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Semi-supervised Deep Learning for Cell Type
Identification from Single-Cell Transcriptomic Data

Xishuang Dong, Shanta Chowdhury, Uboho Victor, Xiangfang Li, and Lijun Qian

Abstract—Cell type identification from single-cell transcrip-
tomic data is a common goal of single-cell RNA sequencing
(scRNAseq) data analysis. Deep neural networks have been
employed to identify cell types from scRNAseq data with high
performance. However, it requires a large mount of individual
cells with accurate and unbiased annotated types to train the
identification models. Unfortunately, labeling the scRNAseq data
is cumbersome and time-consuming as it involves manual inspec-
tion of marker genes. To overcome this challenge, we propose
a semi-supervised learning model “SemiRNet” to use unlabeled
scRNAseq cells and a limited amount of labeled scRNAseq
cells to implement cell identification. The proposed model is
based on recurrent convolutional neural networks (RCNN),
which includes a shared network, a supervised network and an
unsupervised network. The proposed model is evaluated on two
large scale single-cell transcriptomic datasets. It is observed that
the proposed model is able to achieve encouraging performance
by learning on the very limited amount of labeled scRNAseq cells
together with a large number of unlabeled scRNAseq cells.

Index Terms—Single-Cell Sequencing, Semi-supervised Learn-
ing, Recurrent Convolutional Neural Networks, Joint Optimiza-
tion

I. INTRODUCTION

Single-cell RNA sequencing (scRNAseq) enables the pro-
filing of the transcriptomes of individual cells, thus character-
izing the heterogeneity of biological samples since scRNAseq
experiments are able to yield high volumes of data. For
example, in a single experiment, the expression profile is up
to 105 cells, at the level of the single cell [1]. It is not possible
for traditional bulk RNAseq [2] to examine biological samples
in such high-resolution.

Cell type identification is a common goal of scRNAseq data
analytics to identify the cell type of each individual cell. It
can be implemented by unsupervised methods with manual
input [3]. To accomplish this, cells are first grouped into
different clusters in an unsupervised manner, and the number
of these clusters allows us to approximately determine how
many distinct cell types are present. To attempt to interpret the
identity of each cluster, marker genes are identified as those
that are uniquely highly expressed in a cluster, compared to
all other clusters. These canonical markers are then used to
assign the cell types for the clusters by cross referencing the
markers with lists of previously characterized cell type specific
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Fig. 1. Framework of the proposed semi-supervised learning. Input x is the
cell. Cell types are available only for the labeled inputs and the associated
cross-entropy loss component is evaluated only for those. z′ and z′′ are
outputs from the supervised bidirectional LSTM RNN and the unsupervised
bidirectional LSTM RNN, respectively. We jointly optimize cross entropy loss
and mean squared error loss for supervised learning and unsupervised learning
with these outputs. ⊕ is the concatenation operation.

markers. To speed up this process, a set of annotation tools
have been developed. For example, Kiselev et al. proposed
scmapcell [4] to project cells from an scrna-seq data set
onto cell types or individual cells from other experiments.
Alquicira-Hernandez et al. built scPred [5] that is a new gener-
alizable method for prediction of cell types through combining
unbiased feature selection from a reduced-dimension space,
and machine-learning classification. It can capture subtle ef-
fects of many genes and enhance the prediction accuracy. Aran
et al. proposed SingleR [6] that is to implement the annotation
of scRNA-seq by considering bulk transcriptomes. It enabled
the subclustering of macrophages and revealed a disease-
associated subgroup with a transitional gene expression profile
intermediate. Recently, novel computational methods based on
neural networks have been proposed to further improve the
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performance [3], [7], since cell type classification based on
a large number of genes is much more robust to noise. For
example, Ma et al. proposed ACTINN (Automated Cell Type
Identification using Neural Networks) [7] with simple neural
networks of three neuron layers, which trains on datasets with
predefined cell types and predicts cell types for other datasets
based on the trained model. It uses all the genes to capture
the features for each cell type instead of relying on a limited
number of canonical markers.

However, it still faces to two main challenge: 1). Annotat-
ing a large amount of individual cells costs intensive labor
efforts and a time-consuming task, especially since single-
cell sequencing technique becomes more and more popular
and generate larger and larger datasets. For example, the
number of cells involved the single-cell data analysis has
been much larger like over 100, 000 [8], which will require
much more efforts for labeling the data. In addition, this
may not be feasible if the task on hand is time-sensitive.
For instance, if the labeling has to be done for COVID-19
patients that require urgent care; 2). It is observed that existing
neural network based models seems not consistently perform
well across different datasets. For example, ACTINN [7] and
scmapcell [4] show strong performance on certain datasets
such as Baron Mouse and Baron Human [9] while have
weak performance on 68K dataset [10]. However, performing
consistently well across different datasets is imperative to
build real applications. This paper aims to implement a semi-
supervised method that only use few of labeled samples
together with huge amounts of unlabeled samples to reduce
a mass of efforts of data annotation. In addition, the proposed
method is able to consistently produce promising performance
across different datasets.

In this paper, we propose a novel deep semi-supervised
learning model when only very limited number of cells are
labeled, and a large number of cells are unlabeled. The
proposed framework is shown in Figure 1. It is trained on
cells with predefined cell types and then can be used to
predict cell types on new datasets. The cells in scRNAseq data
are transformed to “gene sentences” by taking advantage of
similarities between natural language system and gene system.
Furthermore, to overcome data sparsity, we employ word
embedding techniques [11] to represent the genes in these
sentences as gene vectors. Then, these vectors are input into
the proposed semi-supervised neural networks built on recur-
rent convolutional neural networks (RCNN) [12]. It consists of
three components, namely, a shared bidirectional Long Short-
Term Memory Recurrent Neural Network (LSTM RNN), a
supervised bidirectional LSTM RNN, and an unsupervised
bidirectional LSTM RNN. One path is composed of the shared
bidirectional LSTM RNN and supervised bidirectional LSTM
RNN while the other path consists of the shared bidirectional
LSTM RNN and unsupervised bidirectional LSTM RNN. All
data (labeled and unlabeled data) will be evaluated to generate
the mean squared error loss, while only labeled data will be
evaluated to calculate the cross entropy loss. Experimental
results of intra-dataset validation on macosko2015 [13] and
68K [14], and inter-dataset validation on MTG (Human)
data [31] for training and ALM (Mouse) data [32] for testing

demonstrate the effectiveness of the proposed model even
when training it with a very limited amount of labeled cells.

The contributions in this study are as follows.
• We represent cells in scRNAseq data via embedding

techniques to reduce the sparsity of gene expression
values, which is able to enhance the performance of cell
type identification completed by neural networks based
methods.

