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Abstract—De novo assembly of genomes for which there
is no reference, is essential for novel species discovery and
metagenomics. In this work, we accelerate two key performance
bottlenecks of DBG-based assembly, graph construction and
graph traversal, with a near-data processing (NDP) architecture
based on 3D-stacking. The proposed framework distributes
key operations across NDP cores to exploit a high degree of
parallelism and high memory bandwidth. We propose several
optimizations based on domain-specific properties to improve the
performance of our design. We integrate the proposed techniques
into an existing DBG assembly tool, and our simulation-based
evaluation shows that the proposed NDP implementation can
improve the performance of graph construction by 33× and
traversal by 16× compared to the state-of-the-art.

I. INTRODUCTION

Next Generation Sequencing (NGS) has revolutionized ge-
nomics due to the high volume and low cost of sequenc-
ing [26]–[28], [56]. A typical NGS system can generate
10TB of short DNA reads (100-300 base pairs) in a single
run [4], [58]. For most sequencing experiments in which
a high-confidence reference genome is known, the standard
workflow is to align these reads against the appropriate refer-
ence genome [3], [39], [65]. However, the reference genome
is not always available, especially when analyzing unknown
species, such as a new virus or bacteria [19], [20], [53], or
meta-genome that is sequenced from diverse environmental
microbiomes [19], [20], [53]. Even when the reference genome
is available (e.g., humans), the reference genome may be
missing rare genomic variants of biomedical interest [2], [5],
[14], [61]. In these contexts, we must assemble our reads
de novo (without a reference genome). State-of-the-art de
novo genome assemblers use the reads to construct a de
Bruijn graph (DBG) and subsequently find all maximal non-
branching paths of the DBG to produce contigs (contiguous
segments of the assembled genome) [39], [50], [60], [66].
DBG-based assemblers are both time- and memory-intensive,
due to a large amount of sequence data and the explosive
number of nodes in the graph, posing significant challenges
on conventional computing systems.

Although most DBG-based de novo assemblers [30], [38],
[41], [60], [66] adopt parallel algorithms to improve per-
formance and scalability, they are always memory-latency
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bound—the memory access takes up the most portion of exe-
cution time. Furthermore, the memory bandwidth requirement
of DBG assemblers constantly increases at a linear rate as the
degree of parallelism increases, which makes DBG assembly
also memory-bandwidth bound in a parallel environment.

Accelerating DBG processing is of paramount importance
for several reasons. First, DBG processing is the de facto de
novo assembler for both large (mammalian-sized) or small
(e.g. E.coli) single-cell genome analysis [5], [30], [38], [39],
[60], [66], as well as metagenomic studies where a large (up
to TBs) mixture of bacterial, viral, and fungal microbiome
genomes obtained directly from a human body or an envi-
ronment needs to be assembled [36], [47]. Second, although
primarily developed to assemble the 2nd gen (a.k.a. NGS)
reads, DBG processing retain its relevance as the foundation
of assembling reads generated by the 3rd gen sequencers [37],
[40]. Third, DBG processing is on the critical path of many
time-critical genome analysis tasks. In the emerging precision
medicine domain, a patient’s sample is first sequenced on
the NovaSeq instrument in under 48 hours, producing 6 to
12 TB microbiome and human DNA/RNA data. This raw
sequence data is then passed through various stages, including
the DBG assembly (∼3600 CPU hours) [55]. Finally, the rate
of genomes been sequenced is vastly outstripping Moore’s
law [62], For example, the data volume of unassembled bio-
sequences surpasses that of astronomy, particle physics, and
websites such as YouTube and Twitter [15], [54].

Near-data processing (NDP) is an emerging memory-based
approach that can provide scalable parallelism and memory
bandwidth by integrating massive cores in memory devices [1],
[45], [67]–[69]. In this work, we exploit NDP technology to
accelerate DBG assembly. We design near-data parallel algo-
rithms for graph construction and graph traversal that exploit
the hardware parallelism by distributing data and operations in
different memory locations. The near-data parallel implemen-
tation enables different NDP cores to process different portions
of data simultaneously for performance scaling.

However, naive NDP implementation faces several issues
caused by data communication among NDP cores. The graph
construction phase requires intensive data movement among
NDP cores, because the input sequence and the intermediate
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Fig. 1: The stages in de novo genome assembly using de Bruijn graph.

data structures are distributed with different strategies. Fur-
thermore, during graph traversal, building a contig requires a
series of accesses to k-mers (DNA strings of fixed length k)
located in different NDP cores. Our evaluation shows that such
inter-core data communication can take up to 60% to 75% of
the execution. To reduce these overheads, we propose several
optimization techniques, based on domain-specific knowledge
on genome assembly. In the graph construction phase, we
shuffle the distribution of DBG data structures based on the
distribution of addresses for copy, using a greedy algorithm to
reduce the number of inter-core data movements. Furthermore,
we propose message buffering and k-mer compression to
reduce the size of data communicated. For graph traversal,
we design a speculative contig expansion which parallelizes
traversal operations in each core.

We summarize the contributions of this paper as follows:

• This is the first in-memory accelerator for DBG-based de
novo genome assembly.

• We propose several optimization techniques based on
domain-specific knowledge of DBG assembly to reduce
the data communication overhead in NDP systems.

• We improve upon a state-of-the-art DBG assembly on
a NDP system, and we evaluate our design using a
application-level architecture simulator. We compare the
performance of the proposed design with the software
baseline with real genomes. The results show that the
proposed optimization techniques can lead to 33-fold and
16-fold speedup over the software baseline for graph
construction and graph traversal, respectively. The perfor-
mance gap between our NDP-based DBG assembler and
a conventional one is expected to grow even wider given
larger genome size, as demonstrated in our evaluation.
Furthermore, the proposed NDP-based DBG assembler
scales well when increasing the system size.

II. BACKGROUND

A. De Bruijn Graph Genome Assembly

Genome sequencing is the process of determining a segment
or the whole DNA sequence of an organism. De novo assembly
is a key step of genome sequencing, where the short sequenced
reads are assembled without using a reference genome [3], [9],
[38], [39], [41], [44], [50], [59], [60], [66]. Currently, the most
successful de novo assembly algorithm is based on de Bruijn
graph (DBG).DBG is a form of directed multigraph that stores
the overlapping information of k-mers (DNA subsequences of
size k) extracted from DNA sequence reads. Each unique k-
mer is represented as a node in the graph, and an edge is
formed between two nodes if the ‘k-1‘ suffix of the first node

exactly matches the ‘k-1‘ prefix of the second node. DBG
assembler finds a path that visits each node exactly once to
assemble the DNA sequence. The DBGs are of special interest
because the assembly algorithm can finish in polynomial time
with respect to graph size [50].

