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Abstract—Transformer-based models are state-of-the-art for
many machine learning (ML) tasks. Executing Transformer
usually requires a long execution time due to the large memory
footprint and the low data reuse rate, stressing the memory
system while under-utilizing the computing resources. Memory-
based processing technologies, including processing in-memory
(PIM) and near-memory computing (NMC), are promising
to accelerate Transformer since they provide high memory
bandwidth utilization and extensive computation parallelism.
However, the previous memory-based ML accelerators mainly
target at optimizing dataflow and hardware for compute-
intensive ML models (e.g., CNNs), which do not fit the
memory-intensive characteristics of Transformer. In this work,
we propose TransPIM, a memory-based acceleration for
Transformer using software and hardware co-design. In the
software-level, TransPIM adopts a token-based dataflow to
avoid the expensive inter-layer data movements introduced by
previous layer-based dataflow. In the hardware-level, TransPIM
introduces lightweight modifications in the conventional high
bandwidth memory (HBM) architecture to support PIM-
NMC hybrid processing and efficient data communication for
accelerating Transformer-based models. Our experiments show
that TransPIM is 3.7× to 9.1× faster than existing memory-
based acceleration. As compared to conventional accelerators,
TransPIM is 22.1× to 114.9× faster than GPUs and provides
2.0× more throughput than existing ASIC-based accelerators.

Keywords-Processing in-memory; Near-data processing;
Transformer; Domain-specific acceleration; Software-hardware
co-design.

I. INTRODUCTION

Attention mechanism has emerged as a powerful tool

to model long-term dependencies in sequential data [41].

Attention-based models, such as Transformer [41] and its

enhanced variants [10], [36], have dramatically improved the

accuracy of important machine learning tasks, like natural

language processing [30], computer vision [6], [11], and

video analysis [5]. However, these benefits come at the cost

of long execution time due to the large memory footprint and

low computation to memory ratio. Existing CNN-oriented

accelerators are designed for compute-intensive operations

(e.g., convolution), making them sub-optimal for processing

Transformers [15], [42]. To accelerate Transformer models,

§Equal contribution

there have been several domain-specific accelerators, such

as SpAtten [42] and A3 [15], that offload either the key

operation (i.e., self-attention) or the whole Transformer from

conventional systems (e.g., GPU). However, these ASIC-

based accelerators still suffer from the constrained parallelism

and limited off-chip memory bandwidth that bound the

performance of acceleration.

Memory-based acceleration, including processing in-

memory (PIM) and near-memory computing (NMC), is

promising to accelerate Transformer models as it supports

extensive parallelism, low data movement cost, and scalable

memory bandwidth [1], [12], [14], [18], [29], [47], [49],

[50]. Although there have been many memory-based neural

network accelerators [12], [17], [27], [29], [37], their dataflow

and hardware are mainly optimized for compute-intensive

CNNs, which may be incompatible with memory-intensive

Transformers. Specifically, the dataflows of existing memory-

based accelerators [12], [17], [29] are determined in a

layer-level granularity, such that either utilize the whole

memory to process one layer at a time [12], [29] or allocate

mutually exclusive memory resources to different layers [17].

Such layer-based dataflows introduce large non-compute

overhead in Transformers because of the large amount of

input data and weights that need to be loaded or transferred

between layers. On the hardware side, Transformer’s complex

operations (such as reduction and Softmax), which require

both parallel computation and fine-grained intra-memory

data reorganization, would be the performance bottleneck for

memory-based accelerators. Our experiments (Section II-C)

show that the layer-based dataflows spend over 60% of

execution time on data movements when accelerating a

widely-used Transformer using an in-memory bit-serial

accelerator on emerging high bandwidth memory (HBM).

Furthermore, the reductions using bit-serial row-parallel PIM

operations take around 30% of execution time, exhibiting a

much lower compute throughput than other PIM arithmetic

operations. The results show both software and hardware

issues can significantly limit the efficiency of memory-based

Transformer acceleration.

In this work, we propose TransPIM, a software-hardware

co-design based on an emerging commodity memory, high
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bandwidth memory (HBM), that utilizes memory-based

acceleration technology to accelerate Transformers. In the

software, instead of allocating memory for different layers,

TransPIM adopts a token-based dataflow that assigns memory

resources for computations across different layers based on

the input tokens. With the token-based dataflow, each memory

bank processes and stores the intermediate results related to a

specific set of tokens. By doing so, TransPIM can significantly

reduce the amount of data loaded or transferred across layers

because the increased locality of intermediate data from

different layers improves data reuse rate. TransPIM only

requires data movement for computing the cross-memory

(i.e., between different sets of tokens) information which

can be handled efficiently by exploiting the large internal

memory bandwidth of HBM.

Even though the token-based dataflow significantly im-

proves the throughput by reducing the data movement

overhead, the software-level solution cannot resolve the

inefficiency of complex operations in Transformer. Exist-

ing memory-based accelerators supports either PIM [2] or

NMC [16], [27]. However, different key operations in Trans-

formers do not share similar patterns that can be efficiently

processed by a single type of memory-based technology.

Furthermore, the original data path in HBM heavily relies

on the shared bus. Therefore, the resource conflict on the

shared bus for transferring data may become the bottleneck

for applications requiring high internal bandwidth. To solve

these issues, we propose an integrated set of hardware in

HBM, including near-memory auxiliary computing units

(ACUs) and an optimized data communication architecture.

Specifically, the ACUs enable the memory to exploit the

benefits of both PIM and NMC to efficiently accelerate

different operations. The optimized data communication

architecture adds buffers and specialized links in the HBM

hierarchy to offload a large number of data movements from

the global shared data path, delivering significantly higher

memory bandwidth utilization than the original HBM.

In summary, the contributions of this work include:

• Compared to existing accelerators [15], [42] dedicated to

attention, TransPIM is the first end-to-end memory-based

accelerator that speeds up the entire Transformer inference

by exploiting the emerging memory-based acceleration.

• The proposed software-hardware co-design significantly

outperforms existing platforms, including GPU, TPU, and

ASIC-based accelerators. Specifically, TransPIM is 22.1

× to 114.9 × faster than GPUs on various widely-used

Transformers. As compared to ASIC-based accelerators,

TransPIM provides 2.0× higher throughput.

