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Abstract—Brain-inspired Hyperdimensional (HD) computing
is a novel and efficient computing paradigm which is more
hardware-friendly than the traditional machine learning algo-
rithms, however, the latest encoding and similarity checking
schemes still require thousands of operations. To further reduce
the hardware cost of HD computing, we present Stochastic-HD
that combines the simplicity of operations in Stochastic Comput-
ing (SC) with the complex task solving capabilities of the latest
HD computing algorithms. Stochastic-HD leverages deterministic
SC, which uses structured input binary bitstreams instead
of the traditional randomly generated bitstreams thus avoids
expensive SC components like stochastic number generators.
We also propose an in-memory hardware design for Stochastic-
HD that exploits its high level of parallelism and robustness to
approximation. Our hardware uses in-memory bitwise operations
along with associative memory-like operations to enable a fast
and energy-efficient implementation. With Stochastic-HD, we
were able to reach a comparable accuracy with the Baseline-HD.
As compared to the best PIM design for HD [1], Stochastic-HD
is also 4.4% more accurate and 43.1x more energy-efficient.

I. INTRODUCTION

Brain-inspired Hyperdimensional (HD) computing is a
light-weight computing method to perform cognitive tasks
on devices with limited resources [2], [3] such as activity
recognition, object recognition, language recognition, and bio-
signal classification [4], [5], [6]. HD computing has three
main stages, 1) Encoding: mapping data into hypervectors
(HVs). 2) Training: combining encoded HVs to create a model
representing each class. 3) Inference: comparing the incoming
sample with the trained model to find the most similar class.

HD has highly parallelizable operations by operating on
independent HVs with 10,000 dimensions. However, during
encoding and inference, there are numerous element-wise
multiplies and accumulations due to matrix multiplication.
When mapped to a processing-in-memory (PIM) architecture,
they have to be performed sequentially.

By implementing same inference process using Naive PIM
in [7], the XOR operations costs 3.3ns because they are able
to work completely in parallel, while the accumulation (which
includes the element-wise multiplication) costs 13504ns be-
cause they needs to work sequentially as the operations are
not simple bitwise operations. These operations cause a clear
bottleneck for HD computing in PIM architecture. Although
this can be alleviated by significantly increasing the memory
size, which costs 97ns, that comes at a DX increase in
area, where D = 4,000. Prior work leveraged simple analog
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PIM memory to implement HD Computing [1] to solve this
issue but they lose, on average, 3% of the accuracy of HD
Computing because the analog circuits are too aggressive at
approximation. To alleviate this issue, we utilize Stochastic
Computing (SC) operations, a computing paradigm that uses
random bitstreams to convert complex computations to simple
bit-wise operations on the streams [8], in their place, which
are much more hardware friendly for PIM architectures. Ad-
ditionally, with SC, we are able to maintain the accuracy of
HD better than previous aggressive analog PIM architectures.

In this paper, we leverage SC during the encoding and
similarity checking phase of both training and inference stages
of HD computing. We propose, Stochastic-HD, which com-
bines HD computing and SC to perform classification tasks
in PIM with highly parallel operations. To do this, we utilize
deterministic SC [9], which uses a more structured way to
represent the bitstreams instead of typical randomly generation
thus results in better accuracy. We first turn the encoded class
hypervectors into bitstreams. During retraining and inference,
we represent each element of the query hypervectors with
bitstreams, and then use AND to compare the similarity
instead of cosine similarity. With Stochastic-HD, we were able
to reach a comparable accuracy with the Baseline-HD. As
compared to the best PIM design for HD [1], Stochastic-HD
is 4.4% more accurate and 43.1x more energy-efficient.

II. RELATED WORK
A. Hyperdimensional Computing

Prior work applied the idea of HD Computing to different
classification problems such as language recognition, speech
recognition, face detection, human-computer interaction, and
sensor fusion prediction [4], [5], [6]. Prior works also proposed
binary encoding to accelerate HD Computing[10], [1], [11].

Prior work has also proposed hardware accelerators for HD
Computing such as FPGAs [12], and PIM architectures [13],
[1]. Although GPUs and FPGAs provide a suitable degree of
parallelism that makes them amenable to machine learning
algorithms such as deep neural networks, the complexity
of their resources, e.g., floating point units or DSP blocks,
is by far beyond HD’s requirements, making such devices
inefficient for HD. PIM architectures tackle this problem as
they are comprised highly parallel arrays with intrinsically
non-complex computational capability, which is sufficient for
HD operations. Additionally, PIM can eliminate the high cost
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data movement in the traditional von Neumann architectures
as, in PIM, data resides where computation is performed.
Adding a PIM accelerator for HD computing to perform
cognitive tasks provides significant speed up over utilizing the
on-board CPU and saves energy with less data movement.

