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Abstract—In this paper, we characterize and model the performance
and power consumption of Edge TPU, which efficiently accelerates deep
learning (DL) inference in a low-power environment. Systolic array, as a
high throughput computation architecture, its usage in the edge excites our
interest in its performance and power pattern. We perform an extensive
study for various neural network settings and sizes using more than 10,000
DL models. Through comprehensive exploration, we profile which factors
highly influence the inference time and power to run DL Models. We show
our key remarks for the relation between the performance/power and
DL model complexity to enable hardware-aware optimization and design
decisions. For example, our measurement shows that energy/performance
is not linearly-proportional to the number of MAC operations. In fact,
as the computation and DL model size increase, the performance follows
a stepped pattern. Hence, the accurate estimate should consider other
features of DL models such as on-chip/off-chip memory usages. Based on
the characterization, we propose a modeling framework, called PETET,
which perform online predictions for the performance and power of Edge
TPU. The proposed method automatically identifies the relationship of the
performance, power, and memory usages to the DL model settings based
on machine learning techniques.

I. INTRODUCTION

Deep learning (DL) has recently brought great opportunities to
various fields, such as the internet of things, speech recognition,
computer vision, and natural language processing, etc. The edge
computing environments, e.g., mobile and smart hubs, also deploy
an increasing number of DL models for better user experience that
further expand DL applications [1], [2]. The inference performance,
i.e., the on-device response time of DL models, and power costs are
keys to successful deployment. However, they are prone to have poor
performance due to the limited resources of the edge environments
where a powerful GPU is usually unavailable.

Earlier researchers have tried to address this issue by designing ac-
celerators based on field-programmable gate array (FPGA) [3] [4] and
custom application-specific integrated circuits (ASIC) [5], [6]. They
are built to efficiently utilize the limited power and to provide real-
time processing capability. To deploy those accelerators effectively in
practice, we need accurate estimates of their performance and power.
For example, we need to determine where to allocate DL tasks to meet
the real-time, power resource, and accuracy requirements. Also, there
are substantial combinations of DL hyperparameters during the DL
model developments. It makes the optimization and design decisions
difficult, e.g., whether low-power, resource-limited edge devices are
capable of running models with sufficient performance.

A simple assumption used in the engineering field for the estimates
is that the inference performance can be characterized by the arithmetic
computation speed of the hardware, i.e., how many floating-point
operations (FLOPs) or multiply-accumulate operations (MACs) can be
processed in unit time. For example, [7] and [5]roughly characterizes
the relative inference performance using the FLOP metric. However,
these methods do not guarantee accurate estimates since there is
no simple linear relationship between the computation costs and
performance/power consumption. Recent work [8], [9] showed that
multiple factors affect the performance of different DL models running
on GPU, e.g., inter-component communication time and memory I/O
time. We can anticipate that standardized accelerators such as Google
Edge TPU and Intel Movidius would have similar performance/power
characteristics related to the computation and memory usage. Increas-
ing number of applications will rely on these hardware platforms in the
future, and the characterization and modeling for accurate performance
estimation of the DL models are still open research topics.

Fig. 1: Performance of FC networks and CONV models

In this paper, we focus on the characterization and modeling of the
performance and power consumption for a commercial DL accelerator,
Google Edge TPU. Edge TPU runs DL models created by TensorFlow
(TF), which has the most users in the world [10]. We first show a
detailed characterization of the performance and power for the Edge
TPU device. Instead of using a few popular DL models, we perform
extensive exploration of more than 10,000 DL models composed of
either convolution layers or fully-connected layers to achieve a general
and comprehensive characterization. We measure the inference time
and power consumption of models under test. Our power/performance
measurements present a non-linear relationship to computation cost.
We present which factors have high impacts on performance and
power, e.g., the number of MACs, network settings, and on-chip/off-
chip memory usage, with several key remarks to guide analysis of the
Edge TPU resource usages.