• We propose a token-based dataflow for general

Transformer-based models to reduce unnecessary data

loading by exploiting holistic data reuse. Our results show

that the proposed dataflow is 4.6× faster than the previous

method on various memory-based accelerator architectures.

Figure 1. Operations of encoder and decoder blocks in Transformers.

• TransPIM introduces lightweight hardware components in

the conventional HBM architecture to support efficient com-

puting and memory operations for Transformers, without

impacting the memory density. Our experiments show that

TransPIM significantly improves the performance by 3.7×
and 9.1× over PIM-only and NMC-only architectures.

II. BACKGROUND AND MOTIVATION

This section first introduces the background for Trans-

former and PIM acceleration. Then, this section analyzes

the issues in existing memory-based technologies with

accelerating Transformer-based models, which motivate a

new software-hardware co-design.

A. Transformer

Transformer has an encoder-decoder architecture [41], as

shown in Figure 1. Both the encoder and the decoder are

constructed by stacking identical blocks. Each encoder block

has three sub-layers including a fully-connected layer (FC),

a self-attention layer (SA), and a feed-forward layer (FFN).

For an input sequence with L tokens, the FC layer gets

an embedding matrix of dimension L×de and generates a

query matrix Q of dimension L× dq and a key matrix K
of dimension N × dk, and a value matrix V of dimension

L×dv by multiplying the embedding matrix with different

weight matrices. For simplicity, we use D to denote dk, dq
and dv. Each D-dimension vector in the Q, K and V matrices

corresponds to an input token. The encoder block then feeds

the Q, K, and V matrices to the SA layer. The key operation in

a SA layer is the scaled dot-product attention which computes

dependencies between input tokens as Softmax(QKT√
D
)V ,

where Softmax(·) denotes the Softmax function. The QKT√
D

is defined as the score matrix S. The encoder block feeds

the attention output to the FFN layer to generate the block

output, which can be used as an input to the next block

(either encoder or decoder) or to a task-specific output layer

(e.g., classification). Each decoder block also has the FC

layer, the SA layer, and the FFN layer to process the output
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Figure 2. Memory-based computing on HBM architectures.

of the preceding layer. Unlike encoder blocks, the input and

output of decoder blocks usually contain only one or a few

tokens. In addition, the decoder inserts another attention layer

that performs attention over previous blocks. Transformer

performs many memory-intensive operations [15], [20], [42],

which make it suitable for in- and near-memory acceleration.

B. PIM Acceleration for Transformers

Memory-based computing has been widely used for

various memory-intensive and compute-intensive applications

due to its extensive parallelism and ability to minimize

data movements. The baseline memory architecture used

in this work is the Samsung’s high-bandwidth memory

(HBM) [27], [33] which has become the state-of-the-art

memory solution for various emerging platforms [8], [23],

[28], [51]. Figure 2 shows the overall architecture of 4 HBM

stacks. All stacks are connected to the host CPU/GPU for

cross-stack communication. Each HBM stack is a 4-high

HBM chip with multiple DRAM slices on the top of the

base die, connected with many through-silicon vias (TSVs),

providing much higher bandwidth and lower access latency

than the conventional DRAM.

There are two ways to process data in HBM. The first one

is near-memory computing (NMC), where compute logic is

integrated either in the near-bank I/O or, more aggressively,

in the near-subarray circuits inside the memory bank. For

example, Samsung recently proposed a new type of HBM

called function in-memory DRAM (FIMDRAM) [27], that

integrates programmable computing units (PCUs) in the I/O

circuits of the memory banks. These non-trivial PCUs take up

the chip area for some memory banks, decreasing the memory

density. The second technology is processing in-memory

(PIM) which supports computing in the DRAM banks (or

subarrays) by specialized sequences of activate and pre-

charge commands [14] or modified subarray structures [2],

[29]. PIM usually requires data to be placed column-wisely

and follows a bit-serial row-parallel scheme to process the

computation. PIM provides a higher level of parallelism with

fewer data movements than NMC, but can only support a

Q=Emb. Wq
K=Emb. Wk
V=Emb. Wv

2*L*de*(dq+dk+dv)
values

S=sm.(QKT)V

2*L2*(dq+dv)
values

O=S Wffn

2*L*dv*do
values

Figure 3. Challenges of PIM acceleration for Transformers.

limited set of operations with high latency (because of bit-

serial processing). NMC supports more general operations but

the throughput is limited by the number of NMC processing

elements as well as the bandwidth of the data link.

C. Motivation of Software-hardware Co-Design

Many previous works show that both the software-level

scheduling (a.k.a., dataflow) and the hardware design play

important roles in neural network acceleration [26], [35],

[43]. To maximize the parallelism, existing memory-based

DNN accelerators [2], [12], [17], [29] adopt a layer-based

dataflow which allocates sufficient memory resources to

parallelize computations for different output elements in a

layer. The layer-based dataflow requires a whole data loading

before processing each layer. We conduct an investigation

on the efficiency of existing memory-based acceleration for

Transformers. We evaluate the latency breakdown of a text

classification task using RoBERTa Transformer model on an

HBM-based PIM-only system which has 8 8GB HBM stacks.

The PIM-only system processes all computations using

bit-serial row-parallel operations inside memory subarrays.

Figure 3(a) shows the profiling results. Figure 3(b) shows

the size of loaded data for each layer in Transformer when

using layer-based dataflow.

Our experiments show that the data movement of the

layer-based dataflow takes the majority (around 60%) of

the execution time, which is the time for loading and

reorganizing data. The long data movement time results

from two aspects. First, to maximize the parallelism, the

layer-based dataflow needs data duplication in the memory

for parallel computations, increasing the amount of loaded

data. Second, most parallel data layouts do not exploit the

data reuse between neighboring layers. In this case, we need

to load all data for the intermediate layers (e.g., the attention

layer). As shown in Figure 3(b), the size of computation data

for the attention layer grows quadratically with the sequence

length. Therefore, minimizing the amount of loaded data is

critical to reducing the overall execution time of Transformer.
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Figure 4. Token-based data sharding scheme and the dataflow of Transformer encoder in TransPIM. Banks = 3.

In this work, we exploit the fact that all operations in different

Transformer layers are related to tokens in the input sequence,

making it possible to improve the data locality by reusing

token-related data during the execution.

In addition to the data loading issue, the evaluated PIM-

only accelerator does not perform well for some com-

plex Transformer computation primitives, like reduction

operations, due to the costly intra-bank (or subarray) data

movements for long vectors in Transformer (e.g., D = 512).

