
Stochastic-HD: Leveraging Stochastic Computing
on Hyper-Dimensional Computing

Yilun Hao∗, Saransh Gupta∗, Justin Morris∗†, Behnam Khaleghi∗, Baris Aksanli†, and Tajana Rosing∗
∗University of California San Diego, La Jolla, CA 92093, USA

†San Diego State University, San Diego, CA 92182, USA

{yih301,sgupta,justinmorris,bkhalegh}@ucsd.edu, baksanli@sdsu.edu, tajana@ucsd.edu

Abstract—Brain-inspired Hyperdimensional (HD) computing
is a novel and efficient computing paradigm which is more
hardware-friendly than the traditional machine learning algo-
rithms, however, the latest encoding and similarity checking
schemes still require thousands of operations. To further reduce
the hardware cost of HD computing, we present Stochastic-HD
that combines the simplicity of operations in Stochastic Comput-
ing (SC) with the complex task solving capabilities of the latest
HD computing algorithms. Stochastic-HD leverages deterministic
SC, which uses structured input binary bitstreams instead
of the traditional randomly generated bitstreams thus avoids
expensive SC components like stochastic number generators.
We also propose an in-memory hardware design for Stochastic-
HD that exploits its high level of parallelism and robustness to
approximation. Our hardware uses in-memory bitwise operations
along with associative memory-like operations to enable a fast
and energy-efficient implementation. With Stochastic-HD, we
were able to reach a comparable accuracy with the Baseline-HD.
As compared to the best PIM design for HD [1], Stochastic-HD
is also 4.4% more accurate and 43.1× more energy-efficient.

I. INTRODUCTION

Brain-inspired Hyperdimensional (HD) computing is a

light-weight computing method to perform cognitive tasks

on devices with limited resources [2], [3] such as activity

recognition, object recognition, language recognition, and bio-

signal classification [4], [5], [6]. HD computing has three

main stages, 1) Encoding: mapping data into hypervectors
(HVs). 2) Training: combining encoded HVs to create a model

representing each class. 3) Inference: comparing the incoming

sample with the trained model to find the most similar class.

HD has highly parallelizable operations by operating on

independent HVs with 10, 000 dimensions. However, during

encoding and inference, there are numerous element-wise

multiplies and accumulations due to matrix multiplication.

When mapped to a processing-in-memory (PIM) architecture,

they have to be performed sequentially.

By implementing same inference process using Naive PIM

in [7], the XOR operations costs 3.3ns because they are able

to work completely in parallel, while the accumulation (which

includes the element-wise multiplication) costs 13504ns be-

cause they needs to work sequentially as the operations are

not simple bitwise operations. These operations cause a clear

bottleneck for HD computing in PIM architecture. Although

this can be alleviated by significantly increasing the memory

size, which costs 97ns, that comes at a D× increase in

area, where D = 4, 000. Prior work leveraged simple analog

PIM memory to implement HD Computing [1] to solve this

issue but they lose, on average, 3% of the accuracy of HD

Computing because the analog circuits are too aggressive at

approximation. To alleviate this issue, we utilize Stochastic

Computing (SC) operations, a computing paradigm that uses

random bitstreams to convert complex computations to simple

bit-wise operations on the streams [8], in their place, which

are much more hardware friendly for PIM architectures. Ad-

ditionally, with SC, we are able to maintain the accuracy of

HD better than previous aggressive analog PIM architectures.

In this paper, we leverage SC during the encoding and

similarity checking phase of both training and inference stages

of HD computing. We propose, Stochastic-HD, which com-

bines HD computing and SC to perform classification tasks

in PIM with highly parallel operations. To do this, we utilize

deterministic SC [9], which uses a more structured way to

represent the bitstreams instead of typical randomly generation

thus results in better accuracy. We first turn the encoded class

hypervectors into bitstreams. During retraining and inference,

we represent each element of the query hypervectors with

bitstreams, and then use AND to compare the similarity

instead of cosine similarity. With Stochastic-HD, we were able

to reach a comparable accuracy with the Baseline-HD. As

compared to the best PIM design for HD [1], Stochastic-HD

is 4.4% more accurate and 43.1× more energy-efficient.