Based on the characterization results, we propose a modeling
framework, called PETET (Performance/power Estimation Technique
for Edge TPU), which predicts the execution time and power for
different DL models from their model descriptions without performing
the model compilation. The proposed framework automatically learns
memory, performance, and power profiles based on machine learning
(ML) to effectively utilize our extensive measurements used for the
characterization. Our evaluation shows that PETET can accurately pre-
dict performance, power, and energy consumption online with errors
of less than 10% for both fully-connected and convolutional networks.
The proposed modeling framework also provides accurate estimates
for state-of-the-art DL models, MobileNet [11], and VGG [12], only
with 6.51% average error rate.

II. TPU PERFORMANCE/POWER CHARACTERIZATION

To perform a comprehensive characterization for the performance
and power of Edge TPU, we first generated a large number of
DL models using TENSORFLOW. The maximum and the minimum
number of MAC operations are 4.7 ×1011 and 192, covering the range
of MAC and parameter sizes used in most of the popular DL models.
We measure the execution time to process one sample data along with
the power consumption using MakerHawk TC66C USB multimeter.
In total, we have 10,158 measurement results for different DL models,
7,560 and 2,598 for fully-connected (FC) and convolutional (CONV)
neural networks, respectively. We then characterize the inference time
and power consumption changes to discover critical factors affecting
the resource usages.

A significant part of the inference process happens inside the matrix
multiply unit of the Edge TPU. Therefore, it is reasonable for us to
expect a close relationship between the number of MAC operations
and inference time. However, as shown in Figure 1, we found that
the number of MACs has a non-linear relationship with the inference
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Fig. 2: MACs and performance of FC
models with different neuron numbers

Fig. 3: Memory and performance of FC
models with different input sizes

Fig. 4: Average power consumption for
different FC models

performance. For example, we observe that the inference time of
FC models forms at least two major clusters, one of which has a
significantly smaller slope than the other one. For the CONV models,
we find that a certain number of MACs may correspond to a large
range of inference time. The results also show that different layer
types lead to distinct patterns in the performance curve, presenting a
huge difference in the inference time. For example, when both CONV
and FC models have 1×108 MAC operations, CONV model inference
is significantly slower than the FC model.

We thereby characterize models composed of FC and CONV layers
separately. Next, we discuss our key remarks about how parameters
besides the number of MAC operations, e.g., the model settings and the
communication cost, influence the performance of the DNN models.
We denote the number of layers by L, the number of neurons by N ,
the input size by S, and the filter depth of the convolution layers by F .
Since we create models assuming they take three-channel square image
data, the image width, W , determines the input size by S = 3 ·W ·W .

A. Characterization of Fully-Connected Network Models

Remark 1. Step-wise relationship between the performance and the
number of MACs. The first finding to discuss is that the inference
performance shows a non-linear, step-wise relationship with the model
computation size, i.e., the number of MAC operations. For example,
Figure 2 shows the inference time when changing the number of
neurons (N ) in each of FC model layers while using L = 1 and
W = 48, so that the number of MACs increases linearly. The results
clearly show that the inference time forms a series of steps. The
inference time shows nearly no change within each step, whereas it
undergoes a significant jump across two adjacent stages. Our reasoning
behind this observation is that the number of MACs only represents
the computation cost of the inference process; the communication cost
also exists because of the slower link between the Edge TPU and the
host machine. To better explain the non-linear behavior, we, in turn,
analyze another possible factor, i.e., memory usage.
Remark 2. A significant impact of memory usage on the inference
performance. Before discussing the influence of TPU memory usage,
we describe the memory structure of the Edge TPU runtime environ-
ment. The Edge TPU uses two types of memory, on-chip memory and
off-chip memory. The on-chip memory of the Edge TPU refers to a
roughly 8 MB of SRAM located inside the Edge TPU. The off-chip
memory refers to the host machine memory usage, mainly used when
the on-chip memory is full. When the off-chip memory is used, the
Edge TPU needs to retrieve that data from the host machine during
inference. Thus, we infer that the utilization of the off-chip memory
will have a significant impact on the performance.

Figure 3 shows how the performance changes over different input
sizes, S = 3 ·W ·W where N = 20 and L = 3. The results present a
clear jump that separates the data points into two parts. In particular,
for models with smaller sizes, i.e., W being less than 48, the inference
time is relatively short and does not change significantly. In contrast, it
increases for the larger input sizes. Most importantly, we observed that
the performance change closely follows the off-chip memory usage. It
implies that the off-chip memory usage has relatively high impacts on
the performance. Figure 3 also shows that both on-chip and off-chip

memory usage have a non-linear relationship with the input size. We
observe various conditions besides the input size, in which the off-chip
is prioritized over the on-chip memory usage. Here, we infer that the
input size of 48 serves as a threshold for memory location selection.