For example, the reduction takes 23% to 32% of time for

different sequence lengths, which is significantly larger than

other arithmetic operations (4% to 10%). This is because the

reduction requires data movements to reorganize the data in

the memory for accumulation, degrading the efficiency of

PIM operations. Such intra-array data movements introduce

more overhead in Transformers than CNNs because the length

of vectors for reduction is much longer in Transformers (e.g.,

512 for Transformer vs. 9 for convolution with 3×3 kernels).

D. Key Ideas of TransPIM

Our investigation shows that existing technologies intro-

duce large overhead on Transformers, requiring specific mod-

ifications on both software dataflow and hardware support.

Therefore, this work proposes to accelerate Transformer via

a software-hardware co-design.

Dataflow: TransPIM adopts an efficient dataflow which

maps Transformer computation to the memory-based archi-

tecture using a token-based sharding mechanism. TransPIM

divides the input tokens into different shards and allocates

these shards to different memory partitions. In this work,

we use memory bank as the basic memory partition for

shard allocation. During acceleration, each memory partition

processes its associated token shard independently across

different layers. As compared to layer-based dataflow, the

token-based dataflow avoids the memory traffic for reused

data. We also propose an efficient broadcasting algorithm to

speed up data movements for dependent data by exploiting

the large internal memory bandwidth of HBM.

Hardware acceleration: In the hardware, TransPIM

adds lightweight modifications to the conventional HBM

architecture, which not only accelerate various Transformer

operations but also efficiently support the proposed dataflow.

Specifically, TransPIM architecture implements multiple

auxiliary computing units (ACUs) within each memory

bank to perform vector reduction and Softmax function that

cannot be efficiently processed by bit-serial row-parallel

PIM operations. TransPIM exploits the benefits of both

PIM and NMC to achieve high efficiency and throughput.

Furthermore, TransPIM enhances the original HBM data

path with specialized data buffers and communication links

to support various data manipulations and movements for

Transformers.

III. TRANSPIM DATAFLOW

In this section, we introduce the detailed process of

TransPIM dataflow. The underlying architecture is based

on compute-enabled HBM as shown in Figure 2.

A. Token-based Data Sharding

The key of TransPIM dataflow is token-based data sharding,

which allocates HBM banks based on input tokens. The main

benefits provided by the token-based data sharding come from
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the data reuse across different layers by keeping computations

of tokens in the same memory location. We can reduce the

data movement cost while exploiting more memory-level

parallelism because different banks can handle computations

and data movements for allocated tokens independently. After

the token sharding, each bank handles computations for its

shards throughout the end-to-end Transformer inference. The

token-based data sharding is applied to the input tokens

before the fully-connected layers of the first encoder block.

As introduced in Section II, the input tokens form a matrix

with size L×D, where L is the number of tokens and D is the

embedding vector dimension. The input tokens are uniformly

divided into “shards” along the token dimension and allocated

to different memory banks. In the case of N memory banks,
L
N tokens are assigned to each bank. Therefore, each bank

receives an input matrix with size L
N ×D. Figure 4 shows an

example of distributing 3 tokens into 3 memory banks.

B. Encoder Blocks

During the Transformer inference, each memory bank

performs the computations of FC, attention, and FFN layers

for its allocated tokens.

1) Fully-Connected Layer: The FC layer generates the

query (Q), key (K), and value (V ) matrices from the input

tokens. It involves three matrix multiplications between the

input tokens and three weight matrices (WQ, WQ, and WQ).

In TransPIM, all weights of the three FC weight matrices

are loaded into each memory bank before FC computation.

And each bank multiplies the assigned L
N ×D sub-matrix Ii

with D×D weight matrices as illustrated in 1 of Figure

4. Then, each bank generates three L
N ×D sub-matrices, Qi,

Ki, and Vi. The Qi, Ki, and Vi matrices are retained in each

memory bank and used for the following attention layers.

2) Attention Layer: The computation of attention layer in

TransPIM involves three steps: (1) Intra-shard local attention,

(2) Inter-shard cross attention, and (3) Softmax.

Intra-shard local attention: The attention scores S are

computed by S = Q×KT . In TransPIM, Q and K matrices

are distributed in memory banks. With the local sub-matrices,

each memory bank first computes the attention scores

between local tokens, as shown in 2 of Figure 4). Each

memory bank computes the L
N × L

N partial attention scores in

the diagonal of attention score matrix using the local Qi and

Ki from the FC layer. During the intra-shard local attention,

each bank i can independently compute the partial attention

score matrix Si,i without communicating with other banks.

Inter-shard cross attention: After computing all local

attention scores, TransPIM computes other attention scores by

moving partial K matrices between different banks. As shown

in 3 of Figure 4, the inter-shard cross attention consists of

multiple ring broadcast and compute steps. To improve the

bandwidth utilization, we propose a ring broadcast scheme

to transfer Kj data between banks, where each Kj sub-matrix

is sent to all banks step by step through an abstract ring of

banks (e.g., 0→1→2 ... N→0). In each broadcast step, each

bank multiplies local Qi with the received Kj from a remote

bank, generating an L
N × L

N partial attention scores in the i-th
row and j-column of the blocked attention matrix. A total of

N ring broadcast and compute steps are required to obtain

the entire attention score matrix S. Each bank preserves L
N

rows of the attention score matrix, Si, with shape L
N ×L. The

performance of inter-shard cross attention heavily depends

on the speed of the ring broadcast phase. In Section IV-B,

we provide an efficient hardware design and a scheduling

scheme to fully exploits the internal memory bandwidth of

HBM for ring broadcast-based data transfer.

Softmax: The Softmax layer normalizes the exponential of

attention scores related to each token. Each bank calculates

the Softmax using its local L
N rows of attention scores. There

is no data movement between banks thanks to the data locality

of attention scores. For multi-head attention with h heads,

there are h attention matrices to calculate. Therefore, the

Softmax should be repeated h times to obtain all the results.

The naive Softmax requires complex exponential function,

reduction, and division. Thus, we design an efficient approach

in Section IV-A2 for calculating Softmax function in the

TransPIM hardware.