• We propose semi-supervised deep learning models with
RCNN through jointly training supervised bidirectional
LSTM RNN and unsupervised bidirectional LSTM RNN.
It is shown that the proposed model can learn on unla-
beled cells and labeled cells jointly to identify cell types
with high performance. It could reduce the efforts of
labeling data to build high-performance models for cell
type identification.

• The proposed model is validated on two large-scale
scRNAseq datasets: macosko2015 [13] and 68K [14].
Experimental results indicate that the new representations
of cells enable cell type identification to accomplish with
promising performance. Moreover, the proposed semi-
supervised learning model is able to effectively identify
cell types by learning on a very limited number of labeled
cells together with a large amount of unlabeled cells on
various datasets for cell type identification. In addition,
the experimental results on inter-dataset validation also
demonstrated the effectiveness of the proposed methods.

II. PROBLEM FORMULATION

Cell type identification on single-cell transcriptomic data
is to classify the individual cells into predefined cell types,
which is a supervised learning task from machine learning
point of view. Specifically, it is a multi-class classification
problem with N cell types in the set C = {c1, c2, c3, ..., cN},
where N > 2. Each cell belongs to one of the N different
types. The goal is to construct a function which, given a new
individual cell, will correctly predict the cell type where the
new individual cell belongs. It is defined by

f(x; θ)→ c , (1)

where x is an individual cell, θ denotes the parameters in
f(·), and c ∈ C. For the scRNA-seq data, x is composed of
a sequence of gene expression values of the cell. Generally
we will have more than 10, 000 gene expression values if
we employ scRNAseq techniques to generate data [3], [7].
These gene expression values will be input as features to build
machine learning models to complete cell type identification.
Due to high dimensions and data sparsity of the scRNAseq
data [15], it is challenging to solve this problem. Moreover,
cell identification is similar to text classification regarding the
similarities: (1) the input to these two tasks are sequencing
samples; (2) these sequencing samples are classified into
predefined classes.

III. PROPOSED METHODOLOGY

We propose a Semi-supervised Recurrent convolutional
neural Network (SemiRNet) to address the challenge of lack-
ing labeled individual cells for cell type identification from
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scRNAseq data. The proposed model is based on RCNN [12]
and the detailed architecture is shown in Figure 1. The
first step is to preprocess the scRNAseq data to reduce the
data sparsity [15], [16] by building “gene sentences” and
representing the gene with word embedding techniques [11],
[17]. Specifically, each cell in the scRNAseq data is composed
of thousands of gene expression values. Unfortunately, most
of these values are zeros because of the limitation of current
single-cell sequencing techniques [16], which would reduce
the performance of machine learning models significantly [18],
[19]. Therefore, it is important to solve the data sparsity
problem for cell type identification.

To overcome the data sparsity, we represented the gene
sequences with “gene embedding” [20]. Although genomics
data is not identical to text data, they share certain similarities:
(1) they are all sequencing data. Genomics data is composed of
gene sequences while text data consists of sentence sequences;
(2) Gene sequences contain a subset of genes with high
gene expression values from the gene database. Similarly,
sentence sequences have a subset of words from the whole
word dictionary; (3) The context of a gene can be defined by
other genes that con-expressed with it [21]. Analogously, the
word context can be determined by its concurring words.

With respect to these similarities, we build gene sentences
by selecting k genes and employ word2vec [22] to represent
these genes, where word2vec is a powerful technique to
overcome data sparsity for natural language processing and
understanding [22], [23], [24]. Word2vec [22] is to construct
distributed representations of words that can represent the
semantics of a word by mapping them to vectors in a high-
dimension space, which is implemented by maximizing the
probability of word co-occurrences in context, i.e., only a
few words apart in a same sentence. It successes in nat-
ural language processing (NLP) applications. Analogously,
Gene2Vec [25], [26], [21], [27] is implemented by defining the
context of a gene by the other genes that co-expressed with
it, which is able to gene correlations in the more effective
manners. In detail, it is to derive an embedding such that
the probability of the context of a gene is maximized. It has
been successfully applied to many tasks such as biomarker
discovery [26] and gene-gene interaction prediction [21]. In
the proposed method, we select the top k genes in terms of
their expression values to build the gene sentence defined by
equation (2).

S(g) =< g1, g2, g3, ..., gt, ..., gk > , (2)

where g is the original gene sequence with n genes generated
by the single cell sequencer for the cell and t < k <
n. gt is the gene selected with respect to the expression
value. Then the genes in the gene sentence S(g) are repre-
sented as gene embeddings. For instance, the gene sentence
<g1, g2, g3, ..., gt, ..., gk> will be represented as a sequence
of gene embedding <e1, e2, e3, ..., et, ..., ek>, where et is the
embedding representation of the gene gt. The gene embedding
provides a way to use an efficient, dense representation in
which similar genes have a similar encoding. An embedding
is a dense vector of floating point values, where the length of

the vector is a parameter set manually. Instead of specifying
the values for the embedding manually, the gene embedding
is trainable parameters learned by the model during training.
A higher dimensional embedding can capture fine-grained
relationships between genes.

After the preprocessing procedure, these gene sentences
with gene embeddings will be input to the shared bidirectional
LSTM RNN to extract common features for cell identification.
The forward layer and backward layer generate two directional
correlation features, respectively. Next, we combine these
two groups of features with the gene embedding and obtain
the output z of the shared RNN, where z is a sequence
<z1, z2, z3, ..., zt, ..., zk> and zt is given by

zt = hft ⊕ et ⊕ hbt , (3)

where

hft = a(wfhh
f
t−1 + wfe et + bfh) , (4)

hbt = a(wbhh
b
t+1 + wbeet + bbh) , (5)

zt is the output of gt of the gene sentence
<g1, g2, g3, ..., gt, ..., gk>. ⊕ is the concatenation operation.
a(·) is the activation function for hidden layers. wfh and wfe
are forward weights for two layers, namely, forward layer
and backward layer. wbh and wbe are backward weights for
these two layers, respectively. bfh and bbh are bias for these
two layers.

The idea to introduce this shared RNN to the proposed
model is motivated by deep multi-task learning [28], [29],
since different tasks share a common feature representation
based on the original features. In addition, the reason for
learning common feature representations instead of directly
using the original ones is that the original representation may
not have enough expressive power for multiple tasks. With the
training data in all tasks, a more powerful representation can
be learned for all the tasks and this representation will improve
performance. Therefore, the output z from the shared RNN are
evaluated by two bidirectional RNNs, namely, supervised bidi-
rectional LSTM RNN and unsupervised bidirectional LSTM
RNN. As shown in Figure 1, the structures of these two RNNs
are the same to that of shared RNN. For the supervised RNN,
it is to learn the deep features of cells when the sample has
the label. The output z′ of supervised RNN is the sequence
<z′1, z

′
2, z
′
3, ..., z

′
t, ..., z

′
k>, where z′t is given by

z′t = max(tanh(wsupz
tmp′ + bsup)) , (6)

where
ztmp

′
= hft′ ⊕ zt ⊕ h

b
t′ , (7)

hft′ = a(wfh′h
f
t′−1 + wfsupzt + bfh′) , (8)

hbt′ = a(wbh′hbt′+1 + wbsupzt + bbh′) , (9)

We employ the same activation function a(·) for the hidden
layers of the supervised bidirectional RNN. tanh(·) is the
activation function for the dense layer. wsup and bsup are
the weights and a bias between the max-pooling layer and
the dense layer in the supervised RNN. wfh′ and wfsup are
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forward weights for the forward layer and backward layer in
the supervised bidirectional RNN. wbh′ and wbsup are backward
weights for these two layers, respectively. bfh′ and bbh′ are bias
for these two layers, respectively.

