2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD) | 978-1-6654-4507-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICCAD51958.2021.9643480

Massively Parallel Big Data Classification
on a Programmable Processing In-Memory Architecture

Mohsen Imani
UC Irvine
m.imani@uci.edu

Yeseong Kim
DGIST
yeseongkim@dgist.ac.kr

Abstract—With the emergence of Internet of Things, massive data created
in the world pose huge technical challenges for efficient processing. Processing
in-memory (PIM) technology has been widely investigated to overcome
expensive data movements between processors and memory blocks. However,
existing PIM designs incur large area overhead to enable computing capability
via additional near-data processing cores and analog/mixed signal circuits.
In this paper, we propose a new massively-parallel processing in-memory
(PIM) architecture, called CHOIR, based on emerging nonvolatile memory
technology for big data classification. Unlike existing PIM designs which
demand large analog/mixed signal circuits, we support the parallel PIM
instructions for conditional and arithmetic operations in an area-efficient
way. As a result, the classification solution performs both training and
testing on the PIM architecture by fully utilizing the massive parallelism.
Our design significantly improves the performance and energy efficiency of
the classification tasks by 123x and 52X respectively as compared to the
state-of-the-art tree boosting library running on GPU.

I. INTRODUCTION

We live in a world where technological advances are continually
creating more data than what we can cope with. An attractive solution
is to enable memory blocks to perform computations. This approach,
often called processing in-memory (PIM), reduces communication costs
between the processor and memory by performing most computations
directly in memory [1]-[3]. Emerging non-volatile memory (NVM)
technology, e.g., resistive memory (memristor or ReRAM), has been
widely used for the PIM-based designs due to its high efficiency such as
high density and low-power consumption.

To enable the computing capability to where the data are placed, prior
research mainly investigated two architectural solutions, (i) near-data
computing (also known as logic-in-memory, Figure la) and memory-
based processor (Figure 1b). The memory-oriented architectures illustrate
an intriguing future for next-generation computing paradigms; the design
of efficient in-memory computing systems is still an open research
question. The near-data computing [4]-[10] leverages the 2.5/3D-stacking
technology to fabricate computing logic near to the existing memory. This
approach can offer rich operations based on mature CMOS technology,
and benefit high bandwidth between the logic and memory stack. How-
ever, the parallelism that the near-data computing can offer is typically
restricted due to the high energy and area costs of the CMOS logic.

The second approach exploits the resistive memory to design a memory-
based processor [3], [11]. These designs perform computation in-situ,
i.e., inside memory bit lines, where the data are either stored in the
resistive memory or converted to analog signals. This technique provides
extremely high parallelism for arithmetic operations, e.g., vector-matrix
multiplications, which are common on many applications such as deep
learning. However, the limited functionality hinders supports of the wider
variety of applications which require non-arithmetic operations, e.g., con-
ditional operations. Furthermore, the memory-based processor needs large
peripherals, e.g., analog-digital/digital-analog converters (ADCs/DACs)
take the majority of the chip area around 65% [3]. Due to the area
overhead, the memory-based processor utilizes conventional off-chip
memory to store a considerable amount of data, potentially incurring
high communication costs. Thereby, these technologies would not be

978-1-6654-4507-8/21/$31.00 ©2021 IEEE

Saransh Gupta
UC San Diego
sgupta@ucsd.edu

Minxuan Zhou
UC San Diego
miz087 @ucsd.edu

Tajana S. Rosing
UC San Diego
tajana@ucsd.edu

appropriate solutions to incorporate computing capability into storage-
class memory.

In this paper, we propose a novel processing in-memory system which
allows pushing various computations onto the memory ifself without
expensive computing logic and accesses to off-chip memory, thus sig-
nificantly reducing inter-component bandwidths (Figure 1c). To support
various and generic in-memory operations, we exploit content addressable
memory (CAM) structure [12] and in-memory NOR operation [13] as
the basic blocks in tandem. Both techniques are implemented with
low-overhead logic instead of using costly ADCs/DACs. Thus, we can
serve sforage-class density which is essential for the big data analysis
applications. Our PIM instructions are designed in a similar fashion to the
conventional instructions of general-purpose processors, e.g., condition
flags and single instruction multiple data (SIMD) operations; but also
offer massively parallel PIM executions. For example, the proposed
architecture can execute up to 36K conditional operations (e.g., less than)
and 12M arithmetic operations (e.g., addition) in parallel.

To present the practical value of the proposed architecture, we also
show how to rewrite non-arithmetic-centric machine learning (ML)
applications on our system supporting a programmable interface. With
a given dataset stored in our memory-based architecture, our rewritten
software orchestrate three in-situ data analysis procedures, genetic al-
gorithm, decision tree learning, and adaptive boosting (AdaBoost) [14].
The outcome of the learning procedure is a tree boosting model which
has been widely used in the field of big data mining [15]. Running
the tree boosting on the memory-based processor is challenging since it
involves frequent conditional executions unlike deep learning. Utilizing
the massive parallel conditional and arithmetic operations, we can perform
both the model training and inference tasks on where the data are actually
stored.

In this paper, we make following contributions:

1) We propose a programmable NVM-based PIM architecture with a big
data classification solution, called Classification Hypothesis Online Iden-
tifier on Resistive memory (CHOIR). The proposed architecture enables
in-memory computing capability only using low-overhead circuits, thus
suitable for the storage-class memory.

2) We propose a novel PIM instruction set architecture (ISA) which
processes both conditional and arithmetic operations in a massive-parallel

2

= 8 I 3D-Stacked Yl In-Memory Processor

% Processing Core =3l on NVM + ADC/DAC [IES Digital-Based

E 8 Memory < a Processing in NVM
3 = (DRAM/NVM) gI Off-Chip Memory

(a) Near-Data Processor (b) Analog/Mixed IMP (¢) Proposed Design
Fig. 1. Comparison of Near-/In-Memory Computing. The data availability for (b)

is estimated for the design shown in [3]

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

C++ Programs

using CHOIR APIs @ CHOIR System Software

N
Big Data Classification Compiled CPU m
Applications Compile Binary Operating System Instructions ? Memory accesses

[Genetic J[DT + Linkage Package

Algorithm Learning —\ NVM Block NVM NVM NVM

e - API Runtime CHOIR Kernel PIM @ =
[Bo::ti::][I fe“ :ec] Library joct! ;Dewce Diiiers Instructions g : :

nference 10C ® > NVM NVM | ...| NVM
2L W

e PIM-Enabled CHOIR Architecture

Fig. 2. Overview of CHOIR Architecture

way. To the best of our knowledge, it is the first design that supports the
massive conditional operations in the ReRAM PIM architecture.

3) We show a comprehensive system software stack, which includes
programming model, runtime library, and system-level management, to
interface user programs with the underlying PIM hardware.

4) We propose an efficient and accurate learning algorithm for the
tree boosting model. The training and inference procedures are fully
parallelized on the proposed architecture.

