used Transformer using an in-memory bit-serial
accelerator on emerging high bandwidth memory (HBM).
Furthermore, the reductions using bit-serial row-parallel PIM
operations take around 30% of execution time, exhibiting a
much lower compute throughput than other PIM arithmetic
operations. The results show both software and hardware
issues can significantly limit the efficiency of memory-based
Transformer acceleration.

In this work, we propose TransPIM, a software-hardware
co-design based on an emerging commodity memory, high
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bandwidth memory (HBM), that utilizes memory-based
acceleration technology to accelerate Transformers. In the
software, instead of allocating memory for different layers,
TransPIM adopts a token-based dataflow that assigns memory
resources for computations across different layers based on
the input tokens. With the token-based dataflow, each memory
bank processes and stores the intermediate results related to a
specific set of tokens. By doing so, TransPIM can significantly
reduce the amount of data loaded or transferred across layers
because the increased locality of intermediate data from
different layers improves data reuse rate. TransPIM only
requires data movement for computing the cross-memory
(i.e., between different sets of tokens) information which
can be handled efficiently by exploiting the large internal
memory bandwidth of HBM.

Even though the token-based dataflow significantly im-
proves the throughput by reducing the data movement
overhead, the software-level solution cannot resolve the
inefficiency of complex operations in Transformer. Exist-
ing memory-based accelerators supports either PIM [2] or
NMC [16], [27]. However, different key operations in Trans-
formers do not share similar patterns that can be efficiently
processed by a single type of memory-based technology.
Furthermore, the original data path in HBM heavily relies
on the shared bus. Therefore, the resource conflict on the
shared bus for transferring data may become the bottleneck
for applications requiring high internal bandwidth. To solve
these issues, we propose an integrated set of hardware in
HBM, including near-memory auxiliary computing units
(ACUs) and an optimized data communication architecture.
Specifically, the ACUs enable the memory to exploit the
benefits of both PIM and NMC to efficiently accelerate
different operations. The optimized data communication
architecture adds buffers and specialized links in the HBM
hierarchy to offload a large number of data movements from
the global shared data path, delivering significantly higher
memory bandwidth utilization than the original HBM.

In summary, the contributions of this work include:

Compared to existing accelerators [15], [42] dedicated to
attention, TransPIM is the first end-to-end memory-based
accelerator that speeds up the entire Transformer inference
by exploiting the emerging memory-based acceleration.
The proposed software-hardware co-design significantly
outperforms existing platforms, including GPU, TPU, and
ASIC-based accelerators. Specifically, TransPIM is 22.1
x to 114.9 x faster than GPUs on various widely-used
Transformers. As compared to ASIC-based accelerators,
TransPIM provides 2.0x higher throughput.

We propose a token-based dataflow for general
Transformer-based models to reduce unnecessary data
loading by exploiting holistic data reuse. Our results show
that the proposed dataflow is 4.6 x faster than the previous
method on various memory-based accelerator architectures.
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Figure 1. Operations of encoder and decoder blocks in Transformers.

o TransPIM introduces lightweight hardware components in
the conventional HBM architecture to support efficient com-
puting and memory operations for Transformers, without
impacting the memory density. Our experiments show that
TransPIM significantly improves the performance by 3.7 x
and 9.1x over PIM-only and NMC-only architectures.

II. BACKGROUND AND MOTIVATION

This section first introduces the background for Trans-
former and PIM acceleration. Then, this section analyzes
the issues in existing memory-based technologies with
accelerating Transformer-based models, which motivate a
new software-hardware co-design.

A. Transformer

Transformer has an encoder-decoder architecture [41], as
shown in Figure 1. Both the encoder and the decoder are
constructed by stacking identical blocks. Each encoder block
has three sub-layers including a fully-connected layer (FC),
a self-attention layer (SA), and a feed-forward layer (FFN).
For an input sequence with L tokens, the FC layer gets
an embedding matrix of dimension L x d, and generates a
query matrix Q of dimension L x d;, and a key matrix K
of dimension N X dj, and a value matrix V of dimension
L x d,, by multiplying the embedding matrix with different
weight matrices. For simplicity, we use D to denote dj, d,
and d,,. Each D-dimension vector in the Q, K and V matrices
corresponds to an input token. The encoder block then feeds
the O, K, and V matrices to the SA layer. The key operation in
a SA layer is the scaled dot-product attention which computes
dependencies between input tokens as Softmax(QK W,

VD
where Softmax(-) denotes the Softmax function. The oK~
is defined as the score matrix S. The encoder block feeds
the attention output to the FFN layer to generate the block
output, which can be used as an input to the next block
(either encoder or decoder) or to a task-specific output layer
(e.g., classification). Each decoder block also has the FC
layer, the SA layer, and the FFN layer to process the output
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Figure 2.  Memory-based computing on HBM architectures.

of the preceding layer. Unlike encoder blocks, the input and
output of decoder blocks usually contain only one or a few
tokens. In addition, the decoder inserts another attention layer
that performs attention over previous blocks. Transformer
performs many memory-intensive operations [15], [20], [42],
which make it suitable for in- and near-memory acceleration.

B. PIM Acceleration for Transformers

Memory-based computing has been widely used for
various memory-intensive and compute-intensive applications
due to its extensive parallelism and ability to minimize
data movements. The baseline memory architecture used
in this work is the Samsung’s high-bandwidth memory
(HBM) [27], [33] which has become the state-of-the-art
memory solution for various emerging platforms [8], [23],
[28], [51]. Figure 2 shows the overall architecture of 4 HBM
stacks. All stacks are connected to the host CPU/GPU for
cross-stack communication. Each HBM stack is a 4-high
HBM chip with multiple DRAM slices on the top of the
base die, connected with many through-silicon vias (TSVs),
providing much higher bandwidth and lower access latency
than the conventional DRAM.