Moreover, we build the unsupervised bidirectional RNN to
generate another representation of the input and the output z′′

is a vector <z′′1 , z
′′
2 , z
′′
3 , ..., z

′′
t , ..., z

′′
k>, where z′′t is given by

z′′t = max(tanh(wunsupz
tmp′′ + bunsup)) , (10)

where
ztmp

′′
= hft′′ ⊕ zt ⊕ h

b
t′′ , (11)

hft′′ = a(wfh′′h
f
t′′−1 + wfunsupzt + bfh′′) , (12)

hbt′′ = a(wbh′′hbt′′+1 + wbunsupzt + bbh′′) , (13)

wunsup and bunsup are the weights and a bias between the
max-pooling layer and the dense layer in the unsupervised
RNN. wfh′′ and wfunsup are forward weights for two layers,
namely, forward layer and backward layer in the unsupervised
bidirectional RNN. wbh′′ and wbunsup are backward weights for
these two layers, respectively. bfh′′ and bbh′′ are bias for these
two layers, respectively.

We utilize those two vectors z′ and z′′ to calculate the
cross entropy loss (CEL) and mean squared error loss (MSEL)
for supervised and unsupervised paths, respectively. They are
given by

lCEL = −
∑

y × logφ(z′) , (14)

lMSEL = ||z′ − z′′||2 , (15)

where y is the label for the input and φ(·) is the softmax
activation function. lCEL is the standard cross entropy loss to
account for the loss of labeled inputs. Because training RNNs
with dropout regularization and gradient-based optimization
is a stochastic process, the two RNNs will have different
link weights after training. In other words, there will be
differences between the two prediction vectors z′ and z′′ that
are from these two RNNs (supervised RNN and unsupervised
RNN). These differences can be treated as an error and thus
minimizing its mean square error (MSE) is another objective
lMSEL, in the proposed model. Furthermore, to combine the
supervised loss lCEL and unsupervised loss lMSEL, we scale
the latter by time-dependent weighting function w(t) [30] that
ramps up, starting from zero, along a Gaussian curve. The
total loss is defined by

Loss = lCEL + w(t)× lMSEL , (16)

At the beginning of training, the total loss and the learning
gradients are dominated by the supervised loss component,
i.e., the labeled data only. At later stage of training, unlabeled
data will contribute more than the labeled data. The detailed
learning of the proposed model is shown in Algorithm 1,
which demonstrated the training of the proposed model. fr(·)
is to represent cells as gene sentences, fe(·) is to learn gene
embeddings on the gene sentences, and fθshared

(·) is to learn
the common features from the gene embeddings. Parameters
of the shared neural network θshared include wfh , wfb , wfe , wbe,
bfh, and bbh.

Algorithm 1 Learning of SemiRNet
Require: training sample xi, the set of training samples S,

labeled samples yi for xi (i ∈ S)
1: for t in [1, num epochs] do
2: for each minibatch B do
3: x′i∈B ← fr(xi∈B) . preprocessing
4: x′′i∈B ← fe(x

′
i∈B) . gene embedding

5: zi∈B ← fθshared
(x′′i∈B) . common feature extrac-

tion
6: z′i∈B ← fθsup

(zi∈B) . supervised representation
7: z′′i∈B ← fθunsup

(zi∈B) . unsupervised representa-
tion

8: lCELi∈B ← − 1
|B|

∑
i∈B∩S logφ(z′i)[yi] . supervised

loss component
9: lMSEL

i∈B ← 1
C|B|

∑
i∈B ||z′i − z′′i ||2 . unsupervised

loss component
10: Loss← lCELi∈B + w(t)× lMSEL

i∈B . total loss
11: update θshared, θsup, θunsup using the optimizer,

e.g., ADAM
return θshared, θsup, θunsup

After extracting common features from gene samples, we
use fθsup

(·) and fθunsup
(·) to obtain higher level represen-

tations to complete cell type identification and enhance the
cell representations through optimizing supervised loss and
unsupervised loss jointly. Parameters of the supervised RNN
θsup include wfh′ , wbh′ , wfsup, wbsup, bfh′ , bbh′ , wsup, and bsup.
Parameters of the unsupervised RNN θunsup consist of wfh′′ ,
wbh′′ , wfunsup, wbunsup, bfh′′ , bbh′′ , wunsup, and bunsup.

During the testing stage, only the supervised path including
shared bidirectional RNN and supervised bidirectional RNN
is used for cell type identification, which involves parameters
of the supervised part θsup including wfh′ , wbh′ , wfsup, wbsup,
bfh′ , bbh′ , wsup, and bsup, and those of shared part including
wfh , wfe , wbh, wbe, b

f
h, and bbh. In addition, the gene sequences

will be represented as gene sentences with gene embeddings
for inputs to the proposed model.

The proposed model combines the advantages of deep multi-
task learning [28] and Π model [30]. However, there exist
significant differences. Compared to deep multi-task learning,
the subtasks in the proposed model have two categories
of learning, namely, supervised learning and unsupervised
learning while there is only supervised learning in the deep
multi-task learning. On the other hand, instead of using one
path neural networks, we apply two independent RNNs to
generate supervised and unsupervised outputs. Furthermore,
the proposed model is more flexible as the two independent
RNNs can be tuned in terms of specific goals.

IV. EXPERIMENT

A. Dataset

We employed two large single-cell sequencing datasets:
macosko2015 [13] and 68K [14] to validate the proposed
methods.
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1) Macosko2015: Macosko2015 [13] is a retina scRNAseq
dataset including 44,825 mouse retinal cells with 39 transcrip-
tionally distinct cell populations1. The dataset with 24,760
genes contains 12 cell types, namely, rods, cones, muller
glia, astrocytes, fibroblasts, vascular endothelium, pericytes,
microglia, retinal ganglion, bipolar, horizontal, and amacrine.
The cell type distribution is shown in Table I. It can be ob-
served that the cell distribution is imbalanced across different
cell types. Therefore, machine learning models built on this
data will have bias to majority classes. In other words, the
models will tend to obtain high performance for identification
of majority cell types, but low performance for identification
of minority cell types. It will be a challenge to implement cell
type classification with high performance for all cell types. In
addition, we present the number of cells for different ratios of
labeled data to train the proposed semi-supervised approach as
Table II, where the total number of training samples is 31, 386.