Our experimental results show that CHOIR accurately classifies diverse
data of practical applications that include millions of classification
samples, e.g., 98.1% for motion tracking and 97.2% for fetal disease
diagnosis, which are also comparable to the state-of-the-art learning tech-
niques including DNN. Our design achieves high energy and performance
efficiency by 123x/52x for training as compared to the state-of-the-art
GPU running XGBoost [15]. In addition, the proposed design can be
implemented with minimal area overhead of 4% on the existing resistive
memory technololgy.

II. OVERVIEW OF CHOIR ARCHITECTURE

This work seeks to devise a highly-efficient architectural solution that
supports sufficient programmability for big data classification. Figure 2
illustrates the overview of the CHOIR architecture consisting of three
components: @ user-level programs implemented with CHOIR APIs,
@ system software, and @ PIM-enabled architecture.

The proposed architecture can accelerate various programs imple-
mented with a CHOIR software library. The program views the memory
blocks as a list of 2D arrays, and processes the data using the PIM APIs
such as less-than and addition functions. This abstraction is similar to
popular scientific computing frameworks, e.g., Numpy array [16] and
TensorFlow Tensor [17]. The API calls are linked with the CHOIR
runtime library which executes PIM instructions through the kernel device
drivers using ioctl system calls.

The CHOIR architecture has a host CPU and a storage-class memory
system, called NVM package, consisting of multiple NVM blocks. The
CPU can access the NVM package as a conventional memory subsystem
like PCIe SSD. The PIM instructions are executed inside each NVM
block which stores the processed data, e.g., training datasets. It offers
massive parallelism by utilizing the large number of memory blocks
as multiprocessors. For example, multiple blocks can execute the same
PIM instruction in parallel. Furthermore, the NVM block can also
execute a PIM instruction in a row/column parallel way, e.g., executing
a conditional operation for all rows.

A. Background: Building Blocks of CHOIR

Before describing our CHOIR architecture, we here discuss which in-
memory computing mechanisms are used to build the PIM functionalities.
Content addressable memory (CAM) The first building block is the
CAM structure originally used for finding a target value inside memory.
The conventional CMOS-based CAM structure has been utilized in
limited applications, e.g., network routers, due to its significant power

V@V
,n\‘“«’ e — t=NOR (in,, in,)
out= in,, in.
T A O Gy i)
04 in,
/‘ in, Input |l in,
7,1 - R, R, Rows =
- <L i
H @ -~ v
il Vi _[?']out
Sk 5 Equivalent logi —
A iny] 3 quivalent logic Output
@ Eb‘—'k Row |
g |V |V'|x|R, R, WL cliy in, | in, | out
ololvJolH |L| stay I“EI“ 0olo]1
tvelotTLTu]| sty oy ‘1) (1) 8
1[ve|0fo| H | L | Discharge ad T T7 1o
0lolvof1 L | H|Dischae]| gA for one WI.
(a) CAM Operation (b) In-Memory NOR Operation

Fig. 3. Building Blocks for In-Memory Computations

consumption; recent research efforts show that we can implement efficient
CAM logics in resistive memory. In particular, we exploit a crossbar-
compatible design shown in [12].

We abstract the CAM functionality as a parallel bit search mechanism
for entire memory rows. A single memory block can be viewed a 2D
array whose element is a single bit. For an array column, we can identify
which rows store the same values to a guery bit, q.

Figure 3a describes the detailed CAM mechanism. In the initial stage,
we precharge the horizontal wordline (WL) for the rows with V4. The ¢
is encoded by the bitline (BL) input voltages, V' and V7. As shown in the
table of Fig. 3(a), if g is ‘0’, V’ and V7 are set to 0 and Vp; otherwise,
they are set to Vp and 0. If g is not the same to the value z stored
in a row, the potential quickly discharges. In the opposite case, it stays
to the high voltage level since the high resistance (H) keeps V4. Thus,
by checking the voltage level at the vertical sense amplifier (SA), we
can select the desired rows. We design row-parallel operations using the
CAM functionality. For example, we implement the ‘less-than’ operation
by comparing multi-row values bit by bit. We show the detailed operation
mechanism of PIM operations in Section III-B.

In-memory NOR (MAGIC) The second building block is in-memory
NOR operation, also known as MAGIC (Memristor-aided logic) [13],
[18]. [19], which can perform on any memristor devices without any
extra circuits. The MAGIC operation is processed in a column-parallel
way, ie., we can compute the NOR logic for all columns located on any
two rows. Figure 3b shows the details of the MAGIC operation. In the
initial stage, the cells in the target output row are reset into the mode
of low resistance (L). The local WL driver, in turn, grounds two input
rows and activates an output row with V5. Then, the voltage difference
AV = Vi — V™" is determined by the resistance of the input memristor
cells, as shown in the equivalent logic. For example, when in, and ino
are both ‘0, the cells are encoded with high resistance (H), and thus AV
is a small value. In contrast, any of in1 and ino has low resistance, AV
is relatively high voltage, incurring switching activity for the output cell.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

Bank , Column Gupaiworaine |7 Block
Select Line Col_Driver / Buffer |
k5 [11 1
Q 3lock ” Block | === || Block I i
3 u 2 3
o| | L Sl —— 2
| H
= o 0] byl 154
S| Block ” Block I S 3Iock| : : : i
O (W 1 1 L = B H d
[Cmd/Addr]Eﬁ S:;j 15 é;é[LG [

L 2

Local Multiplexer /et
Horizontal SA rows

=== Row-parallel inst. flow

=== Column-parallel inst. flow

(b) Block

Command

. i
| Microcontroller
FIFO (Instruction Buffer

(a) Bank

Fig. 4. CHOIR Memory Microarchitecture

In our design, we exploit the MAGIC operation to design column-parallel
PIM operations. Since NOR is a universal gate, it allows implementing
any boolean logic in a column-parallel way. For example, we implement
the addition and multiplication by repeatedly computing the NOR logics
for two rows.

III. CHOIR PIM ARCHITECTURE
A. PIM-Enabled Memory Microarchitecture

Figure 4 illustrates an overview of the memory architecture in CHOIR.
The NVM package consists of multiple banks, where a bank stores
512MB in our configuration. Each bank has multiple blocks which
execute various PIM operations for the stored data. A bank shown
in Figure 4a is responsible for translating PIM instructions, distributes
the activation signals across multiple blocks, and manages inter-block
communications for specific operations. A device driver, called com-
mand device driver, initiates the PIM instructions into a FIFO of the
microcontroller (@). The microcontroller decodes the instruction and
initializes the global wordline (WL) and bitline (BL) decoders to activate
the target memory blocks and cells (@). The I/O buffer is used when the
instruction requires inter-block communications (€@). The single memory
block shown in Figure 4b provides parallelism for the two types of PIM
instructions. (i) row-parallel instructions: the column driver and vertical
sense amplifier (SA) implement them using the CAM functionality (@).
(i1) column-parallel instructions: the local WL driver processes them
based on NOR operations (@). The conditional flags are implemented
with two latches which hold the digital signal. We called the two latches
as § latch (selection latch) and N latch (non-selection latch) (@). The
memory block has a 2D array structure of R rows and C columns.
To exploit the CAM functionality, a single bit is stored into a pair of
cells using the two-bit encoding. In the execution of the supported PIM
operations, the data in a single row are supposed to be aligned in 64-bit
representation. For example, a pair of the row index and column index,
(r, c), indicates the 64-bit value located at the (c X 64)-th bit in the r-th
row. In the rest of the paper, we call a 64-bit value as a word. The data
can be read/written in the same way to the usual memory devices. In
particular, the last row of each memory block is reserved to store the
output of the PIM instructions.

