Session 4: Applications

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

NASCENT: Near-Storage Acceleration of Database Sort on
SmartSSD

Sahand Salamat, Armin Haj Aboutalebi®, Behnam Khaleghi, Joo Hwan Lee*, Yang Seok Ki*, Tajana
Rosing
CSE Department, UC San Diego, La Jolla, CA 92093 *Samsung Semiconductor Inc., San Jose, CA 95134
{sasalama, bkhaleghi, tajana}@ucsd.edu {armin.h, joohwan.lee, yangseok.ki}@samsung.com

ABSTRACT

As the size of data generated every day grows dramatically, the
computational bottleneck of computer systems has been shifted
toward the storage devices. The interface between the storage and
the computational platforms has become the main limitation as it
provides limited bandwidth which does not scale when the number
of storage devices increases. Interconnect networks do not provide
simultaneous accesses to all storage devices and thus limit the per-
formance of the system when independent operations on different
storage devices. Offloading the computations to the storage de-
vices eliminates the burden of data transfer from the interconnects.
Emerging as a nascent computing trend, near storage computing
offloads a portion of computation to the storage devices to accel-
erate the big data applications. In this paper, we propose a near
storage accelerator for database sort, NASCENT, which utilizes
Samsung SmartSSD, an NVMe flash drive with an on-board FPGA
chip that processes data in-situ. We propose, to the best of our
knowledge, the first near storage database sort based on bitonic
sort which considers the specifications of the storage devices to
increase the scalability of computer systems as the number of stor-
age devices increases. NASCENT improves both performance and
energy efficiency as the number of storage devices increases. With
12 SmartSSDs, NASCENT is 7.6X (147.2X) faster and 5.6x (131.4X)
more energy efficient than the FPGA (CPU) baseline.

CCS CONCEPTS

« Hardware — Hardware accelerators; Emerging architectures;
Computer systems organization — Reconfigurable computing.

ACM Reference Format:

Sahand Salamat, Armin Haj Aboutalebi®, Behnam Khaleghi, Joo Hwan Lee*,
Yang Seok Ki*, Tajana Rosing. 2021. NASCENT: Near-Storage Acceleration
of Database Sort on SmartSSD . In Proceedings of the 2021 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA ’21),
February 28-March 2, 2021, Virtual Event, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3431920.3439298

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA 21, February 28-March 2, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8218-2/21/02...$15.00
https://doi.org/10.1145/3431920.3439298

262

1 INTRODUCTION

With the explosive growth of data, processing the massive amount
of data has become the cornerstone of many big data use-cases
such as database applications [1, 2]. As the size of the stored data
increases, the cost of loading and storing the data overweighs the
computation cost and diminishes performance. In some applications
such as database, graph processing, machine learning, and statistical
analysis since more than half of the execution time is spent on data
transfer which highlights the impact of data communication on
overall performance [3, 4]. The rapid development of Solid State
Drives (SSDs) has shifted the bottleneck of data transfer time from
the magnetic disks (i.e., seek and rotational latency) to interconnect
bandwidth and operating system overhead [5]. The PCle provides
limited simultaneous accesses to the storage devices, which limits
the scalability of the system when independent operations are called
on different storage devices in parallel. This issue along with low
performance of the interconnect bus increase the gap between the
performance capacity of storage devices and the interconnection
buses [4, 6] that obliges us to move the computations closer to
where the data is stored, which has been empowered by recent
advances in near-storage computing devices [5, 7-12].
Near-storage computing offloads a portion of computation to
the storage drive to accelerate the big data applications. Accord-
ingly, new devices have been developed to bring the computation
power into the flash storage devices, e.g., NGD Systems [9], Scale-
Flux [8], and Samsung’s SmartSSD [7]. NGD Systems developed
computational storage with a multi-core ARM processor to per-
form in-situ computations in NVMe storage devices. ScaleFlux has
developed computational storage devices with built-in GZIP com-
pression/decompression. SmartSSD is an NVMe flash drive with
an on-board FPGA chip that processes data in-situ. FPGA, as the
computation node of SmartSSD, provides a high degree of paral-
lelism with affordable power consumption and reconfigurability to
implement versatile applications. FPGAs run parallelizable appli-
cations faster with less power compared to the general processing
cores (host processor) [13-15]. Therefore, FPGAs have become
an inevitable part of data centers [16—18]. The speed-up of using
SmartSSD over the conventional storage devices is thus two-fold;
not only offloading tasks to near-storage nodes increases the over-
all performance by bridging the interconnection gap, but also the
FPGA as an accelerator further boosts the applications with low
power consumption. Since the performance of data-intensive ap-
plications such as database management is limited by the system
bandwidth, these applications can be significantly accelerated by
offloading the computations to the storage drive [4, 19, 20]. There-
fore, recent processing systems aim to offload the query processing

Session 4: Applications

to storage drive to the greatest possible extent to minimize data
transfer between the host and storage [10, 21-23]. Also, unlike
compute-intensive applications, I/O bound applications do not ben-
efit from high-performance host processors as their performance
is limited by the host-to-storage bandwidth. Therefore, offloading
I/0 bound applications to computational storage devices release
the host resources to execute more compute-intensive tasks.

As the size of the real-world databases is growing, storing databases
require multiple storage devices. Database management systems
partition databases into multiple partitions and breakdown the op-
erations into multiple independent operations on the partitioned
database. Although these independent operations can be executed
in parallel, due to storage-to-host bandwidth limitation in I/O bound
applications, host processors cannot fully utilize the partitioning
opportunity. However, in computational storage devices, each stor-
age device has its own computation resource; hence, it can perform
the independent operations in-situ without occupying the storage-
to-host bandwidth. In particular, sort operation is commonly used
in database query processing as a standalone operation or as the
backbone of more complex database operations such as merge-join,
distinct, order-by, group-by, etc. [24]. When sorting a database, all
the table columns are sorted based on a single column, dubbed key
column. Due to their large number of columns, real-world databases
are complicated to sort since after sorting the key column, the rest
of the table needs to be shuffled accordingly. Most database man-
agement systems often use data encoding to compress the stored
data into the storage devices. Being vastly used in database systems,
dictionary encoding is a lossless one-to-one compression method
that replaces attributes from a large domain with small numbers
[14, 25, 26]. To sort the database, if the data is stored in the encoded
format, the table should be decoded and then sorted.