TABLE I
CELL DISTRIBUTION IN TWELVE TYPES, NAMELY, RODS, CONES, MULLER

GLIA (MG), ASTROCYTES, FIBROBLASTS, VASCULAR ENDOTHELIUM
(VE), PERICYTES, MICROGLIA, RETINAL GANGLION (RG), BIPOLAR,

HORIZONTAL, AND AMACRINE.

Cell Type Rods Cones MG Astrocytes
Cell Number 29,397 1,871 1,622 54
Cell Type Fibroblasts VE Pericytes Microglia
Cell Number 85 253 63 67
Cell Type RG Bipolar Horizontal Amacrine
Cell Number 434 6,297 252 4,430

TABLE II
NUMBER OF CELLS FOR DIFFERENT RATIOS OF LABELED DATA IN

MACOSKO2015 TRAINING DATASETS.

Labeled Ratio Labeled Cells Unlabeled Cells
1% 314 31,072
3% 942 30,444
5% 1,570 29,816
10% 3,139 28,247
30% 9,416 21,970

2) 68K: To our knowledge, 68K [14] is the largest scRNA-
seq datasets generated by profiling 68, 000 fresh peripheral
blood mononuclear cells (PBMCs) that are related to immune
populations. It contains 11 sub-types of immune cells includ-
ing CD8+Cytotoxic T, CD8+/CD45RA+Naive, CD56+NK,
CD4+/CD25T Reg, CD19+B, CD4/CD45RO+Memory, Den-
dritic, CD14+Monocyte, CD4+CD5RA, CD34+, and CD4+T
Helper 2. There are 65, 943 individual cells with 20, 387
genes through data preprocessing. Detailed cell distribution
shown in Table III below presents class imbalance that is the
same challenge to Macosko2015, which might lead to model
bias to the majority classes such as CD8+Cytotoxic T and
CD8+/CD45RA+Naive. In addition, this dataset contains 11
immune cell populations which are harder to differentiate,
particularly the T cell compartment (6 out of 11 cell popula-
tions) [10]. Moreover, the number of cells for different ratios

1https://github.com/olgabot/macosko2015

of labeled data is shown in Table IV, where the total number
of training samples is 42, 204.

TABLE III
CELL DISTRIBUTION IN ELEVEN TYPES, NAMELY, CD8+CYTOTOXIC T,
CD8+/CD45RA+NAIVE, CD56+NK, CD4+/CD25T REG, CD19+B,

CD4/CD45RO+MEMORY, DENDRITIC, CD14+MONOCYTE,
CD4+CD5RA, CD34+, AND CD4+T HELPER 2.

Cell Type CD8+Cytotoxic T CD8+/CD45RA+Naive
Cell Number 20,307 16,361
Cell Type CD56+NK CD4+/CD25T Reg
Cell Number 8,522 6,116
Cell Type CD19+B CD45RO+Memory
Cell Number 5,579 3,031
Cell Type Dendritic CD14+Monocyte
Cell Number 1,946 1,944
Cell Type CD4+CD5RA CD34+
Cell Number 1,857 188
Cell Type CD4+T Helper 2 Total
Cell Number 92 65,943

TABLE IV
NUMBER OF CELLS FOR DIFFERENT RATIOS OF LABELED DATA IN 68K

TRAINING DATASETS.

Labeled Ratio Labeled Cells Unlabeled Cells
1% 423 41,781
3% 1,267 40,937
5% 2,111 40,093
10% 4,221 37,983
30% 12,662 29,542

3) ALM and MTG: The inter-dataset validation employed
MTG (Human) data [31] for training and ALM (Mouse)
data [32] for testing, which is a case from the comprehensive
comparison of automatic cell identification methods for single-
cell RNA sequencing data [10]. MTG (Human) data and ALM
(Mouse) data are from different anatomy structures of brain,
namely, middle temporal gyrus, and anterior lateral motor
area. MTG (Human) data consists of 14,636 cells while ALM
(Mouse) data contains 8,758 cells.

B. Experimental settings

In this experiment, our proposed model is employed to
implement cell type identification. The key hyper parameters
of the proposed model are: Embedding size: 256 Minibatch
size: 128, Number of epoch: 300, Optimizer: Adam optimizer,
Learning rate: 0.001, Learning rate decay: 0.9. They are
determined by trial and error. To obtain the optimal value
of k for building gene sentences, we tried a set of values
such as 50, 100, 150, and 200 for Macosko2015 dataset,
and the experimental results with 50 genes demonstrated
optimal performance. For 68K dataset, we employ Chi-Square
Test2 to select 10, 000 genes and then use the genes whose
gene expression values are not zeros to build gene sentences.
Therefore, the k values will be various to different samples
regarding different numbers of genes with zero values of gene
expression. Moreover, the details of the model architecture is

2https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.chi2.html



vi

illustrated in Table V. Specifically, the output of the proposed
model contains two parts: cell type φ(z′) and a new represen-
tation z′′.

TABLE V
THE PROPOSED NETWORK ARCHITECTURE.

Name Description
Input Gene Sentence
Gene Embedding Mikolov model [22], [33]
Shared RNN 256 LSTM cells for each hidden layer,

one forward hidden layer,
one backward hidden layer

Supervised RNN 256 LSTM cells for each hidden layer,
one forward hidden layer,
one backward hidden layer,
one dense layer with 256 neurons,
one 2× 2 max-pooling layer

Unsupervised RNN 256 LSTM cells for each hidden layer,
one forward hidden layer,
one backward hidden layer,
one dense layer with 256 neurons,
one 2× 2 max-pooling layer

Output cell type φ(z′) and a new representation z′′

C. Evaluation metric

We applied different evaluation metrics to evaluate the
performance of our proposed model, which includes accu-
racy, macro-average Precision (MacroP), macro-average Re-
call (MacroR), and macro-average Fscore (MacroF) [34]. Ac-
curacy is calculated by dividing the number of cells identified
correctly over the total number of testing cells.

Accuracy =
Ncorrect
Ntotal

. (17)

Macro-average [35] is to calculate the metrics such as
Precision, Recall and F-scores independently for each cell type
and then utilize the average of these metrics. It is to evaluate
the whole performance of classifying cell types.