Figure 1 shows the full pipeline of DBG-based genome
assembly. It takes in NGS short reads sampled in the genome
sequence step, and then extracts k-mers from every single
position. The de Bruijn graph is built on the coverage relation
between k-mers. Unlike a general graph, DBG follows a sim-
ple pattern where each node can only have up to four out-going
edges and four in-coming edges (four possible nucleobases).
Therefore, the most common data structure for DBG is a
hash table, which enables efficient traversal on a forward
or backward path by searching the next/previous possible k-
mers [38], [60], [66]. When a k-mer appears more than once
during the graph construction process, they are merged into
one node and increase the count as the multiplicity. DBG
assembly can build many long sequences, which are called
contigs, by traversing the Eulerian path in the DBG. Most
DBG assemblers have many common steps, including data
loading, error removal, and contig assembly.

The most time-consuming phases in a DBG assembly
process are graph construction, which save unique k-mers
along with their multiplicity and connectivity from raw input
reads to a hash table, and graph traversal, which traverses the
graph to connect chain of k-mers as contigs. Based on our
experiments on several popular tools [38], [41], [60], [66],
graph construction takes 60% of the execution time, and graph
traversal for contig assembly takes 30% of execution time.
Therefore, this work focuses on accelerating these two phases.

B. Memory is the bottleneck for DBG processing
We profile three state-of-the-art parallel DBG assemblers,

MEGAHIT [38], Abyss [60], and PASHA [41] to shed light on
the performance of DBG assembly on CPU. First, DBG often
has a large peak memory footprint since each input sequence
needs to be decomposed to a set of overlapping k-mers and
stored in memory in the graph construction stage. For example,
a sequence of 100 bases requires only 200 bits to represent,
but its k-merized form takes 4200 bits (k=30). This demands
an architecture with a large memory capacity to accommodate
the ever-growing genome dataset. Second, due to the highly
random memory access pattern, DBG assemblers have a high
L2 and L3 cache miss rate (45% to 75.17%), indicating DBG
processing does not benefit from a deep memory hierarchy.
The cache-unfriendliness of DBG processing causes frequent
and slow main memory accesses. Our profiling results suggest,
regardless of the thread count, a significant fraction (∼80%) of
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Fig. 2: Profiling memory bandwidth and latency of
MEGAHIT [38] using VTune [29] with workstation config-
ured in Table II. The % latency means the percentage of
CPU stall cycles caused by memory access. Constant high-
percentage suggests memory latency always dominates the
execution time.

the CPU stall cycles are caused by memory access, shown as
the relatively flat orange line in Figure 2. This also means that
the computation per data element is too small to mask the high
data access latency, and data is not efficiently reused. Third,
similar to other data-intensive applications such as machine
learning [32], [57], memory bandwidth is a major bottlenecks
in scalability and performance of DBG processing. The blue
line in Figure 2 plots the memory bandwidth consumption
concerning thread count for MEGAHIT. While we observe
the execution time decreases as the thread count increases the
memory bandwidth consumption also increases, approaching
our workstation’s limit when all threads are being utilized,
shown as the ascending blue line in Figure 2. It suggests
that the memory bandwidth will become the bottleneck for a
conventional server when we further scale up the parallelism.
For instance, the bandwidth requirement is projected to reach
1 TB/s with 512 threads in our experiments. Both the degree of
parallelism and the memory bandwidth needs to be increased
simultaneously. Finally, increasing the thread count shows
a diminishing return in terms of performance improvement,
shown as the descending green line in Figure 2. This is because
the DBG processing on compute-centric systems generates
large amount of off-chip memory requests which cannot be
served concurrently due to limited memory channels.

Overall, the above analysis indicates that DBG assemblers
favor architectures with a high memory capacity, large par-
allelism (high core count), low memory latency, and high
memory bandwidth. Since there is no evidence suggesting
the possibility of compute-bound, a large number of cores
with moderate computing power should suffice. Conventional
systems cannot fill all requirements. For example, some high-
end GPUs can satisfy the parallelism and bandwidth require-
ments, but they are limited by the onboard memory capacity,
leading to frequent data swaps from host to accelerator. In this
work, we exploit the emerging near-data processing (NDP)
technology to accelerate DBG de novo assembly.

C. NDP Systems

NDP is a type of architecture where the data processing
unit and storage unit are co-located in a single module.
Emerging 3D-stacked DRAMs, such hybrid memory cube
(HMC) and high bandwidth memory (HBM), are popular
platforms to enable NDP functionality. A 3D-stacked DRAM
integrates a logic layer in the memory die, which features

Fig. 3: The overview of NDP-accelerated DBG assembly.

highly parallel compute units to leveraging the low access
latency and large internal memory bandwidth. Take the HMC
as the example, each HMC cube has multiple vertical slices–
vaults. The memory layers and the logic layer communicate
through fast through-silicon vias (TSVs). There have been
various HMC-based NDP systems [1], [12], [52], [67] where a
small per-vault core (referred to as a NDP core) is embedded at
the logic layer, re-purposing a vault to a near-memory compute
unit. The NDP system can scale out by connecting multiple
cubes using high-speed serial links to form a network of NDP
cores. Scaling out the NDP system simultaneously increase
the memory capacity, parallelism, and the aggregated memory
bandwidth, which is ideal for parallel genomics workloads
with a large memory footprint and high bandwidth demand. In
this work, we evaluate the effectiveness of proposed designs in
the context of HMC architecture which provides concrete pa-
rameters accessible to researchers. However, our optimizations
may also be applied seamlessly to other 3D-stacked memories
like HBM, which shares a similar degree of parallelism and
partition strategy (e.g. channels v.s. vaults) [21], [48].

III. OVERVIEW OF NDP-ACCELERATED DBG ASSEMBLY

We propose our NDP-accelerated DBG assembler by mod-
ifying the widely used MEGAHIT tool [38] ( Figure 3).

A. DBG Assembly Pipeline

We reuse the interface in MEGAHIT to support the NDP
functionality in a general DBG assembly pipeline, which
includes read loading, graph construction, contig assembly,
etc. We replace the implementation of graph construction and
contig assembly, which are performance bottlenecks in the
pipeline, with our proposed NDP method.

MEGAHIT uses several intermediate data structures for
transitions between different pipeline phases. We do not
change these intermediate data structures used in MEGAHIT
to keep the general pipeline intact in our implementation.
Specifically, the NDP graph construction takes in the binary
sequence data generated from the MEGAHIT read loading
program, which supports general input formats of genome
assembly, including single-end and double-end reads using
different sequencing technologies [44], [56]. The NDP-based
graph construction generates the sorted k-mers and writes them
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Fig. 4: The overview of NDP-based DBG construction.

into files that can be processed by the graph cleaning program
in MEGAHIT. Then, the NDP-based contig assembly dis-
tributes the cleaned DBG (sorted k-mers) in the NDP system
and traverses the DBG to build contigs using the proposed
techniques. The NDP-based contig assembly generates the
contig graph that will then be assembled by the original
MEGAHIT implementation for the final sequence.