B. Instructions Set Architecture

Based on the two building blocks, the proposed NVM-based PIM
instructions process multiple data with a single instruction similar to
SIMD. All operations can be executed across multiple blocks in parallel.
Some operations can be executed in row/column-parallel ways as well,
e.g., (i) comparing multi-row values with a target value and (ii) adding
values for multiple columns simultaneously. To support the massive
parallel execution, the instructions should have a large size of operands

which specify nonconsecutive, unfixed indexes of rows/columns/blocks.
It does not fit into the fixed-length instructions of the CPU architecture.
For this reason, the program issues the PIM instructions directly into the
NVM package, unlike the existing ISA designs for near-data processors
which add new instructions in the CPU architecture [20].

A unique property of our ISA design is that we loosely separate
the data selection and computing instructions, whereas an instruction
of the traditional ISAs typically includes both computing operation
and target data locations (e.g., registers and addresses). For example,
before executing a row-parallel comparison, it should specify target rows
using a separate instruction. This design significantly avoids redundant
communication between processors and memory, e.g., hundreds of bits
indicating the target rows, since we do not need to send the operands
for the data selection again when processing consecutive PIM operations
with the same operands.

We issue a PIM instruction through a device driver by writing data to
the instruction FIFO in the following format:

64 bit 64 bit 64 bit 8kB
[Opcode] st operand]-- - [4th operand]Extended operand)

An instruction has a predefined opcode and up to four 64-bit operands.
The extended operand, F, is used to specify a long bit stream for
bitmask operands of column, row, and block indexes. The instruction
set architecture (ISA) consists of multiple PIM instructions.

Data Selection Instructions (1) rgst 7, £: The rgst instruction registers
a list of block addresses, which are stored in £ as a bitmask, to an
integer identifier (ID) 7. This instruction is called to map multiple blocks
to the CHOIR array in the user-level program. In our implementation,
the microcontroller of the NVM package stores the block lists mapped
to each blockset ID. Note that the program usually needs to perform the
registration only once during the initialization. Once the ID is registered,
the program can perform multiple PIM instructions for the designated
blocks by specifying the ID, instead of passing the long mask streams
with the extended operand. (2-5) row/col i, and rowmask/colmask
i, B: The row/col selects a target row/column for the given index (r)
of the blocks registered with z. For rowmask and colmask, E specifies
bitmasks of multiple rows or columns. (6-7) sassoc/nassoc i: These
instructions select new rows with the per-row conditional flags stored in
either S latch or N latch. The local WL driver processes these instructions.
Row-Parallel Instructions: (8) incl ¢, v: The incl instruction is invoked
with an operand, v, to perform an ‘increment by 2°’ operation for the
activated rows. Using the CAM functionality, we invert the »'" bits in
two phases: i) writing Os for the rows whose bits are 1s, and ii) write
1s for the opposite case. We then process the upper bits, ie., v + 1"
bits, by iteratively repeating the same procedure for the rows whose
previously bits were 1s. This stops when either there is no row to proceed
or the most significant bits are inverted. (9) It i,v: The It instruction
implements the typical ‘less than’ operation in a row-parallel way. We
can identify the rows whose values are less than v for the selected rows.
‘We implement this instruction by comparing each bit of v with all stored
values. Based on the CAM functionality, we search which rows have
zero values, starting from the most significant bit. If the bit of the same
index in v is ‘1’, the searched rows have value less than v, and thus
we store them into the latches. In the opposite case (the bit in v is ‘0’,)
the search continues on the next bit of v. It is proceeded until the last
bit is compared. As the final results, the S larch keeps the identified
rows, while the N latch stores the rest of rows. (10) nsearch i,v: This
instruction identifies the row that has the nearest value to the query value
v based on the nearest(approximate)-CAM design proposed in [12], [21].
The identified rows are stored into the latches in the same way to It. Note
that, after executing It and nsearch, the program can implement a ‘if-
condition-then-else’ statement with $aSSOC and nassoc at the per-row
granularity.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

Single Trained

Representative 4
Decision Tree

Training Dataset

Final Prediction

by CHOIR Input features

Samples
. T e e G
%) Decision Stump !
ST Decision Tree AdaPtive Decision Tree] £
Sample P Weight renneeennas . i !
Selection B - Boosting H i !
; 15) i 00 i 00 00 00 Hr '
(] L (] ° i 0000 i 0ooo 0000 ooag (o Tre \False |
; by e 3 4 i isie io _o0io.o0 8 .08 . -
Data Storage GA Blocks Trained Learners {00 _Dooo 0o 00, tooo.im !
- DT Block| |DIBlock DT Block I

E 11 L 1 [1 e [1 =
Slice Slice [Slice | Chm. | Chm. . [chm.
Block Block X Block Block Block \/Z Block

Weigmed < A

of features # of features

Y
of Decision Trees in ensemble model

Class probabilities

NVM Block Partitioning on CHOIR PIM Architecture

(a) Overview of CHOIR Classification

(b) Tree Boosting Model

Fig. 5. CHOIR Learning Software on the PIM Architecture

Column-Parallel Instructions: (11-12) add/mul i: The add and mul
instructions perform NOR-based addition and multiplication for the
selected rows. We adopt the in-memory integer addition and multipli-
cation mechanism shown in [13], [22]; floating-point data can be also
processed in the same memory architecture [11]. In our design, we further
parallelize the column-parallel operations in a semi row-parallel way. We
divide a memory block into subarrays where they are connected with
switches. The subarray can then perform NOR either individually or
across subarrays by controlling the switch.

IV. CLASSIFICATION ON CHOIR
A. Overview of CHOIR Classification

The software part of CHOIR is a supervised learning algorithm
rewritten with the PIM APIs. It performs both training and inference
procedures on the proposed architecture. Figure 5a shows an overview
of the training procedure with the memory block partitioning which is
mapped to the list of 2D arrays in the program procedure. The training
dataset is stored in a set of blocks, called data storage. In this paper, we
denote NV for the number of samples, F' for the number of features, and
K for the number of classes, in the training dataset. The data storage
stores the training data into multiple memory blocks. We call a single
block as slice block. The proposed algorithm is designed to work with
64-bit integers since the floating-point operations take a larger number
of cycles [11]. In the slice blocks, the values in a feature dimension are
normalized to a range of [0, Inaw], where Tpnaqq is a large-enough integer.