II. RELATED WORK

A. Hyperdimensional Computing

Prior work applied the idea of HD Computing to different

classification problems such as language recognition, speech

recognition, face detection, human-computer interaction, and

sensor fusion prediction [4], [5], [6]. Prior works also proposed

binary encoding to accelerate HD Computing[10], [1], [11].

Prior work has also proposed hardware accelerators for HD

Computing such as FPGAs [12], and PIM architectures [13],

[1]. Although GPUs and FPGAs provide a suitable degree of

parallelism that makes them amenable to machine learning

algorithms such as deep neural networks, the complexity

of their resources, e.g., floating point units or DSP blocks,

is by far beyond HD’s requirements, making such devices

inefficient for HD. PIM architectures tackle this problem as

they are comprised highly parallel arrays with intrinsically

non-complex computational capability, which is sufficient for

HD operations. Additionally, PIM can eliminate the high cost

20
21

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r D
es

ig
n

(I
C

C
D

) |
 9

78
-1

-6
65

4-
32

19
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

D
53

10
6.

20
21

.0
00

58

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:46:12 UTC from IEEE Xplore. Restrictions apply.

data movement in the traditional von Neumann architectures

as, in PIM, data resides where computation is performed.

Adding a PIM accelerator for HD computing to perform

cognitive tasks provides significant speed up over utilizing the

on-board CPU and saves energy with less data movement.

B. Stochastic Computing

Prior work has utilized SC [14], [8], [15] as a low-cost

computing paradigm which process random bitstreams for

implementations of convolutional neural networks [16]. To

calculate p×q for p, q ∈ [0, 1], SC generates two random inde-

pendent binary bitstreams, where the probability of a ‘1’ in the

first and second bitstream is p and q. For exmaple, the stream

1010011110 represents 0.6 since it consists of six 1’s with

a total of ten bits. With converting numbers into bitstreams

and using a single AND operation to perform multiplication,

SC successfully reduced the power and cost of complex but

necessary operations such as multiplication in implementation

of neural networks. The usage of long bitstreams to represent

data also ensures that SC implementations are noise tolerant.

However, when the bitstream length is not long enough, with

random arrangements of 1’s and 0’s, the result of ANDing two

bitstreams may not be exact. The random fluctuations resulted

from the generation of bitsteams cause the computation of SC

to be approximate. The accuracy increases when the bitstream

is long enough to better approximate the probability. This sig-

nificantly reduced the accuracy of SC based implementation.

C. Deterministic Stochastic Computing

To resolve this problem, prior work raised deterministic

Stochastic Computing as an algorithm that computes on deter-

ministic bit streams, which could reduce the area, reduce the

latency, and produce completely accurate results [9]. By prop-

erly structuring input bitstreams, completely accurate results

can be produced with no random-fluctuation or correlation

errors. For example, by using 100 to represent 1
3 and 1110

to represent 3
4 , then repeat these two small streams until it

pairs every bit from one bitstream with every bit of the other

bitstream exactly once(100100100100, 111011101110), to get

an accurate result of 3
12 (100000100100) by taking AND.

III. HD WITH STOCHASTIC COMPUTING

We propose Stochastic-HD, a novel algorithm that takes the

advantages of both HD computing and Stochastic computing.

Stochastic-HD consists of three main modules: encoding,

training, and testing. Our method is designed to reduce cost

and power for encoding and similarity checking that happens

in both training and testing stages. We propose both HD with

deterministic SC, which is mainly used for similarity checking,

and sign deterministic SC, which is mainly used for encoding.

A. Encoding

Baseline HD HD computing encoding maps each n dimen-

sional feature vector to a D dimensional binary hypervector.