B. NDP Acceleration
The NDP architecture consists of multiple Hybrid Memory

Cubes (HMC), and each HMC connects to the others using an
inter-cube network [12], [34]. Each cube’s memory is divided
into several vertical memory vaults, and each vault is coupled
with an integrated processing core which is connected to a
memory controller for local vault access. We can schedule
parallel applications on NDP systems by exploiting mas-
sive NDP cores. NDP system supports remote function calls
based on message passing to handle inter-core communication
without expensive coherence management [1]. In this work,
we propose the implementation of graph construction and
graph traversal (contig assembly) on the NDP system with
optimization based on domain-specific knowledge.

IV. NDP-BASED PARALLEL GRAPH CONSTRUCTION

Figure 4 illustrates the flow of parallel DBG construction,
and Algorithm 1 shows the pseudo code. The DBG is rep-
resented as a series of “buckets” distributed among all NDP
vaults. The distributed DBG is built through the following
steps: (1) Reads distribution. (2) Bucket allocation. (3) k-mer
address scan. (4) k-mer extraction. (5) Post processing. We
design an efficient bucket distribution procedure and message
buffering and compression to improve the performance by
reducing the inter-core communication.

A. NDP parallel graph construction
Input reads are first distributed to all NDP vaults. Then the

NDP system sets up several buckets for cores to collaborate
without interfering with each other. Building a DBG can
be abstracted as putting k-mers into different buckets based
on their hash values. Each bucket is divided into N non-
overlapping partitions (lines 1 to 7), where N is the number
of NDP cores. When an NDP core visits the bucket, it is
confined to its partition, making concurrent bucket accesses
among different cores possible. Then the buckets are assigned
to NDP cores (line 8). The distribution of buckets is crucial
to the performance of graph construction. Thus we design an
optimized bucket mapping scheme, which is described in IV-B.

Algorithm 1: Pseudo code for building distributed De
Bruijn Graph on a NDP system.

input : Distributed raw read data - reads[num reads]
→ cores[num cores].seq from
→ cores[num cores].seq to

input : num bucket
output: de Bruijn graph table - dbg[num kmers]
/* Calculate the size and partition for each bucket */

1 #ndp parallel for
2 for c← 1 to num cores do
3 for seq ← cores[c].seq from to cores[c].seq to do
4 for kmer : seq do
5 b = hash(kmer)%num buckets;
6 cores[c].bucket size[b] + +;
7 buckets[b].size + +;

/* Distributed buckets to NDP cores */
8 assign buckets(buckets, cores);
/* Copy k-mer addresses into buckets */

9 #ndp parallel for
10 for c← 1 to num cores do
11 for seq ← cores[c].seq from to cores[c].seq to do
12 for kmer : seq do
13 b = hash(kmer)%num buckets;
14 buckets[b].addresses.add(&kmer);

/* Copy k-mers from address */
15 #ndp parallel for
16 for c← 1 to num cores do
17 for bucket : cores[c].buckets do
18 for kmer addr : bucket.addresses do
19 target core = find core(kmer addr);
20 target core.copy(kmer addr, bucket.kmers);

/* Bucket post-processing: sorting, remove redundancy,
calculate multiplicity, etc. */

21 #ndp parallel for
22 for c← 1 to num cores do
23 for bucket : cores[c].buckets do
24 post process(bucket);
25 dbg.add(bucket);

Next, a batch of buckets are selected in each iteration, and
NDP cores fill those buckets with k-mer addresses by scanning
its local reads (line 10 to 14). This is because decomposing
reads into K-mers inflates the size of the input dataset by
a factor of (n-k+1)*k/n (n = read length, k = K-mer size),
processing all buckets simultaneously results in peak memory
explosion. After addresses are filled for all buckets, each
NDP core takes the ownership of its buckets by copying
k-mers based on the addresses gathered from the previous
step (lines 15 to 20). The two-pass creation of the buckets
for DBG construction is superior than pushing the k-mers
directly into the buckets for several reasons: the algorithm
iteratively selects a batch of buckets to process, cores may
have unbalanced amounts of k-mers belonging to the current
buckets. If a single-pass paradigm is adopted, some cores will
be busy “pushing” K-mers into the network to the destination
buckets while other cores are idle. Furthermore, the “pushing”
has a sequential-reads/random-writes pattern, incurring low
cache locality. Since K-mer addresses (8-byte) are smaller than
the actual K-mers (32-byte to 128-byte), “pushing” addresses
incurs a smaller penalty. In the second-pass, cores fill their
buckets with K-mers, and since buckets are roughly the same
size in each batch, cores have balanced workloads. The second
pass has a sequential-reads/sequential-writes pattern.

The k-mer may be stored in a remote core that requires
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a remote function call to copy the data. Since we evenly
distribute sequences to NDP cores in the original order, we can
easily locate the target to send the remote function. This step
suffers from massive fine-grained communication overhead
since many k-mers are from reads distributed in remote vaults.

Finally, a post-processing stage (line 21 to 25) is involved
to reduce bucket size, since many k-mers (as many as 80%
[16]) are redundant due to the deep sequencing coverage and
repeat patterns in genomes [16]. A common practice is to sort
the k-mers in a bucket, allowing us to obtain the multiplicity
(number of occurrences) of each k-mer as a helpful by-product.

B. Bucket Distribution
To design a good bucket distribution scheme, one needs to

consider the origins of k-mers in a bucket. Figure 5 shows an
example of two buckets and three NDP cores (vaults). A large
portion of read partition 0 (red) is hashed into bucket 0; thus,
co-locating bucket 0 with read partition 0 can significantly
reduce the number of remote k-mer fetch requests. Similarly,
bucket 1 has a high concentration of k-mers from the read
partition 1 (green), so it is more suitable to be assigned to the
vault 1. There is anywhere between 29% to 40% reduction
of messages over a naive random bucket mapping if the
origins of k-mers are considered. One possible explanation
for such a phenomenon is that real genomes often contain
many regions of repeat patterns. For example, about 8% of the
human genome consists of so-called tandem repeats, which are
low complexity short sequences that occur multiple times in
a row (e.g. ”CAGCAGCAG...”) [13]. The commonly adopted
hashing schemes that operate on the binary form of a k-mer
pattern will inevitably try to fit k-mers obtained from these
repeats into a small group of buckets.

However, simply reducing the number of messages passed
among the NDP cores may not be the optimal solution, as it
fails to consider the non-uniform latency of switching a packet
in some networks. For example, in a mesh-style network, the
latency of switching a packet is correlated to the distance
between two nodes, since a packet arrives at its destination
through a series of hops, and each hop adds a certain amount
of additional latency. Figure 6 illustrate a situation where a
message-reduction-based bucket shuffling strategy does not
work well. Suppose buckets have roughly equal amounts of
k-mers that need to be fetched from each remote vault in
an NDP system with a mesh NOC. The total amount of
remote messages generated is the same regardless of the
bucket location. However, when the hop count per message
is considered, it is a poor choice to put this bucket at the four
corner vaults. For example, if each remote vault contributes
10 k-mers into the bucket, then a bucket generate 10×1×2+
10×2×3+10×3×4+10×4×3+10×5×2+10×6×1 = 480
total message hops at vault 0, 320 at vault 5, and 400 at vault
13. Therefore, total message hops should be considered if we
strive to reduce inter-core communication costs.