The training procedure is performed by an interplay of three algorithms:
genetic algorithm (GA), decision tree (DT) learning, and AdaBoost.
Through an iterative training procedure on the PIM architecture, the
CHOIR software generates an ensemble of multiple decision trees, and
all the decision trees involve the class inference. In the first training step,
based on the genetic algorithm, it identifies a small number of samples,
which represent the per-feature distribution of the training data (Sec-
tion IV-B). The algorithm is implemented with the memory blocks called
Chromosome blocks, in short chm blocks. With the selected samples,
the second step performs the decision tree learning (Section IV-C). In
this step, most computations happen inside the data storage, and thus the
processor does not need to access the training dataset directly. The trained
DT is written to a memory block called DT block. As the last step, we
exploit AdaBoost, which is known as one of the best off-the-shelf ML
algorithms [23] (Section IV-D).

Figure 5b illustrates the tree boosting model. The AdaBoost utilizes
many simple, complementary learning models, called either weak/base
learners, to create a strong prediction. A decision tree (DT) comprises
multiple decision nodes, also known as decision stump (DS). We construct
a DT by connecting multiple decision stumps, so that it supports multi-
level decisions by up to a configurable level, H. A DS is defined
with a feature, f, and a decision rule value, v, where the decision

is made by comparing the feature value of a sample, ie., v/ < mf :
It has two branches connected to either another stump or a leaf node.
Each leaf node includes the probability values for each class, i.e.,
P = (po, - ,pr—1). The prediction results of all decision trees are
combined with weighted sums, creating the final prediction results of

class probabilities (Section IV-E).

B. GA-Based Sample Selection

Our GA procedure identifies the representative subset of N..,, values
for each feature. There are two types of the chm blocks, parent and
child chm blocks, where C/2 blocks are allocated for each type to store
multiple subset candidates. A parent chm block is initialized with Nepm
feature values of random samples. For each iteration, it first calculates
a fitness metric, i.e., how much the selected values in each parent chm
block mimic the distribution of the original training data. We use mean
absolute deviation (MAD) as our fitness metric:

i lta — =]) _(d+1)-1maw}
N T T
]

where z;] is one of IV features and D is a predefined value that decides
the number of partitions. It is decomposed as follows:

Tf(d)XN:td'nz— Z z; + Z Ii—td‘(N—ni:)

@ <tg 2ty

{r/ (@) (d) =

where nf is the number of rows whose value z; are smaller than ¢4.
Since all the terms in the equation can be computed in parallel using
the PIM operations, i.e., less-than, addition, and count operations, the
CHOIR architecture can efficiently perform the GA selection procedure.

Figure 6 illustrates how to compute this procedure with CHOIR PIM
APIs. In this example, for the memory-mapped CHOIR array (chm
variable), the user program specifies the target rows and columns to
execute the PIM operations. The traspiled instructions first find the rows
whose values is smaller than ¢4 (in this example, ¢4 = 10), and count n{f .
Then, with the two addition operations and latched results, it computes
the two partial sums, i.e., >, _, @;and 3 -, . The host processor
can calculate the MAD metric using the three variables computed inside
memory, Sum1, sum2 and cnt.

We then update the child chm blocks by randomly selecting two parent
blocks and mixing their row values. The updated children should be more
similar to the original distribution. To this end, we exploit the fitness
proportionate selection metric so that the parent blocks with smaller
distribution differences get higher chance to be chosen. While the cross-
block copy command writes most rows of the child block, i.e., copy, a
very small number of rows are updated with samples of the training
dataset to encourage diversity of explored sample combinations. The
percentage of rows updated from the training dataset is determined by a
mutation probability, p,. It is executed until all the child c¢hm blocks are

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

Transpiled
PIM Instructions

PIM Hardwaree‘\
o

User-level Program

r [t
rowmask Cppy, R =» 8 H1HO

mask=chm(prts,0)<10; It Cpre, 10 provchm 10 HOH 1
cnt=chm(mask,®).count(); §aS50C Cppe : g :%_ 8
suml=chm(mask,®).add(); count Cpre ol
add Cpre 13 HoH1

g HiHo

. =110 HoH1
notmask=Choir: :not(mask); » nassoc Cpye » 2 H1Ho
sum2=chm{notmask,®).add(); add Cpry 5 Hi1HoO
= 12 HoH1

= 13 HoH1

Fig. 6. GA-based Sample Selection (Cprt: block set ID for parent c/m blocks,
R¢pm: bitmask for the first N.p,, rows)

updated. Through multiple iterations, this GA procedure can find a subset
of the samples that has very similar distribution to the original one.

C. Decision Tree Training

The goal of the DT training is to learn each DS staring from the root
node and write the trained stump in the DT memory block. To create a
DS, this step evaluates multiple decision rule candidates using the best
representative samples selected by the GA algorithm. For example, for
a decision rule candidate, T/, the feature dimension is divided into two
partitions. Since the boosting procedure gives weight values for each
sample, we consider the weight values in this evaluation. Let us assume
that W is the weight sum of all samples for each class, k, in the left
partition and W;Z is that of the right partition. Then, we can evaluate the
classification quality using Entropy metric as — >_p (pf - log(p) + pr* -
log(pfh)), where pf; = WF/>,, Wi and pff = WF/ >, Wi, If the
decision rule accurately partitions, this metric has a small entropy.

Figure 7 shows how we compute the weight sum to compute the
entropy. This procedure is running on the slice blocks of the data
storage (mapped to data variable). In the computation, we divide a
feature dimension into multiple partitions using each rule candidate. To
compute the entropy, the parallelized PIM commands compute the less
than operation for the first partition (@). It activates the samples in the
left partition to compute the partial weight sum with add (@). Then, it
selects all the data samples, which are larger than the rule, by activating
with the N latch (€)). By repeating it for each partition, we can compute
weight sums of all partitions. The host processor then computes which
rule has the minimum entropy and writes it into the DT block as the best
decision rule. Lastly, with incl operation, we update the slice blocks to
keep the index of each decision node, called node ID, which indicates
where the sample is classified by the current DT.

D. Adaptive Weight Boosting

We create multiple DTs by boosting (increasing) the weights of weak
hypothesis, i.e., inaccurately classified samples, while setting smaller
weights for the correctly classified samples. The next DT is created using
the boosted weights, and the accuracy can either increase or converge with
more base learners. We utilize a state-of-the-art boosting mechanism,
SAMME.R which supports multi-class classification [14]. SAMME.R
boosts each sample weight if the samples predicted incorrectly. This
algorithm always converges as the SAMME.R mechanism guarantees it
as long as each DT makes the prediction better than random guessing.
After boosting the sample weights, we re-normalize the weight values to
map them into the 64-bit integer range that the PIM can support, while
selecting the N4, highest weight samples for the DT learning procedure.
Then, we update the slice blocks using the calculate weights and reset
the node ID for each sample. To update the values across multiple slice
blocks of different features, this operation is performed in a block-parallel

User-level Program Execution of Transpiled PIM Instructions

© (oD, 01D, V2,
: 1 1
1 1 1

for (i=0; i<N_rules;++i) {
@ nask=data(mask,@)<rule[i];

@ sun=data(mask,WGT_COL).add(); 056000000508
@ nask=Choir: :not(mask); L
} - (-] [sassoc D; colmask D, Cyyge5 add D]
i i i
O Samples of Class 0 in activated rows «mLOO—O—(X)-LE-E-E—LEH)—E-»
O Samples of Class 1 in activated rows
O Samples of Class 0 in inactivated rows =)
[Samples of Class 1 in inactivated rows . :]
1 1 1
[Rangeof samplesinSLatch | <OB0-88-8-80-BEE-S0 8-
r |
:l Range of samples in N Latch ' LT
Rule candidates

Fig. 7. Decision Stump Learning (ID: block set ID of slice blocks, V,..,;.: decision
rule candidates, Cyyg¢: bitmask for the columns of sample weights)

way using cwrite. Lastly, we update the probability values of leaf nodes,
so that each DT has the same importance in the final ensemble model.
Through the iterations, the CHOIR software creates M decision trees and
produces the ensemble model into the DT blocks.