There are two ways to process data in HBM. The first one
is near-memory computing (NMC), where compute logic is
integrated either in the near-bank I/O or, more aggressively,
in the near-subarray circuits inside the memory bank. For
example, Samsung recently proposed a new type of HBM
called function in-memory DRAM (FIMDRAM) [27], that
integrates programmable computing units (PCUs) in the I/O
circuits of the memory banks. These non-trivial PCUs take up
the chip area for some memory banks, decreasing the memory
density. The second technology is processing in-memory
(PIM) which supports computing in the DRAM banks (or
subarrays) by specialized sequences of activate and pre-
charge commands [14] or modified subarray structures [2],
[29]. PIM usually requires data to be placed column-wisely
and follows a bit-serial row-parallel scheme to process the
computation. PIM provides a higher level of parallelism with
fewer data movements than NMC, but can only support a
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Figure 3. Challenges of PIM acceleration for Transformers.

limited set of operations with high latency (because of bit-
serial processing). NMC supports more general operations but
the throughput is limited by the number of NMC processing
elements as well as the bandwidth of the data link.

C. Motivation of Software-hardware Co-Design

Many previous works show that both the software-level
scheduling (a.k.a., dataflow) and the hardware design play
important roles in neural network acceleration [26], [35],
[43]. To maximize the parallelism, existing memory-based
DNN accelerators [2], [12], [17], [29] adopt a layer-based
dataflow which allocates sufficient memory resources to
parallelize computations for different output elements in a
layer. The layer-based dataflow requires a whole data loading
before processing each layer. We conduct an investigation
on the efficiency of existing memory-based acceleration for
Transformers. We evaluate the latency breakdown of a text
classification task using RoOBERTa Transformer model on an
HBM-based PIM-only system which has 8 8GB HBM stacks.
The PIM-only system processes all computations using
bit-serial row-parallel operations inside memory subarrays.
Figure 3(a) shows the profiling results. Figure 3(b) shows
the size of loaded data for each layer in Transformer when
using layer-based dataflow.

Our experiments show that the data movement of the
layer-based dataflow takes the majority (around 60%) of
the execution time, which is the time for loading and
reorganizing data. The long data movement time results
from two aspects. First, to maximize the parallelism, the
layer-based dataflow needs data duplication in the memory
for parallel computations, increasing the amount of loaded
data. Second, most parallel data layouts do not exploit the
data reuse between neighboring layers. In this case, we need
to load all data for the intermediate layers (e.g., the attention
layer). As shown in Figure 3(b), the size of computation data
for the attention layer grows quadratically with the sequence
length. Therefore, minimizing the amount of loaded data is
critical to reducing the overall execution time of Transformer.
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Figure 4. Token-based data sharding scheme and the dataflow of Transformer encoder in TransPIM. Banks = 3.

In this work, we exploit the fact that all operations in different
Transformer layers are related to tokens in the input sequence,
making it possible to improve the data locality by reusing
token-related data during the execution.

In addition to the data loading issue, the evaluated PIM-
only accelerator does not perform well for some com-
plex Transformer computation primitives, like reduction
operations, due to the costly intra-bank (or subarray) data
movements for long vectors in Transformer (e.g., D = 512).
For example, the reduction takes 23% to 32% of time for
different sequence lengths, which is significantly larger than
other arithmetic operations (4% to 10%). This is because the
reduction requires data movements to reorganize the data in
the memory for accumulation, degrading the efficiency of
PIM operations. Such intra-array data movements introduce
more overhead in Transformers than CNNs because the length
of vectors for reduction is much longer in Transformers (e.g.,
512 for Transformer vs. 9 for convolution with 3x3 kernels).

D. Key Ideas of TransPIM

Our investigation shows that existing technologies intro-
duce large overhead on Transformers, requiring specific mod-
ifications on both software dataflow and hardware support.
Therefore, this work proposes to accelerate Transformer via
a software-hardware co-design.

Dataflow: TransPIM adopts an efficient dataflow which
maps Transformer computation to the memory-based archi-
tecture using a token-based sharding mechanism. TransPIM
divides the input tokens into different shards and allocates
these shards to different memory partitions. In this work,
we use memory bank as the basic memory partition for

shard allocation. During acceleration, each memory partition
processes its associated token shard independently across
different layers. As compared to layer-based dataflow, the
token-based dataflow avoids the memory traffic for reused
data. We also propose an efficient broadcasting algorithm to
speed up data movements for dependent data by exploiting
the large internal memory bandwidth of HBM.

Hardware acceleration: In the hardware, TransPIM
adds lightweight modifications to the conventional HBM
architecture, which not only accelerate various Transformer
operations but also efficiently support the proposed dataflow.
Specifically, TransPIM architecture implements multiple
auxiliary computing units (ACUs) within each memory
bank to perform vector reduction and Softmax function that
cannot be efficiently processed by bit-serial row-parallel
PIM operations. TransPIM exploits the benefits of both
PIM and NMC to achieve high efficiency and throughput.
Furthermore, TransPIM enhances the original HBM data
path with specialized data buffers and communication links
to support various data manipulations and movements for
Transformers.

III. TRANSPIM DATAFLOW

In this section, we introduce the detailed process of
TransPIM dataflow. The underlying architecture is based
on compute-enabled HBM as shown in Figure 2.

A. Token-based Data Sharding

The key of TransPIM dataflow is token-based data sharding,
which allocates HBM banks based on input tokens. The main
benefits provided by the token-based data sharding come from
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the data reuse across different layers by keeping computations
of tokens in the same memory location. We can reduce the
data movement cost while exploiting more memory-level
parallelism because different banks can handle computations
and data movements for allocated tokens independently. After
the token sharding, each bank handles computations for its
shards throughout the end-to-end Transformer inference. The
token-based data sharding is applied to the input tokens
before the fully-connected layers of the first encoder block.
As introduced in Section II, the input tokens form a matrix
with size L x D, where L is the number of tokens and D is the
embedding vector dimension. The input tokens are uniformly
divided into “shards” along the token dimension and allocated
to different memory banks. In the case of N memory banks,
% tokens are assigned to each bank. Therefore, each bank
receives an input matrix with size % x D. Figure 4 shows an
example of distributing 3 tokens into 3 memory banks.