The slowest core limits the run time of the parallel graph
construction, and the inter-core communication takes the ma-
jority of the execution time. Thus the optimal bucket mapping
is the one that generates the least communication for the
slowest core. For an NDP core, the communication cost of

Fig. 5: Bucket shuffle based on the origins of k-mers.

Fig. 6: Hop distance from the source core (in white) to
different remote cores (in color).

processing its share of buckets can be approximated as the
total message hops needed to fetch all k-mers. However, to
find such optimal bucket mapping is infeasible. Let’s consider
a simpler case where the number of buckets mapped to each
core is the same. With 65536 buckets and 512 NDP cores
(vaults), the number of possible mappings that need to be
checked is

(
65536
128

) × (
65408
128

) × (
65280
128

) × ... × (
128
128

)
. A naive

heuristic that selects the least amount of communication cost
for each bucket can easily suffer from workload imbalance.
We describe below a greedy solution that addresses both the
run time concern and the imbalance concern.

After each bucket’s size is obtained (line 11), all buckets are
ranked in descending order based on their sizes and put into a
list. The bucket distribution logic runs in a loop in which each
iteration selects a batch of n buckets from the list, with n being
the number of NDP cores. For an NDP system with fully-
connected networks, each bucket is assigned to a vault based
on its largest partition. A bucket will be randomly selected
if two or more partitions have the same size. The vault that
has been assigned with a bucket in this iteration will not be
assigned with another one. When a bucket needs to be assigned
to an occupied vault, the bucket is assigned to a vault with the
second-highest k-mer contribution (second highest partition).
This process repeats until all buckets are assigned. For an
NDP system without a fully-connected network topology, the
bucket shuffling step is the same as the above procedure with
minor tweaks. Instead of choosing a winning vault for each
bucket based on its partition sizes, the bucket is assigned to
the vault that generates the smallest hop count. This shuffling
implementation adds an insignificant amount of overhead
(<1%) and works well in our evaluation.

Each NDP core is provisioned with a table that indexes
buckets to their owner vaults/cores. The number of table
entries is equal to the number of buckets, which is 65536 in our
evaluation. Each entry has log2 65536 = 16 bits to represent
bucket IDs, and additional bits to represent core IDs (9 bits
for 512 cores). The table adds 1.2% total storage overhead per
HMC cube. Searching this table is a constant time operation
since the bucket index is the hash value of a k-mer.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 18,2022 at 17:47:35 UTC from IEEE Xplore.  Restrictions apply.



Fig. 7: Message compression by leveraging the overlapping
bases of consecutive k-mers.

C. Message Buffering and k-mer Compression

1) Message Buffering: In the graph construction step, each
NDP core copies a k-mer from a remote vault by sending that
vault’s owner (an NDP core) an extraction request wrapped in
a message. The remote NDP core responds to the request im-
mediately by sending the k-mer back in another message. This
is inefficient since each message’s payload can fit multiple k-
mers, and each request has no dependency on each other. An
obvious optimization is to delay the responses and aggregate
multiple k-mers into one message. At each vault, we provide
n − 1 buffers corresponding to the rest n − 1 remote cores.
The specific buffer parameters are discussed in Section VI.

2) k-mer compression: This compression technique is used
in conjunction with the message buffering to improve a
message payload density. The key observation is that since the
k-mer addresses are put into a bucket by sequentially sliding a
window on input reads (with variable stride lengths), there is
an opportunity for data reuse when copying k-mers pointed by
those addresses. Figure 7 illustrates this idea. A naive way of
sending k-mers from Vault j to Vault i is to lay them out exactly
in the message payload one by one. Suppose the message
payload size is 64 bit and 2-bit/base. The uncompressed format
allows two k-mers to be sent through one message. A more
compact representation of those k-mers is to copy the entire
sequence from the first base of k-mer at 0x120 to the last
base of k-mer at 0x126 (19 bases) and provide a small array
of offset pointers to distinguish each k-mer. This allows the
same message payload to fit four k-mers.

The compressibility of k-mers in a packet depends on
several variables: the number of buckets, size of k, hash
function, genome repeat patterns, etc. Deriving a formula to
predict the effectiveness of packet compression accurately is
out of this project’s scope. We empirically evaluated this idea
using an E.coli DNA sequence and realistic DBG assembler
settings: k=22, 65536 buckets, and the first four bytes of each
k-mer are hashed. We find that over 20% of consecutive k-mer
pairs in a packet are overlapped, and the proposed compression
technique trims away more than 10% of redundant bases. We
also analyze how many bases every overlapping k-mer pair
shares. The distribution is summarized in Figure 8. The result
suggests that each pair of overlapping k-mers have a high
chance of sharing more than half of their content.

V. NDP-BASED PARALLEL GRAPH TRAVERSAL

This section introduces the NDP-based graph traversal. We
exploit the NDP system’s parallelism to construct contigs and
use a speculation mechanism to accelerate contig expansion.

Fig. 8: The distribution of the number of bases that are
overlapped for each consecutive 22-mer pairs.

Fig. 9: The overview of NDP-based graph traversal.

Algorithm 2: Pseudo code for NDP-based graph
traversal (contig assembly).

input : Distributed DBG table - dbg[num kmers]
→ cores[num cores].kmer from
→ cores[num cores.kmer to

output: Contigs built by traversal - contigs
/* Calculate k-mer information */

1 #ndp parallel for
2 for c← 1 to num cores do
3 for kmer ← cores[c].kmer from to cores[c].kmer to do

/* Find the high-quality extension (HQE) */
4 for c : [′A′,′ T ′,′ G′,′ C′] do
5 kmer.HQE = max multiplicity(kmer[1 :] + c);

/* Update the in-degree of HQE */
6 target core = find core(kmer.HQE);
7 target core.increament(kmer.HQE.in degree);

/* Parallel contig assembly */
8 #ndp parallel for
9 for c← 1 to num cores do

10 for kmer ← cores[c].kmer from to cores[c].kmer to do
11 if kmer.in degree == 0 then
12 contig = kmer; // Initiate a contig
13 target core = find core(kmer.HQE);
14 while !target core.get(kmer.HQE.visited) do
15 contig.expand(kmer.HQE);
16 kmer = kmer.HQE;
17 target core = find core(kmer.HQE);

18 contigs.add(contig);

A. NDP Parallel Graph Traversal

Figure 9 shows the high-level flow for NDP-based graph
traversal, and Algorithm 2 shows the pseudo-code.