We utilize a random projection encoding presented in [7]. The

encoding first generates D dense bipolar vectors with the same

dimensionality as original domain, P = {p1,p2, . . . ,pD},

where pi ∈ {−1, 1}n. Thus, to encode a feature vector

into a hypervector, we perform a matrix vector multiplication

between the projection matrix and the feature vector using

H = sign(PF), where sign is a sign function which maps the

result of the dot product to +1 or -1. However, this encoding

process is very computationally expensive as it consists of

thousands of arithmetic operations with a high dimension D.

As a result, we want to apply SC as a light-weight hardware-

friendly encoding algorithm to enable parallelism to solve this.

Stochastic HD Instead of using multiplication, we use

logical AND and XOR to accomplish the same calculation.

Since the projection matrix P = {p1,p2, . . . ,pD} has pi ∈
{−1, 1}n, to apply SC, we use a sign bit of 0 to represent

a positive value and 1 to represent a negative value before

normal stochastic bitstreams [17]. We do the same for the

feature vectors F = {f1, f2, . . . , fn}.

We generate the stochastic bitstreams first by looking for

two fractions to represent the two values we want to multiply

with, and then convert them into small bitstreams. As a result,

we first cast the input data from float into int. Since in the

original process, after matrix multiplication, the value would

be cast into +1 or -1, casting the input data from float into

int does not cause significant accuracy drop. In addition, since

each multiplication of projection matrix and feature vector is

composed of multiplication of +1/-1 with fi, to apply deter-

ministic SC, we could directly use a stream of 1’s, of length

max(abs(|fi|)) to represent each element in projection matrix,

and represent each feature fi by using fn
max(abs(fi))

and thus

corresponding bitstream. Thus, with all values converted into

bitstreams, we were able to take XOR for sign bit and AND

for the rest bits to generate accurate results for the original

multiplication calculation. After this, we count the number of

1’s for both positive sign bits and negative sign bits and do

subtraction. If the result is positive, we will cast the result

into +1, and otherwise -1. With our implementation, all the

multiplications and additions are converted into parallelizable

AND or XOR operations, which is more efficient in hardware.

B. Initial Training

During initial training, the model is initialized through

element-wise addition of all encoded hypervectors in each

existing class. The result of training is k hypervectors each

with D dimensions, where k is the number of classes. For

example, the ith class hypervector can be computed as:

Ci =
∑

∀j∈classi
Hj. In addition, to limit the data range of

the class hypervectors for shorter stochastic bitstream length,

we quantized the class hypervector uniformly.

C. Similarity Check

Baseline HD As shown in Figure 1, similarity checking is

done by taking cosine similarity of each query and the class

hypervector. However, this implementation requires thousands

of multiplications and additions, which is significantly com-

putationally expensive. As a result, to enable more hardware-

level parallelism, we provide similarity checking with SC.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:46:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Comparision of similarity check of Baseline HD and Stochastic HD.

Fig. 2. An overview of similarity checking is done with Stochastic-HD

Stochastic-HD Figure 1 compares the similarity checking

of Baseline HD Computing and Stochastic-HD. Instead of

cosine similarity, Stochastic-HD uses deterministic SC to

generate bitstreams for each data point hi in the Query Hk
i

and in the class hypervectors of the encoded model. Then, we

put these two bitstreams through an AND gate to produce the

result bitstream. To compare the similarity, we simply count

the number of 1′s of each result bitstreams, and the one with

most 1′s represents a larger value, thus closer similarity.

We generate the deterministic stochastic bitstreams first

by looking for two fractions that represents the values from

query and class hypervector, and then convert them into small

bitstreams. Since we are able to get an integer encoding from

Stochastic-HD encoding and initial training, we first make all

the values in the encoded hypervector to be positive values.

Then, the fraction is naturally generated by hn

max(hi)
and

Hn

max(Hi)
for the nth element of query and class hypervector

as shown in Figure 2. This means that the bitstream length for

query and class hypervector is max(hi) and max(Hi), and

the number of 1’s in the bitstream is hn and Hn. Next, we

repeat these small bistreams to form two large two bitstreams

until it pairs every bit from one bitstream with every bit of

the other bitstream exactly once. This means that we repeat

max(Hi) and max(hi) times for each hi and Hi respectively.