B. Encoder Blocks

During the Transformer inference, each memory bank
performs the computations of FC, attention, and FFN layers
for its allocated tokens.

1) Fully-Connected Layer: The FC layer generates the
query (Q), key (K), and value (V) matrices from the input
tokens. It involves three matrix multiplications between the
input tokens and three weight matrices (Wp, Wy, and Wp).
In TransPIM, all weights of the three FC weight matrices
are loaded into each memory bank before FC computation.
And each bank multiplies the assigned % x D sub-matrix I;
with D x D weight matrices as illustrated in 0 of Figure
4. Then, each bank generates three % x D sub-matrices, Q;,
K;, and V;. The Q;, K;, and V; matrices are retained in each
memory bank and used for the following attention layers.

2) Attention Layer: The computation of attention layer in
TransPIM involves three steps: (1) Intra-shard local attention,
(2) Inter-shard cross attention, and (3) Softmax.

Intra-shard local attention: The attention scores S are
computed by S = Q x KT In TransPIM, Q and K matrices
are distributed in memory banks. With the local sub-matrices,
each memory bank first computes the attention scores
between local tokens, as shown in g of Figure 4). Each
memory bank computes the % X % partial attention scores in
the diagonal of attention score matrix using the local Q; and
K; from the FC layer. During the intra-shard local attention,
each bank 7 can independently compute the partial attention
score matrix S;; without communicating with other banks.

Inter-shard cross attention: After computing all local
attention scores, TransPIM computes other attention scores by
moving partial K matrices between different banks. As shown
in of Figure 4, the inter-shard cross attention consists of
multiple ring broadcast and compute steps. To improve the
bandwidth utilization, we propose a ring broadcast scheme
to transfer K; data between banks, where each K; sub-matrix
is sent to all banks step by step through an abstract ring of
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banks (e.g., 0—1—2 ... N—0). In each broadcast step, each
bank multiplies local Q; with the received K; from a remote
bank, generating an % X % partial attention scores in the i-th
row and j-column of the blocked attention matrix. A total of
N ring broadcast and compute steps are required to obtain
the entire attention score matrix S. Each bank preserves %
rows of the attention score matrix, S;, with shape % x L. The
performance of inter-shard cross attention heavily depends
on the speed of the ring broadcast phase. In Section IV-B,
we provide an efficient hardware design and a scheduling
scheme to fully exploits the internal memory bandwidth of
HBM for ring broadcast-based data transfer.

Softmax: The Softmax layer normalizes the exponential of
attention scores related to each token. Each bank calculates
the Softmax using its local % rows of attention scores. There
is no data movement between banks thanks to the data locality
of attention scores. For multi-head attention with A heads,
there are h attention matrices to calculate. Therefore, the
Softmax should be repeated % times to obtain all the results.
The naive Softmax requires complex exponential function,
reduction, and division. Thus, we design an efficient approach
in Section IV-A2 for calculating Softmax function in the
TransPIM hardware.

3) Self-attention Output and Feed-forward Network: The
final step of the self-attention is to multiply the attention score
matrix S after Softmax by the V matrix. With the token-based
data sharding, each bank stores the partial attention scores
and partial V; matrix. The calculation of self-attention output
(e of Figure 4) is similar to inter-shard cross attention. The
partial V; matrix is broadcasted through banks and each bank
computes the % x D partial attention out O;. Feed-forward
network (FFN) consists of two consecutive FC layers. In the
last step of Figure 4@, the attention out (input of FFN) has
the same token sharding as input FC layers (c). Therefore,
each FFN-FC layer has a similar process to the input FC
layers.

C. Decoder Blocks

The key difference between the decoder block and the
encoder block is that each decoder block only needs to
calculate one new token and attention operations between the
new token and the old tokens. Figure 5 shows the processing
flow for decoder layers which is slightly different from the
encoder blocks. In each decoder block, we keep using the data
sharding of the preceding block, which can be either the last
encoder or the previous decoder. We allocate the last bank to
process the FC layers for the new Q, K, and V vectors. In o
of Figure 5, we allocate Bank 2 to process Qnew, Knew, and
View. At the end of FC layers, TransPIM sends the generated
Qnew to all other banks to compute attention scores. Besides,
Ky and V., are concatenated to the old K; and V; of last
bank. At Q, each bank performs intra-shard local attention
using local Q.. K;, and V;. At the end of 9, each block
obtains and preserves ﬁ columns (% + 1 for the last bank) of
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the new score matrix. In the output compute and summation
(9), each bank uses its local S; and V; vectors to compute
partial sum PSum; of the new attention output Op,,,. This
scheme requires one reduction step to generate the correct
output. In Section IV-B, we introduce how to efficiently
process such reduction in a modified HBM architecture. The
decoder scheme supports both encoder-decoder and decoder-
only Transformers. The only difference between these two
types is whether memory banks pre-store “context” vectors
which are K and V vectors from encoder blocks. For each
new token, we allocate the bank with the minimum number
of tokens to balance computation.

IV. TRANSPIM HARDWARE ACCELERATION

We propose a new memory-based hardware acceleration
to address the challenges of accelerating Transformer models.
Figure 6 shows the hardware customization in the standard
HBM2 structure [19], which has two parts — 1) in-bank
auxiliary computing units (ACUs), 2) a data communication
architecture with near-bank data buffer and ring broadcast
units integrated into the original HBM data path.
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Figure 7. Detailed design of ACU and data buffer.

A. Auxiliary Computing Unit

TransPIM adds ACUs to support operations that are not
friendly for in-memory bit-serial operations.