While conventional systems cannot exploit the storage-level
parallelism as they do not provide access to all the storage devices
simultaneously, Computational storage devices offer independent
operations on data stored in each storage device. In this paper,
to sort the database tables, we propose near-storage sort using
SmartSSDs that comprise FPGA-based accelerators with specific
kernels to accelerate dictionary decoding, sort, and the subsequent
shuffle operations. If the table is stored in the encoded format, the
NASCENT dictionary decoding kernel decodes the key column.
Then the sort kernel sorts the key column, and the shuffle kernel
reorders the table according to the sorted key column. NASCENT
not only inherently addresses the data transfer issue by carrying
out computations near the storage system but also embraces an
FPGA-friendly implementation of dictionary decoding, sort, and
shuffle operations. The summary of the contributions of the paper
is listed as follows.

o We present NASCENT, a near-storage accelerator to bring the
computations closer to the storage devices by leveraging SmartSSD.

e We propose a novel FPGA-friendly architecture for bitonic sort to
highly benefit from FPGA parallelism. The proposed architecture
is scalable to sort various data size, outputs the sorted indices,
and can be scaled based on the available resources of the FPGA.

o Database management systems often encode the data using dictio-
nary encoding to compress the data. NASCENT consists of a dic-
tionary decoding kernel to decode the data at the first stage of the

263

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

database sort to provide the input to the sort kernel. NASCENT
dictionary decoding kernel fully utilizes the SSD bandwidth.

e Shuflling is the critical step of database sort and is I/O bounded.
NASCENT accomplishes table sort using the shuffle kernel which
fully utilizes the SSD bandwidth to maximize the performance
of sorting database tables. We modify the storage pattern of the
table to benefit from the regular memory patterns in both shuffle
and sort kernels.

e Our evaluations on different table sizes show NASCENT on
SmartSSD is NASCENT is 7.6x faster and 5.6X more energy
efficient than the same accelerator on conventional architectures
comprising a stand-alone FPGA and storage devices where the
FPGA is connected to the system through PCle bus. NASCENT
also shows 147.2x speedup and 131.4X energy reduction as com-
pared to the CPU baseline.

2 RELATED WORK

Previous studies on near-storage computing generally can be cate-
gorized as works that propose (a) novel architectures, (b) emulation
and/or analysis frameworks the investigate the performance of
near-storage systems, and (c) application-oriented case-studies that
evaluate the efficiency of select applications mapped to specific
near-storage systems.

In [6], the authors introduce INSIDER, a computational storage
platform equipped with an FPGA drive controller. INSIDER also pro-
vides software abstractions to abstract the offloaded operations with
file operations. It reduces the required modifications in applications
host code to enable offloading the operations on the computational
storage. The authors of [27] propose ExtraV, an acceleration plat-
form that consists of an FPGA-based ‘accelerator function unit’ that
is connected to the storage devices and communicates with the
processor and its main memory using a coherent interface. The
accelerator executes graph traversal functions which are central to
various graph algorithms. IBM’s Netezza is a near-storage comput-
ing architecture that utilizes FPGAs to reduce the size of the data
stream as early as possible by filtering out extraneous data while
the data streams out of the storage [22]. The platform supports four
functions on the FPGA, viz. compress, project, restrict, and visibility,
with the capability of expanding to further database operations. As
the computational storage devices are in the early stages, the work
in [4] provides an emulation platform to estimate the extent an
application can benefit by offloading operations on FPGA-enabled
computational storage devices.

From the application perspective, the work in [23] examines the
efficiency of near-storage systems by evaluating the expected per-
formance of particular database operations, namely scan, filter, and
project that are offloaded to storage devices equipped with ARM
core as the computation element. In [10], the authors explore of-
floading the list intersection database operation, which is the core of
many applications such as search engines on computational storage
devices. The work in [28] offloads regular expression (regex) search
(a searching algorithm that looks for specific patterns in unstruc-
tured data) on computational storage. The accelerator performs a
regex search while a file is being transferred to the host.

Speaking of the sort algorithm, several works have attempted to
accelerate various sort algorithms on FPGAs [29, 30]. The authors

Session 4: Applications

CPU (Host)

SmartSSD

NAND FPGA

FPGA DRAM

SSD Controller

Figure 1: Overview of SmartSSD architecture.

of [31] propose an FPGA-based accelerator for sorting datasets
larger than the available on-chip memory of FPGAs (which makes
the sort challenging as data needs to be transferred back and forth
between the off-chip DRAM and on-chip block RAMs). It partitions
the data to smaller chunks where all the elements in the i chunk
are smaller than or equal to the elements of the i + 1™ chunk assum-
ing the dataset is being sorted in ascending order. Therefore, each
segment can be sorted independently. The work in [30] evaluates
the performance of various sorting algorithms on FPGAs, including
even-odd [32] and bitonic sorting network [33], as well as tradi-
tional bubble and insertion sorts [34]. Although bitonic sort has
a slightly higher computation complexity (O(n log? n)) compared
to common sorting algorithms (i.e., O(nlogn in merge- and quick-
sort), their results show that, in practice, bitonic sort can run faster
than the common sort algorithms thanks to its high, FPGA-friendly
parallelism. Eventually, the work in [33] proposes an FPGA-based
accelerator for bitonic sort. It uses a classic Clos network which
is programmable to perform all the permutations required in the
bitonic sort algorithm.

Compared to the previous work, to the best of our knowledge,
our proposed NASCENT is the first near-storage accelerator for
database sort on SmartSSD which performs independent table sort
on multiple storage devices simultaneously. NASCENT increases
the scalability of the system in the presence of multiple storage de-
vices as compared to a system with a stand-alone FPGA. NASCENT
is calibrated to fully utilize the storage bandwidth when executing
the dictionary decoder, sort, and shuffle kernels. In contrast to the
previous FPGA-based sort accelerators that target maximizing the
performance by fully utilizing the DRAM-to-FPGA bandwidth, our
challenge is the storage bandwidth which is lower than the DRAM
bandwidth. We tackle the I/O bottleneck by prudently allocating
the FPGA resources for dictionary decoding kernel, multiple shuffle
kernels versus the sort kernel.