Now with two bitstreams, we will input them into an

AND gate and then count the number of 1′s to represent the

similarity. For example, in Figure 2, to calculate the similarity

between Query h and Class hypervector Hk, suppose that
hn

max(hi)
is 1

3 and Hn

max(Hi)
is 3

4 , then the small bitstreams we

generated for them is 100 and 1110. Then, repeat them until

every bit in the first bitstream matches every bit in the other

bitstream exactly once: 100100100100 (repeat max(Hi) = 4

times) and 111011101110 (repeat max(hi) = 3 times). With

all conversion done for all elements in two hypervectors, we

will input these two bitstreams into an AND gate array. The

number of 1’s in the output represent the similarity. And the

class with highest similarity would be our prediction.

D. Inference

After initial training, the HD model can now be used for

inference. As discussed in similarity checking, Stochastic-HD

converts the value to bitstreams and computes the similarity

between the query hypervector and each class hypervector. It

then uses this stochastic similarity to find a class hypervector

with the most similarity with the query hypervector.

IV. STOCHASTIC-HD HARDWARE DESIGN

In this section, we details our implementation of stochastic

VMM in Stochastic-HD. We first propose an in-memory

search-based binary vector matrix multiplication and then

extend it to support input bitstreams in Stochastic-HD. We

show how the same memory block design can be used for

both Stochastic-HD encoding and inference in memory.

A. Search-based binary VMM:

AnalogPIM is based on the magnitude of accumulated

current, while in-memory search is based on discharging speed

of wordlines. We propose a hybrid approach that provides

us with higher precision but without using DACs/ADCs. In

associative search, when the data stored in a memory row is

the same as the input query, wordline discharges fastest [18].

Moreover, a match between ‘1’ and ‘1’ takes the same time to

discharge the memory as a match between ‘0’ and ‘0’. Also,

the discharging is slower for a mismatch as compared to a

match [18]. However, in our case, we need to implement an

AND operation and differentiate the match operation between

(1-1) from the rest of the three combinations (0-0, 0-1, 1-0).

In our design, we only apply ‘1’s at the input query, while

leaving the lines corresponding to input ‘0’ floating. This

avoids the occurrence of 0-0. Floating the lines results in the

current flowing through highly resistive path, which is similar

to 1-0 and 0-1 mismatch cases. Although our floating input has

a higher resistive path as compared to the mismatch current

paths, both are the similar in magnitude as compared to the

low resistive path of 1-1 match.

The discharging characteristic of a whole memory row

represents the accumulative effect of all the AND operations

between the input and stored hypervectors. Hence, the search

output of each row represents a dot-product between the input

query and the memory row. More the occurrence of ‘1-1’ in

the hypervectors, the faster the discharge, the higher the dot

product value. This happens for all rows in parallel. The output

of the entire memory block is a vector-matrix multiplication.

We can increase the precision of the output dot product by

sampling the output. Unlike AnalogPIM designs, we sample

the output in time domain. For example, to generate a dot

product with 4 bits of precision, we use the same search

circuits but latch the output at four different time instants.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:46:12 UTC from IEEE Xplore. Restrictions apply.

B. Encoding with Stochastic-HD binary VMM:

We perform search-based binary VMM n times for n-bit

input bitstreams. In addition to the AND operation between

stochastic bitstreams, we perform XOR operations between

the input sign-bits and the stored projection matrix. To perform

XOR, we activate the bitlines corresponding to both ‘0’ and ‘1’

for the sign-bit, unlike AND operation where we just activate

‘1’s. We use the accumulators at the memory periphery to add

the dot product outputs of the n iterations. Since the final

encoded hypervector consists of {-1, 1}, we take the sign

bit of the accumulated output. Since each bit of stochastic

bitstream has the same significance, we don’t require shift-

and-accumulate circuits used by traditional analogPIM design

and can utilize simple accumulators with low bit-precision.