3) Self-attention Output and Feed-forward Network: The

final step of the self-attention is to multiply the attention score

matrix S after Softmax by the V matrix. With the token-based

data sharding, each bank stores the partial attention scores

and partial Vi matrix. The calculation of self-attention output

( 4 of Figure 4) is similar to inter-shard cross attention. The

partial Vi matrix is broadcasted through banks and each bank

computes the L
N ×D partial attention out Oi. Feed-forward

network (FFN) consists of two consecutive FC layers. In the

last step of Figure 4 4 , the attention out (input of FFN) has

the same token sharding as input FC layers ( 1 ). Therefore,

each FFN-FC layer has a similar process to the input FC

layers.

C. Decoder Blocks

The key difference between the decoder block and the

encoder block is that each decoder block only needs to

calculate one new token and attention operations between the

new token and the old tokens. Figure 5 shows the processing

flow for decoder layers which is slightly different from the

encoder blocks. In each decoder block, we keep using the data

sharding of the preceding block, which can be either the last

encoder or the previous decoder. We allocate the last bank to

process the FC layers for the new Q, K, and V vectors. In 1

of Figure 5, we allocate Bank 2 to process Qnew, Knew, and

Vnew. At the end of FC layers, TransPIM sends the generated

Qnew to all other banks to compute attention scores. Besides,

Knew and Vnew are concatenated to the old Ki and Vi of last

bank. At 2 , each bank performs intra-shard local attention

using local Qnew, Ki, and Vi. At the end of 2 , each block

obtains and preserves L
N columns ( L

N +1 for the last bank) of
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Figure 5. Dataflow of TransPIM for Transformer decoder.

Figure 6. Overview of TransPIM hardware based on HBM.

the new score matrix. In the output compute and summation

( 3 ), each bank uses its local Si and Vi vectors to compute

partial sum PSumi of the new attention output Onew. This

scheme requires one reduction step to generate the correct

output. In Section IV-B, we introduce how to efficiently

process such reduction in a modified HBM architecture. The

decoder scheme supports both encoder-decoder and decoder-

only Transformers. The only difference between these two

types is whether memory banks pre-store “context” vectors

which are K and V vectors from encoder blocks. For each

new token, we allocate the bank with the minimum number

of tokens to balance computation.

IV. TRANSPIM HARDWARE ACCELERATION

We propose a new memory-based hardware acceleration

to address the challenges of accelerating Transformer models.

Figure 6 shows the hardware customization in the standard

HBM2 structure [19], which has two parts – 1) in-bank

auxiliary computing units (ACUs), 2) a data communication

architecture with near-bank data buffer and ring broadcast

units integrated into the original HBM data path.

Figure 7. Detailed design of ACU and data buffer.

A. Auxiliary Computing Unit

TransPIM adds ACUs to support operations that are not

friendly for in-memory bit-serial operations.

1) ACU Design: Unlike previous near-bank processing

units [16], [27] for conventional row-wise data layout, the

proposed ACU works on column-wise bit-serial data in order

to support in-memory operations. As compared to previous

PIM-only work [29], which modifies the cell array structure

and adds extra shifters, the ACU offloads reduction, Softmax,

and data broadcast with a more light-weight design.

As shown in Figure 7, each ACU is concatenated after

the subarray to receive the 256-bit data from the row buffer

because it is too expensive to employ arithmetic units to

simultaneously process the data of the entire row buffer (e.g.,

8Kb). Therefore, the same bit of 256 different numbers in a

row is accessed from the row buffer for each memory access

to support the bit-serial data layout for in-memory operations.

A total of Padd 256-bit adder trees are implemented within

each ACU to fully exploit the internal bandwidth of memory

bank and reduce the DRAM’s row activation overhead. Each

adder tree is composed of area-efficient 255 bit-serial adders

[3] to support the bit-serial data organization and reduce

overhead. Besides, the bit-serial adder tree is stage-pipelined.

A register and a divisor are implemented to latch intermediate

partial sums and compute the reciprocal of row accumulation

in Softmax function. Similar to [29], Psub subarrays in each

bank are activated simultaneously to increase the computation

parallelism. Thus Psub ACUs are implemented for each

memory bank.

When the vector length of point-wise vector multiplication

results is less than the width of the adder tree, the ACU

reduction can be computed using a single bit-serial adder

tree. For b-bit data, a total of b row accesses are required to

compute the reduction results. However, the reduced vector

length is generally larger than the width of the adder tree.

In this case, ACU needs to issue b×� N
256� row accesses,

where N is the vector length (> 256). To speed up the ACU

reduction and save energy dissipation, we implement Padd

bit-serial adder trees in parallel within each ACU. Before

precharging and activating a new row, ACU performs Padd-
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Figure 8. The data path of different computations in TransPIM.

time column accesses in the same row and consecutively

feeds the data into Padd adder trees. Considering that the

interval tCCD for DRAM to issue column access commands

is much less than row access tRC (i.e. 20× less), the row

activation time and latency of reduction decrease to around
1

Padd
compared to the case with just one adder tree. Moreover,

the proposed design trades excessive row activation energy

by the register energy. The energy consumed by reduction

operation is significantly reduced.

2) TransPIM Computing: TransPIM supports all com-

puting operations for Transformer by adopting a hybrid in-

memory and near-memory computing paradigm with ACUs

and data buffers. Specifically, point-wise vector operations

are performed in the memory cells since DRAM natively

supports such operations with very high parallelism [14], [39].

TransPIM offloads the vector reduction and part of Softmax

function from subarray to ACU to improve the efficiency.

Vector Computation: Figure 8 (a) shows the data path of

vector multiplication in TransPIM. The vectors are organized

in a bit-serial format, where b rows of the same bit line are

allocated for each b-bit data. For vector multiplication, it

includes two steps: point-wise multiplication and reduction.

TransPIM calculates the point-wise multiplication in the

memory array using existing schemes [2], [14], [39]. We

adopt the Boolean majority functions [2] to reduce the

computing latency. These PIM operations utilize DRAM

timing violations to perform bulk bit-wise operations in the

standard DRAM architecture [19]. The vector has three copies

in b rows to parallelize the computation ( 1 ). The point-wise

multiplications between the replicated vectors and columns

of the matrix are computed simultaneously. After point-wise

multiplication, a vector reduction is required to obtain the

results. The concatenated ACU to the subarray calculates

the reduction of point-wise multiplication results ( 2 ). The

ACU continuously receives data in bit-serial format from the

row buffer and temporarily store the reduction results in the

data buffer. The final reduction results will be written back

to the memory cell as 3 .