3 NASCENT DESIGN

Database systems are largely constrained by disk performance as
every operation on the database requires a tremendous amount of
data. A database comprises one or more tables, each with rows and
columns where each entry holds a specific attribute. Data encoding
is frequently used to compress the table stored in the storage system.
Dictionary encoding is a common encoding method widely used in
database management systems. Unlike byte-oriented compression
methods (i.e. gzip, snappy, run-length encoding) that require de-
compression as a blocking step before query execution, dictionary

264

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

AX1

BitonicSort
Kernel

I FpGa
Figure 2: The overall architecture of NASCENT (right) as
compared to the conventional systems equipped with an
FPGA accelerator (left).

encoding supports parallel decoding, and in-situ query process-
ing [25]. Sorting a database table based on a key column requires
the following three steps. Decompressing the key column, if it
is stored in dictionary encoded format; sorting the key column;
and reordering the rest of the table correspondingly. NASCENT
consists of three types of kernels: dictionary decoding, sort, and
shuffle to execute each step. NASCENT performs all the compu-
tations on SmartSSD to eliminate host-storage communication. In
the following subsections, we describe the NASCENT design.

3.1 SmartSSD Architecture

Figure 1 demonstrates the general architecture of SmartSSD. It
consists of the components of a general SSD, SSD controller, and
NAND array, as well as an additional FPGA accelerator, FPGA
DRAM and PCle switch to set up the communication between the
NAND array and the FPGA. The link between the FPGA and the SSD
provides direct communication between them and the host. The
SSD used by SmartSSD is a 4TB one connected to a Xilinx KU15P
Kintex UltraScale FPGA (with 523K look-up tables and 1,045K flip-
flops) through a PCIe Gen3 x4 bus interface.

In SmartSSD, the processor is able to issue common SSD com-
mands such as SSD read/write requests to the SSD controller through
the SSD driver. Furthermore, the CPU is also able to issue FPGA
computation request and FPGA DRAM read/write requests via the
FPGA driver. In addition to host-driven commands, a SmartSSD de-
vice supports data movement over the internal data path between its
NVMe SSD and the FPGA by using the FPGA DRAM and on-board
PCle switch, which we term as ‘peer-to-peer (P2P) communication’.
As shown in Figure 1, FPGA DRAM is exposed to the host PCle
address space so that NVMe commands can securely stream data
to FPGA via the P2P communication. P2P brings the computations
close to where the data is permanently residing, thereby reduc-
ing or eliminating the host-to-storage and the host-to-accelerator
PCle traffic as well as related round-trip latencies and performance
degradations. SmartSSD provides a development environment and
run-time stack such as runtime library, API, compiler, and drivers
to implement the FPGA-based designs.

3.2 NASCENT Overall Architecture

In conventional storage systems, the host processor communicates
with the storage devices, reads the data to the memory hierarchy,
and performs computations. When an accelerator is present in the
system, either the host reads the data from the storage device and

Session 4: Applications

transfers it to the accelerator, or the accelerator may have a P2P
communication with the storage device to directly read the data
from the storage device. In the former case, the data should pass
through the host memory to reach the accelerator memory (FPGA
DRAM in this concept). Thus, the latency of transferring the data
through the host is significantly larger than when the accelerator
directly reads the data from the storage. Also, P2P communica-
tion between the accelerator and the storage devices, unlike the
former case, does not occupy the host resources for data transfer.
Current FPGAs support P2P communication with storage devices.
Nonetheless, such an architecture still suffers from performance
scalability when data is stored in multiple storage devices. Current
databases need multiple devices to store the data. These databases
are larger than what current commodity hardware platforms can
cope with. Thus, database management systems partition the data
into smaller chunks such that the computation nodes can execute
the computations on each partition in a timely-affordable manner.
Thereafter, the management systems combine the result of each
partition to generate the final result. Assuming the data is stored
in M SSDs, the tables of each SSD can be divided into a certain
number of partitions. To sort the entire database, we can sort all the
partitions of each SSD and merge them all through the merge tree.
Locally sorting each partition is independent of the other partitions;
therefore, we can locally different partitions in parallel. Our focus
is on the partition-level acceleration of sorting the data as it is the
backbone of the main computation.

In sorting a database table, NASCENT aims to fully utilize the
storage bandwidth. Therefore, parallelizing multiple partitions on a
single SSD is not beneficial as it does not increase the performance,
since in this case, the FPGA would need to frequently switch be-
tween the partitions as it cannot simultaneously access different
partitions. Thus, NASCENT parallelizes the computations in SSD-
level (shown in Figure 2), which is not possible in conventional
architecture. In conventional architecture, the FPGA is connected
to the storage devices using a PCle bus which cannot provide simul-
taneous access to multiple SSDs. NASCENT deploys SmartSSDs,
each of which is directly connected to an FPGA. Each SmartSSD
therefore can sort an SSD-level partition independent of the others
which significantly accelerates the overall system performance as
the number of storage devices grows.

Since NASCENT comprises sort, shuffle, and dictionary decoder
kernels, it deals with a trade-off between allocating resources to
these kernels. The dictionary decoder kernel is able to saturate the
storage to FPGA bandwidth; thus, instantiating a single dictionary
decoder kernel is sufficient to deliver the maximum performance.
A single shuffle kernel cannot fully utilize the SSD-to-FPGA band-
width due to the fact that, although in NASCENT we have proposed
a new table storage format that enables reading a row in a sequen-
tial pattern, reading the next row still requires random memory
access which has a high latency. Therefore, we aim to set the total
input consumption rate for all the shuffle kernels to the maximum
provided bandwidth of the SSD-to-FPGA to fully utilize bandwidth.
Due to the fact that the shuffle operation is I/O intensive and the
size of the table is significantly larger than the size of the key col-
umn, the performance of the shuffle operation is determinative of
the overall performance. Thus, we instantiate multiple instances
of the shuffle kernel (as can be seen in Figure 2) to fully leverage

265

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

M

b kb
§ B
I j

(N J (N J
2nd step 3rd step

*—o

= oA NN O 0 U N

BN W R T 0Ny
(O—OHO—OH)
—e

BN W = U0 N

=W A N0 N

O N U1 oA WRE N

QO U1 N R W sN
O N O Ul WN =

1st step

Figure 3: Example of bitonic sort algorithm steps for an ar-
ray of eight elements.

the storage-to-FPGA bandwidth and a single instance of the dic-
tionary decoder kernel and use the rest of the resources for the
sort kernel. Based on our evaluations, we found out that we can
fully utilize the storage-to-FPGA bandwidth in the shuffle and dic-
tionary decoder kernel while still having sufficient resources to
have a high-throughput sort. The sort kernel uses a great portion
of the FPGA BRAM:s to store the arrays and provide the required
parallelism. Additionally, the dictionary decoder kernel requires
on-chip memory to store the dictionary table locally to provide
high throughput. Therefore, NASCENT dictionary decoder mostly
uses FPGA Ultra RAMs (URAMs) to balance the overall resource
utilization of NASCENT.