C. Similarity Check with Stochastic-HD binary VMM:

During the similarity check, we need to take a dot product

between an encoded hypervector with input elements {-1, 1}
and a class hypervector with multi-bit elements. To implement

this in Stochastic-HD PIM, we distribute a class hypervector

over multiple memory rows. Each memory row stores 1 bit of

the class bitstream for all dimensions. The dot product outputs

of all rows corresponding to a class are added together to get

the final dot product of the input with that class. The class

with the highest dot product is selected as the output class.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

We designed a cycle accurate simulator which emulates

the Stochastic-HD functionality. Our simulator pre-stores the

randomly generated projection matrix and encodes in-memory

using the controller signals. We extract the circuit level charac-

teristics, of basic operations from circuit level simulations for a

45nm CMOS process technology using Cadence Virtuoso and

give them as an input to simulator. We use VTEAM memristor

model [19] for our memory design simulation with RON and

ROFF of 10kΩ and 10MΩ respectively.

We tested Stochastic-HD encoding and inference perfor-

mance on CPU using python. For comparison, we utilized a

quantized version of HD computing as the baseline HD, which

is also implemented in Python [11]. We use D = 2048 as the

default dimensionality across all tests except when varying

the dimensionality. We use an Intel i7 7600 CPU with 16GB

memory for our baseline CPU. We use performance counters

to measure CPU power and execution time.

We tested our proposed approach on six applica-

tions: Speech Recognition (ISOLET) [20], Face Detec-

tion (FACE) [21], Activity Recognition (UCIHAR) [22]

(PAMAP2) [23], Gesture recognition(EMG) [24], Car-

diotocography (CARDIO) [25]

B. Stochastic-HD Accuracy Comparison

Figure 3 compares the classification accuracy of the baseline

HD Computing, which uses exact operations with Stochastic-

HD, which uses SC operations that are approximate. As

the figure shows, Stochastic-HD is comparable in accuracy

ISOLET FACE UCIHAR EMG CARDIO PAMAP2
0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

baselineHD Stochastic-HD

Fig. 3. Accuracy comparison of Stochastic-HD with CPU implementation.

TABLE I
IMPACT OF DIMENSIONALITY ON ACCURACY OF STOCHASTIC-HD AND

BASELINE-HD OF ISOLET DATASET.

Dimension 1,000 3000 5000 7000 9000

Baseline-HD 89.8% 93.8% 94.0% 94.4% 94.2%

Stochasitc-HD 77.9% 88.1% 89.4% 88.7% 91.2%

ISOLET
FACE

UCIHAR
EMG

CARDIO

PAMAP2

Dataset

102

103

104

105

106

Ex
ec

tu
tio

n
Ti

m
e

(
s)

(a) Execution Time

ISOLET
FACE

UCIHAR
EMG

CARDIO

PAMAP2

Dataset

102

104

106

108

1010

En
er

gy
 C

on
su

m
pt

io
n

(n
J)

(b) Energy

Fig. 4. Comparison of the inference execution time and energy consumption
of Stochastic-HD with CPU and Naive-PIM [7], [1].

to baseline HD. For the datasets ISOLET and UCIHAR,

Stochastic-HD is slightly less accurate, losing 5% and 7% in

accuracy respectively. These two datasets have more classes

that have less separation than the other four datasets. This

leads them to be more sensitive to approximate methods

like SC, causing Stochastic-HD to be less accurate on them.

However, for the other four datasets, Stochastic-HD is able

to achieve the same or higher accuracy. For instance, on

the PAMAP2 dataset, Stochastic-HD is 3% more accurate.

Overall, compared to a baseline with exact computations,

Stochastic-HD loses just 1.3% in accuracy on average.