E. Online Class Inference

The online inference procedure is very similar to the decision stump
training. We classify multiple samples at the same time by performing
the row-parallel comparisons and then updating node IDs. In the initial
step, we execute ltd to compare the rule values with different features
of the slice blocks. For the selected rows, we update the node IDs
of each sample by executing ¢sassoc¢ and incld. After computing all
the decision rules, we can identify the probability of the node ID for
each sample by reading the stored weights from the DT blocks, i.e.,
Ps' = (pe,0, -+ ,pPe,k—1) where the classified node ID is 6. The final
classification result for each sample is the class that has the highest

probability sum, i.e., arginax Eﬁf;nl Dok

V. EVALUATION
A. Experimental Setup

Table I summarizes the experimental setup and the parameters of
CHOIR used in our evaluation. We implement CHOIR classification
procedure using C++ with the CHOIR runtime. The host system runs on
Intel i7-8700K CPU at 3.70GHz with 16 GB main memory. To evaluate
the proposed architecture and software, we have developed an in-hour
simulation infrastructure which estimates the performance and power of
the CHOIR storage system in a cycle-accurate manner. We also develop
a front-end of the simulator using the device drivers to i) emulate the
PIM functionalities using GPU memory and CUDA threads on NVIDIA
GTX 1080 Ti, and ii) record the executed PIM instructions. With the
instruction execution log, we perform a circuit-level simulation to obtain
the total cycles and energy on the PIM-enabled storage microarchitecture,
including the memresistors, peripherals, memory blocks, IO buffer, and
microcontroller of the bank level. We use HSPICE and Synopsys design
compiler in 45nm TSMC technology. The proposed design work with
any bipolar resistive technology; we use a single-level memristor device
proposed in [24] with R,, = 10KQ and Rory = 10M€Q. We use the
detailed VTEAM parameters reported in [13]. The synthesized circuit
design produces the latency and energy for each PIM instruction during
the storage-side execution. For the host side, we measure the power using
HIOKI 3334 meter, and exclude the execution time and power consumed
on the GPU used for the storage simulation.

We utilize 13 benchmarks summarized in Table II. We compare the
CHOIR classification to a popular machine learning package, scikit-
learn (sklearn), an OpenCL implementation of the CHOIR procedure

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXPERIMENTAL SETUP AND CHOIR PARAMETERS

\ Host Systems I CHOIR
CPU Intel(R) Core(TM) i7-6700K, 8 Cores @ 4.0 GHz Technology | 45nm TSMC | Bank
CPU Cache L1: 32kB, L2: 256kB, 1L.3:3MB Memristor | VTEAM [24] | Size | 512 MB
Main memory 16 GB (DDR4) @ 2133 Mhz Block Area \ 69.98 mm?
OS Kernel Linux 4.15 (Ubuntu 13.04) Size 128 kB Total
CHOIR Runtime Compiler GCC 5.4 (option: -O3 -ftree-vectorize) Memresistor 0.017 mm?2 Size \ 4 GB (8 Banks)
Bandwidth from/to CHOIR | 12 GB/s (PCle) Peripheral (SA+latch) | 509 um2 Area \ 559 mn?
TABLE II [@ReRAM Array ToAddMal | o —
CLASSIFICATION BENCHMARKS O Computing Logic (CHOIR) m Nsearch CHOIR| IMP
— @ Latches (CHOIR) 1| ®Less than Add 9.25pl | 20 p
Name F | K | N (train) | N (inf) Description BADC+DAC (IMP) }| mIncrement
BLOBS 2 3 2048 2048 Microbenchmark [25] ! @Count Mul 155pJ | 100pJ
RIS 4 3 135 15 Flower pattern recognition [26] IO/ (IME) . Search | 1090 | NA
SHUTTLE 9 8 43500 14500 Airplane stat log classification [27] . -
PAGE 0 |5 4925 548 Page block classification [28] CHOIR Less than | 162f) | N/A
CARDIO 21 8 1913 213 Cardiotocography [29] Increment | 9301 | 20p)
PAMAD2 | 27 | 5 16384 16384 | Activity recognition with IMU [30] IMP
AUDIO | 388 | 7 38513 2027 | Music identification (Audioset) [31] :
UCIHAR 561 12, 6213 1554 Activity recognition with mobile [32] o N N N N N
ISOLET | 617 | 26 6238 1559 | Voice recognition [33] 0% 20% 40% 60% 80% 100% (b) Energy of
MNIST | 392 | 10 | 60000 10000 | Text recognition [34] (a) Area key PIM operations
FACE 608 2 22441 2494 Face recognition [35] -
HIGGS 28 | 2 | 10000000 | 1000000 | Physics simulation [36], [37] .))
SUSY 18 | 2 | 5000000 | 500000 | Physics simulation [37], [38] Fig. 8. Comparison of CHOIR with IMP
TABLE III " —— " — = -
CLASSIFICATION ACCURACY COMPARISON 2 % : ""l =i 083
| H M CHOIR Sklearn XGBoost ~ DNN fus g —i o
E 80 — = E 70! —H=6 0472
BLOBS 2 128 100.00% 100.00% 100.00% 100.00% s —ISOLET —FACE Z MAD by GA 3
IRIS 3128 100.00% 100.00% 100.00% 100.00% » | —HIGGS —SUSY “ o
SHUTTLE | 3 128 99.94% 99.99% 99.99% 98.94% 0 S fees as00 Eeee s0, == e
CARDIO | § 1024 oTine osma o6 4o #of DTS L
18% 77% 0. 96% 7 -
PAMAP2 | 3 1024 98.05% 96.56% 97.82% 92.98% (a) Accuracy changes over M (b) MNIST accuracy
AUDIO 6 2048 5934% 57.32% 58.70% 6133 % -
UCIHAR | 6 2048 97.88% 96.55% 97.13% 96.6 %
ISOLET | 6 2048 94.36% 91.78% 94.64% 95.6 %
MNIST 6 2048 97.78% 97.90% 98.71% 995 %
FACE 6 2048 98.71% 97.00% 9743% 9823 %
HIGGS 6 2048 81.55% 82.08% 82.33% 82.60%
SUSY 6 2048 80.29% 79.35% 8120% 84.54%

that parallelizes tasks for each memory block using the GPU cores, and
XGBoost which is a state-of-the-art boosting library fully parallelized
on CUDA [15]. The parameters of the GA-based sample selectors are
empirically set by C' = 32, Newm = 64 (128 for SUSY and HIGGS),
D =8, and p, = 0.005.