To conclude the discussion, the memory usage has a clear relation-
ship with the performance of FC models, especially when utilizing the
off-chip memory. We thereby characterize the FC models as memory-
bounded due to the communication between the Edge TPU and off-
chip memory. The key challenge for accurate performance estimates
is how to understand the memory allocation behavior of the closed-
source TPU compiler, which translates the TFlite file and DL model
settings. We will discuss our detailed estimation method in Section III.
Remark 3. Log-shaped relationship between power consumption and
the number of MACs for FC networks. When we record the inference
time, we also measure the power consumption of the inference process.
We focus on the average power level due to the natural instability of
instant power and the inevitable measurement error. Figure 4 shows the
relationship between the average power level and the number of MACs
for various FC models. In the experiment, we observed a log-shaped
relationship, which shows that the power level increases gradually at
the beginning and converges with the increase in the number of MACs.
We reason that the utilization of the processing units saturates as the
number of MACs continues to increase. Also, this figure indicates the
possibility to model the power consumption of FC network inference.

B. Characterization of Convolutional Neural Network Models

Remark 4. Multiple parameters in model settings influence the
performance. We observed that the CONV models utilize the off-
chip memory less frequently. It is because the number of weights
required is relatively smaller than the FC models. Thus, we need to
understand the performance relationship with multiple factors besides
the off-chip memory usage. We first examine how the inference time
changes for different filter depths ranging from 32 to 320 when using
L = 5 and W = 48, obtaining the results depicted in Figure 5.
We observe that both on-chip memory usage and performance have
a similar non-linear step-wise behavior. It implies that the on-chip
memory usage significantly influences the inference time. We also
changed the number of layers where each layer in the model is the
same, using F = 320 and W = 176. In this case, the number of MAC
operations changes linearly. Figure 6 summarizes the results for this
experiment. It shows that the execution time linearly increases until
the off-chip memory is activated, and once then, the slope is changed
due to the extra communication overhead.

To conclude, the CONV models are neither fully memory-bounded
nor compute-bounded; the performance is at least influenced by three
different factors, i.e., the two types of memory usages and the number
of MACs, in which no factor always dominates the others.
Remark 5. Non-linear relationship between the average power
during inference and the number of MACs for CONV models.
Figure 7 shows the power measurement results for three groups of
data points, which represent DL models of different settings with the
changes of the filter depth. We observe that the power consumption
also converges as the number of MAC operation increases in a similar
fashion to the FC model cases. However, there are variations among

Design, Automation and Test in Europe Conference (DATE 2022) 613

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 18,2022 at 17:30:15 UTC from IEEE Xplore.  Restrictions apply.



Fig. 5: Performance and on-chip memory
usage with different filter depths

Fig. 6: Performance of CONV models with
different input sizes

Fig. 7: Average power consumption for
different CONV models

Fig. 8: Overview of PETET Modeling

the three groups due to the multiple underlying factors discussed in the
performance analysis, which influence memory usage and performance
characteristics.

III. MODELING METHODOLOGY

A. PETET Framework

Based on our characterization results, we build a modeling frame-
work, called PETET, which predicts the performance and power of DL
models on Edge TPU. Figure 8 shows the overview of the proposed
PETET framework. We take into account both the memory usage and
computational workloads (i.e., the number of MAC operations) to build
the prediction model. For a given TF model, the PETET framework
processes two stages: feature extraction stage and prediction stage.