Table I demonstrates the impact on the dimensionality

of the HD model on accuracy for both the Baseline-HD

implementation and Stochastic-HD on ISOLET dataset. As

the table shows, the accuracy very slightly increases as the

dimensionality is also increased for both the Baseline-HD

and Stochastic-HD. However, the more interesting comparison

is with the Baseline-HD with a dimensionality of 1000 vs

Stochastic-HD at 5000 dimensions. The Baseline-HD model

is able to achieve the same accuracy as Stochastic-HD at this

dimensionality and performance scales with dimensionality.

However, this would only lead to a 15.9× speedup and

441, 889× energy efficiency gain with a naive implementation

of the Baseline-HD in PIM. However, with Stochastic-HD we

are able to achieve 174× speedup and 3, 588, 126× energy

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:46:12 UTC from IEEE Xplore. Restrictions apply.

efficiency gain by mapping all of our inference operations

to the stochastic domain. Thus, every operation is a simple

bitwise computation that is easily implemented in PIM as well

as parallelized. This is in contrast to the much more complex

operations needed for a naive implementation of the Baseline-

HD such as the element-wise operations.

C. Stochastic-HD vs State-of-the-Art Accelerators

Figure 4 compares the execution time and the energy

consumption of Stochastic-HD with a CPU implementation

of the Baseline-HD as well as a Naive PIM implementation.

Naive-PIM simply maps the necessary operations for inference

described in the state-of-the-art HD implementation in [7] onto

the memory architecture as described in the state-of-the-art

PIM work in [13]. However, as noted in Section I, simply

implementing the Baseline-HD model into PIM leads to the

element-wise multiplication and subsequent accumulation to

bottleneck the parallelism and therefore performance.By ap-

plying SC in Stochastic-HD we are able to use simple bitwise

operations throughout the inference process. With Stochastic-

HD we achieve 52.8× speedup and 378× energy efficiency

gain over Naive-PIM. However, Naive-PIM [7], [13] can

achieve the same accuracy as the software implementation.

We also compared Stochastic-HD with two state-of-the-

art HD-PIM implementations in [26] and SearcHD [1].

Stochastic-HD provides 13% higher accuracy on average than

the [26] and 4.4% higher accuracy than SearcHD. Our results

show that [26] is 6.1× faster and SearcHD is 2.6× faster than

Stochastic-HD. However, Stochastic-HD can achieve 10,618×
energy efficiency over the design in [26] and 43.1× energy

efficiency over SearcHD. The higher energy efficiency of

Stochastic-HD is due to the simpler bitwise stochastic op-

erations. As compared to the best PIM design for HD [1],

Stochastic-HD is 4.4% more accurate and 43.1× more energy-

efficient. Slightly worse performance of Stochastic-HD is the

result of the Stochastic-HD’s area-efficient approach as it uses

the minimal memory required. Our design can however be

extended to a bigger chip to achieve better performance. For

example, a Stochastic-HD chip with 14× (174×) larger area

provides 11× (134×) faster inference than the area-efficient

Stochastic-HD, while consuming similar energy. The designs

in [26], [1] are limited to the parallelism provided by HD

computing and incur the latency of multi-bit computations.

This means bigger Stochastic-HD chips are both faster and

more accurate than the existing designs [26], [1].

VI. CONCLUSION

In this paper, we propose, Stochastic-HD, which combines

HD Computing and SC to perform classification tasks in PIM

with highly parallel operations. We use SC because a naive

implementation of existing HD work in digital PIM results in

a bottleneck when we need element-wise multiplications and

subsequent accumulations for dot product. With Stochastic-HD

during training and inference, we represent each element of the

query hypervectors with bitstreams, and replace the bottleneck

operations with simple bitwise operations. With Stochastic-

HD, we were able to reach a comparable accuracy with the

Baseline-HD. As compared to the best PIM design for HD [1],

Stochastic-HD is also 4.4% more accurate and 43.1× more

energy-efficient.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six

centers in JUMP, an SRC program sponsored by DARPA, in

part by SRC-Global Research Collaboration grant Task No.

2988.001, and also NSF grants 1527034, 1730158, 1826967,

1830331, 1911095, and 2003277.