We compare the CHOIR classification to a popular machine learning
package, scikit-learn (sklearn) [25], an OpenCL implementation of the
CHOIR procedure that parallelizes tasks for each memory block using
the GPU cores, and XGBoost which is a state-of-the-art boosting library
fully parallelized on CUDA [15].

B. Architectural Comparison

The key novelty of the proposed PIM architecture is that we perform
the massive PIM operations without using large peripherals. Figure 8a
shows the breakdown of area overhead for a memory block. We compare
the CHOIR architecture with a state-of-the-art PIM design, IMP [3].
IMP performs parallel ReRAM-based computations similar to CHOIR;
however using ADC/DAC units to enable the analog/mixed signal-based
computation. The results show that the ReRAM array in CHOIR takes
the majority of the area (96%), whereas a large area of IMP is taken by
ADC/DAC units, i.e., 65%. In CHOIR, the computing logic including SA
modifications with CMOS circuits incurs only 3% area overhead, and the
latches take less than 1% of the total memory. The low-overhead CHOIR
architecture can be a suitable solution for the storage-class memory.

(¢) Practical face recognition

Fig. 9. Accuracy of Trained CHOIR Models

Figure 8b shows the breakdown of the area overhead to support each
major operation: add/mul, less-than, search (and match), increment, and
count. We observed that the two PIM functionalities that we newly pro-
pose, i.e., increment and less-than, can be implemented with comparable
overhead to the other PIM operations. Figure 8c shows the comparison
of energy consumption for the operations, which require to process a
single word. The results show that, for the addition and multiplication
operations, the energy consumption of CHOIR is comparable to the
IMP design. The other CHOIR operations (search, match, and less-than),
are performed with a negligible amount of energy. For the increment
operation, we assume that IMP may support it using its addition operation.
Since the CHOIR implements the operation by directly manipulating
digital bits, it consumes less energy than IMP.

C. Classification Accuracy

Table III summarizes the classification accuracy for the inference
datasets. It also shows the baseline model parameters, the height of a DT
(H) and the number of DTs (M). The results present that the proposed

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

B Energy (OpenCL)
OEnergy (XGBoost)

B Speedup (OpenCL)

1000
o Speedup (XGBOOST)

B H=3 mH=4 OH=5 mH=6
1 1

—
=
=

—
<

&
o
¥

Energy Efficiency
Improvement & Speedup

" Wi M A H&HQ_

?
Y &S T

(a) Default Learning Parameter

S S ®
& & £

Norm. Energy

=l
n
Norm. Execution Time

“ 0

4 <
& &
$

0

< S
¢ S
S

& Q& &
S G
P\ se\ @9 <&

&

S
06

<
Q%
& 3

(b) Tree depths

Fig. 10. Energy and Performance Improvement in Training

training algorithm can provide high accuracy for general classification
problems. For example, we can achieve more than 97% for the diverse
classification tasks including disease diagnosis (CARDIO), human ac-
tivity recognition (PAMPA2, UCIHAR), and image recognition (MNIST,
FACE). We also compare the accuracy with an AdaBoost implementation
of the sklearn and XGBoost. The results show that CHOIR can provide
comparable accuracy to the state-of-the-art ML libraries. As compared to
the sklearn, CHOIR achieves better accuracy for eight benchmarks. This
trend is typically observed for the benchmarks that include non-negligible
noises, e.g., UCIHAR, ISOLET, and FACE.

Since the classification is made based on the representative samples
selected by the GA-based algorithm, the CHOIR creates more robust
models to the outliers. The CHOIR models also exhibit comparable
accuracy to the DNN models. The results suggest that the proposed PIM-
based learning solution can provide high quality for diverse applications
which need frequent training, e.g, assimilation of data collected real-time.

Figure 9a shows how the accuracy changes over different numbers of
DTs, M, for three representative benchmarks. The results show that the
proposed algorithm successfully converts the base learners to the strong
ensemble model. For example, the first DT for FACE predicts classes
only with 84% accuracy, but by boosting the weight, it quickly achieves
high accuracy, creating the final ensemble model that has 98% accuracy.
Figure 9b describes the accuracy changes over different combinations of
the two parameters for MNIST along with the MAD convergence by the
GA. The result shows that we can achieve high accuracy with enough
tree depths, e.g., more than 4. The GA also successfully optimizes the
MAD cost function through iterations. Figure 9¢ presents the results of
the face recognition, and the model created by CHOIR recognizes all 41
faces only with 4 false positives.

D. Energy and Performance Evaluation

Training Procedure We compare the energy and performance efficiency
of the proposed CHOIR with the two GPGPU-based implementations.
Figure 10a summarizes the comparison results of the training procedures
when using the same training parameters shown in Table III. The proposed
training procedure significantly improves the energy and performance
efficiency. We observe higher improvements for large datasets since we
can parallelize more operations while reducing communication costs
to the host processor. We can achieve the energy and performance
improvement on average by 153x and 63x compared to OpenCL-based
CHOIR implementation, and 123x and 52x compared to XGBoost. These
results show that the proposed CHOIR design which performs the tasks
on the NVM-based PIM architecture can serve high efficiency for general
classification problems.

The efficiency of the training procedure is also affected by the model
complexity parameters. Figure 10b shows how energy and performance

B Energy (OpenCL)
OEnergy (XGBoost)

@ Speedup (OpenCL)
O Speedup (XGBOOST,

100

10

Energy Efficiency Improvement &
Speedup

Fig. 11. Efficiency Improvement in Inference

change for different tree depth settings. The results show that less-
complex DTs can be trained with much less resources. Based on the
trade-off between accuracy and efficiency, applications can make their
strategies to select learning parameters. For example, for FACE, the
accuracy difference between A = 128 and M = 1024 is only 2%,
while training the model of M = 128 consumes 16x less energy as
compared to the model of M = 2048.

Inference Procedure Figure 11 shows the energy and performance
improvement compared to the GPU-based inference. The results show that
CHOIR also efficiently performs the inference procedure. The efficiency
improvement is less than that of the training procedure since the CPU
needs to return the probability sums of all DTs. However, both training
and inference involve many comparison operations which can be fully
accelerated using the proposed row-parallel comparison operations. As
the result, we can still improve the performance and energy on average
by 83x (82x) and 11x (7x), respectively, as compared to the OpenCL-
based implementation (XGBoost).

E. Energy and Performance Breakdown

Figure 12a and b compares the execution time breakdown of GPU
and CHOIR architecture during the training procedure. For the GPU
architecture, we used NVIDIA nvprof tool to extract the statistics. The
result shows that the CHOIR significantly reduces the data movement
cost as compared to the GPU architecture. For example, transferring the
data between the main memory and the GPU memory (GDDR) takes
13.3%, and the GPU processing cores spend 70.9% of the total execution
time to access the GDDR, in total 84.2%. In contrast, CHOIR reduces
the data transfer cost by 93.6x.