During the feature extraction stage, the model information extractor
module parses the TF model to obtain the DL model information such
as the model input data size, the number of parameters (weight and
bias values) and the number of MAC operations. This module can
be implemented using profiler APIs of the TensorFlow library. Once
parsing the model information, we need the on-chip/off-chip memory
usage information to accurately predict performance and power. We
obtain the memory usage information in either of two different ways,
called CB (Compiler-Based) and PB (Prediction-Based) modes. In
the CB mode, PETET directly runs the TPU compiler module and
extracts the memory usage with the compiled TFlite model. However,
it requires the complete compilation environment, which is undesired
for many prediction practices, and consumes the extra compile time
to get the predicted results. Thus, PETET provides another option,
called the PB mode, which utilizes ML algorithms to estimate the
memory usage using the extracted model information. After obtaining
the number of MAC operations and the on-chip/off-chip memory
usage, the prediction modules during the prediction stage compute
the performance and power using them.

B. Prediction Model Learning

Memory Usage Estimator Modeling In the offline, PETET first
learns the relationship between the on-chip/off-chip memory usage
and the extracted model information, to build the learning models
used in the PB modules. As discussed in Section II, the memory usage
is highly related to the performance/power; there is no simple linear
relationship to the memory usage. Thus, we should model the problem
with multi-dimensional function to consider the multiple factors, e.g.,

the model input size and the number of parameters. We address this
problem using ML algorithms to automatically learn the performance
and power of DL models from our extensive measurements. In
particular, we utilize the random forest (RF) algorithm [13], which
learns patterns based on multiple decision trees with randomized
sample/feature selections. Our key intuition behind this is that RF
algorithm is capable of representing non-linear relationships between
input features and output values while prioritizing key features that can
be extracted from the TF model description. Besides, the RF algorithm
utilizes the decision tree for its base estimator, which is suitable to
automatically identify various thresholds and conditions for memory
allocations between the on-chip and off-chip that the closed-source
TPU compiler determines.

Let v be the input features obtained using the model information
extractor module. We train two RF models for each of on-chip and
off-chip memory, i.e., memoffchip = foffchip(v) and memonchip =
fonchip(v), where memoffchip and memonchip are the off-chip/on-
chip memory usage in bytes and foffchip and fonchip are the functions
that the RF algorithm learns. As an output of the RF algorithm, we
can estimate the impurity importance metric [13] for each feature.
In our experiments, the RF algorithm selects the following features
as its top-5 features: network type (FC or CONV), the number
of layers, the input size, the number of MAC operations, and the
number of parameters. It shows that the RF algorithm successfully
selects the important features that highly affect the memory usage
and performance/power discussed in Section II.
Performance/Power Predictor Modeling We then performed learn-
ing of the performance and power models for the prediction modules
of PETET. As described in Section II, since both the memory usage
and the amount of computational workloads are the two significant
factors behind the performance and power, we formulate the problem
as: f(memoffchip,memonchip,# of MACs). We train the target
function for each of the execution time and power level using the
RF algorithm to learn the discussed non-linear relationships. Note
that we use the measured memory usage as the feature values during
the training, whereas during the prediction (i.e., inference), it can be
replaced with the outputs of the memory usage estimator functions,
foffchip(v) and fonchip(v).

IV. MODELING TECHNIQUE EVALUATION

A. Experimental Setup

We implemented the PETET framework using scikit-learn library
for statistical analysis and ML. We utilize the same 10,158 measure-
ments shown in Section II to learn the RF models of PETET. We
randomly sample half of the total measurements for training the RF
models, and we use the rest half to test the prediction quality. We learn
20 decision trees with a depth of 6 for each RF model by default. We
report the mean absolute percentage error (MAPE) to evaluate the
prediction quality of the proposed technique.
Overhead Table I shows the running time overhead of PETET predic-
tion evaluated on Intel i5-5250U CPU. As discussed in Section III-A,
PETET predicts in two different modes, called CB and PB. Since
the CB mode compiles the TF model to obtain the memory usage
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TABLE I: Running time overhead.

Compiler-Based (CB) Prediction-Based (PB)
Largest (11M) Smallest (193) Average

74.6 sec 62.7 ms 12.7 ms

Fig. 9: Prediction error of PETET

information, the running time is dependent on the compile time.
For example, for the DL model with the largest parameters, the
compile takes 74.5 seconds, taking most of the overhead. In contrast,
we observe that the PB mode is light-weight and there is no large
difference depending on the model size in the running time.