3.3 Bitonic Sort

Bitonic sort, proposed in [35], is a sorting network that can be run
in parallel. In a sorting network, the number of comparisons and
the order of comparisons are predetermined and data-independent.
Having a predefined number and order of comparisons, bitonic
sort can be efficiently parallelized on FPGAs by utilizing a fixed
network of comparators. Bitonic sort first converts an arbitrary
sequence of numbers into multiple bitonic sequences. By merging
two bitonic sequences, it creates a longer bitonic sequence and
proceeds until sorting the entire input sequence. A sequence of
length n is a bitonic sequence if there is an i (1 < i < n) such
that all the elements before the i" are sorted ascending and all the
elements after that are sorted descending, i.e.,

1)

Figure 3 shows the steps to sort an example input sequence of
length n = 8 which consists of % bitonic sequences of length 2.
The initial unsorted sequence passes through a series of compara-
tors that swap two elements to be in either increasing (red/filled
circles) or decreasing (blue/unfilled circles) order. The output of
the first step is % bitonic sequences each of length 4. Applying a
bitonic merge on these 4 sequences creates % bitonic sequences.
The output sequence after applying log, n bitonic merge produces
the sorted sequence.

Generally, in the bitonic merge at ith step (starting from i = 1),

3¢ bitonic sequences of length 2" are merged to create 5rT bitonic

X1 <X < SXji2Xip1 2 2 Xp

sequences of length 2/*1, The i bitonic merge step itself consists
of i sequential sub-steps of element-wise comparison (e.g., in Figure
3 the last/third rectangle is the step three and has three sequences
of comparisons). In the first sub-step of the ih step, element k is

Session 4: Applications

Step 1 Step 2

Sequence memory

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

Sequence memory Sequence memory Sequence memory

@@

1 2 1 2 1 2 1 2
(1,2) » 2®merge | | (1,3) > PCS (1,2) - 2P-merge ‘ . ‘
(3,4) —» 2@ merge || (2,4)>PCS (3,4) - 2P-merge 3 . f . T f “34 T
(5, 6) = 2P-merge (5,7) > PCS (5,6) —» 2P-merge ‘ . -
(7,8) > 2Pmerge | | (6,8) > PCS (7,8) > 2Pmerge - — |

5 6 5 6 5 6 5 6

Step 3 A - |

(1,5) = PCS (1,3) - PCS (1,2) » 2P-merge 7 8 7 8 7 8 7 8
(2,6)>PCS (2,4)>PCS (3,4) - 2Pmerge ‘ ‘ - . e e | |l ‘
(3,7) - PCS (5,7) - PCS (5, 6) = 2P-merge
(4,8)>PCS (6,8)>PCS (7,8) - 2Pmerge . : : : : : : :

M1 M2

Step 1 Step 2 Step 3 Step 4

®

Figure 4: (a) NASCENT scheduling to sort the sequence memory, and (b) the content of the memory at each step.

compared with the element k + 2i=1 while the first 2¢ elements
are sorted in ascending order and the next 2 elements are sorted
in descending order (the sorting direction changes after every 2!
element). In the aforementioned example, in the first sub-step of
the the last/third step, the 15 element (has a value of 2) is compared
with the 1 + 237! = 5t element (with a value of 7). Generally, in
the j™ sub-step (1 < j < i) of the i main step, element k is
compared with the element k + 2i=J Thus, in the second sub-step
of the third step, the first element (with a value of 2) is compared
to 1+ 2372 = 3" element (which has an value of 3 that is updated
in the first sub-step).

3.4 NASCENT Sort Kernel

To sort a database table, NASCENT begins with sorting the key
column. As mentioned earlier, the sequence of operations in bitonic
sort are predefined, data-independent and parallelizable. Therefore,
NASCENT takes advantage of FPGA characteristics to accelerate
the bitonic sort. The input sequence is stored in the FPGA DRAM,
also referred as ‘off-chip memory’. Then NASCENT streams the
input sequence into the FPGA through the AXI ports which has
an interface data width of 512 bits (16 32-bit integers). The AXI
port writes the data to the input buffer which has a capacity of
P = 2™ integer numbers. To have a regular sort network, without
lack of generality P, the size of bitonic sort kernel, is a power-of-
two number (we can use padding if the total data elements is not a
multiple of). P is greater than 16, it takes multiple cycles to fill
the input buffer. Whenever the input buffer fills up, it passes the
buffered inputs to the P-sorter module.

P-sorter is implemented in parallel and consists of log, P steps.
The module is highly pipelined to meet the timing requirement
of FPGA and being able to provide a throughput of one sorted
sequence (of size $) per cycle. As explained in Section 3.3, the first
step in the $-sorter compares elements of even indices (2k-indexed
elements) with their successor element. Thus the first step requires
% Compare-and-Swap (CS) modules. During the second step, it first
compares and swaps the elements with indices 4k with 4k + 2, and
4k + 1 with 4k + 3. Afterwards, it compares and swaps 2k elements
with 2k + 1 elements of the updated array (see Figure 3). Therefore,
the second step in the P-sorter requires % + % = P instances of
the CS module. Analogously, the ith step in the P-sorter where
1 <i<log, P needs i x % CS modules. Total number of required

266

CS modules for the $-sorter can be estimated as follows:
nC5=§+(2X§)+~--+(log7)X§) ~ §10g27’ ()

NASCENT orchestrates the sort operation on the entire data by
leveraging the P-sorter modules and FPGA’s fast on-chip memory,
called block RAMs (BRAMs). First, when sorting every # elements,
P-sorter toggles between ascending and descending orders. The
sorted output of P-sorter modules are written into the sequence
memory, which consists of two sub-memory blocks, say M; and
My, that are made up of FPGA BRAMs. Initially the ascending and
descending sorts are respectively written in M; and M (see step 1
in Figure 4(b)). Each row of M; and M, contains # elements which
together form a bitonic row (as the first half is ascending and the
second half is descending) in the sequence memory with a length
of 2. Note that, by row, we mean adjacent placements of items in
a sequence, not necessarily a physical row of a block RAM which
can just fit one or two integers. Since the 2 sequence is just a
single bitonic array, using a merging procedure similar to the last
319 step of Figure 3, the 2 bitonic array can be sorted using
P x log(2%) compare-and-swap (CS) units.