MacroF =
1

C

C∑
c=1

Fscorec. (18)

MacroP =
1

C

C∑
c=1

Precisionc. (19)

MacroR =
1

C

C∑
c=1

Recallc. (20)

where C denotes the total number of cell types and Fscorec,
Precisionc, Recallc are Fscore, Precision, Recall values
in the cth cell type which are defined by

Fscore =
2× Precision×Recall
Precision+Recall

. (21)

where Precision indicates precision measurement that de-
fines the capability of a model to represent only correct cell
types and Recall computes the aptness to refer all correspond-
ing correct cell types:

Precision =
TP

TP + FP
. (22)

Recall =
TP

TP + FN
. (23)

whereas TP (True Positive) counts total number of cells
matched with the cells in the types. FP (False Positive)
measures the number of recognized type does not match the
annotated cells. FN (False Negative) counts the number of
cells that does not match the predicted cells. The main goal for
learning from imbalanced datasets such as macosko2015 [13]
is to improve the recall without hurting the precision. However,
recall and precision goals are often conflicting, since when
increasing the true positive (TP) for the minority class (True),
the number of false positives (FP) can also be increased; this
will reduce the precision [36].

In addition, we employ three deep supervised learning mod-
els as baselines including 1) Word-level CNN (Word CNN)
[37], 2) Attention-Based Bidirectional RNN (Att RNN) [38],
and 3) Recurrent CNN (RCNN) [12], where these models per-
form well on similar problems such as text classification. For
example, Word CNN performs well on sentence classification,
which is more suitable to process sequencing data as the length
of the content of the data is short like that of the gene sentence.
In addition, we build 4) word-level bidirectional RNN (Word
RNN) to compare the implemented model, where Word RNN
contains one embedding layer and one bidirectional RNN
layer, and concatenate all the outputs from the RNN layer
to feed to the final layer that is a fully-connected layer.
Moreover, we employ 6 traditional machine learning models
as the baselines, namely, Naive Bayes, Decision Tree, Random
Forest, Adaboost, Neural Networks (NN), and Support Vector
Machine (SVM). Specifically, NN is a shallow neural network
that is similar to ACTINN [7]. Thus, there are total 10 baseline
models. Note that baseline models are built on all labeled cells
from the original training datasets.

D. Experimental results

1) Macosko2015: We evaluated the proposed model from
two perspectives. One is to verify if the data preprocessing of
the cell is able to be employed to identify cell types effectively.
The other is to validate performance of the proposed model on
cell type identification with limited amount of labeled cells.

a. Data preprocessing: Table VI presents the comparison of
identification performance between traditional machine learn-
ing (ML) models and deep learning (DL) models, where the
ML models are built on the original gene values without data
preprocessing while the DL models are built on preprocessed
data that includes gene sentences with gene embeddings.

We can observe that most of ML models perform not
well on the cell identification regarding the data sparsity. For
example, Naive Bayes’s accuracy and MacroF are not high
since it is sensitive to data sparsity and cell imbalance. Other
four ML including Decision Tree, Random Forest, Adaboost
and NN identify cell type with high accuracy but low MacroF
since they cannot overcome the challenge of cell imbalance
even if data sparsity will not affect their performance signifi-
cantly. Only SVM can perform well on accuracy and MacroF.
However, it will cost almost one and a half hours to obtain
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TABLE VI
COMPARING PERFORMANCE BETWEEN TRADITIONAL MACHINE LEARNING (ML) AND DEEP LEARNING (DL) ON MACOSKO2015 DATASET.

Original Gene Expression

Machine Learning (ML) Accuracy MacroP MacroR MacroF Training Time (s)
Naive Bayes 35.06% 36.96% 30.40% 35.48% 11
Random Forest 85.09% 55.44% 27.45% 31.03% 22
Neural Networks 86.72% 19.47% 23.77% 21.23% 187
Decision Tree 93.78% 86.60% 80.34% 82.69% 1,172
Adaboost 74.07% 30.38% 26.88% 25.67% 1,767
Support Vector Machine 97.28% 98.24% 93.32% 95.50% 5,554

Gene Embedding

Supervised Deep Learning (SDL) Accuracy MacroP MacroR MacroF Training Time (s)
Word CNN [37] 96.30% 90.79% 77.22% 81.90% 295
Word RNN 96.11% 86.69% 82.82% 84.17% 8,368
Attenion RNN [38] 95.79% 88.18% 84.85% 85.85% 4,661
RCNN [12] 96.56% 96.55% 92.70% 94.45% 2,383

a converged model with respect to training on such a big
scRNAseq data.

On the contrary, different DL models built on preprocessed
cell data can identify cell types with promising and consistent
performance. For instance, compared to ML models, all DL
models are able to gain high accuracy above 95%, which
means they are not struggling to the data sparsity. Moreover,
considering MacroF values, DL models can obtain encourag-
ing performance since these models can overcome cell imbal-
ance to some extent. Specifically, the performance difference
between RCNN and SVM is not significant regarding accuracy
and MacroF. Moreover, compared to SVM, building RCNN
only uses about a half of hour to become converged. Based
on the observations, we believe that deep learning methods can
outperform traditional machine learning models by learning on
the preprocessed data generated by gene embedding.

b. Cell type identification: in this section, we will examine
if the proposed model is able to effectively identify the
cell types by training on very limited amount of annotated
cells. Table VII presents the comparison of identification
performance between supervised deep learning (SDL) and the
proposed model, where the proposed model is built based on
RCNN with different ratios of training labeled cells. Firstly, we
observe that the performance of proposed model is enhanced
through increasing the ratios of annotated cells. In other words,
the proposed model is able to obtain stronger identification
ability when learning on more labeled data. It’s because the
unsupervised path is able to enhance the data representation
for improving cell identification that is implemented with
supervised path.

TABLE VII
COMPARING PERFORMANCE BETWEEN SUPERVISED DEEP LEARNING

(SDL), AND OUR MODEL (SEMI-SUPERVISED RECURRENT
CONVOLUTIONAL NEURAL NETWORKS, SEMIRNET) ON MACOSKO2015

DATASET.

SDL Accuracy MacroP MacroR MacroF
RCNN [12] 96.56% 96.55% 92.70% 94.45%
Our model Accuracy MacroP MacroR MacroF
SemiRNet (1%) 95.47% 91.73% 93.90% 92.64%
SemiRNet (3%) 95.76% 92.62% 94.21% 93.28%
SemiRNet (5%) 95.76% 93.12% 93.39% 93.18%
SemiRNet (10%) 95.70% 94.92% 93.18% 93.87%
SemiRNet (30%) 96.44% 96.53% 92.66% 94.46%

Compared to supervised deep learning (SDL), the proposed
model can identify the cell types even with extremely small
amount of annotated cells. For example, we can obtain en-
couraging performance with 1% annotated cells. Furthermore,
the proposed model is robust since we can gain similar per-
formance with different ratios of annotated cells. For instance,
the differences of accuracy and MacroF between the case of
1%, 5%, and 30% are about 1%. Specifically, the MacroP is
improved significantly when increasing the ratios of labeled
cells for training while the MacroR is stable. The reason
for this observation is that enhancing representation with
unsupervised learning in the proposed model seems to be more
useful to identify cell type precisely.