1) ACU Design: Unlike previous near-bank processing
units [16], [27] for conventional row-wise data layout, the
proposed ACU works on column-wise bit-serial data in order
to support in-memory operations. As compared to previous
PIM-only work [29], which modifies the cell array structure
and adds extra shifters, the ACU offloads reduction, Softmax,
and data broadcast with a more light-weight design.

As shown in Figure 7, each ACU is concatenated after
the subarray to receive the 256-bit data from the row buffer
because it is too expensive to employ arithmetic units to
simultaneously process the data of the entire row buffer (e.g.,
8Kb). Therefore, the same bit of 256 different numbers in a
row is accessed from the row buffer for each memory access
to support the bit-serial data layout for in-memory operations.
A total of P,gq 256-bit adder trees are implemented within
each ACU to fully exploit the internal bandwidth of memory
bank and reduce the DRAM’s row activation overhead. Each
adder tree is composed of area-efficient 255 bit-serial adders
[3] to support the bit-serial data organization and reduce
overhead. Besides, the bit-serial adder tree is stage-pipelined.
A register and a divisor are implemented to latch intermediate
partial sums and compute the reciprocal of row accumulation
in Softmax function. Similar to [29], Py subarrays in each
bank are activated simultaneously to increase the computation
parallelism. Thus Py, ACUs are implemented for each
memory bank.

When the vector length of point-wise vector multiplication
results is less than the width of the adder tree, the ACU
reduction can be computed using a single bit-serial adder
tree. For b-bit data, a total of b row accesses are required to
compute the reduction results. However, the reduced vector
length is generally larger than the width of the adder tree.
In this case, ACU needs to issue b X [%] TrOW accesses,
where N is the vector length (> 256). To speed up the ACU
reduction and save energy dissipation, we implement P,gq
bit-serial adder trees in parallel within each ACU. Before
precharging and activating a new row, ACU performs P,qq-
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time column accesses in the same row and consecutively
feeds the data into P,qq adder trees. Considering that the
interval tccp for DRAM to issue column access commands
is much less than row access fgc (i.e. 20x less), the row
activation time and latency of reduction decrease to around
1% compared to the case with just one adder tree. Moreover,
the proposed design trades excessive row activation energy
by the register energy. The energy consumed by reduction
operation is significantly reduced.

2) TransPIM Computing: TransPIM supports all com-
puting operations for Transformer by adopting a hybrid in-
memory and near-memory computing paradigm with ACUs
and data buffers. Specifically, point-wise vector operations
are performed in the memory cells since DRAM natively
supports such operations with very high parallelism [14], [39].
TransPIM offloads the vector reduction and part of Softmax
function from subarray to ACU to improve the efficiency.

Vector Computation: Figure 8 (a) shows the data path of
vector multiplication in TransPIM. The vectors are organized
in a bit-serial format, where b rows of the same bit line are
allocated for each b-bit data. For vector multiplication, it
includes two steps: point-wise multiplication and reduction.
TransPIM calculates the point-wise multiplication in the
memory array using existing schemes [2], [14], [39]. We
adopt the Boolean majority functions [2] to reduce the
computing latency. These PIM operations utilize DRAM
timing violations to perform bulk bit-wise operations in the
standard DRAM architecture [19]. The vector has three copies
in b rows to parallelize the computation (o). The point-wise
multiplications between the replicated vectors and columns
of the matrix are computed simultaneously. After point-wise
multiplication, a vector reduction is required to obtain the
results. The concatenated ACU to the subarray calculates
the reduction of point-wise multiplication results (g). The
ACU continuously receives data in bit-serial format from the
row buffer and temporarily store the reduction results in the
data buffer. The final reduction results will be written back
to the memory cell as 6

Softmax Calculation: PIM is unable to directly support
the complicated exponential and division operations of
Softmax. We resolve this limitation in TransPIM by rewriting
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Softmax function as %{_J_esid, where the reciprocal of row
i

N
accumulation is mO\)/:efl out of the point-wise exponent. In
this case, Softmax becomes the multiplication between the
point-wise exponent and the reciprocal of the associated row.
The point-wise exponent of attention score matrix S should
be first calculated. Then the final Softmax output is the point-
wise division between the exponents and the accumulation in
the associated row. As shown in G of Figure 8 (b), the point-
wise exponent is approximated using five-order Taylor series
expansion, which is computed by PIM multiplication and
addition. Then row accumulation is offloaded to ACU using
vector reduction. Meanwhile, the divider in ACU computes
the reciprocal of row reduction (e). The single reciprocal
value for a row will be replicated 256 copies and written
back the memory cell array by the data buffer (9 and 9)-
Finally, the point-wise multiplication between reciprocal and
exponent is computed in memory by PIM operations (e).

B. Data Communication Architecture

TransPIM dataflow exploits the internal memory bandwidth
to reduce the data movement overhead caused by data loading.
However, the standard HBM is still insufficient to match the
high data parallelism and the internal bandwidth requirement.
Even though we can use the bulk in-memory data movement
approach like RowClone [38], the internal bandwidth is still
limited by the shared data bus. Furthermore, the memory
system needs frequent intra-bank and inter-bank data move-
ments for memory-based computations, where data copy and
re-organization may significantly downgrade the performance.
Thus, we propose a data communication architecture to
accelerate various data movements in TransPIM.

1) Customized Hardware Components: TransPIM intro-
duce two customized hardware components in the HBM
architecture for data communication.

Data Buffer: For most intra-bank and inter-bank data
movements, we can use the fast parallel mode (FPM) of
RowClone [38] to perform fast row copy. However, this
approach has two defects. First, it is unable to provide a
fine-grained partial copy for a row. Second, the FPM requires
the source and destination rows to be located within the same
subarray. To overcome the two constraints, we implement a
re-configurable data buffer in each bank to manipulate data
from ACU or row buffer as in Figure 7, realizing more flexible
data movement. The data buffer is a configurable 8 x 256b
buffer, consisting of 8 256-bit shift registers, supporting data
copy and re-organization. The data buffer can either receive
8-bit (from ACU) or 256-bit data (from sense amplifier).