Softmax Calculation: PIM is unable to directly support

the complicated exponential and division operations of

Softmax. We resolve this limitation in TransPIM by rewriting

Softmax function as 1

∑N
l=1 eSi, j

eSi, j , where the reciprocal of row

accumulation is moved out of the point-wise exponent. In

this case, Softmax becomes the multiplication between the

point-wise exponent and the reciprocal of the associated row.

The point-wise exponent of attention score matrix S should

be first calculated. Then the final Softmax output is the point-

wise division between the exponents and the accumulation in

the associated row. As shown in 1 of Figure 8 (b), the point-

wise exponent is approximated using five-order Taylor series

expansion, which is computed by PIM multiplication and

addition. Then row accumulation is offloaded to ACU using

vector reduction. Meanwhile, the divider in ACU computes

the reciprocal of row reduction ( 2 ). The single reciprocal

value for a row will be replicated 256 copies and written

back the memory cell array by the data buffer ( 3 and 4 ).

Finally, the point-wise multiplication between reciprocal and

exponent is computed in memory by PIM operations ( 5 ).

B. Data Communication Architecture

TransPIM dataflow exploits the internal memory bandwidth

to reduce the data movement overhead caused by data loading.

However, the standard HBM is still insufficient to match the

high data parallelism and the internal bandwidth requirement.

Even though we can use the bulk in-memory data movement

approach like RowClone [38], the internal bandwidth is still

limited by the shared data bus. Furthermore, the memory

system needs frequent intra-bank and inter-bank data move-

ments for memory-based computations, where data copy and

re-organization may significantly downgrade the performance.

Thus, we propose a data communication architecture to

accelerate various data movements in TransPIM.
1) Customized Hardware Components: TransPIM intro-

duce two customized hardware components in the HBM

architecture for data communication.

Data Buffer: For most intra-bank and inter-bank data

movements, we can use the fast parallel mode (FPM) of

RowClone [38] to perform fast row copy. However, this

approach has two defects. First, it is unable to provide a

fine-grained partial copy for a row. Second, the FPM requires

the source and destination rows to be located within the same

subarray. To overcome the two constraints, we implement a

re-configurable data buffer in each bank to manipulate data

from ACU or row buffer as in Figure 7, realizing more flexible

data movement. The data buffer is a configurable 8×256b

buffer, consisting of 8 256-bit shift registers, supporting data

copy and re-organization. The data buffer can either receive

8-bit (from ACU) or 256-bit data (from sense amplifier).

Ring Broadcast Unit: As illustrated in Section III,

TransPIM adopts a ring-based data broadcast to reduce the

data loading overhead for processing attention scores and

self-attention output. However, the original HBM cannot

efficiently support such ring-based data broadcast because all

data transfers in a channel need to use the shared data bus

and controller. TransPIM effectively decouples data transfers
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idle

Figure 9. The optimizations for ring-based broadcast in the TransPIM
hardware. The example shows the data transfers between two bank groups
(4 banks per bank group).

between different bank groups (or even different banks) by

per-bank broadcast units and direct 256-bit link between

broadcast units of two neighboring banks, as shown in

Figure 9(a).

2) Optimization for TransPIM Data Movement: With the

proposed communication architecture, we can accelerate

various data movement patterns when running TransPIM

dataflow.

Fine-grained data movement: Each data buffer, with

the help of its controller, supports fine-grained data copy

and duplication in a bank. When fine-grained partial copy

is needed (such as 3 and 4 in Figure 8 (b)), the data

buffer reads data from ACU through 8-bit input and performs

data replication. The replicated data is written back to the

sense amplifier through 256-bit output in a bit-serial manner.

Another advantage of data buffer is its ability to move data

between different subarrays without using the shared bus.

The data buffer supports parallel accesses by reading 256-bit

data from the sense amplifier for each column access cycle.

It can cache at most 2Kb data and copy each 256-bit data

into the sense amplifier located in a different subarray.

Ring-based data broadcast: Figure 9 shows the data

movements of ring-based data broadcast (Section III-B2) in

two bank groups of the TransPIM architecture. As illustrated

in Section III, each step of the ring-based broadcast requires

all banks to copy data to their next banks in the ring (e.g.,

1→2→3 ... 7→0 in the figure). If we assume the time of

a data copy between two banks is T , the original HBM

architecture requires 8T because each data copy requires the

global bus and controller. For TransPIM architecture, such

ring-based broadcast consumes a time of 3T as shown in

Figure 9. In the first step, we use the bank group bus (both

BankGroup A and BankGroup B) to perform bank 3→4

transfer. At the same time, we can also copy data from bank

0→1 and 6→7 using ring broadcast links between broadcast

buffers. In the second step, we use the bank group bus to

transfer 7→0, while using the ring broadcast buffers for 2→3

and 4→5. The two remaining transfers, 1→2 and 5→6 can

be processed in parallel during the third step. The algorithm

Table I
ARCHITECTURAL PARAMETERS FOR TRANSPIM

HBM Organization Channels/die = 8, Banks/channel = 32, Banks/Group = 4,
Rows = 32k, Row Size = 1KB, Subarray size = 512×512,
DQ size = 256

HBM Timing (ns) tRC = 45, tRCD = 16, tRAS = 29, tCL = 16, tRRD = 2, tWR = 16,
tCCDS

= 2, tCCDL
= 4

HBM Energy (pJ) eACT = 909, ePre-GSA = 1.51, ePost-GSA = 1.17, eI/O = 0.80

ACU Clock = 500 MHz, Psub = 16 ACUs/bank, Padd = 4 Pipelined
Bit-serial Adder Tree/ACU, Adder tree width = 256, 3-stage
pipelined divider

Buffer Data buffer: 8×256b, Ring broadcast width = 256

can scale to more bank groups with the same time complexity,

which is significantly lower than that of the non-optimized

architecture.

Token reduction in decoder blocks: As introduced in

Section III-C, the output token of each decoder block requires

a global reduction for all partial sums distributed in different

banks. TransPIM can efficiently reduce all the partial sums in

a multi-step parallel way. Specifically, in each reduction step,

we separate banks with partial sums into multiple two-bank

reduction groups and reduce partial sums of each reduction

group by moving partial sums from one bank to another.

All reduction groups process the reduction in parallel with

PIM operations. TransPIM can efficiently support such data

movements by exploiting the internal bandwidth provided

by inter-ACU links, bank group bus, and channel bus.