To further investigate the detailed performance of Table VII,
we show the performance with confusion matrix. Figure 2
presents the confusion matrix on performance generated with
different ratios of annotated cells. It is observed that for
different cell types, the accuracy is increased when involving
more labeled cells to build the model. Specifically, when we
use different ratios of labeled cells to build the model, the
error distributions are not changed significantly. For instance,
for the cell type c2, the majority errors are from incorrectly
classifying the cells into the cell type c7.

Furthermore, considering the unbalanced feature of cell
distribution (See Table I), the results in Figure 2 presents
the model bias for the majority cell types. It means that the
model will obtain higher performance for the majority type,
but lower performance for the minority types. For the cell type
c12, compared to the case of 1% labeled cells, the accuracy is
decreased because of the model bias when using 10% labeled
cells for training.

On the other hand, although the overall prediction accuracy
(See Table VII) is increased when increasing the ratios of
labeled cells, it is not always true that the accuracy for each
cell type will be enhanced. This can be observed in Fig 2. Take
the cell type c12 as an example, the prediction accuracy is not
always increased when increasing the ratios of labeled cells.
On the contrary, for the cell type c11, the accuracy is improved
whenever more labeled cells are involved for building the
identification model.

In addition to examining the performance comparisons
between the proposed models and baselines, we have to figure
out whether the proposed model is sensitive to the hyper-
parameters. There are various hyper-parameters involved in the
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Fig. 2. Confusion matrix on different cell types generated with batch size 128
on Macosko2015 dataset. There are 12 cell types including c1 (Bipolar), c2
(Pericytes), c3 (Vascular endothelium), c4 (Retinal ganglion), c5 (Horizontal),
c6 (Rods), c7 (Cones), c8 (Amacrine), c9 (Fibroblasts), c10 (Microglia), c11
(Astrocytes), c12 (Muller glia)

learning procedure of the proposed model. Here, we choose
batch size to check since different batch sizes will involve
different numbers of labeled cells for building the proposed
model when using the same ratio of labeled cells. Table VIII
shows the comparison results for two different batch sizes.
We observe that there is no significant differences of the
performance. It means that the proposed model is not sensitive
to the batch size since the supervised and unsupervised RNN
in the proposed model could collaborate with each other to
overcome the effects from the difference of batch size.

TABLE VIII
COMPARING PERFORMANCE WITH DIFFERENT BATCH SIZES ON

DIFFERENT RATIOS OF LABELED CELLS ON MACOSKO2015 DATASET.

1% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 95.47% 91.73% 93.90% 92.64%
256 95.11% 89.99% 94.40% 91.88%

3% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 95.76% 92.62% 94.21% 93.28%
256 95.44% 91.76% 94.21% 92.79%

5% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 95.76% 93.12% 93.39% 93.18%
256 95.49% 91.34% 93.74% 92.31%

10% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 95.70% 94.92% 93.18% 93.87%
256 95.93% 95.13% 93.11% 94.00%

30% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 96.44% 96.53% 92.66% 94.46%
256 96.45% 96.58% 92.02% 94.10%

Moreover, compare to Table VIII, Figure 3 presented the
accuracy of each cell to check the effects with different hyper-
parameters in detail. To sum up, for the majority cell type c6,

the performance is enhanced for the case of larger batch size.
For the minority cell types, when employing larger batch size
to build the model, the performances for some cell types such
as c1 and c2 are decreased whereas for the cell types like c9
and c11, the accuracy is increased. It means that we have to
choose the optimal batch size for improving the performance
of certain minority cell types.

On the other hand, compared to the case with more labeled
data, the case with low ratios of labeled cells needs larger batch
size to improve the performance for the majority cell type such
as c6. For instance, when we compare the confusion matrix
for the case of 1% labeled cells, the confusion matrix with
batch size 256 has better performance compare to that of batch
size 128. It is consistent to the intuition that with larger batch
size, we will obtain larger size of labeled samples to enhance
the performance of supervised path when using extremely
low ratio of labeled cells. In other words, to improve the
performance for the proposed model in the case of extremely
low ratios of labeled data, we should apply larger batch size
for the case of majority cell type.

Fig. 3. Comparison of confusion matrix on different cell types generated with
batch size 128 and 256. The left column is for the case of 128 while the right
column is for the case of 256.

2) 68K: to further validate the proposed methods, we
validate its effectiveness on 68K dataset, a larger dataset.

a. Data preprocessing: Compared to the case of Ma-
cosko2015, in addition to the traditional machine learning
methods, we employ state-of-the-art methods including scmap-
cell [4], SingleR [6], singleCellNet [39], and ACTINN [40]
to compare the proposed methods, where the Median F1-
score of these models are from Abdelaal et al.’s work [10].

Xishuang Dong




ix

TABLE IX
PERFORMANCE COMPARISON BETWEEN STATE-OF-THE-ART METHODS, TRADITIONAL MACHINE LEARNING MODELS, AND DEEP LEARNING MODELS ON

68K DATASET.

State-of-the-art scmapcell [4] SingleR [6] singleCellNet [39] ACTINN [40]
Median F1-score 64% 32% 74% 74%
Machine Learning SVM Naive Bayes Random Forest Adaboost
Median F1-score 69.75% 18.18% 56.27% 48.97%
Supervised Deep Learning (SDL) Word CNN [37] Word RNN ATT RNN [38] RCNN [12]
Median F1-score 71.62% 73.15% 69.53% 78.84%

TABLE X
COMPARING PERFORMANCE BETWEEN TRADITIONAL MACHINE LEARNING (ML) AND DEEP LEARNING (DL) ON 68K DATASET.

Original Gene Expression

Machine Learning (ML) Accuracy MacroP MacroR MacroF
Naive Bayes 24.36% 31.54% 33.70% 25.92%
Random Forest 61.84% 49.98% 37.38% 38.42%
Adaboost 54.35% 46.00% 41.31% 38.26%
Support Vector Machine (10%) 61.88% 55.58% 50.16% 55.06%
Support Vector Machine (30%) 63.31% 55.18% 53.42% 54.15%
Support Vector Machine (100%) 70.84% 56.09% 60.62% 56.83%

Gene Embedding

Supervised Deep Learning (SDL) Accuracy MacroP MacroR MacroF
Word CNN [37] 76.06% 69.55% 57.75% 60.76%
Word RNN 70.24% 60.82% 55.08% 57.15%
Attenion RNN [38] 75.56% 66.18% 58.26% 60.72%
RCNN [12] (10%) 68.16% 59.60% 52.78% 54.89%
RCNN [12] (30%) 69.84% 61.29% 57.05% 58.58%
RCNN [12] (100%) 76.62% 68.31% 62.94% 64.67%

TABLE XI
COMPARING PERFORMANCE BETWEEN SUPERVISED DEEP LEARNING (SDL), AND OUR MODEL (SEMI-SUPERVISED RECURRENT CONVOLUTIONAL

NEURAL NETWORKS, SEMIRNET) ON 68K DATASET.