Figure 4(a) lists the steps of merging the results of $-sorters and
Figure 4(b) illustrates the results after each step. Indeed, merging
the results of P-sorters is itself a bitonic-like procedure but on
sorted arrays rather than scalar elements. That is, similar to the step
1 in bitonic sort, the step 1 in Figure 4(a), (b) merges the adjacent
arrays. Step 2 of Figure 4 also is similar to the second step of the
simple bitonic sort that compares and swaps every item i with
item i + 2 using Paralle] Compare-and-Swap (PCS) units, followed
by comparing item i with item i + 1 in the modified array. Thus,
we can consider the entire sort as intra-array followed by inter-
array bitonic sort. When NASCENT accomplishes sorting the entire
sequence memory, it writes it back into the off-chip DRAM and
uses the same flow to fetch and sort another chunk of the input
sequence repetitively and then merges them to build larger sorted
chunks.

To provide the required bandwidth for the parallelization, each of
M; and M, memory blocks use # column of BRAMs in parallel, so
P integers can be fetched at once (the data width of FPGA BRAMs
is 32 bit or one integer). Also, in each memory block, £ rows of
BRAMs are placed vertically (e.g., in Figure 4(b) £ = 8) so the
results of £ sorters can be compared simultaneously. The number
of BRAMs and their capacity in terms of 32-bit integers number

Session 4: Applications

Sequence memory [T

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

P-sorter

>—=&

DRAM

AXI
3

L-to-1 P-word MUX

Input buffer
I

—e o4

P elements (1)

P elements (2)

b i
oe—o
—o
L

Index Memory

PBRAMs Parallel CS Z(P—Merge
=<
E @ elements (1) [M1/M2 CS I
. o (1)
E 5 S M1
3 3 X |
S P elements (2) :) - ,,_.
¢ gl)/m & M2 , I 1
9
CS ®
M2 I |
}4 A4+

¥

Figure 5: Architecture of the NASCENT bitonic sort kernel.

can be formulated as follow.
NBRAM = 2X P X L
CpraMs = 1024 X 2 X P X L

Note that BRAMs have a 1024 (depth) X 32 bit (width) configura-
tion. At each iteration, Cprams = 2048 L integers are sorted and
written back to the off-chip DRAM.

To sort a database table, the rest of the table rows have to be
reordered based on the sorted key column’s indices, called sorted
indices. Thus, we also need to generate the sorted indices that
will later be used by the shuffle kernel to sort the entire table. To
this end, when reading the input sequence from the DRAM, we
assign an index to each element and store the indices in an index
memory that has the same capacity as the sequence memory. When
reading from the sequence memory and feeding inputs to the $-
sorter, NASCENT reads the corresponding index and concatenates
to the value. The compare-and-swap units of $-sorters perform
the comparison merely based on the value part of the concatenated
elements, but the entire concatenated element, if required, will be
swapped. NASCENT therefore, stores the sorted indices in the
DRAM, as well.

Figure 5 demonstrates a tangible implementation of the discussed
steps of the bitonic sort kernel. The P-sorter module sorts chunks
of P elements and stores in the following sequence memory. The
M; memory group stores the ascending sorts while M, stores the
descending sorted elements. There are BRAMs at every row of
the M; (and M2) memory, so the sorted P elements are partitioned
element-wise for subsequent parallel operations. In the PCS sub-
steps two P-element arrays from the same memory (either M; or
M, e.g., arrays 1 and 3 from Mj, or 2 or 4 from My shown in Figure
4(a)) are fetched while in the last sub-step (i.e., merge), a -element
array from M; and another from M, are fetched and sorted/merged.
In our architecture, this is enabled using £-to-1 multiplexers that
are connected to all £ BRAM groups and select up to two arrays
from each M; and M,. As shown in the architecture, the PCS and
merge modules’ outputs are written back in the sequence memory
to accomplish the next steps.

®)

3.5 NASCENT shuffle Kernel

After sorting the key column, NASCENT uses shuffle kernel to
reorder the table rows. It reads the value of the first element of the
sorted key column as well as its index in the original table (which is
concatenated to the value of elements). Then it reads all the entries

267

Cl Ck Cm Cy
R1‘ e ek --- [eim ||e1}1|e2’1| . e"'ll' . | Ci | S | Cm |
€21 €2k €2,m (a) Column-wise arrangement of table
Ry
0 B W R
Rpllens Cpk Cpm ‘ (b) Row-wise arrangement of table
Cy
Rn’ €n1 €nk €nm “el'k|e2'k| S | | Ry |

(c) NASCENT arrangement of table
Logical arrangement of table

Figure 6: Storing the table in (a) column-wise, (b) row-wise,
and (c) our proposed format.

of the original row that the index points to and writes it as the first
row of the new sorted table. Analogously, to generate the it row
of the sorted table, NASCENT reads the ith element of the sorted
indices sequence. The index represents the index of the row in the
original table. Thus, we can formulate the mapping between the
original table and the sorted one as follows.

SortedTable[i] = OriginalTable(SortedIndices[i]) (4)

Evidently, the shuffle kernel does not perform any computation;
hence, the kernel’s performance is bounded by the memory access
time. Storing the tables in the storage, therefore, directly affects
the performance of the kernel. Typically, tables are stored in either
column-wise or row-wise format. In the column-wise format, ele-
ments of every column are stored in consecutive memory elements,
which is shown in Figure 6(a). In the row-wise format, all the el-
ements of a row are placed in successive memory elements (see
Figure 6(b)). Consecutive memory elements can be transferred to
the FPGA from its DRAM in the burst mode, significantly faster
than scattered (random) accesses.