V. EXPERIMENTS

In this section, we describe our experiments that evaluate

the benefits of proposed design.

A. Evaluation Methodology

The hardware characteristics for TransPIM are summarized

in Table I. The memory is standard HBM2 [19]. The timing

and energy parameters are extracted from the previously

published work [34]. Hardware components of TransPIM

keep the same area and power constraints as the original

HBM. The HBM area is estimated using the analytical tool

CACTI-3DD [7] on 22nm technology node. We assume up

to 8 HBM stacks are connected to a host CPU through the

silicon interposer. The host-HBM bandwidth is 256GB/s [34].

We implement TransPIM using Verilog HDL and synthe-

size the design on Synopsys Design Compiler using 65nm

library. The synthesized design is placed and routed using

Synopsys IC Compiler. Moreover, clock gating is applied to

save energy dissipation. Padd = 4 bit-serial adder trees are

implemented in each ACU. The constant divider to calculate

1/x is three-stage pipelined to satisfy the timing constraints.

In order to match the rate of column access time tCCD = 2 ns,

the ACU is configurated to run at 500 MHz clock frequency.

The obtained area and power data of ACU are scaled to

22nm to match the memory technology. We consider the

process difference between logic and DRAM using the similar
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Table II
OVERHEAD BREAKDOWN OF TRANSPIM.

Unit/Bank Area (um2) Power (mW) TransPIM Area (mm2)
Adder Tree 59432.1 25.1 8GB HBM2 53.15
Divider 3055.6 0.7 Overhead 2.15
Data Buffer 2660.4 3.8 Memory Access Energy (pJ/op)
Ring Broadcast 337.9 0.2 ACU 0.384
Others 828.5 2.9 Buffers 0.869

method in previous work [29], where DRAM process incurs

around 50% additional area overhead to the logic process.

The implementation results of TransPIM are given in Table

II. The 4-parallel bit-serial adder tree takes up 88% of the

overall area. Each memory bank of TransPIM is equipped

with Psub = 16 ACUs. The total 512 ACUs consume about

2.15 mm2, incurring 4.0% area overhead to the original

DRAM architecture, far less than the 25% threshold of area

overhead [16], hence avoiding DRAM density loss.

1) Simulation: We implement an in-house simulator to

model the detailed performance and energy characteristics

for TransPIM and all PIM baselines. The front-end of the

simulator utilizes the TensorFlow interface which extracts the

workload formation for the simulation. The backend simulator

is a modified version of Ramulator [24]. We insert additional

commands to the simulator for TransPIM to simulate the run-

time behaviors of workloads for a given DRAM configuration.

The architectural configuration of HBM and timing/energy

parameters are shown in Table I.

2) Hardware Baselines: GPU&TPU: The GPU platform

is Nvidia RTX 2080Ti. We measure the GPU power using

nvidia-smi. We also include a single Google Cloud

TPUv3 with eight cores [22] as a baseline. We used JIT-

compiled TensorFlow models and calculated the average

latency from the second iteration to neglect graph compilation

overhead.

Near-bank processing (NBP): Newton [16] is used as

the near-memory baseline which is a near-bank processing

technology in HBM2E-like DRAM offloading most oper-

ations for machine learning model to the near-bank logic.

Since the NBP baseline already modifies the bank-level logic,

we enable the broadcast buffer, which handles intra-memory

data movements, in the NBP baseline for a fair comparison.

We assume the same HBM architecture for the NBP baseline

as the one used by TransPIM.

Original PIM: The original PIM architecture is the basic

HBM architecture with only the support for in-memory bit-

serial operations using the specialized memory controller

with modifications to the subarray as suggested by previous

works [2]. We also assume the same HBM architecture for

the PIM baseline as TransPIM.

3) Workloads: In this work, we evaluate two widely used

Transformer models, RoBERTa [31] and Pegasus [46], for

various important NLP tasks including text classification

(IMDB) [32], summarization (Pubmed [9] and Arxiv [9]), and

question-answering (TraviaQA [21]). The classification and

question-answering tasks only have encoder blocks while the

summarization tasks have both encoder and decoder blocks.

We also evaluate a decoder-only task, language modeling

(LM), using GPT-2-medium model [36]. All workloads are

implemented using TensorFlow 2 with XLA.

B. TransPIM Performance

We evaluate the efficiency of TransPIM by comparing it

with GPU and various memory-based architectures with either

layer-based or token-based dataflow. We denote each system

as “dataflow”-“architecture” (e.g., Token-TransPIM). For

sensitive analysis, we test one more architecture configuration

of TransPIM which disables broadcast units and data buffers

for communication – denoted by “NB”, while “Buf” denotes

architectures with broadcast units and data buffers. Figure 10

shows the performance and the energy efficiency of all

architectures as compared to the GPU baseline. All memory-

based systems use 8 HBM stacks with a total capacity of

64GB. The performance is measured as the execution time

per batch because workloads with short token lengths (e.g.,

IMDB and TriviaQA) may not fully utilize the memory for

just a single batch. The GPU system runs with the maximum

batch size supported for each workload. The energy efficiency

is measured as GOP/J of different systems. All values are

normalized to the GPU baseline. All baselines run with a

precision of 8-bit for FC and FFN layers which is sufficient

for Transformer models [44]. We use 16-bit for Softmax to

support a range of exponential.

Comparison to GPU/TPU: The proposed system

(Token-TransPIM) is 22.1× (8.7×) to 114.9× (57.4×)

faster than GPU (TPU). TransPIM shows less significant

performance improvement on IMDB because the number of

tokens is too small for the PIM system to fully exploit the par-

allelism because the token-based sharding requires each bank

to process at least one token. For the workloads with more

tokens, the token-based scheduling can saturate the compute

capability of PIM system, fully exploiting the parallelism of

PIM operations. As for the energy efficiency, TransPIM is

138.1× (39.5×) to 666.6× (376.7×) more energy efficiency

than the GPU (TPU). Similar to the performance results,

TransPIM achieves much better efficiency when running

workload with long token sequence. The energy efficiency

improvements result from the fast execution and the reduction

of data movements.

Comparison to previous memory-based acceleration:
As compared to previous PIM-only acceleration (layer-

allocation), TransPIM with the token-sharding is 9.6× faster.