1) Data Initialization: The input of graph traversal is the
DBG data (hash table) generated in the graph construction
phase. The hashing is supported in the general-purpose NDP
cores. We use a leveled hashing scheme to resolve conflicts.
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We distribute the DBG (hash table) over different NDP cores.
As discussed in Section IV, the DBG is divided into buckets,
each of which is stored in a core.

2) Information Calculation: To efficiently construct con-
tigs, we need to calculate k-mer information used during
the traversal. Such information includes the high- quality
extensions (HQE) and in-degree of each k-mer. High-quality
extension (HQE) is the most likely extension for each k-
mer. DBG assemblers use HQE to remove forward k-mers,
which are introduced by read errors [16]. We point out that
the graph traversal step uses HQEs to generate contigs (long
sequences without branches), instead of the whole sequence.
If a K-mer has multiple HQEs, the assembler stops extending
the current contig because the K-mer may be a branch. The
branches caused by repeated DNA patterns will be considered
after the traversal phase to assembly the full DNA sequence.
Furthermore, in-degree is used to filter the start k-mer for each
contig to remove redundant traversal. Specifically, the DBG
assembler only constructs a contig from a k-mer with no in-
coming edges. This method avoids assembling the same contig
by different cores.

Each NDP core processes the information for its allocated
k-mer independently (line 1 - 7). Each core sequentially
processes k-mers and checks all 4 possible bases that can
extend the k-mer (line 4 - 5). The HQE of each k-mer is
determined by the base that leads a k-mer with the highest
multiplicity. Then, the core checks the pre-loaded bucket table
to locate the core that handles the HQE k-mer (line 6), and
increases the in-degree of the HQE k-mer in the target core.

3) Parallel Contig Construction: The next step is to assem-
ble contigs by graph traversal, where each NDP core constructs
contigs independently by selecting a local k-mer as the first
segment of a contig (line 8 - 17). As mentioned previously,
each NDP core only selects k-mers without in-coming edges
and expands the contig in one direction to avoid redundant
work (line 11). To extend a contig, the source core, which is
the core constructing the contig, checks the availability of the
HQE of the current k-mer in the target core. If the k-mer is
stored in the local vault, the source core searches its DBG
table. Otherwise, the source core uses a remote function call
on the target core to check the availability of HQE.

The result of k-mer expansion depends on two facts: 1)
whether the k-mer exists, and 2) whether another contig has
already included the k-mer. If the k-mer exists, the target core
checks the “visited” tag of the k-mer to determine whether
the k-mer has been used or not. If the source core receives a
response from the target core that the k-mer is available for the
extension, the source core uses the HQE to extend the current
contig. Otherwise, the source core adds the current contig to
the result (contigs) and selects another local k-mer as the seed
for the next contig construction.

B. Speculative Contig Expansion
The graph traversal phase also suffers from inefficient inter-

core communications, especially during the contig expansion
where the source NDP core needs to send the query to a
remote core and wait for the remote core responses to search
the requested k-mer in the k-mer table. All these operations,

Fig. 10: The speculative search optimization.

including bi-directional communication and the search, are
in the critical path of the contig expansion. Based on our
experiments, the contig expansion would spend 70% of its
time on inter-core communication. Therefore, it is important to
reduce this time to achieve the full potential of NDP systems.

1) Optimization Overview: We propose a speculative contig
expansion shown in Figure 10. In the speculative contig expan-
sion, each NDP core searches multiple steps ahead, instead of
only the HQE. The speculation’s insight is to hide the latency
of k-mer query by parallelizing subsequent operations.

Unlike the current contig that has the information of HQE,
we do not know what will be in future steps for a query if
we successfully extend the current contig with the HQE. The
NDP core needs to search for all possible k-mers in the spec-
ulative steps to guarantee the speculative contig expansion’s
correctness. The number of possible k-mers is 4n−1, where n
is the number of speculative steps. During speculative search,
an NDP core calculates hash values and sends search requests
to target cores for all possible k-mers in the next n steps.

2) Operation Combining: An n − step speculative search
can achieve up to O(n)× performance improvement over
the default one-step expansion. However, the speculation
would introduce significant overhead without any optimization
because of more data communications and operations for
searching all possible k-mers. The number of messages that
are generated could grow exponentially while the performance
improvement is always linear as we increase the speculation
depth. Thanks to DNA sequences’ nature, we can significantly
reduce the speculation overhead by combining speculation for
similar k-mers into a single move. All possibles k-mers in a
speculation step share the most significant bases. Therefore,
these k-mers are stored in a contiguous memory location
in the sorted k-mers table (bucket). We may only need to
send one message for all possible k-mers in a speculative
step since the same target core handles these k-mers. The
target core can quickly access continuous memory addresses
by utilizing the data cache in the core. For example, in
Figure 10(c), Core 0 may store all four 1-step speculative k-
mers (CTA{A, T,C,G}), and Core 1 may store all sixteen 2-
step speculative k-mers (TA{A, T,C,G}{A, T,C,G}) based
on the range of hash table. In this case, a two-step speculation
only requires 2 messages (1 per core). It is possible that k-
mers in a speculation step are stored across cores, requiring
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Fig. 11: Resolving speculation conflicts.

TABLE I: Programming Interface
Operation Remote Function Call
Copy k-mer get(id, A func, A addr, A ret, S ret size)
Set Data put(id, A func, A addr, S size)
Request k-mer put(id, A func, A addr, S size)
Get Buffered k-mers get(id, A func, A ret, S ret size)
Search k-mer get(id, A func, V hash, A ret, S ret size)

multiple messages. In our experiments, we only observe a
trivial amount of speculations (up to 5-step) requiring multiple
messages in a single step because of the large data size.

3) Conflict Resolution: Another issue with speculative con-
tig expansion is that we need a more complex mechanism to
resolve the conflicts between cores that simultaneously access
specific k-mers. Once an NDP core receives results of all
possible k-mers in the next n steps, it tries to extend its current
contig by checking the HQEs and corresponding “visited” tags
of k-mers sequentially. It needs to send messages to cores
handling the extended k- mers to avoid redundant work (setting
the ”visited” tags). However, without an efficient mechanism,
the overhead of synchronization can eliminate the benefit of
speculation. Figure 11 shows the example of synchronizing
three cores in 2-step speculation.

To efficiently resolve conflicts, we propose a lightweight
mechanism, nearest source assignment, to solve the conflict
in the target core. Specifically, each source core extends all
speculative k-mers locally as further as possible and then sends
the confirmation messages to all target cores to notify the
success of k-mer extension. The source code also sends a
speculation index, which is the position of the k-mer in the
speculation path, along with each message. The target core
receives confirmation messages from different source cores
on the same k-mer. It picks the source core, which sends
the smallest speculation index in the message as the core
to use the k-mer for expansion. If multiple cores send the
same speculation index, the target core picks the core with the
smallest core index to break the equality. This mechanism can
effectively resolve the conflicts because different contigs will
follow the same path when they conflict on the same k-mer.
Therefore, the nearest source assignment can avoid potential
deadlocks in a continuous k-mer path.