Ring Broadcast Unit: As illustrated in Section III,
TransPIM adopts a ring-based data broadcast to reduce the
data loading overhead for processing attention scores and
self-attention output. However, the original HBM cannot
efficiently support such ring-based data broadcast because all
data transfers in a channel need to use the shared data bus
and controller. TransPIM effectively decouples data transfers
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Figure 9. The optimizations for ring-based broadcast in the TransPIM
hardware. The example shows the data transfers between two bank groups
(4 banks per bank group).

between different bank groups (or even different banks) by
per-bank broadcast units and direct 256-bit link between
broadcast units of two neighboring banks, as shown in
Figure 9(a).

2) Optimization for TransPIM Data Movement: With the
proposed communication architecture, we can accelerate
various data movement patterns when running TransPIM
dataflow.

Fine-grained data movement: Each data buffer, with
the help of its controller, supports fine-grained data copy
and duplication in a bank. When fine-grained partial copy
is needed (such as 9 and a in Figure 8 (b)), the data
buffer reads data from ACU through 8-bit input and performs
data replication. The replicated data is written back to the
sense amplifier through 256-bit output in a bit-serial manner.
Another advantage of data buffer is its ability to move data
between different subarrays without using the shared bus.
The data buffer supports parallel accesses by reading 256-bit
data from the sense amplifier for each column access cycle.
It can cache at most 2Kb data and copy each 256-bit data
into the sense amplifier located in a different subarray.

Ring-based data broadcast: Figure 9 shows the data
movements of ring-based data broadcast (Section III-B2) in
two bank groups of the TransPIM architecture. As illustrated
in Section III, each step of the ring-based broadcast requires
all banks to copy data to their next banks in the ring (e.g.,
1—2—3 ... 7—0 in the figure). If we assume the time of
a data copy between two banks is T, the original HBM
architecture requires 87" because each data copy requires the
global bus and controller. For TransPIM architecture, such
ring-based broadcast consumes a time of 37 as shown in
Figure 9. In the first step, we use the bank group bus (both
BankGroup A and BankGroup B) to perform bank 3—4
transfer. At the same time, we can also copy data from bank
0—1 and 6—7 using ring broadcast links between broadcast
buffers. In the second step, we use the bank group bus to
transfer 7—0, while using the ring broadcast buffers for 2—3
and 4—35. The two remaining transfers, 1—2 and 5—6 can
be processed in parallel during the third step. The algorithm
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Table 1
ARCHITECTURAL PARAMETERS FOR TRANSPIM

[HBM Organization | Channels/die = 8, Banks/channel = 32, Banks/Group = 4,
Rows = 32k, Row Size = 1KB, Subarray size = 512 x 512,
DQ size = 256

tre =45, trep = 16, tras =29, tcL = 16, trrp = 2, twr = 16,
fccpg =2, fccpp, =4

HBM Timing (ns)

HBM Energy (pJ) | eact =909, epregsa = 1.51, eposgsa = 1.17, eyo = 0.80

ACU Clock = 500 MHz, Py, = 16 ACUs/bank, Pyyq = 4 Pipelined
Bit-serial Adder Tree/ACU, Adder tree width = 256, 3-stage
pipelined divider

Buffer Data buffer: 8 x 256b, Ring broadcast width = 256

can scale to more bank groups with the same time complexity,
which is significantly lower than that of the non-optimized
architecture.

Token reduction in decoder blocks: As introduced in
Section III-C, the output token of each decoder block requires
a global reduction for all partial sums distributed in different
banks. TransPIM can efficiently reduce all the partial sums in
a multi-step parallel way. Specifically, in each reduction step,
we separate banks with partial sums into multiple two-bank
reduction groups and reduce partial sums of each reduction
group by moving partial sums from one bank to another.
All reduction groups process the reduction in parallel with
PIM operations. TransPIM can efficiently support such data
movements by exploiting the internal bandwidth provided
by inter-ACU links, bank group bus, and channel bus.

V. EXPERIMENTS

In this section, we describe our experiments that evaluate
the benefits of proposed design.

A. Evaluation Methodology

The hardware characteristics for TransPIM are summarized
in Table I. The memory is standard HBM2 [19]. The timing
and energy parameters are extracted from the previously
published work [34]. Hardware components of TransPIM
keep the same area and power constraints as the original
HBM. The HBM area is estimated using the analytical tool
CACTI-3DD [7] on 22nm technology node. We assume up
to 8 HBM stacks are connected to a host CPU through the
silicon interposer. The host-HBM bandwidth is 256GB/s [34].

We implement TransPIM using Verilog HDL and synthe-
size the design on Synopsys Design Compiler using 65nm
library. The synthesized design is placed and routed using
Synopsys IC Compiler. Moreover, clock gating is applied to
save energy dissipation. Pygq = 4 bit-serial adder trees are
implemented in each ACU. The constant divider to calculate
1/x is three-stage pipelined to satisfy the timing constraints.
In order to match the rate of column access time fccp = 2 ns,
the ACU is configurated to run at 500 MHz clock frequency.
The obtained area and power data of ACU are scaled to
22nm to match the memory technology. We consider the
process difference between logic and DRAM using the similar
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Table IT
OVERHEAD BREAKDOWN OF TRANSPIM.

Unit/Bank
Adder Tree
Divider

Data Buffer
Ring Broadcast
Others

TransPIM

8GB HBM2
Overhead
Memory Access
ACU

Buffers

Area (um-~)
594321
3055.6
2660.4
337.9

828.5

Power (mW)
25.1

0.7

3.8

0.2

2.9

Area (mm~)
53.15

2.15

Energy (pJ/op)
0.384

0.869

method in previous work [29], where DRAM process incurs
around 50% additional area overhead to the logic process.

The implementation results of TransPIM are given in Table
II. The 4-parallel bit-serial adder tree takes up 88% of the
overall area. Each memory bank of TransPIM is equipped
with Py = 16 ACUs. The total 512 ACUs consume about
2.15 mm?, incurring 4.0% area overhead to the original
DRAM architecture, far less than the 25% threshold of area
overhead [16], hence avoiding DRAM density loss.