B. Stochastic Computing

Prior work has utilized SC [14], [8], [15] as a low-cost
computing paradigm which process random bitstreams for
implementations of convolutional neural networks [16]. To
calculate px ¢ for p, q € [0, 1], SC generates two random inde-
pendent binary bitstreams, where the probability of a ‘1’ in the
first and second bitstream is p and q. For exmaple, the stream
1010011110 represents 0.6 since it consists of six 1’s with
a total of ten bits. With converting numbers into bitstreams
and using a single AND operation to perform multiplication,
SC successfully reduced the power and cost of complex but
necessary operations such as multiplication in implementation
of neural networks. The usage of long bitstreams to represent
data also ensures that SC implementations are noise tolerant.

However, when the bitstream length is not long enough, with
random arrangements of 1’s and 0’s, the result of ANDing two
bitstreams may not be exact. The random fluctuations resulted
from the generation of bitsteams cause the computation of SC
to be approximate. The accuracy increases when the bitstream
is long enough to better approximate the probability. This sig-
nificantly reduced the accuracy of SC based implementation.

C. Deterministic Stochastic Computing

To resolve this problem, prior work raised deterministic
Stochastic Computing as an algorithm that computes on deter-
ministic bit streams, which could reduce the area, reduce the
latency, and produce completely accurate results [9]. By prop-
erly structuring input bitstreams, completely accurate results
can be produced with no random-fluctuation or correlation
errors. For example, by using 100 to represent % and 1110
to represent %, then repeat these two small streams until it
pairs every bit from one bitstream with every bit of the other
bitstream exactly once(100100100100, 111011101110), to get
an accurate result of %(100000100100) by taking AND.

III. HD WITH STOCHASTIC COMPUTING

We propose Stochastic-HD, a novel algorithm that takes the
advantages of both HD computing and Stochastic computing.
Stochastic-HD consists of three main modules: encoding,
training, and testing. Our method is designed to reduce cost
and power for encoding and similarity checking that happens
in both training and testing stages. We propose both HD with
deterministic SC, which is mainly used for similarity checking,
and sign deterministic SC, which is mainly used for encoding.

A. Encoding

Baseline HD HD computing encoding maps each n dimen-
sional feature vector to a D dimensional binary hypervector.
We utilize a random projection encoding presented in [7]. The
encoding first generates D dense bipolar vectors with the same
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dimensionality as original domain, P = {pi,p2,...,Pn},
where p; € {—1,1}". Thus, to encode a feature vector
into a hypervector, we perform a matrix vector multiplication
between the projection matrix and the feature vector using
H = sign(PF), where sign is a sign function which maps the
result of the dot product to +1 or -1. However, this encoding
process is very computationally expensive as it consists of
thousands of arithmetic operations with a high dimension D.
As a result, we want to apply SC as a light-weight hardware-
friendly encoding algorithm to enable parallelism to solve this.

Stochastic HD Instead of using multiplication, we use
logical AND and XOR to accomplish the same calculation.
Since the projection matrix P = {p1,p2,...,pp} has p; €
{=1,1}", to apply SC, we use a sign bit of 0 to represent
a positive value and 1 to represent a negative value before
normal stochastic bitstreams [17]. We do the same for the
feature vectors F = {f1, fa,..., fo}.

We generate the stochastic bitstreams first by looking for
two fractions to represent the two values we want to multiply
with, and then convert them into small bitstreams. As a result,
we first cast the input data from float into int. Since in the
original process, after matrix multiplication, the value would
be cast into +1 or -1, casting the input data from float into
int does not cause significant accuracy drop. In addition, since
each multiplication of projection matrix and feature vector is
composed of multiplication of +1/-1 with f;, to apply deter-
ministic SC, we could directly use a stream of 1’s, of length
max(abs(| fi])) to represent each element in projection matrix,
and represent each feature f; by using W and thus
corresponding bitstream. Thus, with all values converted into
bitstreams, we were able to take XOR for sign bit and AND
for the rest bits to generate accurate results for the original
multiplication calculation. After this, we count the number of
1’s for both positive sign bits and negative sign bits and do
subtraction. If the result is positive, we will cast the result
into +1, and otherwise -1. With our implementation, all the
multiplications and additions are converted into parallelizable
AND or XOR operations, which is more efficient in hardware.