VI. SOFTWARE AND HARDWARE SUPPORT

This section discusses the implementation of software and
hardware to support the proposed ideas.

A. Programming Interface
We utilize the message passing and remote function

call in Tesseract [1] as the programming interface for its
versatile programming interface and lightweight hardware
support for message-passing (i.e., message queue). Table I

lists implementations of key operations required in NDP-
based DBG assembly. We use the blocking (get) or non-
blocking (put) remote function call to implement different
operations, where the remote function call is based on a
message passing mechanism. Specifically, copying a k-mer
from a remote call requires a blocking remote function call
(get), where the parameters require the target core, the address
of target k-mer, the address of return value, and the size of
return value. We use A, S, and V to represent the address type,
the size type, and the value type respectively. However, the
blocking get function cannot support our proposed buffering
and compression mechanism. Therefore, we propose a request
operation that uses the non-blocking put to notify a target
call to store the target k-mer in the message buffer. During
the execution, each core calls the request function for each k-
mer while maintaining a counter for the number of messages
that have been requested for remote cores. When the counter is
equal to the buffer size (introduced in Section VI-B), the core
calls a get function to the target core to get all buffered k-mers.
The target core compresses the buffered k-mers and sends the
results back to the source core. After the blocking get function
call, the source core resets the counter for a specific target core
and continue execution.

To enable programmers to implement NDP-based DBG
assemblers, we need a framework that combines the parallel
computing and the proposed programming interface based on
message passing. Since we have no access to the real NDP
hardware, we use a simulation-based method to emulate the
proposed NDP assembler. In our implementation, we simulate
OpenMP-based programs in Sniper simulator [8], which uses
Pin-tool [43] as the front-end to generate simulation statis-
tics for multi-core architectures. We insert specialized APIs
using Sniper’s magic instruction in the OpenMP program so
that Sniper can recognize the message-passing based NDP
operations. We implement the simulation logic for different
message-passing functions using Sniper’s synchronous and
asynchronous timing models to generate the final simulation
results for NDP architectures. Future work can follow a similar
scheme to realize the proposed assembler in a real NDP
hardware. For example, the framework can extend the syntax
of widely used parallel programming APIs (e.g., OpenMP) to
include function calls of message-passing, and implement a
specialized runtime to schedule operations on NDP cores.

B. Hardware Support
We propose several lightweight hardware components inside

each core in our NDP architecture to support the NDP func-
tionality. Similar to Tesseract [1], each core uses a message
queue and a network controller to process remote function
calls based on message passing. In addition, we add two
lightweight hardware components, a k-mer fetcher (KMF) and
a k-mer buffer (KMB) to support the proposed optimizations.
Figure 12(a) shows the architecture of the proposed NDP
core. Specifically, the k-mer fetcher (KMF) is the unit which
we can offload operations for the proposed optimizations
from the NDP core. KMF can decode the potential memory
addresses of k-mers based on the hash value, and generate
memory commands directly to the memory controller. The
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Fig. 12: Hardware support for NDP-based DBG assembly.

Fig. 13: Operations in hardware components.

KMF contains several 64-bit hardware registers to store the
working information during the k-mer fetching, including the
base address of the hash table (1 register), the k-mer data
(4 registers), and state control information (4 registers). To
generate the address for k-mer fetching, KMF first loads the
base address of the hash table from the in-order core. Then,
KMF uses a shifter to generate the offset of a k-mer by
concatenating different bits of k-mer registers. The offset is
stored in a 32-bit register, which is added with the base
address in a 64-bit adder. KMF then sends the generated
address to the memory controller and receives k-mer data
in the k-mer registers for future operations (e.g., writing
to the k-mer buffer. The k-mer buffer (KMB) stores k-mer
related data which is configured to different formats for graph
construction and graph traversal, as shown in Figure 12(b).
During the graph construction, in order to support the k-
mer compression, KMB acts as a compression buffer which
stores the requested k-mers grouped by the requester core.
During the graph traversal, KMB is organized as a speculation
table which stores the searched k-mer, requester core, and
the speculation index for conflict resolving as illustrated in
Section V. Figure 12(c) shows key parameters of the proposed
hardware components used in our evaluation. We implement
the components of KMF using Verilog HDL and synthesize the
design on Synopsys Design Compiler. The synthesized design
is placed and routed using Synopsys IC Compiler. The KMB
parameters are estimated using the analytical tool CACTI-3DD
[11] on 22nm technology node.

Figure 13(a) and Figure 13(b) show the operations offloaded
from the NDP core to the lightweight components during
graph construction and graph traversal phases. During graph
construction, KMF of each core handles k-mer requests to

TABLE II: Workstation and NDP Configuration

CPU Model Intel(R) Xeon(R) E5-2658 v4
Core/ Thread/ Frequency 14/ 28/ 2.30 - 2.80 (GHz)
L1/L2/L3 Cache 32 (KB) / 256 (KB) / 35 (MB)
Main Memory DDR4-2400 MHz, 54GB/s
Memory Organization 32GB / 2 Channels / 2 Ranks
HMC 2.0 Organization 8 DRAM layers, 8Gb/layer, 8GB/cube, 32 vaults, in-

ternal (external) bandwidth: 512GB/s (480GB/s)
NDP cores 1 GHz, single-issue, in-order, 32 KB I$ and D$, LRU,

80 mW, 0.51 mm2

HMC Memory tCK = 1.6 ns, tRAS = 22.4 ns, tRCD = 11.2 ns, tCAS
= 11.2 ns, tWR = 14.4 ns, tRP = 11.2 ns

NOC Configuration Crossbar network, 64 KB/message payload
Inter-cube Network 2 cycles/hop, 64 bits/cycle, 2D-Mesh (default) / Drag-

onFly / Fully-connected

the local k-mer from other cores. When receiving a k-mer
request message (with the address), KMF generates memory
commands to the memory controller which will fetch the k-
mer. KMF then stores the k-mer to the corresponding entry
of compression buffer (stored in KMB). If all entries of
the requester core is full in the compression buffer, KMF
compresses all k-mers requested by the requester core and
generate a compression message. During graph traversal, KMF
handles speculative search requests from other cores. Since
the speculative search may request a non-existing k-mer, KMF
generates memory commands for search operation in the local
hash table based on the k-mer’s hash value. If the k-mer exists,
KMF inserts the k-mer with the requester information (e.g.,
speculation ID) in the speculation table. No matter whether the
k-mer exists or not, KMF sends a message to the requester
core about the search result. If a requester core wants to
confirm the extension with a speculation k-mer, KMF fetches
all entries about the requested k-mer in the speculation table,
and resolves the conflict based on the algorithm illustrated
in Section V. As compared to the pure-software implementa-
tion, hardware-assisted optimizations reduces data movements
between the memory and the in-order core. Furthermore, the
added hardware components can directly communicate with
memory controller and message interface to reduce the latency
of optimization in the critical path.