If the PIM-only acceleration also uses the token-sharding

processing, TransPIM is still 3.7 × faster. Furthermore,

TransPIM is 4.2 × and 1.3× more energy efficient than the

PIM-only acceleration with layer-based dataflow and token-

sharding respectively. Such results show that TransPIM im-

proves the performance and the energy efficiency of previous

PIM acceleration by both software-side and hardware-side

customization.
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Figure 10. Performance and energy efficiency result.

As compared to the NBP architecture, TransPIM is 9.1×
and 6.4× faster with token-sharding and layer-based dataflow

respectively. However, TransPIM is not more energy-efficient

than the NBP baseline with the same dataflow (around 0.2%

less). This is due to the large amount of energy consumed

by bit-serial in-situ operations which require a lot of parallel

row activation and pre-charge operations for all memory

subarrays.

Comparison to ASIC: The previous ASIC designs,

A3 [15] and SpAtten [42], adopt pruning techniques to

reduce the computation complexity and mostly focus on

accelerating the self-attention layers. TransPIM targets lower

data movement overhead and higher computing efficiency

for the end-to-end execution of Transformer models. Since

previous ASIC counterparts neglect the area of memory,

we assume all systems use the 8GB HBM as the memory.

The additional area of TransPIM is 2.15mm2 for each

8GB HBM chip, which is close to A3 (2.08mm2) and

SpAtten1/8 (1.55mm2). SpAtten [42] reports a 35× end-to-

end performance improvement for generative stage (decoder)

in GPT-2 model as compared to GPU. As a comparison,

TransPIM achieves 83.9× and 114.9× speedup on two similar

workloads (PubMed and Arxiv with Pegasus). Furthermore,

TransPIM yields an average throughput of 734 GOP/s which

is around 2.0− 3.3× of the peak throughput of A3 (221

GOP/s) and SpAtten (360 GOP/s). The gain comes from

three aspects. The token-based data sharding avoids redundant

data movement, thus improving the computation efficiency.

Moreover, the high data parallelism of in-memory and near-

memory computing provides higher peak performance. The

optimized data path of TransPIM exploits the large internal

bandwidth of HBM to reduce the data movement overhead.

In comparison, the performance of ASIC is constrained by

limited computing resources and off-chip memory bandwidth.

Decoder-only model: For decoder-only workload (GPT2-

LM), TransPIM is 1.4× faster and 2.1× more energy-efficient

than the second-best system (Layer-TransPIM). Both

speedup and energy efficiency improvement of TransPIM over

other systems become less than other workloads. This results

from the fact that the decoder-only model only processes 1

token in each iteration, requiring much less data loading for

Figure 11. Performance breakdown of different systems: (a) overall
breakdown, and (b) layer-wise breakdown.

in-memory computations than encoder-based models.

C. Detailed Performance Analysis

We also investigate the detailed breakdown of operations

for all memory-based systems, as shown in Figure 11. The

figure shows the breakdown of four important categories of

operations including the data movement (loading and intra-

memory copy), non-reduction arithmetics, reduction, and

other operations including reads and stores.

Improvements over previous acceleration: As compared

to the PIM-only system, TransPIM significantly reduces

the overhead of data movement because of the efficient

data path (18.2× and 4.1× improvements for layer-based

or token-sharding dataflow). Furthermore, the customized

ACU of TransPIM effectively accelerates the costly reduction

operations, where TransPIM spends 35.3× and 56.1× less

time on reduction than PIM- and NBP-only systems. As

compared to the NBP baseline, the performance improvement

of reduction operation becomes even larger because the NBP

baseline has a much lower degree of parallelism. The limited

parallelism of the NBP baseline significantly increases the

latency of other arithmetic operations as compared to the

PIM implementation which is 13.2× faster.

Effect of token-sharding: The breakdown also sheds

light on the performance benefits of token-sharding. For all

systems, adopting token-sharding reduces the data movement

latency by 4.8×, 4.5×, and 4.5× respectively. Such improve-

ments depend on the workloads, where we observe 1.3×,

10.1×, 5.0× and 1.9× improvement on IMDB, PubMed,

Arxiv, and TriviaQA respectively. Such results show that

the token-sharding works better in large workloads (longer

sequence) than small workloads because the data loading

time of layer-allocation schemes increases quadratically with

the sequence length for the attention layers. For the token-

sharding, the size of moved data only increases linearly.

Effect of data movement optimization: While the

token-sharding dataflow can significantly reduce the data
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Figure 12. Average bandwidth usage.

movement overhead, TransPIM can further reduce it through

the customized data path with broadcast and copy buffers.

As compared to TransPIM without buffers, such customized

data path provides a 4.1× reduction on the data movement.

Layer-wise breakdown: Figure 11(b) shows the layer-

wise breakdown results of summarization using Peagasus for

two workloads – PubMed ( 4K) and a synthetic data with

32K sequence length. All results are normalized to the total

time of the proposed Token-TransPIM system. Token-

based data sharding reduces the data movement overhead in

FC and FFN layers because it requires less data duplication

for computation (but less parallelism) than layer-allocation

dataflow. In attention layers, TransPIM significantly reduces

the data movement overhead because of the high bandwidth

utilization of ring-based broadcast as well as reduced data

movement using token-sharding.

Resource Utilization: We use the percentage of time

spent on computations to measure the utilization of memory

banks. As shown in Figure 11, Token-TransPIM has

an average 45.8% utilization, which is 1.5× higher than

Layer-TransPIM (30.8%) because token-based dataflow

significantly reduces overhead of data movement. However,

Token-OriginalPIM and Token-NBP provides higher

compute utilization, which are 47.7% and 89.5% respectively.

This results from the extremely slow computation in PIM-

only and NBP-only solutions. Figure 12 shows the average

bandwidth utilization, which is the size of reading and

writing data divided by the latency. The systems using layer-

based dataflow consume more bandwidth than systems with

token-based dataflow. For example, Layer-TransPIM
has up to 1699 GB/s average bandwidth usage while

Token-TransPIM only has up to 762 GB/s. Considering

the overall latency, the result shows that layer-based dataflow

requires much more data movements than token-based

dataflow. Even though our 8-stack HBM system provides

enough bandwidth (BWaggregated = 8×256 = 2T B/s), layer-

based dataflow may become bandwidth-bound when increas-

ing the workload size or decreasing the system bandwidth.

On the hardware side, the usage of data buffer and ring

broadcast in TransPIM increases the bandwidth usage of

a specific dataflow because of low latency, showing that

TransPIM’s buffer architecture is always effective.