The results also show that CHOIR performs the training procedure
while highly utilizing the PIM-based computations. For example, the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

OB R —

HIGGS HGGS W

MNIST MNIST """

FACE FACE [1
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

OGPU Compute

SData Transfer

WGDDR Access
oCPU

[2GA ODT mBoost sData Transfer o CPU|

(a) Execution Time on GPU (b) Execution Time on CHOIR

R S e—
HIGGS [)
MNIST [
FACE

0% 20% 40% 60% 80% 100%

Oadd
Wsearch
ot

O cwrite
@ copy
Bincl
Hothers
(d) Operations on CHOIR

I;C.\ ODT mBoost @Data Transfer EI(‘N‘I

(¢) Energy on CHOIR

Fig. 12. Breakdown in Training

I W Boosting (OpenCL) ®DNN (TF) BCHOIR OPipeLayer

2
=

@ b4

Eow g 1
= = £ =
S 108 E] E §= Z
¥ &£ 2 3
g3 e 3 B2
EC . 3210 sz 10
£ 71 £E £~
= = =

= = 1

1
HIGGS SUSY HIGGS SUSY HIGGS SUSY

Fig. 13. Throughput Comparison

portion of the execution time running on the CPU is less than 10%.
For the datasets that have the larger samples, e.g., HIGGS, the boosting
procedure consumes more energy as shown in Figure 12c, since it needs
more write operations to update sample weights. However, since the write
operations are parallelized across blocks to hide the latency, there is no
significant impact on performance. Figure 12d shows the breakdown of
PIM operations used in the training procedure. The proposed algorithm
can be executed with minimal cross-block data movements. For example,
the cross-block write-related operations, e.g., cwrite and copy operations,
only take 10% of the breakdown, while the other 90% of operations solely
happen inside each memory block.

E Throughput Comparison

Figure 13 compares the throughput of the big data classification for
four different cases: i) tree boosting running on GPU, ii) DNN running
on GPU with Tensorflow (TF) [17], iii) the proposed CHOIR design,
and iv) a state-of-the-art PIM-based DNN accelerator, PipeLayer [2].
We use the two largest datasets, HIGGS and SUSY, which have 10 and
5 million data samples, respectively. The DNN model is trained with
a 5-layer structure shown in [37], where each layer has 300 hidden
units. We observe that the tree boosting is more light-weight than the
sophisticated DNN. For example, the proposed algorithm is 5X faster
than the TF-based DNN training even on GPU. As compared to the other
PIM architecture, the throughput of CHOIR is 475M samples/sec, 18.7x
higher than PipeLayer. When considering the total chip area, CHOIR
also achieves higher computation efficiency in terms of throughput/area.
The power efficiency of CHOIR is 1.83M (samples/sec/W), also higher
than boosting on GPU (4.1K samples/sec/W), DNN on GPU (1.1K
samples/sec/W), and Pipelayer (0.34M samples/sec/W).

VI. RELATED WORK

Near-data computing accelerates computation by reducing the overhead
of data movements between hardware blocks [4], [5], [9]. 3/2.5D stacking
technologies are driving active recent research to integrate logic on die.
For example, prior research designed PIM blocks for application accel-
eration, e.g., MapReduce based on 3D stacking [39], nearest neighbor
search using computational logics beside DRAM [40], and parallel graph
processing based on 3D DRAM [41]. Several designs have been also
proposed for heterogeneous computing platforms to use the accelerators
in system, offer high memory bandwidth, and coherently access host
memory, e.g., IBM CAPI [42], Intel HARP [43], and HMC 2.0 [7],
[20]. MICRON’s IMI [10] exploits simple bit-serial CMOS computing
elements to DRAM array’s sense amplifiers. However, the execution
of DRAM-integrated logics is destructive in that it invalidates the data
used as operands, requiring many data writes after each parallel PIM
operation [44]. In contrast, CHOIR performs massive-parallel and non-
destructive operations inside NVM block without using high-cost CMOS
logic, offering much higher efficiency to achieve the same level of
parallelism.

Previous work have presented various PIM-enabled design [1], [45]-
[48]. Work in [49] provided a survey with discussion for different NVM
devices. Prior work also proposed a PIM-based design for DNN training
acceleration based on specialized crossbar array [2], [50], [51]. Recent
work utilized the in-memory computing to design an in-memory data
parallel processor (IMP) [3]. In IMP, memory arrays act as vector
processing units which perform arithmetic operations, e.g., addition and
multiplication. However, their PIM operations are based on analog mixed-
signal design which demand large area overhead. In contrast, CHOIR
enables massive-parallel in-situ computation at near-zero silicon cost.
A recent work [11], [52] proposed a custom PIM accelerator design
for deep learning based on the MAGIC NOR technique and how to
support floating-point operations with the in-memory NOR. In contrast,
our work focus on how to design a programmable, cross-stack PIM
architecture with the support of the in-memory conditional operations
for non-arithmetic-centric ML workloads.

VII. CONCLUSION

In this paper, we propose a hardware/software codesign of CHOIR,
which includes the new NVM-based architecture and PIM-friendly
supervised learning algorithm. The CHOIR architecture supports PIM
operations with minimal area overhead suitable for storage-class mem-
ory. The proposed classification algorithm can be implemented in a
programmable way and performs both the model training and inference
procedures efficiently on the PIM architecture. Our evaluation show that
the proposed design have minimal area overhead of 4% on the existing
resistive memory technology. The classification solution on CHOIR also
accurately classifies practical applications which are also comparable
to the state-of-the-art learning deep learning techniques. Our results
show that the classification method on the PIM architecture achieves
high energy and performance improvements as compared to GPU. For
example, we improve the energy and performance efficiency by 123x
and 52x respectively, for training as compared to the state-of-the-art
GPU running XGBoost.

ACKNOWLEDGMENT

This work was supported by the National Research Foundation (NRF)
of Korea (NRF-2018R1A5A1060031). This work was also supported in
part by National Science Foundation (NSF) #2127780 and #1730158,
Semiconductor Research Corporation (SRC) Task No. 2988.001, CRISP
(one of six centers in JUMP, an SRC program sponsored by DARPA,)
Department of the Navy, Office of Naval Research, grant #N00014-21-
1-2225, and a generous gift from Cisco.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

111

12

=

14]

15

16]

171 .

18

19

110]

111]

116]

117]

118]

119]

120]

121]

122]

123]
124]

REFERENCES

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S.
Williams, and V. Srikumar, “Isaac: A convolutional neural network accelerator with in-
situ analog arithmetic in crossbars,” in Proceedings of the 43rd International Symposium
on Computer Architecture. 1EEE Press, 2016, pp. 14-26.

L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based accelerator
for deep learning,” in High Performance Computer Architecture (HPCA), 2017 IEEE
International Symposium on. 1EEE, 2017, pp. 541-552.

D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,” in Proceedings
of the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2018, pp. 1-14.

M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The terasys massively parallel
pim array,” Computer, vol. 28, no. 4, pp. 23-31, 1995.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
and K. Yelick, “A case for intelligent ram,” IEEE micro, vol. 17, no. 2, pp. 34-44, 1997,

L. B. Peng and J. S. Vetter, “Siena: exploring the design space of heterogeneous memory
systems,” in SCI8: International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2018, pp. 427-440).
M. Technology, “Hybrid memory cube,”
hybrid-memory-cube, 2017.