VII. EXPERIMENTAL SETUP

A. Simulation

We emulate the execution of our NDP-based DBG as-
sembler using multi-threading supported by OpenMP [10].
Specifically, we create a thread for each NDP core and
manually assign different tasks and data structures to threads.
The proposed NDP system, including all DRAM vaults and
NDP cores, is modeled in Sniper [8] according to parame-
ters reported in Table II. The parameters are gathered from
previously published work [1], [12], [52], [67], data-sheet
for commercial products [45], and simulation in Cacti [63]
and McPAT [63]. We use a Pin-tool [43] front-end to tag
NDP data structures’ addresses in the simulation. Therefore,
Sniper can recognize and operate on these NDP data structures
using NDP-specific models of remote function call based on
message passing. We use Ramulator [35] to model the memory
behaviors since Sniper lacks a detailed memory model. We
use Cacti [63] to simulate the performance and power of
customized buffers at 32nm technology. Each NDP core takes
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TABLE III: Genome Datasets

Genome Name Size
Escherichia coli O157 (E-Coli) 5,528,445 bp
Homo sapiens chromosome 3 (Human) 198,295,559 bp
Ananas comosus cultivar (pineapple) 24,880,688 bp
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Fig. 14: Performance comparison with the baseline on
graph construction and graph traversal.

0.51mm2 chip area and 32 NDP cores only consume 7.2% of
the chip area available in the HMC logic layer (226mm2 [1]).

B. Baseline System

The baseline performance is measured from
MEGAHIT [38] running on a workstation configured in
Table II. We should note that CPUs are the predominant
platform for DBG assembly, instead of GPUs, and MEGAHIT
is one of the fastest implementations [30], [38], [41], [60]
that is capable of assembling a large genome in parallel. We
do not compare to GPU, since all of the GPU-based DBG
assemblers we find are deprecated [33], [38], [42] due to lack
of support and performance. In fact, we are informed by the
authors of MEGAHIT that the GPU-implemented MEGAHIT
is slower and harder to use than its CPU counterpart.

C. Workloads

We test DNA sequences from three species downloaded
from GenBank [6] as shown in Table III. We use a next-
generation sequencing read simulator [23] to generate NGS
reads using Illumina technology [26]–[28]. We set the fold of
coverage, length of reads, and mean size of DNA fragments
to 20, 150, and 200 to generate sufficient simulation data.

VIII. RESULTS

A. Overall Performance Analysis

Figure 14 shows the results of a comparison between the
16-cube NDP system and the CPU baseline. We compare the
performance of the optimized NDP implementation (Opt-HW)
to the CPU baseline and the NDP implementation with-
out optimizations (Original NDP). Opt-SW represents
software-implemented optimizations All results are normalized
to the CPU baseline and we break the total execution time
into the time on local functions and remote functions.

Comparison to CPU and original NDP. On the one
hand, the original NDP is 7.1× and 6.9× faster than the
CPU baseline on graph construction and graph traversal. This
result indicates the simply parallel NDP solution does not fully

Fig. 15: Memory bandwidth utilization for Human genome.
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Fig. 16: Scalability results from 1-cube to 16-cube.

utilize the hardware, considering the number of cores in the
NDP system is much larger than that in the CPU baseline.
On the other hand, the optimized solution is 32.5× and
16.4× faster than the CPU baseline for graph construction and
graph traversal, respectively. The performance improvement
provided by Opt-HW over Original NDP results from the
reduced inter-core communication caused by the proposed
optimization techniques, including bucket shuffling, message
buffer and compression, and speculative contig expansion.

Comparison to software-implemented optimizations. The
result shows that the performance improvement for graph
construction is more significant than that for graph traversal.
It is because the de Bruijn graph has a random structure
that may cause cores to have unbalanced workloads. It is
also consistent with the observation that the NDP solution
performs better on a large genome than a small genome.
In general, the proposed techniques perform better on large
genomes that exhibit high-degree parallelism and sufficient
per-core workload to exploit the parallelism of NDP hardware.
Opt-HW outperforms Opt-SW by 3.1× and 3.2× on average
for graph construction and graph traversal respectively. The
performance gain provided by the hardware-implemented op-
timizations results from the reduction of memory accesses and
updates for the optimization data structures.

Bandwidth utilization. Figure 15 shows the memory uti-
lization for different systems running graph construction and
graph traversal on Human genome. We get the CPU-baseline
result from VTune [29] and NDP configurations from simu-
lation. The results show: (1) NDP solutions, which run 512
parallel threads, require significantly more bandwidth than
the CPU baseline maximum bandwidth. (2) The proposed
optimization can increase the memory bandwidth utilization
because of the better performance than the NDP baseline.

B. Performance Scalability

Figure 16 shows the performance of DBG assembly on
the different number of NDP cubes for three genomes. We
scale the system from 1 cube to 16 cubes. The 16-cube NDP
system is 12.4× to 15.6× faster than the single-cube system
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Fig. 17: The reduction of inter-core message passing pro-
vided by optimizations for graph construction.

over three genomes for graph construction. Such results show
good scalability of the NDP implementation. The performance
of NDP implementation depends on DNA patterns in the
dataset. Suppose the dataset has a lot of repeated patterns (e.g.,
Pineapple). In that case, the NDP implementation has better
scalability, because we can significantly reduce the data access
time by mapping the buckets of repeated patterns in the same
core with the corresponding sequence.

For graph traversal, the 16-cube NDP system is only 6.0×,
12.0×, and 7.1× faster than the single-cube system for E.coli,
Human, and Pineapple, respectively. The overall improvement
provided by the large systems is much less than that in graph
construction. The reason is that graph traversal has more
randomness in the workload, thus is less likely to schedule
balanced workloads over the NDP cores in the large system.
The results over different genomes also show that the NDP
implementation has better scalability in the large genome.

C. Inter-core Communication Reduction

Figure 17 shows the effects of the proposed optimization on
the reduction of the inter-core message. The reduction ratio
is calculated in the order of shuffling, buffering, and com-
pression. Our experimental results show that bucket shuffling
can reduce 14% and 40% of inter-core messages in a 4-cube
system and a 16-cube system, respectively, over a random
bucket mapping scheme. The gap between small systems and
large systems results from that small systems have an even
distribution of buckets because each core is allocated more
sequences than larger systems.