D. Hardware Customization Exploration

The parallelism of bit-serial adder tree and data buffer

size are the two design parameters of ACU. We need

Figure 13. Design space exploration results for ACU.

Figure 14. Power consumption of TransPIM on various sequence lengths.

to explore different parameters to find the best tradeoff

between additional overhead and resulting performance. We

conduct a design space exploration on BERT model by

varying the parallelism of adder tree Padd from 1 to 16.

The results are depicted in Figure 13. The increased adder

tree parallelism increases the accessed columns per row

activation, thus reducing the number of repeated activated

rows during vector reduction. As a result, the latency and

energy consumed by vector reduction decrease by at most

10.8× and 5.7×, respectively. Besides, ACU reduces a large

part of DRAM access energy by register access energy as

shown in Figure 13(a). Finally, we choose Padd = 4 as the

optimal parallelism for the adder tree in ACU since it keeps a

good balance between additional ACU area and performance.

We can enable higher parallelism by simultaneously

activating Psub subarrays in a bank, where each subarray

contains one independent ACU. However, adding more ACUs

in a bank increases the area overhead. Figure 13(b) shows

the execution time and area overhead when adding different

ACU numbers in a bank. Adding one ACU for each subarray

(parallelism = Psub = 64) only increases the performance by

5.4 × while introducing 15.8% area overhead. We choose

Psub = 8 to well balance overhead and performance.

E. Power Analysis

We estimate the power consumption of TransPIM for tested

workloads, as depicted in Figure 14. Pegasus models on

TransPIM dissipate around 2% more power than RoBERTa

models under the same sequence length. As the input

sequence increases from 128 (IMDB) to 4096 (PubMed),

the power of these two models increases about 4W, which

is resulted from more computations. Overall, the consumed

power of TransPIM is still below the 60W power budget of

conventional DRAM system [34]. Thus, TransPIM satisfies

the thermal constraints of conventional and TransPIM can be
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Figure 15. Scalability of TransPIM when increasing the sequence length.

integrated into existing commercial DRAM system without

additional modifications in terms of power and cooling.

F. Scalability

As shown in previous work [4], [25], [45], Transformer

would become significantly challenging for longer sequences.

Memory-based acceleration is promising to provide scalabil-

ity by simultaneously increasing the memory bandwidth (with

low memory access latency) and the compute parallelism.

Figure 15 shows the speedup when using more HBM stacks

for processing workloads with different sequence lengths.

The speedup is averaged across all workloads. The result

shows that TransPIM provides good scalability (almost linear)

for long sequence workloads which saturate the compute

capability of HBM. As the GPU-based solution is bounded by

the sequence length due to the limited memory capacity, our

experiments indicate that TransPIM is a promising solution

to extend the applicability of transformer models for long-

sequence applications.

VI. RELATED WORK

Transformer accelerators: A GPU-based serving system

and runtime called TurboTransformer is proposed in [13] to

process long sequences through maximizing the utilization

of computing and memory resources. But the scalability

of TurboTransformer is poor since it is unable to support

multiple GPUs. In contrast, TransPIM can be easily scaled

up by stacking multiple HBM chips to yield larger memory

space and support longer sequence lengths. SpAttn [42], A3

[15], and GOBO [44] are state-of-the-art ASIC processors

dedicated for the acceleration of attention module. Both

A3 [15] and SpAttn [42] implement sorting units to prune

redundant heads and shrink the memory footprint, thus

adapting to the limited on-chip buffer size. SpAttn [42] and

GOBO [44] propose low-precision quantization and pipelined

architectures to improve the efficiency. Besides, approximate

Softmax computation is used in [15]. But GOBO and A3

are unable to natively support the end-to-end acceleration

of the entire Transformer. Moreover, they need to load data

from off-chip memory before computation. The off-chip

memory bandwidth would become the bottleneck for memory-

intensive layers of the Transformer. Instead, TransPIM avoids

costly off-chip data transfer by keeping all the data in

memory.

PIM accelerators: Various PIM accelerators [16], [17],

[27], [29], [37], [40] have been proposed to reduce the

overhead of massive data movement as well as support

high data parallelism. Newton [16], FIMDRAM [27], and

McDRAM [40] adopt the similar near memory architec-

tures and horizontal data organization in memory banks.

They cascade bit-parallel arithmetic units to the DRAM

bank to perform matrix-vector multiplication. However,

the complicated bit-parallel and bulky buffer incur large

overhead and decrease memory density [27]. To reduce

the overhead of arithmetic units near memory, BFree [37]

stores lookup tables that are compatible for computation in

memory cells. However, the lookup table requires fine-grained

optimization to save the consumed space. Previous in-memory

accelerators [12], [17], [29] also optimize the complex

reduction. Drisa [29] adds extra shifters in the subarray

while NeuralCache [12] relies on the cache I/O peripheral to

reorganize data multi-step hierarchical reduction. These two

methods either significantly increase the area overhead or

introduce large I/O latency. FloatPIM [17] supports reduction

by organizing reduction data in a bit-serial way to avoid

extra data movement. But this scheme sacrifices parallelism

in Transformer which usually has long vectors for reduction.

Different from the previous work, TransPIM combines the

advantages of in-memory and near-memory computing. The

proposed ACU is bit-serial to minimize the overhead of

peripheral circuits. Compared to existing PIM accelerators,

the proposed PIM-NMC combined computing paradigm

provides better efficiency without affecting the memory

density. MAT [48] is a PIM-based processing framework for

attention-based machine learning models on long-sequence

input. It breaks the long-sequence input into segments with

various sizes and processes segment in a pipeline manner.

However, MAT only targets a single encoder block, different

from TransPIM which accelerates the whole Transformer.

VII. CONCLUSION

In this work, we propose, TransPIM, an end-to-end acceler-

ation for Transformer based on emerging HBM architectures.

TransPIM adopts a software-hardware co-design principle

to accelerate various Transformer models. As compared to

previous accelerators, TransPIM significantly reduces the

overhead of data loading by exploiting the data locality

in computations associated with input tokens. TransPIM

also includes lightweight hardware modifications in HBM

to improve the hardware efficiency of computation and

data communication. With evaluation on various workloads,

TransPIM achieves significantly better performance and

energy efficiency than various platforms including GPU,

TPU, ASIC, and state-of-the-art memory-based accelerators.
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