J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-memory for energy-
efficient neural network training: A heterogeneous approach,” in 2018 5Ist Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1EEE, 2018, pp.
655-668.

T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. Brockman, K. Jacobsen, Y. Juan,
S. Kuntz, R. Lethin e af, “Highly scalable near memory processing with migrating
threads on the emu system architecture,” in Proceedings of the Sixth Workshop on Irregular
Applications: Architectures and Algorithms. 1EEE Press, 2016, pp. 2-9.

T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel, and T. Manning, “In-memory intelli-
gence,” IEEE Micro, vol. 37, no. 4, pp. 30-38, 2017.

M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory acceleration of deep
neural network training with high precision,” in Proceedings of the 46th International
Symposium on Computer Architecture. ACM, 2019, pp. 802-815.

M. Imani, A, Rahimi, and T. S. Rosing, “Resistive configurable associative memory for
approximate computing,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016. 1EEE, 2016, pp. 1327-1332.

N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within memristive memories
using memristor-aided logic (magic),” IEEE Transactions on Nanotechnology, 2016.

J. Zhu, H. Zou, S. Rosset, and T. Hastie, “Multi-class adaboost,” Statistics and its Interface,
vol. 2, no. 3, pp. 349-360, 2009.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining. ACM,
2016, pp. 785-794.

S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a structure for efficient
numerical computation,” Computing in Science & Engineering, vol. 13, no. 2, p. 22, 2011.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin ef al., “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient logic in memory,” in
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1EEE,
2018, pp. 1-7.

M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient pr g i y for data i
applications,” in Proceedings of the S4imanth Annual Design Automation Conference 2017.
ACM, 2017, p. 6.

J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: A low-overhead,
locality-aware processing-in-memory architecture,” in Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium on. 1EEE, 2015, pp. 336-348.

M. Imani, Y. Kim, and T. Rosing, “Mpim: Multi-purpose in-memory processing using
configurable resistive memory,” in 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). 1EEE, 2017, pp. 757-763.

A. Haj-Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky, “Efficient algorithms for in-memory
fixed point multiplication using magic,” in Circuits and Systems (ISCAS), 2018 IEEE
International Symposium on. 1EEE, 2018, pp. 1-5.

R. E. Schapire, “Explaining adaboost,” in Empirical inference. ~ Springer, 2013, pp. 37-52.
S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam: A general model
for voltage-controlled memristors,” IEEE Transactions on Circuits and Systems I1: Express
Briefs, 2015.

“Scikit-learn machine learning in python,” http://scikit-learn.org/stable/.

“Uci machine learning repository, iris,” https://archive.ics.uci.edu/ml/datasets/Iris.

“Uci machine learning repository, statlog,” https://archive.ics.uci.edu/ml/datasets/Statlog+
%28Shuttle%29.

“Uci machine learning repository, page,” https://archive.ics.uci.edu/ml/datasets/Page+
Blocks+Classification.

“Uci machine learning repository, cardiotocography,” https://archive.ics.uci.edu/ml/datasets/
Cardiotocography.

A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity monitoring,”
in Wearable Computers (ISWC), 2012 16th International Symposium on. 1EEE, 2012, pp.
108-109.

https://Awww.micron.com/products/

136]
137]

138]
1391

140]

141]

145]

146]

147]

148]

149]

150]

151]

152]

J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M. Plakal,
and M. Ritter, “Audio set: An ontology and human-labeled dataset for audio events,” in
Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference
on. 1EEE, 2017, pp. 776-780.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain dataset for
human activity recognition using smartphones.” in ESANN, 2013.

“Uci machine learning repository, isolet,” https://archive.ics.uci.edu/ml/datasets/ISOLET.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, 1998.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL
Visual Object Classes Challenge 2012 (VOC2012) Results,” http://www.pascal-network.org/
challenges/VOC/voc2012/workshop/index.html.

“Uci machine learning repository, higgs,” https://archive.ics.uci.edu/ml/datasets/HIGGS.

P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles in high-energy
physics with deep learning,” Nature communications, vol. 5, p. 4308, 2014.

“Uci machine learning repository, susy,” https://archive.ics.uci.edu/ml/datasets/SUSY.

S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyuktosunoglu,
A. Davis, and F. Li, “Ndc: Analyzing the impact of 3d-stacked memory+ logic devices on
mapreduce workloads,” in Performance Analysis of Systems and Software (ISPASS), 2014
IEEE International Symposium on. 1EEE, 2014, pp. 190-200.

C.C.del Mundo, V. T. Lee, L. Ceze, and M. Oskin, “Ncam: Near-data processing for nearest
neighbor search,” in Proceedings of the 2015 International Symposium on Memory Systems.
ACM, 2015, pp. 274-275.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-memory acceler-
ator for parallel graph processing,” in Computer Architecture (ISCA), 2015 ACM/IEEE 42nd
Annual International Symposium on. 1EEE, 2015, pp. 105-117.

J. Stuecheli, B. Blaner, C. Johns, and M. Siegel, “Capi: A coherent accelerator processor
interface,” IBM Journal of Research and Development, vol. 59, no. 1, pp. 7-1, 2015.

P. K. Gupta, “Xeon+ fpga platform for the data center,” in Fourth Workshop on the
Intersections of Comp Archi; e and Reconfigurable Logic, vol. 119, 2015.

S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A dram-
based reconfigurable in-situ ;' in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2017, pp. 288-301.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A novel
processing-in-memory architecture for neural network computation in reram-based main
memory,” in ACM SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press,
2016, pp. 27-39.

T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training with resistive cross-
point devices,” arXiv preprint arXiv:1603.07341, 2016.

M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyperdimensional
associative memory,” in 2017 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA). 1EEE, 2017, pp. 445-456.

M. Imani, X. Yin, J. Messerly, S. Gupta, M. Niemier, X. S. Hu, and T. Rosing, “Searchd: A
memory-centric hyperdimensional computing with stochastic training,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2422—
2433, 2019.

G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii,
P. Narayanan, A. Fumarola ef al., “Neuromorphic computing using non-volatile memory,”
Advances in Physics: X, vol. 2, no. 1, pp. 89-124, 2017.

M. Imani, M. Samragh, Y. Kim, S. Gupta, F. Koushanfar, and T. Rosing, “Rapidnn: In-
memory deep neural network acceleration framework,” arXiv preprint arXiv:1806.05794,
2018.

M. Imani, M. S. Razlighi, Y. Kim, S. Gupta, F. Koushanfar, and T. Rosing, “Deep
learning acceleration with neuron-to-memory transformation,” in 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 1EEE, 2020, pp. 1-14.
M. Imani, S. Pampana, S. Gupta, M. Zhou, Y. Kim, and T. Rosing, “Dual: Acceleration
of clustering algorithms using digital-based processing in-memory,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1EEE, 2020, pp.
356-371.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:40:47 UTC from IEEE Xplore. Restrictions apply.