1) Simulation: We implement an in-house simulator to
model the detailed performance and energy characteristics
for TransPIM and all PIM baselines. The front-end of the
simulator utilizes the TensorFlow interface which extracts the
workload formation for the simulation. The backend simulator
is a modified version of Ramulator [24]. We insert additional
commands to the simulator for TransPIM to simulate the run-
time behaviors of workloads for a given DRAM configuration.
The architectural configuration of HBM and timing/energy
parameters are shown in Table I.

2) Hardware Baselines: GPU&TPU: The GPU platform
is Nvidia RTX 2080Ti. We measure the GPU power using
nvidia-smi. We also include a single Google Cloud
TPUv3 with eight cores [22] as a baseline. We used JIT-
compiled TensorFlow models and calculated the average
latency from the second iteration to neglect graph compilation
overhead.

Near-bank processing (NBP): Newton [16] is used as
the near-memory baseline which is a near-bank processing
technology in HBM2E-like DRAM offloading most oper-
ations for machine learning model to the near-bank logic.
Since the NBP baseline already modifies the bank-level logic,
we enable the broadcast buffer, which handles intra-memory
data movements, in the NBP baseline for a fair comparison.
We assume the same HBM architecture for the NBP baseline
as the one used by TransPIM.

Original PIM: The original PIM architecture is the basic
HBM architecture with only the support for in-memory bit-
serial operations using the specialized memory controller
with modifications to the subarray as suggested by previous
works [2]. We also assume the same HBM architecture for
the PIM baseline as TransPIM.

3) Workloads: In this work, we evaluate two widely used
Transformer models, RoOBERTa [31] and Pegasus [46], for
various important NLP tasks including text classification
(IMDB) [32], summarization (Pubmed [9] and Arxiv [9]), and
question-answering (TraviaQA [21]). The classification and
question-answering tasks only have encoder blocks while the
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summarization tasks have both encoder and decoder blocks.
We also evaluate a decoder-only task, language modeling
(LM), using GPT-2-medium model [36]. All workloads are
implemented using TensorFlow 2 with XLA.

B. TransPIM Performance

We evaluate the efficiency of TransPIM by comparing it
with GPU and various memory-based architectures with either
layer-based or token-based dataflow. We denote each system
as “dataflow”-““architecture” (e.g., Token—-TransPIM). For
sensitive analysis, we test one more architecture configuration
of TransPIM which disables broadcast units and data buffers
for communication — denoted by “NB”, while “Buf” denotes
architectures with broadcast units and data buffers. Figure 10
shows the performance and the energy efficiency of all
architectures as compared to the GPU baseline. All memory-
based systems use 8 HBM stacks with a total capacity of
64GB. The performance is measured as the execution time
per batch because workloads with short token lengths (e.g.,
IMDB and TriviaQA) may not fully utilize the memory for
just a single batch. The GPU system runs with the maximum
batch size supported for each workload. The energy efficiency
is measured as GOP/J of different systems. All values are
normalized to the GPU baseline. All baselines run with a
precision of 8-bit for FC and FFN layers which is sufficient
for Transformer models [44]. We use 16-bit for Softmax to
support a range of exponential.

Comparison to GPU/TPU: The proposed system
(Token—-TransPIM) is 22.1x (8.7x) to 114.9x (57.4x%)
faster than GPU (TPU). TransPIM shows less significant
performance improvement on IMDB because the number of
tokens is too small for the PIM system to fully exploit the par-
allelism because the token-based sharding requires each bank
to process at least one token. For the workloads with more
tokens, the token-based scheduling can saturate the compute
capability of PIM system, fully exploiting the parallelism of
PIM operations. As for the energy efficiency, TransPIM is
138.1x (39.5%) to 666.6x (376.7x) more energy efficiency
than the GPU (TPU). Similar to the performance results,
TransPIM achieves much better efficiency when running
workload with long token sequence. The energy efficiency
improvements result from the fast execution and the reduction
of data movements.

Comparison to previous memory-based acceleration:
As compared to previous PIM-only acceleration (layer-
allocation), TransPIM with the token-sharding is 9.6 faster.
If the PIM-only acceleration also uses the token-sharding
processing, TransPIM is still 3.7 x faster. Furthermore,
TransPIM is 4.2 x and 1.3x more energy efficient than the
PIM-only acceleration with layer-based dataflow and token-
sharding respectively. Such results show that TransPIM im-
proves the performance and the energy efficiency of previous
PIM acceleration by both software-side and hardware-side
customization.
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Figure 10. Performance and energy efficiency result.

As compared to the NBP architecture, TransPIM is 9.1 x
and 6.4 x faster with token-sharding and layer-based dataflow
respectively. However, TransPIM is not more energy-efficient
than the NBP baseline with the same dataflow (around 0.2%
less). This is due to the large amount of energy consumed
by bit-serial in-situ operations which require a lot of parallel
row activation and pre-charge operations for all memory
subarrays.

Comparison to ASIC: The previous ASIC designs,
A3 [15] and SpAtten [42], adopt pruning techniques to
reduce the computation complexity and mostly focus on
accelerating the self-attention layers. TransPIM targets lower
data movement overhead and higher computing efficiency
for the end-to-end execution of Transformer models. Since
previous ASIC counterparts neglect the area of memory,
we assume all systems use the 8GB HBM as the memory.
The additional area of TransPIM is 2.15mm? for each
8GB HBM chip, which is close to A3 (2.08mm?) and
SpAtten g (1.55mm?). SpAtten [42] reports a 35x end-to-
end performance improvement for generative stage (decoder)
in GPT-2 model as compared to GPU. As a comparison,
TransPIM achieves 83.9x and 114.9x speedup on two similar
workloads (PubMed and Arxiv with Pegasus). Furthermore,
TransPIM yields an average throughput of 734 GOP/s which
is around 2.0 —3.3x of the peak throughput of A3 (221
GOP/s) and SpAtten (360 GOP/s). The gain comes from
three aspects. The token-based data sharding avoids redundant
data movement, thus improving the computation efficiency.
Moreover, the high data parallelism of in-memory and near-
memory computing provides higher peak performance. The
optimized data path of TransPIM exploits the large internal
bandwidth of HBM to reduce the data movement overhead.
In comparison, the performance of ASIC is constrained by
limited computing resources and off-chip memory bandwidth.