B. Initial Training

During initial training, the model is initialized through
element-wise addition of all encoded hypervectors in each
existing class. The result of training is k hypervectors each
with D dimensions, where k is the number of classes. For
example, the " class hypervector can be computed as:
Ci = > vjcclass; Hj- In addition, to limit the data range of
the class hypervectors for shorter stochastic bitstream length,

we quantized the class hypervector uniformly.

C. Similarity Check

Baseline HD As shown in Figure 1, similarity checking is
done by taking cosine similarity of each query and the class
hypervector. However, this implementation requires thousands
of multiplications and additions, which is significantly com-
putationally expensive. As a result, to enable more hardware-
level parallelism, we provide similarity checking with SC.
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Stochastic-HD Figure 1 compares the similarity checking
of Baseline HD Computing and Stochastic-HD. Instead of
cosine similarity, Stochastic-HD uses deterministic SC to
generate bitstreams for each data point h; in the Query H¥
and in the class hypervectors of the encoded model. Then, we
put these two bitstreams through an AND gate to produce the
result bitstream. To compare the similarity, we simply count
the number of 1’s of each result bitstreams, and the one with
most 1’s represents a larger value, thus closer similarity.

We generate the deterministic stochastic bitstreams first
by looking for two fractions that represents the values from
query and class hypervector, and then convert them into small
bitstreams. Since we are able to get an integer encoding from
Stochastic-HD encoding and initial training, we first make all
the values in the encoded hypervector to be positive values.
Then, the fraction is naturally generated by #{h) and
#(H) for the n™ element of query and class hypervector
as shown in Figure 2. This means that the bitstream length for
query and class hypervector is max(h;) and maz(H;), and
the number of 1°s in the bitstream is h,, and H,,. Next, we
repeat these small bistreams to form two large two bitstreams
until it pairs every bit from one bitstream with every bit of
the other bitstream exactly once. This means that we repeat
max(H;) and max(h;) times for each h; and H; respectively.

Now with two bitstreams, we will input them into an
AND gate and then count the number of 1’s to represent the
similarity. For example, in Figure 2, to calculate the similarity
between Query h and Class hypervector H*, suppose that
#T(Lh) is 1 and 6 is 2, then the small bitstreams we
generated for them 1s 10 and 1110. Then, repeat them until
every bit in the first bitstream matches every bit in the other
bitstream exactly once: 100100100100 (repeat max(H;) = 4

n
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times) and 111011101110 (repeat max(h;) = 3 times). With
all conversion done for all elements in two hypervectors, we
will input these two bitstreams into an AND gate array. The
number of 1’s in the output represent the similarity. And the
class with highest similarity would be our prediction.

D. Inference

After initial training, the HD model can now be used for
inference. As discussed in similarity checking, Stochastic-HD
converts the value to bitstreams and computes the similarity
between the query hypervector and each class hypervector. It
then uses this stochastic similarity to find a class hypervector
with the most similarity with the query hypervector.

IV. StocHASTIC-HD HARDWARE DESIGN

In this section, we details our implementation of stochastic
VMM in Stochastic-HD. We first propose an in-memory
search-based binary vector matrix multiplication and then
extend it to support input bitstreams in Stochastic-HD. We
show how the same memory block design can be used for
both Stochastic-HD encoding and inference in memory.

A. Search-based binary VMM:

AnalogPIM is based on the magnitude of accumulated
current, while in-memory search is based on discharging speed
of wordlines. We propose a hybrid approach that provides
us with higher precision but without using DACs/ADCs. In
associative search, when the data stored in a memory row is
the same as the input query, wordline discharges fastest [18].
Moreover, a match between ‘1’ and ‘1’ takes the same time to
discharge the memory as a match between ‘0’ and ‘0’. Also,
the discharging is slower for a mismatch as compared to a
match [18]. However, in our case, we need to implement an
AND operation and differentiate the match operation between
(1-1) from the rest of the three combinations (0-0, 0-1, 1-0).