B. Prediction Accuracy

Figure 9 summarizes the prediction error of PETET for per-
formance, power, and energy estimates. The results show that the
proposed PETET framework accurately estimates the three metrics.
For example, using the PB mode, it predicts the execution time,
power, and energy with MAPEs of 9.02% (6.06%), 2.67% (1.56%),
and 6.91% (8.38%), respectively, for different convolutional (fully-
connected) networks. We also observed a negligible difference in the
prediction quality (3.94% error) between the PB and CB modes.

To better understand how much accurately PETET estimates the
memory usage in the PB mode using the RF algorithm, we compare
the mean absolute error (MAE) of the off-chip/on-chip memory usage
estimators with linear regression (LR)-based estimations. Here, we
split the measurements into two groups depending on the execution
times of the DL models for each of fully-connected and convolutional
networks, creating four datasets, called FC-S (short), FC-L (long),
CONV-S, and CONV-L. In general, the longer execution time repre-
sents the larger memory usage. Figure 10 shows the MAEs of the LR
and PETET approaches along with the average memory usage for each
dataset. It shows that the RF-based PETET significantly outperforms
the LR-based approaches, meaning that the characterization of the
non-linear relationship among parameters is essential in the memory
usage prediction. For example, for the CONV-S case, the LR creates
a high degree of errors, 57 KBytes, where the average memory usage
of this dataset is 36.4 KBytes. The proposed technique predicts the
memory usage only with 1.2 KBytes error.

To summarize, with the PB mode, PETET can accurately predict the
performance and power of various DL models online, without actual
compilation, unlike the CB mode. As discussed in Section IV-A, it
is also light-weight, and thus, we expect that the PB mode would
be an ideal choice in practice, e.g., estimating performance for
hyperparameter searches.

C. Cross-Validation with State-of-the-Art Models

To understand how PETET performs the prediction for practical
DL models, we also cross-validated the accuracy for the state-of-the-
art (SoA) image recognition networks: MobileNet V1/V2 [11] and
VGG16/VGG19 [12]. Since the SoA models support different input
sizes and other parameters, e.g., α values for MobileNet, we tested
various configurations for each model. Table II shows that PETET
accurately predicts the performance and energy of the popular models.
The average error for the energy estimates is 6.51% for all the models.

Fig. 10: Summary of memory usage estimation errors

TABLE II: Estimation for SoA Models. Msmt. and Pred. stand for
measurement and prediction, respectively.

Input Performance Energy
Name α Size Msmt. Pred. Msmt. Pred. MAPE

MobileNet 1 224 3.82ms 3.92ms 5.8mJ 5.32mJ 8.34%
V1 1 160 2.47ms 2.35ms 3.59mJ 3.47mJ 3.43%

0.5 224 2.26ms 2.05ms 3.10mJ 2.97mJ 4.42%
0.5 160 1.52ms 1.71ms 1.96mJ 2.22mJ 12.69%

MobileNet 1 224 4.17ms 4.68ms 5.94mJ 6.30mJ 5.98%
V2 1 160 2.82ms 3.24ms 3.86mJ 4.00mJ 5.03%

0.5 224 3.79ms 4.29ms 5.00mJ 5.30mJ 7.54%
0.5 160 2.48ms 2.82ms 3.15mJ 3.41mJ 8.15%

VGG16 N/A 224 34.39ms 34.75ms 61.32mJ 66.75mJ 8.85%
N/A 192 29.28ms 25.12ms 52.10mJ 48.69mJ 6.55%
N/A 128 23.00ms 21.86ms 34.26mJ 33.16mJ 3.22%

VGG19 N/A 224 34.39ms 34.94ms 63.26mJ 67.28mJ 6.34%
N/A 192 29.3ms 30.33ms 48.87mJ 50.89mJ 4.12%
N/A 128 22.97ms 26.57ms 34.23mJ 36.44mJ 6.44%

Avg. 6.51%

V. CONCLUSION

In this paper, we characterize the performance and power of Google
Edge TPU. Throughout extensive exploration, we show multiple
findings for the cutting-edge accelerator, including that the number
of MAC operations is not linearly proportional to performance/power,
and the memory usage should be considered to obtain accurate
estimates. Based on the analysis, we propose an ML-based modeling
framework, that accurately estimates the power, performance, and
energy with less than 10% errors.
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