SDL Accuracy MacroP MacroR MacroF
RCNN [12] 76.62% 68.31% 62.94% 64.67%
Our model Accuracy MacroP MacroR MacroF
SemiRNet (1%) 61.26 ± 5.38% 52.38 ± 2.36% 57.14 ± 1.74% 52.67 ± 1.98%
SemiRNet (3%) 64.93 ± 3.24% 55.65 ± 2.79% 58.48 ± 0.87% 55.48 ± 0.27%
SemiRNet (5%) 62.16 ± 3.70% 53.77 ± 3.59% 57.74 ± 1.87% 53.96 ± 2.11%
SemiRNet (10%) 68.18 ± 3.13% 59.14 ± 3.55% 57.73 ± 1.38% 57.20 ± 1.48%
SemiRNet (30%) 71.49 ± 4.39% 63.61 ± 2.50% 58.44 ± 1.93% 59.93 ± 1.76%

Table IX showed the performance comparison in detailed. It
can be observed that the proposed method via deep learning
outperforms other methods. Specifically, RCNN presented
the optimal performance, which is consistent to the case of
Macosko2015. In other words, combining data preprocessing
like building gene sentences and learning with bidirectional
RNN is able to enhance the performance significantly. For
traditional machine learning methods, SVM performed better
than other machine learning models.

On the other side, Table X presents the comparison of iden-
tification performance between traditional machine learning
(ML) models and deep learning (DL) models with comprehen-
sive evaluation metrics. We can obtain the similar observation
that generally deep learning based methods perform better
than machine learning based methods, especially regarding
the MacroF scores. Only SVM showed competitive perfor-
mance on accuracy. On the contrary, different DL models
present higher and consistent performance. For example, all
DL models are able to gain higher accuracies above 70%.
Furthermore, DL models can obtain MacroF values. Based
on the observations, we believe that the preprocessing is an

effective step to prepare the data for deep learning based cell
type identification. In addition, we present the performance
gained by training SVM and RCNN on fewer labeled training
samples with two cases: 10% labeled samples and 30% labeled
samples. In terms of performance comparison, fewer labeled
samples led to lower performance regarding accuracy and
MacroF scores. In other words, it needs more labeled data for
building models to obtain higher identification performance.

b. Cell Type Identification: in this section, we will examine if
the proposed model is able to effectively identify the cell types
by training on very limited amount of annotated cells. Table XI
demonstrates the comparison of identification performance
between supervised deep learning (SDL) and the proposed
model, where the proposed model is built based on RCNN
with different ratios of training labeled cells. Moreover, we
applied 5-fold cross validation to validate the performance
and present the performance with 95% confidence intervals.
Obviously, the performance of proposed model is enhanced
through increasing the ratios of annotated cells, which is
consistent to the case of Macosko2015. In other words, the
proposed model is able to obtain stronger identification ability
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TABLE XII
COMPARING PERFORMANCE WITH DIFFERENT BATCH SIZES ON

DIFFERENT RATIOS OF LABELED CELLS ON 68K DATASET.

1% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 60.18% 52.07% 57.79% 52.86%
256 59.98% 49.48% 54.64% 49.98%
512 50.93% 44.08% 52.61% 44.80%

3% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 64.20% 54.26% 60.91% 55.79%
256 58.77% 58.82% 56.34% 51.96%
512 66.92% 56.32% 53.30% 53.53%

5% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 53.52% 54.68% 56.73% 54.66%
256 66.10% 55.33% 52.83% 52.05%
512 70.13% 59.40% 57.50% 56.34%

10% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 63.73% 58.39% 56.29% 54.28%
256 69.37% 57.89% 55.96% 56.36%
512 70.22% 64.44% 57.04% 58.85%

30% Labeled Data
Batch size Accuracy MacroP MacroR MacroF

128 71.57% 64.54% 60.63% 62.10%
256 72.99% 65.73% 56.98% 59.95%
512 70.79% 64.44% 57.04% 58.85%

Fig. 4. Confusion matrix on different cell types generated with batch size
256 on 68K dataset. There are 11 cell types including c1 (CD8+Cytotoxic
T), c2 (CD8+/CD45RA+Naive), c3 (CD4/CD45RO+Memory), c4 (CD19+B),
c5 (CD4+/CD25T Reg), c6 (CD56+NK), c7 (CD4+T Helper 2), c8
(CD4+CD5RA), c9 (CD34+), c10 (Dendritic), and c11 (CD14+Monocyte).
The majority types include c1, c2, and c6 while the minority types contains
c7, c8, and c9.

when learning on more labeled data together with unlabeled
data. Specifically, regarding the confidence intervals, compared
to Accuracy and MacroP, the confidence intervals of MacroF
and MacroR are smaller, which means that they would be
more suitable to evaluate the performance for this case since
smaller confidence intervals indicates less uncertainties. In
addition, compared to the performance shown in Table X, the
performance is improved for the case of 10% and 30% with

the proposed method. It is proved that unsupervised path is
able to enhance the performance significantly.

In addition, compared to supervised deep learning (SDL)
training on 100% labeled data, the proposed model can
identify the cell types even with extremely small amount
of annotated cells. For example, we can obtain encouraging
performance with 10% annotated cells. Specifically, Accuracy
and MacroF are improved significantly when increasing the
ratios of labeled cells for training. It is because enhancing
representation with unsupervised learning in the proposed
model seems to be more helpful to recognize cell types.

Moreover, regarding the sample unbalance (See Table III),
Figure 4 showed the model bias to the majority cell types
as the model obtained higher performance for the majority
types like c1, c2, and c6, but lower performance for the
minority types such as c7, c8 and c9, which is consistent to the
observations on results of Macosko2015 dataset. Furthermore,
regarding the cell type c9, compared to the case of 1% labeled
data, the model bias led to lower performance for the case of
10% labeled data. On the other hand, although the accuracy
(See Table XI) is improved when increasing the ratios of
labeled data for training, it doesn’t means that the accuracy
for each cell type has been enhanced. When examining the
accuracy in Fig 4, the accuracy of the cell c8 and c9 is not
always increased when using more labeled data for training.

In summary, since the datasets employed for validation
including 68K and Macosko2015 are not balanced, more
labeled samples for training might result in model bias during
prediction, which decreases the performance for supervised
learning. On the contrary, semi-supervised method will use
less labeled samples for training, which would reduce model
bias to some extent. Therefore, the proposed semi-supervised
method performance a little bit better comparing to the super-
vised methods for some cases.