Storing the table in column-wise format results in sequential/burst
memory access pattern in the sort kernel (since it needs access to
the consecutive elements of the key column, denoted by Cy in
Figure 6). However, the shuffle kernel will have random access pat-
terns (as the shuffle kernel needs access to the consecutive elements
of the same row, which are placed distantly in the column-wise
arrangement). Analogously, storing the table in row-wise format
enables sequential access patterns to read a single row (suitable for
the shuffle kernel) but reading the next row (required in sort kernel)
issues random memory access. To optimize the access patterns of
both kernels, NASCENT uses a hybrid technique for storing the ta-
ble in the storage. As shown in Figure 6(c), we store the key column

Session 4: Applications

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

r_ o\ " DicionaryTable
|| DRAM | = Il output smoic. | 215|558z gz 858|585 8
| Dict " o | | Byte Address Index 2 SEIE S| EEE S [E) F S| [F] I
| | | Page N g‘&:» Address > N Generator [0 ol [17 [27 |37]i[4] |5 [6/ |77 [1] |
: Data £ Z| [Generator g : | s ALz T8 o To (31]|iz [13 [i4 [15 [3] |
= [YA rg | | | | | | | | [
| Page [I— E | I Input . . ! ! ! ! ! ! ! ! I
A O ° i i i i i i i i
I e || Data F N I I [N
| 75— i o I 1~ N IR I O I I R R N
L2 & JBE Output Ly . |
R 5 2 Filterin [0l= | | | | ! ! ! !
ik s o« £ ! el =L 8BDic.| | | | | ! ! ! ! '
a | | Index | | ! ! ! ! ! ! ! |
: (a) | | [L/8 [is [u-70 Jia [is [r4 (-3 o2 [u1] (b)JI

Figure 7: (a)Architecture of the NASCENT dictionary decoder, (b) the generic Byte-addressable dictionary table.

(Cg) column-wise while the rest of the table is stored in row-based
format. Therefore, both kernels can benefit from sequential memory
accesses.

3.6 NASCENT Dictionary Decoding Kernel

Dictionary encoding is used as a stand-alone compression technique
[25] or as a step combined with other compression techniques such
as in Parquet [14]. Dictionary encoding is a lossless compression
technique that maps each “value” to a “key”. Using dictionary en-
coding is beneficial when the range of the numbers is significantly
higher than the number of unique values (U). Each unique n-bit
value is represented by a k-bit key where k = log(U). Dictionary
encoding is beneficial when k is considerably smaller than n. There-
fore, database management systems decide whether a table using
dictionary encoding is favorable or simply storing and processing
the plain data.

If the data is stored in the storage devices in the encoded format,
to perform sort operation on the table, the data has to be decoded
first. Figure 7 shows the proposed NASCENT dictionary decoder
architecture. NASCENT dictionary decoder first reads the “dictio-
nary page”, which is stored along with the encoded data, from the
storage device. Then it streams in the “data page”, decodes it, and
writes the decoded data to the FPGA DRAM. As the decoded data
will be used in the sort kernel, NASCENT keeps the decoded data
into the FPGA DRAM to avoid unnecessary storage accesses. The
width of the input elements (k) depends on the number of unique
elements in the dictionary (U), and the width of the decoded ele-
ments (n) is the same as the original data. NASCENT provides a
generic dictionary decoder that supports various input and output
bit widths that can be configured during the runtime.

NASCENT dictionary decoder, after loading the dictionary, streams
in the data page using the AXI interface. For the sake of design sim-
plicity and AXI compatibility, NASCENT dictionary decoder limits
the input and output bit widths (n and k respectively) to power-of-
two numbers greater than 8. The AXI interface reads the encoded
data page elements and stores them in the “input buffer”. To sup-
port different output bit widths, the dictionary table has to support
the reading and writing element with different bit widths. Since
there are multiple accesses to the dictionary table in each clock
cycle, NASCENT uses on-chip memory to store the dictionary table.
Figure 7(b) shows the dictionary table configuration stored in the
FPGA on-chip memory. The Dictionary table is a Byte-addressable
memory to support reading and writing elements with different

268

bit widths. Although the proposed architecture for the dictionary
decoder is able to support any fixed size of output bit width, in our
application, we set the maximum output bit width to 64, i.e., each
row of the dictionary table consists of 8 Bytes. In Figure 7(b), the ad-
dress of each Byte is illustrated (black indices). However, when the
application decodes k-bit inputs to n-bit outputs, the input element
should be interpreted as the index of the table when storing n-bit
elements. For instance, red indices show the table indexing when
the dictionary’s outputs are 4-Byte elements, and blue index shows
the 8-Byte table indexing. Each encoded element in the data page
is the index to the dictionary; however, since the NASCENT dictio-
nary table is Byte addressable, NASCENT translates each input to
the dictionary table address in the “address generator” module.

The address generator module maps the input element to an
address to the dictionary table. For each input, it generates Byte
addresses to all the elements in the row that includes the value
corresponding to the input key. Therefore, for each input element,
NASCENT reads an entire row of the dictionary table. To map the
inputs to the Byte addresses, the address generator module shifts
the input element to the left for logz (§) bits. Since in NASCENT we
set the maximum output bit width to 64 bits (8 Bytes), after shifting
the input element, the first three bits of the shifted element are set
to zero to indicate the address of the first element of the row that
contains the value corresponding to the input key. To read an entire
row, NASCENT generates addresses to all the 8 elements in the
row. NASCENT dictionary decoder writes the entire row into the
“output filtering” module where it masks the row using the input key
to get the corresponding value. For instance, when the dictionary
decoder outputs are 32-bit numbers (4 Bytes) and the input is an
8-bit key equal to 3, the address generator shifts the input to the left
for loga(%) = 2 bits, the shifted element which is the address to the
first Byte of the original value is 3 X 22 = 12. Setting the first three
bits of the Byte address to zero generates the address of the first
Byte of the row (8). The address generator outputs addresses from
{8, 9, ..., 15} that includes Bytes {12, 13, 14, 15} representing the
decoded value. NASCENT dictionary decoder reads the entire Bytes,
and then the output filtering module masks elements with addresses
{12, 13, 14, 15}, representing the decoded element correspond to
key=3. Then the output filtering selects the Bytes {12, 13, 14, 15}
and writes these 4 Bytes into the output buffer, which will be then
transferred to the off-chip DRAM.

Session 4: Applications

Table 1: Characteristics of SmartSSD resources.