Decoder-only model: For decoder-only workload (GPT2-
LM), TransPIM is 1.4 x faster and 2.1 x more energy-efficient
than the second-best system (Layer—-TransPIM). Both
speedup and energy efficiency improvement of TransPIM over
other systems become less than other workloads. This results
from the fact that the decoder-only model only processes 1
token in each iteration, requiring much less data loading for

a) 20

( )E @Data Movement O Arith. (Non-Reduce) @ Reduce O Other

Z16

=

T

S

=8

E ﬂ ﬂ

Nl I |

ZO A g il Elﬂ H i Fiﬁ ﬂ af DHDHDRDD
12345678 (12345678 (12345678 (12345678 (12345678

IMDB PubMed Arxiv TriviaQA LM

,\
e

=

=

PubMed 32K

I~

Normalized Time
P

Normalized Time
© b & o ®

=

Attention
2. Layer-Orig.PIM
5. *Token-TransPIM 6. Layer-TransPIM

Attention
4. Layer-TransPIM-NB
8. Layer-NBP-Buf

3. Token-TransPIM-NB
7. Token-NBP-Buf

1. Token-Orig.PIM

Figure 11.  Performance breakdown of different systems: (a) overall
breakdown, and (b) layer-wise breakdown.

in-memory computations than encoder-based models.

C. Detailed Performance Analysis

We also investigate the detailed breakdown of operations
for all memory-based systems, as shown in Figure 11. The
figure shows the breakdown of four important categories of
operations including the data movement (loading and intra-
memory copy), non-reduction arithmetics, reduction, and
other operations including reads and stores.

Improvements over previous acceleration: As compared
to the PIM-only system, TransPIM significantly reduces
the overhead of data movement because of the efficient
data path (18.2x and 4.1x improvements for layer-based
or token-sharding dataflow). Furthermore, the customized
ACU of TransPIM effectively accelerates the costly reduction
operations, where TransPIM spends 35.3x and 56.1x less
time on reduction than PIM- and NBP-only systems. As
compared to the NBP baseline, the performance improvement
of reduction operation becomes even larger because the NBP
baseline has a much lower degree of parallelism. The limited
parallelism of the NBP baseline significantly increases the
latency of other arithmetic operations as compared to the
PIM implementation which is 13.2x faster.

Effect of token-sharding: The breakdown also sheds
light on the performance benefits of token-sharding. For all
systems, adopting token-sharding reduces the data movement
latency by 4.8, 4.5x, and 4.5x respectively. Such improve-
ments depend on the workloads, where we observe 1.3x,
10.1x, 5.0x and 1.9x improvement on IMDB, PubMed,
Arxiv, and TriviaQA respectively. Such results show that
the token-sharding works better in large workloads (longer
sequence) than small workloads because the data loading
time of layer-allocation schemes increases quadratically with
the sequence length for the attention layers. For the token-
sharding, the size of moved data only increases linearly.

Effect of data movement optimization: While the
token-sharding dataflow can significantly reduce the data
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Figure 12. Average bandwidth usage.
movement overhead, TransPIM can further reduce it through
the customized data path with broadcast and copy buffers.
As compared to TransPIM without buffers, such customized
data path provides a 4.1x reduction on the data movement.

Layer-wise breakdown: Figure 11(b) shows the layer-
wise breakdown results of summarization using Peagasus for
two workloads — PubMed ( 4K) and a synthetic data with
32K sequence length. All results are normalized to the total
time of the proposed Token-TransPIM system. Token-
based data sharding reduces the data movement overhead in
FC and FFN layers because it requires less data duplication
for computation (but less parallelism) than layer-allocation
dataflow. In attention layers, TransPIM significantly reduces
the data movement overhead because of the high bandwidth
utilization of ring-based broadcast as well as reduced data
movement using token-sharding.

Resource Utilization: We use the percentage of time
spent on computations to measure the utilization of memory
banks. As shown in Figure 11, Token-TransPIM has
an average 45.8% utilization, which is 1.5x higher than
Layer—-TransPIM (30.8%) because token-based dataflow
significantly reduces overhead of data movement. However,
Token-OriginalPIM and Token-NBP provides higher
compute utilization, which are 47.7% and 89.5% respectively.
This results from the extremely slow computation in PIM-
only and NBP-only solutions. Figure 12 shows the average
bandwidth utilization, which is the size of reading and
writing data divided by the latency. The systems using layer-
based dataflow consume more bandwidth than systems with
token-based dataflow. For example, Layer-TransPIM
has up to 1699 GB/s average bandwidth usage while
Token-TransPIM only has up to 762 GB/s. Considering
the overall latency, the result shows that layer-based dataflow
requires much more data movements than token-based
dataflow. Even though our 8-stack HBM system provides
enough bandwidth (BW,ggreqared = 8 % 256 = 2TB/s), layer-
based dataflow may become bandwidth-bound when increas-
ing the workload size or decreasing the system bandwidth.
On the hardware side, the usage of data buffer and ring
broadcast in TransPIM increases the bandwidth usage of
a specific dataflow because of low latency, showing that
TransPIM’s buffer architecture is always effective.