We also examined if the proposed model is sensitive to the
hyper-parameters through comparing the performance on three
different batch sizes. Table XII shows the comparison results
for three different batch sizes. We observe that smaller batch
sizes like 128 will lead to higher MacroF scores for lower
ratios of labeled data such as 1% and 3%. For larger ratios
such as 5% and 10%, we should take larger batch sizes like
256 for better performance like MacroF scores. Furthermore,
the confusion matrix in Figure 5 allows us to check the detailed
performance for Table XII. In summary, the proposed model
performed better on the majority cell types such as c2 and c6
for cases of larger ratios of labeled data (30%) for different
batch sizes. For minority cell type such as c7, we should
employ larger batch size and larger ratio of labeled data to
obtain higher performance in general.

3) Inter-dataset validation: We selected top k genes to
build gene sentences and applied word2vec to generate gene
embeddings. In terms of results shown in Table XIII, RCNN
model’s performance is not very good, which is consistent with
observations in the literature such as ACTINN [40]. The reason
to this observation is that supervised deep learning models can
learn not only general features, but also specific features on the
training data for specific tasks. It will lead to low performance
on testing data whose distribution is significantly different
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TABLE XIII
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS ON CELL TYPE IDENTIFICATION FOR INTER-DATASET VALIDATION.

State-of-the-art SingleR [6] singleCellNet [39] ACTINN [40]
Median F1-score 44% 22% 11%
Supervised Learning SVM Random Forest RCNN
Median F1-score 18% 12% 19
Semi-supervised Deep Learning SemiRNet (1%) SemiRNet (5%) SemiRNet (10%)
Median F1-score 30% 29% 32%

Fig. 5. Comparison of confusion matrix on different cell types generated with batch size 128, 256 and 512 on 68K dataset. The left column, the middle
column, and the right column is for the case of 128, 256, and 512, respectively.

from that of training data. Thus, it is not suitable to directly
apply supervised deep learning techniques to inter-dataset
applications. However, compared to supervised learning, the
proposed semi-supervised method improved the performance
significantly since it reduces the influence of distribution
differences between training data and testing data by using
less labeled data. Furthermore, unlabeled data can enhance
the performance through improving data representations.

V. RELATED WORK

Single-cell RNA-seq (scRNAseq) data is able to profile the
gene expression levels of cells and to link the dynamics at the
molecular level and the cellular level. Analyzing scRNAseq
data will be beneficial for obtaining knowledge on cancer
drug resistance, gene regulation in embryonic development,
and mechanisms of stem cell differentiation and reprogram-
ming [41], [42]. In recent years, a lot of progresses have
been made on applying bioinformatics techniques and machine
learning tools to scRNAseq data [43]. However, there still exist

many challenges due to dropout events, batch effect, noise,
high dimensionality, and scalability [15].

To overcome these challenges, deep learning techniques
have been employed to build effective and efficient com-
putational methods for scRNAseq data. For example, Sha-
ham et al. proposed MMD-ResNet to remove batch effect
on both mass cytometry and scRNAseq data by combining
residual neural networks (ResNets) with the maximum mean
discrepancy (MMD) [44]. To reduce the computational cost,
Li et al. implemented batch effect removal and clustering
in one step [45]. Specifically, they built a stacked autoen-
coder [46] to enhance clustering performance. On the other
hand, to remove fake zeros, autoencoder based methods such
as “AutoImpute” [47] and “DCA” [48] have been proposed
to implement imputation and denoising to address the issue
of dropout. Moreover, autoencoder techniques such as de-
noising autoencoder (DAE) [49] and variational autoencoder
(VAE) [50] have also been applied to reduce dimensions
of scRNAseq data [44], [49], [51]. In addition, Lopez et
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al. developed an integrative pipeline called “scVI” (single-
cell variational inference) to implement multiple tasks in-
cluding correcting batch effect, removing dropout, imputa-
tion, dimension reduction, clustering, and visualization [52].
Wang et al. proposed an interpretable deep-learning architec-
ture using capsule networks (called scCapsNet) to perform
feature selection to identify groups of genes encoding different
subcellular types [53]. Shao et al. built a pre-trained cell-
type annotation tool scDeepSort through combining a deep
learning model with a weighted graph neural network (GNN),
which is the first attempt to annotate cell types of scRNA-seq
data with a pre-trained GNN model [54]. Similarly, Wang et
al. proposed a multimodal end-to-end deep learning model
through integrating a graph convolutional network (GCN) and
a neural network [55]. Cheng et al. combined deep learning
with graphic cluster (DGCyTOF) visualization to identify cell
types [57]. Chen et al. proposed a probabilistic generative
model integrated with a Bayesian neural network to annotate
scCAS data in a supervised manner [58]. O’Connor et al.
classified cells based on their time-varying behavior by a
recurrent bi-directional long short-term memory (Bi-LSTM)
network [59]. Recently, Ma et al. performed extensive data
analyses to systematically evaluate supervised methods for
cell identification and suggested combining all individuals
from available datasets to construct the reference dataset and
use multi-layer perceptron (MLP) as the classifier [56]. In
addition to supervised learning based methods, Lieberman et
al. employed transfer learning [60] to reuse a classification
scheme that was learned from previous similar experiments
for cell type classification [3]. Hu et al. developed a transfer
learning algorithm that borrows ideas from supervised cell
type classification algorithms, but also leverages information
in target data to ensure sensitivity in classifying cells that are
only present in the target data [61].

In summary, most of existing work focuses on supervised
learning based methods to implement cell identification, which
requires large amounts of fully annotated samples to train the
model. In addition, even if transfer learning can be employed
to reduce the requirement of big annotated training data, how
transfer learning improves the identification performance is not
transparent. This paper proposed a semi-supervised method
that can leverage a small part of labeled data together with
large amounts of unlabeled data for cell identification, which
will not require fully annotated training sets. Moreover, how
the unlabeled data improves the performance is interpretable.

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel framework of deep semi-supervised
learning is proposed for cell type identification on scRNAseq
data. As an emerging research area, implementing cell type
identification automatically is extremely important for the
downstream analysis on the scRNAseq data. However, current
methods using neural networks rely on the availability of
large amount of labeled cells, which costs a huge amount
of efforts to label these cells with high quality. Hence, we
propose a deep semi-supervised learning model based on
recurrent convolutional neural networks (RCNN) that can

utilize unlabeled cells to enhance identification performance.
There are two paths in the model for obtaining supervised
cross entropy loss and unsupervised mean squared error loss,
respectively. Then training is performed by jointly optimizing
these two losses, and this allows the proposed scheme to
take advantage of both information from the labeled cells
and information from the unlabeled cells. Furthermore, we
introduce a preprocessing procedure to overcome the problem
of data sparsity. Experimental results indicate that the proposed
model could identify cell type effectively using very limited
labeled cells and a large amount of unlabeled cells. In our
future work, we plan to extend the proposed model for other
tasks such as pathway network construction.
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