Storage LUT BRAM DSP DRAM D2FPGA BW S2FPGA BW

SmartSSD 4TB 391K 503 1959 4GB 19 GB/s 3 GB/s

4 EXPERIMENTAL RESULTS

4.1 General Setup

To evaluate the efficiency of NASCENT, we implemented the dic-
tionary decoder, sort, and shuffle kernels on the FPGA available on
SmartSSD. Each SmartSSD consists of a 4TB SSD directly connected
to a Kintex UltraScale+ FPGA, XCKU15P, through a PCle Gen3 x4
bus. Table 1 summarizes the available resources of SmartSSD. In
this table, D2FPGA BW stands for DRAM-to-FPGA bandwidth, and
S2FPGA BW indicates the SSD-to-FPGA bandwidth. NASCENT
kernels are written in C++ and optimized to deliver high perfor-
mance. The kernels are synthesized using the Vivado High-Level
Synthesis tool (HLS) and integrated with the host code using Xilinx
Vitis Accel 2019.2. The host code is written in OpenCL, which is re-
sponsible for initiating the kernels and passing the tables’ location
in the storage. The SmartSSD FPGA has a P2P communication with
the SSD, and all the communications between the storage and the
FPGA will happen internally without involving the host. To mea-
sure the performance of the entire database sort and also individual
kernels, we used OpenCL event profiling. We report end-to-end
execution times, including the P2P communication between the
FPGA and the SSD in the SmartSSD to transfer the data, and the
computation time, unless otherwise stated. To evaluate the energy
efficiency of NASCENT, we measure the power consumption of the
FPGA (including its off-chip DRAM) without including the power
of SSD since we use the same SSD for all the deployments.

4.2 Kernel Evaluation

Although a major contribution of NASCENT is carrying out the
database sort operation near the storage device with a low-power
accelerator and benefit from eliminating the data movement as well
as releasing the processor to perform other complex query opera-
tions, to solely examine the performance of NASCENTs sort kernel
architecture, we compare it with the CPU-based sort baseline. For
the baseline CPU sort, we use a C++ implementation of quick-sort,
which is generally considered as one of the fastest sort algorithms.
The software sort runs on the Intel Core i7-8700 processor with a
clock frequency of up to 4.6 GHz.

Figure 8 compares the performance of NASCENT’s sort kernel
and quick-sort on CPU when the data is available in the DRAM
memory of both CPU and FPGA. The execution time includes read-
ing the input array from the DRAM, sorting the array, and writing
the sorted array into the platform DRAM. The input sequences
are randomly generated with the lengths of 1000 elements (1K)
to 8,000,000 elements (8M). The sort kernel of NASCENT con-
sistently delivers higher performance than the CPU implemen-
tation. NASCENT sort kernel fits up to 128K elements inside the
FPGA on-chip BRAM blocks. Therefore, input sequences smaller
than 128K elements will be sorted in a single iteration. For larger
number of inputs, NASCENT sorts the first 128K elements, writes
them back to the DRAM and fetches another 128K of data until
it (partially) sorts the entire input sequence. Eventually, the sort
kernel merges the sorted chunks stored in the DRAM. Because the
DRAM communication is slower than reading from the on-chip

269

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

1E+3 70
. Software C—INASCENT —O—Energy
S 1E+2 | 1 602
172)
E1E+1 | 150¢
] 4 40 >
E 1E+0 | =
& 1 30g
_g 1E-1 | 1 20 E’o
o 1E2 {108
< 53]
= 1E-3 0

1K 10K 128K 256K 500K 1M 2M 8M

Figure 8: Execution time and relative energy efficiency of
NASCENT sort kernel compared to the CPU baseline when
the data is available in the DRAM of CPU and FPGA. The
Y-axis is in logarithmic scale.

1E+5 80
B Software I NASCENT —O— Energy =
S1E+4 | &
& { 603
>
E1E+3 8
(5] j=¥
E1E+2 4 40 E
&= >
S1E+1 20
S 1 20¢g
p=) =
S1E+0 =
Q
<
= 1E-1 0

1K

10K 128K 256K 500K 1M 2M 8M

Figure 9: Execution time and relative energy efficiency of
NASCENT sort kernel compared to the CPU baseline when
the data is stored in the storage devices.

BRAM:s, the relative performance improvement of the sort kernel
shrinks for inputs larger than 128K elements (from 7.5 in the
case of sorting 128K elements to 2.4X for sorting 256K elements).
The performance improvement hovers around ~ 1.8x for inputs
with larger than 1M elements. SmartSSD is using a relatively small
and low-power ~ 7.5W FPGA. Therefore, NASCENT shows 61.3x
improvement of energy consumption for sorting inputs of 1K ele-
ments. With the reduction of the speed-up in larger sequences, the
energy improvement saturates at ~ 13.6x for inputs larger than
1M elements.

Figure 9 compares the performance of NASCENT’s sort kernel
and the CPU baseline when the data resides in SSD. When the data
was available in the DRAM, CPU could readily prefetch a major
portion of the input elements into the cache and thereby showed
better performance compared to when it reads the data from the
SSD, for which the SSD-to-DRAM latency cannot be hidden as
it is larger than the computation latency. Thus, NASCENT sort
kernel shows even better speed-up when both the platforms read
the data from storage. The sort kernel of NASCENT shows 6.6x
speed-up for a small 1K chunk of inputs, which saturates at ~ 8.25x
when reading and sorting 8M elements. The energy consumption
(excluding the SSD energy) also similarly increases from 49.7x to
61.6X.

Figure 10 shows the performance of NASCENT dictionary de-
coder kernel as compared to multi-core execution of the dictionary
decoder on CPU for 8-bit and 16-bit data pages and outputs with
16, 32, and 64 bit widths when the data is stored in SSDs. Both
NASCENT and CPU dictionary decoder kernels are reading the
from the storage devices directly, temporarily store into the device
DRAM, decode the input, and write the decoded data into the de-
vice DRAM. Since the dictionary decoding is only beneficial when

Session 4: Applications

20 B NASCENT Input BW ®CPU Input BW
a 16 NASCENT Total BW CPU Total BW
4
<= 12
<
Z 8
=]

3]
m 4 —
0 I

.
8

Input Width 8 16

16 32

64

Output Width

Figure 10: Input and total bandwidth of NASCENT dictio-
nary decoder kernel for various range of input bit widths (8
and 16) and output bit widths (16, 32, and 64).