D. Hardware Customization Exploration

The parallelism of bit-serial adder tree and data buffer
size are the two design parameters of ACU. We need
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to explore different parameters to find the best tradeoff
between additional overhead and resulting performance. We
conduct a design space exploration on BERT model by
varying the parallelism of adder tree Pgq from 1 to 16.
The results are depicted in Figure 13. The increased adder
tree parallelism increases the accessed columns per row
activation, thus reducing the number of repeated activated
rows during vector reduction. As a result, the latency and
energy consumed by vector reduction decrease by at most
10.8x and 5.7, respectively. Besides, ACU reduces a large
part of DRAM access energy by register access energy as
shown in Figure 13(a). Finally, we choose P,gq = 4 as the
optimal parallelism for the adder tree in ACU since it keeps a
good balance between additional ACU area and performance.

We can enable higher parallelism by simultaneously
activating Pyp subarrays in a bank, where each subarray
contains one independent ACU. However, adding more ACUs
in a bank increases the area overhead. Figure 13(b) shows
the execution time and area overhead when adding different
ACU numbers in a bank. Adding one ACU for each subarray
(parallelism = Py, = 64) only increases the performance by
5.4 x while introducing 15.8% area overhead. We choose
Py, = 8 to well balance overhead and performance.

E. Power Analysis

We estimate the power consumption of TransPIM for tested
workloads, as depicted in Figure 14. Pegasus models on
TransPIM dissipate around 2% more power than RoBERTa
models under the same sequence length. As the input
sequence increases from 128 (IMDB) to 4096 (PubMed),
the power of these two models increases about 4W, which
is resulted from more computations. Overall, the consumed
power of TransPIM is still below the 60W power budget of
conventional DRAM system [34]. Thus, TransPIM satisfies
the thermal constraints of conventional and TransPIM can be
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integrated into existing commercial DRAM system without
additional modifications in terms of power and cooling.

F. Scalability

As shown in previous work [4], [25], [45], Transformer
would become significantly challenging for longer sequences.
Memory-based acceleration is promising to provide scalabil-
ity by simultaneously increasing the memory bandwidth (with
low memory access latency) and the compute parallelism.
Figure 15 shows the speedup when using more HBM stacks
for processing workloads with different sequence lengths.
The speedup is averaged across all workloads. The result
shows that TransPIM provides good scalability (almost linear)
for long sequence workloads which saturate the compute
capability of HBM. As the GPU-based solution is bounded by
the sequence length due to the limited memory capacity, our
experiments indicate that TransPIM is a promising solution
to extend the applicability of transformer models for long-
sequence applications.

VI. RELATED WORK

Transformer accelerators: A GPU-based serving system
and runtime called TurboTransformer is proposed in [13] to
process long sequences through maximizing the utilization
of computing and memory resources. But the scalability
of TurboTransformer is poor since it is unable to support
multiple GPUs. In contrast, TransPIM can be easily scaled
up by stacking multiple HBM chips to yield larger memory
space and support longer sequence lengths. SpAttn [42], A3
[15], and GOBO [44] are state-of-the-art ASIC processors
dedicated for the acceleration of attention module. Both
A3 [15] and SpAttn [42] implement sorting units to prune
redundant heads and shrink the memory footprint, thus
adapting to the limited on-chip buffer size. SpAttn [42] and
GOBO [44] propose low-precision quantization and pipelined
architectures to improve the efficiency. Besides, approximate
Softmax computation is used in [15]. But GOBO and A3
are unable to natively support the end-to-end acceleration
of the entire Transformer. Moreover, they need to load data
from off-chip memory before computation. The off-chip
memory bandwidth would become the bottleneck for memory-
intensive layers of the Transformer. Instead, TransPIM avoids
costly off-chip data transfer by keeping all the data in
memory.

PIM accelerators: Various PIM accelerators [16], [17],
[27], [29], [37], [40] have been proposed to reduce the
overhead of massive data movement as well as support
high data parallelism. Newton [16], FIMDRAM [27], and

McDRAM [40] adopt the similar near memory architec-
tures and horizontal data organization in memory banks.
They cascade bit-parallel arithmetic units to the DRAM
bank to perform matrix-vector multiplication. However,
the complicated bit-parallel and bulky buffer incur large
overhead and decrease memory density [27]. To reduce
the overhead of arithmetic units near memory, BFree [37]
stores lookup tables that are compatible for computation in
memory cells. However, the lookup table requires fine-grained
optimization to save the consumed space. Previous in-memory
accelerators  [12], [17], [29] also optimize the complex
reduction. Drisa [29] adds extra shifters in the subarray
while NeuralCache [12] relies on the cache I/O peripheral to
reorganize data multi-step hierarchical reduction. These two
methods either significantly increase the area overhead or
introduce large 1/0O latency. FloatPIM [17] supports reduction
by organizing reduction data in a bit-serial way to avoid
extra data movement. But this scheme sacrifices parallelism
in Transformer which usually has long vectors for reduction.
Different from the previous work, TransPIM combines the
advantages of in-memory and near-memory computing. The
proposed ACU is bit-serial to minimize the overhead of
peripheral circuits. Compared to existing PIM accelerators,
the proposed PIM-NMC combined computing paradigm
provides better efficiency without affecting the memory
density. MAT [48] is a PIM-based processing framework for
attention-based machine learning models on long-sequence
input. It breaks the long-sequence input into segments with
various sizes and processes segment in a pipeline manner.
However, MAT only targets a single encoder block, different
from TransPIM which accelerates the whole Transformer.

VII. CONCLUSION

In this work, we propose, TransPIM, an end-to-end acceler-
ation for Transformer based on emerging HBM architectures.
TransPIM adopts a software-hardware co-design principle
to accelerate various Transformer models. As compared to
previous accelerators, TransPIM significantly reduces the
overhead of data loading by exploiting the data locality
in computations associated with input tokens. TransPIM
also includes lightweight hardware modifications in HBM
to improve the hardware efficiency of computation and
data communication. With evaluation on various workloads,
TransPIM achieves significantly better performance and
energy efficiency than various platforms including GPU,
TPU, ASIC, and state-of-the-art memory-based accelerators.
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