In our design, we only apply ‘1’s at the input query, while
leaving the lines corresponding to input ‘0’ floating. This
avoids the occurrence of 0-0. Floating the lines results in the
current flowing through highly resistive path, which is similar
to 1-0 and 0-1 mismatch cases. Although our floating input has
a higher resistive path as compared to the mismatch current
paths, both are the similar in magnitude as compared to the
low resistive path of 1-1 match.

The discharging characteristic of a whole memory row
represents the accumulative effect of all the AND operations
between the input and stored hypervectors. Hence, the search
output of each row represents a dot-product between the input
query and the memory row. More the occurrence of ‘1-1" in
the hypervectors, the faster the discharge, the higher the dot
product value. This happens for all rows in parallel. The output
of the entire memory block is a vector-matrix multiplication.
We can increase the precision of the output dot product by
sampling the output. Unlike AnalogPIM designs, we sample
the output in time domain. For example, to generate a dot
product with 4 bits of precision, we use the same search
circuits but latch the output at four different time instants.
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B. Encoding with Stochastic-HD binary VMM:

We perform search-based binary VMM n times for n-bit
input bitstreams. In addition to the AND operation between
stochastic bitstreams, we perform XOR operations between
the input sign-bits and the stored projection matrix. To perform
XOR, we activate the bitlines corresponding to both ‘0’ and ‘1’
for the sign-bit, unlike AND operation where we just activate
‘1’s. We use the accumulators at the memory periphery to add
the dot product outputs of the n iterations. Since the final
encoded hypervector consists of {-1, 1}, we take the sign
bit of the accumulated output. Since each bit of stochastic
bitstream has the same significance, we don’t require shift-
and-accumulate circuits used by traditional analogPIM design
and can utilize simple accumulators with low bit-precision.

C. Similarity Check with Stochastic-HD binary VMM:

During the similarity check, we need to take a dot product
between an encoded hypervector with input elements {-1, 1}
and a class hypervector with multi-bit elements. To implement
this in Stochastic-HD PIM, we distribute a class hypervector
over multiple memory rows. Each memory row stores 1 bit of
the class bitstream for all dimensions. The dot product outputs
of all rows corresponding to a class are added together to get
the final dot product of the input with that class. The class
with the highest dot product is selected as the output class.

V. EXPERIMENTAL RESULTS
A. Experiment Setup

We designed a cycle accurate simulator which emulates
the Stochastic-HD functionality. Our simulator pre-stores the
randomly generated projection matrix and encodes in-memory
using the controller signals. We extract the circuit level charac-
teristics, of basic operations from circuit level simulations for a
45nm CMOS process technology using Cadence Virtuoso and
give them as an input to simulator. We use VTEAM memristor
model [19] for our memory design simulation with Rox and
Rorrp of 10k and 10M 2 respectively.

We tested Stochastic-HD encoding and inference perfor-
mance on CPU using python. For comparison, we utilized a
quantized version of HD computing as the baseline HD, which
is also implemented in Python [11]. We use D = 2048 as the
default dimensionality across all tests except when varying
the dimensionality. We use an Intel i7 7600 CPU with 16GB
memory for our baseline CPU. We use performance counters
to measure CPU power and execution time.

We tested our proposed approach on six applica-
tions: Speech Recognition (ISOLET) [20], Face Detec-
tion (FACE) [21], Activity Recognition (UCIHAR) [22]
(PAMAP2) [23], Gesture recognition(EMG) [24], Car-
diotocography (CARDIO) [25]

B. Stochastic-HD Accuracy Comparison

Figure 3 compares the classification accuracy of the baseline
HD Computing, which uses exact operations with Stochastic-
HD, which uses SC operations that are approximate. As
the figure shows, Stochastic-HD is comparable in accuracy
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Fig. Accuracy comparison of Stochastic-HD with CPU implementation.

TABLE I
IMPACT OF DIMENSIONALITY ON ACCURACY OF STOCHASTIC-HD AND
BASELINE-HD OF ISOLET DATASET.