Unlike the bucket shuffling, the message reduction pro-
vided by k-mer buffering and compression becomes less
when increasing the system size. Specifically, k-mer buffering
(compression) reduces 24% (26%) of messages in the 4-
cube system while reducing only 10% (15%) of messages in
the 16-cube system. This is because large systems schedule
fewer messages for each core, so that the opportunity for
buffering and compression becomes less than smaller systems.
In general, our experiment on the data movement reduction
shows that the bucket shuffling and k-mer buffering and
compression can work well together to reduce the number of
inter-core messages in different sizes of systems.

D. Exploration on Speculation

Figure 18 shows the exploration of the speculation steps
for graph traversal. We test different speculation steps and
show the speedup over the baseline without any speculation.
The result shows that the four-step speculation has the best
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Fig. 18: The performance comparison among different
steps for speculation.
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Fig. 19: The performance comparison among different
network structures.

performance for all workloads on systems of different sizes.
Smaller speculation steps may not fully exploit the available
memory bandwidth and parallelism of the NDP system, while
a larger speculation steps have larger overhead of resolving
the conflicts between different NDP cores.

E. Exploration on Network
Because previous works show that the NDP system’s inter-

connect plays a critical role in the performance and energy
consumption, we also explore different interconnect structures
in the baseline NDP architecture. Figure 19 shows graph
construction and graph traversal execution time on three
structures: mesh, dragon-fly [34], and an ideal fully-connected
network. All results are normalized to the mesh structure. The
experiment shows that the dragon-fly network can improve the
mesh structure’s performance by 1.3× on average, while the
performance-optimized ideal network is 1.7× faster than the
mesh. However, the ideal network incurs 5.4X and 2.7X higher
area overhead than the mesh and dragon-fly configurations.

F. Energy Efficiency
We estimate the energy of NDP system based on the

average active cycles of cores and memory and the power
values reported in the official product description [45] and
previous works [1], [52]. Our results show that the proposed
NDP system consumes 28.9 × and 15.0 × less energy for
graph construction and graph traversal than CPU. Such energy
reduction mainly comes from the faster execution. The average
power consumed by NDP is higher than the CPU baseline
because of the higher power consumed by the memory layers
and the NoC power consumption. However, previous work [1]
shows that such power consumption density in the memory
chip will not exceed the thermal constraints. In this work, we
only added a small storage component with a controller in
the original NDP hardware, which has trivial power and area
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overhead (< 2%). Therefore, the proposed NDP-based DBG
assembler is practical in terms of power and thermal efficiency.

G. Comparison with Other Distributed Algorithms
The DBG processing of large genomes are also deployed on

distributed-memory parallel computers using framework such
as MPI due to their scalability (large capacity and high core
count). Notable distributed-memory assemblers are Ray [7],
PASHA [41], YAGA [31], ABySS [60], HipMer [17], and
PakMan [18]. This work shares similarities with distributed-
memory DBG assemblers at high-level. For example, address-
ing the communication imbalance issues during the parallel
graph construction phase and avoiding traversing the same
contig by multiple processing nodes repeatedly. If handled
inefficiently, the overhead of orchestrating nodes outweighs
the performance benefit of parallelization. These challenges
are typically not found in shared-memory DBG assemblers,
which primarily focus on optimizing algorithm complexity
and assembly quality. However, migrating existing distributed-
memory DBG schemes into an NDP system is a complex
undertaking. Each node in the distributed-memory system han-
dles multi-threading workloads with large memory footprint,
but each NDP core is single-threaded with limited memory
capacity. For example, PakMan [18] compresses the DBG into
a compact graph with macro-nodes to ensure each compute
node can fit the whole compact graph during the graph
traversal phase, where each process can concurrently traverse
multiple independently paths. Therefore, the optimization for
cross-node communication in distributed-memory systems is
too coarse-grained in the NDP implementation.

We provide an indirect comparison with one of the state-
of-the-art distributed assemblers. As reported in the previ-
ous work [18], PaKman offers 9.3× speedup over IDBA-
UD [49] with 40-cores@2.2GHz in its MPI-based shared-
memory mode. Assuming performance scales linearly with
core frequency, and since both PaKman and our work demon-
strate linear scaling w.r.t core count, PaKman offers 54.08×
speedup over IDBA-UD with 512-cores@1GHz. With 512-
cores@1GHz, our work outperforms MEGAHIT by 31.6×
which is already 3.5× faster than IDBA-UD (110.6×). This
result shows our design is about 2× faster than PaKman even
if PaKman can be perfectly mapped to an NDP architecture.
Finally, this work leverages software/hardware codesign to
speedup DBG assembly. Without the appropriate hardware
support (e.g., the latency/bandwidth advantages of PIM and
our customized hardware components), the software optimiza-
tions alone do not achieve the best results.

IX. RELATED WORK

Non-genome NDP accelerators. There are similar 3D-
stacked NDP accelerators for graph processing [1], [67],
pointer chasing [22], and large-scale data analytics [12], [51],
[52]. Some aspects of these work are similar to ours, such
as minimizing communication, optimizing data partitioning,
and providing a framework for the proposed architectures.
However, these works are not directly applicable to DBG.

PIM bio-accelerators. There are several PIM accelerators
for bioinformatics workloads. Wu et al. [64] proposes an in-
situ solution which fits minimalist bitwise operation logic

inside DRAM chips, and utilizes subarray-level parallelism to
support massively parallel K-mer matching. GenCache [46]
modifies the SRAM chip to support sequence alignment.
Medal [25] leverages off-the-shelf DRAM components to build
a DNA seeding accelerator. RADAR [24] is a 3D-ReRAM
based accelerator for BLAST. AligneR [70] is a ReRAM-
based PIM architecture which accelerates the bottleneck stage
of genome sequencing. FindeR [71] enhances the FM-Index
EPM search throughput in the gnomic sequencing step using
commodity ReRAM chips. These works target different stages
of genome pipelines. To the best of our knowledge, this is the
first PIM-based De Novo assembly accelerator.

DBG assemblers. We have compared this work to prior
distributed-memory DBG assemblers in Section VIII-G. There
has a limited effort of porting de Bruijn graph onto GPU such
as [33], [42]. They either focus on only one stage of DBG
assembly or only work with small genome. In contrast, we
provide comprehensive support for every stage of DBG and
work with a much larger genome.

X. CONCLUSIONS

In this work, we propose a software-hardware co-design for
DBG assembly that leverages emerging 3D-stacked memory
architectures with high parallelism and bandwidth. We identify
graph construction and contig assembly as two bottleneck
stages, as they suffer from high communication overhead
due to frequent message passing. By exploiting real DNA
sequence characteristics, we optimize our design with an
effective data partitioning strategy and a message buffering and
compression technique to reduce inter-core communication.
We also develop a speculation scheme to extend each contig by
multiple bases each time tentatively. The optimizations above
synergistically offer the combined benefit of speedups and
energy savings over the CPU by 24× and 22×. Our NDP-
based DBG processing framework can significantly reduce
the run time of many critical steps in analyzing human and
microbial genomes, which aids in disease diagnosis, precision
medicine, vaccine development, and other tasks.
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