REFERENCES

[1] M. Imani, X. Yin, J. Messerly, S. Gupta, M. Niemier, X. S. Hu, and T. Rosing,
“Searchd: A memory-centric hyperdimensional computing with stochastic train-
ing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2019.

[2] M. Imani et al., “Exploring hyperdimensional associative memory,” in HPCA,
pp. 445–456, IEEE, 2017.

[3] P. Kanerva, “Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors,” Cognitive Com-
putation, vol. 1, no. 2, pp. 139–159, 2009.

[4] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed hyper-
dimensional coding applied to the analysis of mobile phone use patterns,” IEEE
Transactions on Neural Networks and Learning Systems, vol. PP, no. 99, pp. 1–12,
2015.

[5] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient speech
recognition,” in ICRC, pp. 1–6, IEEE, 2017.

[6] A. Rahimi et al., “A robust and energy-efficient classifier using brain-inspired
hyperdimensional computing,” in ISLPED, pp. 64–69, ACM, 2016.

[7] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing, “Bric: Locality-
based encoding for energy-efficient brain-inspired hyperdimensional computing,”
in Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6,
2019.

[8] B. R. Gaines, “Stochastic computing systems,” in Advances in information systems
science, pp. 37–172, Springer, 1969.

[9] D. Jenson and M. Riedel, “A deterministic approach to stochastic computation,” in
2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 1–8, IEEE, 2016.

[10] M. Imani et al., “A binary learning framework for hyperdimensional computing,”
in DATE, IEEE/ACM, 2019.

[11] M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey, and
T. Rosing, “Quanthd: A quantization framework for hyperdimensional computing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2019.

[12] S. Salamat et al., “F5-hd: Fast flexible fpga-based framework for refreshing
hyperdimensional computing,” in FPGA, pp. 53–62, ACM, 2019.

[13] S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in IEEE/ACM
ICCAD, pp. 1–7, IEEE, 2018.

[14] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Transactions
on Embedded computing systems (TECS), vol. 12, no. 2s, pp. 1–19, 2013.

[15] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An architecture for
fault-tolerant computation with stochastic logic,” IEEE transactions on computers,
vol. 60, no. 1, pp. 93–105, 2010.

[16] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross, “Vlsi
implementation of deep neural network using integral stochastic computing,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10,
pp. 2688–2699, 2017.

[17] A. Zhakatayev, S. Lee, H. Sim, and J. Lee, “Sign-magnitude sc: Getting 10x
accuracy for free in stochastic computing for deep neural networks,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2018.

[18] M. Imani, S. Gupta, A. Arredondo, and T. Rosing, “Efficient query processing
in crossbar memory,” in Low Power Electronics and Design (ISLPED, 2017
IEEE/ACM International Symposium on, pp. 1–6, IEEE, 2017.

[19] S. Kvatinsky et al., “Vteam: A general model for voltage-controlled memristors,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 8,
pp. 786–790, 2015.

[20] “Uci machine learning repository: Isolet data set.” http://archive.ics.uci.edu/ml/
datasets/ISOLET.

[21] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.
[22] “Uci learning repository:daily and sports activities data set.” https://archive.ics.uci.

edu/ml/datasets/Daily+and+Sports+Activities.
[23] “Uci machine learning repository: Pamap2 physical activity monitoring data set.”

https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring.
[24] S. Benatti, E. Farella, E. Gruppioni, and L. Benini, “Analysis of robust implemen-

tation of an emg pattern recognition based control.,” in BIOSIGNALS, pp. 45–54,
2014.

[25] “Uci machine learning repository: Cardiotocography data set.” https://archive.ics.
uci.edu/ml/datasets/cardiotocography.

[26] S. Datta, R. A. Antonio, A. R. Ison, and J. M. Rabaey, “A programmable
hyper-dimensional processor architecture for human-centric iot,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 439–452,
2019.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:46:12 UTC from IEEE Xplore. Restrictions apply.