Dimension | 1,000 3000 5000 7000 9000
Baseline-HD | 89.8%  93.8%  94.0% 94.4%  94.2%
Stochasitc-HD | 77.9%  88.1% 89.4% 88.7%  91.2%
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Fig. 4. Comparison of the inference execution time and energy consumption
of Stochastic-HD with CPU and Naive-PIM [7], [1].

to baseline HD. For the datasets ISOLET and UCIHAR,
Stochastic-HD is slightly less accurate, losing 5% and 7% in
accuracy respectively. These two datasets have more classes
that have less separation than the other four datasets. This
leads them to be more sensitive to approximate methods
like SC, causing Stochastic-HD to be less accurate on them.
However, for the other four datasets, Stochastic-HD is able
to achieve the same or higher accuracy. For instance, on
the PAMAP2 dataset, Stochastic-HD is 3% more accurate.
Overall, compared to a baseline with exact computations,
Stochastic-HD loses just 1.3% in accuracy on average.

Table I demonstrates the impact on the dimensionality
of the HD model on accuracy for both the Baseline-HD
implementation and Stochastic-HD on ISOLET dataset. As
the table shows, the accuracy very slightly increases as the
dimensionality is also increased for both the Baseline-HD
and Stochastic-HD. However, the more interesting comparison
is with the Baseline-HD with a dimensionality of 1000 vs
Stochastic-HD at 5000 dimensions. The Baseline-HD model
is able to achieve the same accuracy as Stochastic-HD at this
dimensionality and performance scales with dimensionality.
However, this would only lead to a 15.9x speedup and
441,889 x energy efficiency gain with a naive implementation
of the Baseline-HD in PIM. However, with Stochastic-HD we
are able to achieve 174x speedup and 3,588,126 energy
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efficiency gain by mapping all of our inference operations
to the stochastic domain. Thus, every operation is a simple
bitwise computation that is easily implemented in PIM as well
as parallelized. This is in contrast to the much more complex
operations needed for a naive implementation of the Baseline-
HD such as the element-wise operations.

C. Stochastic-HD vs State-of-the-Art Accelerators

Figure 4 compares the execution time and the energy
consumption of Stochastic-HD with a CPU implementation
of the Baseline-HD as well as a Naive PIM implementation.
Naive-PIM simply maps the necessary operations for inference
described in the state-of-the-art HD implementation in [7] onto
the memory architecture as described in the state-of-the-art
PIM work in [13]. However, as noted in Section I, simply
implementing the Baseline-HD model into PIM leads to the
element-wise multiplication and subsequent accumulation to
bottleneck the parallelism and therefore performance.By ap-
plying SC in Stochastic-HD we are able to use simple bitwise
operations throughout the inference process. With Stochastic-
HD we achieve 52.8x speedup and 378x energy efficiency
gain over Naive-PIM. However, Naive-PIM [7], [13] can
achieve the same accuracy as the software implementation.

We also compared Stochastic-HD with two state-of-the-
art HD-PIM implementations in [26] and SearcHD [1].
Stochastic-HD provides 13% higher accuracy on average than
the [26] and 4.4% higher accuracy than SearcHD. Our results
show that [26] is 6.1 x faster and SearcHD is 2.6 x faster than
Stochastic-HD. However, Stochastic-HD can achieve 10,618 x
energy efficiency over the design in [26] and 43.1x energy
efficiency over SearcHD. The higher energy efficiency of
Stochastic-HD is due to the simpler bitwise stochastic op-
erations. As compared to the best PIM design for HD [1],
Stochastic-HD is 4.4% more accurate and 43.1 x more energy-
efficient. Slightly worse performance of Stochastic-HD is the
result of the Stochastic-HD’s area-efficient approach as it uses
the minimal memory required. Our design can however be
extended to a bigger chip to achieve better performance. For
example, a Stochastic-HD chip with 14x (174x) larger area
provides 11x (134x) faster inference than the area-efficient
Stochastic-HD, while consuming similar energy. The designs
in [26], [1] are limited to the parallelism provided by HD
computing and incur the latency of multi-bit computations.
This means bigger Stochastic-HD chips are both faster and
more accurate than the existing designs [26], [1].

VI. CONCLUSION

In this paper, we propose, Stochastic-HD, which combines
HD Computing and SC to perform classification tasks in PIM
with highly parallel operations. We use SC because a naive
implementation of existing HD work in digital PIM results in
a bottleneck when we need element-wise multiplications and
subsequent accumulations for dot product. With Stochastic-HD
during training and inference, we represent each element of the
query hypervectors with bitstreams, and replace the bottleneck
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operations with simple bitwise operations. With Stochastic-
HD, we were able to reach a comparable accuracy with the
Baseline-HD. As compared to the best PIM design for HD [1],
Stochastic-HD is also 4.4% more accurate and 43.1x more
energy-efficient.
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