1E+0
1E-1
1E-2
1E-3
1E-4
1E-5
1E-6

B Dictionary decode M sort

Execution Time (sec)

1k

10k 100k
8bit-64bit

10k 100k
8bit-32bit

1k 1m

Figure 11: Execution time for dictionary decoding and sort-
ing a column with different number of rows when the stored
data are 8-bit numbers and the outputs are 32-bit or 64-bit
numbers. The Y-axis is logarithmic.

the bit width of the encoded values is less than the original value,
we only consider 8-bit and 16-bit inputs. Note that if the size of
the dictionary becomes greater than 64k unique elements (16-bit
inputs), the database management system will not use dictionary
encoding and stores the plain data. As the dictionary decoding is
an I/O bounded application, we measured the performance as the
input bandwidth from the storage devices to the computing plat-
form (SmartSSD or CPU). The performance target is fully utilizing
the SSD bandwidth to the computing platform, shown by the red
dashed line in the figure. Additionally, the total bandwidth shows
the DRAM to FPGA/CPU bandwidth, including reading the data
page and writing the decoded data to the DRAM.

NASCENT dictionary decoder kernel in all the cases, except
for the 8-bit input and 64-bit output case, achieves 3 GB/sec input
bandwidth, which saturates the SSD-to-FPGA bandwidth. When
the data page is 8-bit encoded data, and the values are 64-bit data,
the output size would be 8% of the input; consequently, the total
bandwidth reaches the maximum DRAM-to-FPGA bandwidth to
write the decoded values. Therefore it cannot saturates the input
bandwidth due to the DRAM-to-FPGA bandwidth limitation. In
this case, the kernel achieves 2.3 GB/sec SSD-to-FPGA bandwidth.
The multi-core CPU implementation of the dictionary decoder is
unable to saturate the CPU-to-SSD bandwidth in most cases. The
number of dictionary decodings per second, when running on CPU,
is independent of the input bit width (8-bit and 16-bit inputs) and
consequently of the dictionary size. Therefore, the input bandwidth
for 16-bit inputs is double that for the 8-bit inputs. Nonetheless, for
smaller dictionary tables, NASCENT instantiates more copies of

270

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

W Sort Shuffle

Column Elements

Figure 12: Execution time for sorting tables with different
number of rows and columns. The Y-axis is logarithmic.

the dictionary to parallelize the decoding further and saturating
the SSD-to-FPGA bandwidth.

Figure 11 shows the breakdown of the execution time of sorting
a column stored in the dictionary encoded format in the storage sys-
tem. The figure shows two cases when 8-bit numbers are decoded
to 32-bit and 64-bit numbers. First, NASCENT dictionary decoder
kernel decodes the data to the 32-bit and 64-bit numbers, and then
it sorts the decoded column. Note that NASCENT sort kernel can
sort 64-bit long numbers with minimal changes in the compare
and swap (CS) modules. Due to FPGA resource limitation, both
32-bit and 64-bit NASCENT sort kernels utilize the same amount
of BRAMs; therefore, 64-bit sort kernel fits up to 64k long (64-bit)
numbers in the on-chip memory, as opposed to fitting 128k 32-bit el-
ements. For larger input arrays, NASCENT sort kernel uses off-chip
DRAM to store the partially sorted arrays. For sorting input arrays
smaller than 64k elements, both 32-bit and 64-bit NASCENT sort
kernels deliver the same performance. Nevertheless, for larger input
sizes, the 64-bit NASCENT sort kernel provides slightly lower per-
formance than the 32-bit sort kernel due to higher DRAM accesses.
As illustrated in Figure 11 the execution time of the NASCENT
dictionary decoder kernel linearly increases with the size of the
input array since the dictionary decoder kernel performance is data
independent.

Figure 12 shows the breakdown of the execution time of NASCENT
when sorting database tables of various sizes when the plain data
is stored in the storage system. We generated static tables with a
different number of rows and columns from 1K to 1M. Note the
content of the columns is not limited to integer types and can be
any types of variable or strings. For tables with 100K and 1M rows,
we only considered 1K and 10K columns as otherwise, the table size
becomes larger than the typical size of the partitions. For tables
with the same number of rows, the sort kernel takes exactly the
same time since the bitonic sort execution time is data-independent.
For a given number of rows, the execution time of the shuffle ker-
nel increases with the number of columns. Due to the fact that the
overall size of the table is significantly larger than the size of the
input sequence to the sort kernel (which deals with one column, i.e.,
the key column), the execution time of the shuffle kernel dominates
the total time. The shuffle kernel fully utilizes the bandwidth of the
PCle bus from the SSD to the FPGA to minimize the shuffling time.
Thus, the execution time of NASCENT increases almost linearly
with the size of the table.

Session 4: Applications

4.3 System Evaluation

In order to evaluate the scalability of NASCENT, in Figure 13 we
show the execution time of the CPU, typical FPGA-equipped sys-
tems (see Figure 2) and NASCENT when the number of SSD in-
stances increases from 1 to 12 (12 SSDs is the limitation incurred by
the number of slot counts of the host machine). Each SSD contains a
table with 1024 rows and an average row size of 4KB. Originally, the
key columns consist of 32-bit integer numbers, but the columns in
the storage system are stored as 16-bit dictionary encoded elements.
While in real-world applications different SSDs would sort different
sizes of tables, here we assume all the tables have the same dimen-
sions and size. As we showed in Figure 12, the execution time of
NASCENT increases linearly with the size of the table (for a specific
number of rows) since it fully utilizes the SSD-to-FPGA bandwidth.
Each SSD contains multiple tables that are going to be sorted. Note
that the bitonic sort’s performance is data-independent, and sort
operations on different SSDs are executed independently. Thus, we
can assume all the SSDs contain the same table without loss of
generality.

As Figure 13 reveals, the FPGA-equipped system baseline and
SmartSSD are both faster than the CPU baseline. The bottleneck of
all the platforms is the storage bandwidth, and the memory hierar-
chy of the processor increases the execution time. Comparing the
FPGA-equipped system with SmartSSD, when the system has only
one storage device, the stand-alone FPGA shows slightly better
performance as it is larger than the SmartSSD’s FPGA so contains
more kernels'. Nevertheless, as the number of storage devices in-
creases, the execution time of NASCENT remains the same as it
sorts the tables independently. The CPU and FPGA baselines, how-
ever, are not able to parallelize the operations on different SSDs
and consequently their runtime increases linearly with the number
of SSDs. In SmartSSD, every storage device is equipped with an
FPGA, so it consumes more power than a conventional SSD. How-
ever, the power consumption of the SSD is higher than the FPGA’s
power, which shrinks the per-device overhead of SmartSSD. In Fig-
ure 13 we also show the energy efficiency of NASCENT versus the
FPGA-equipped system (FPGA baseline). As the number of storage
devices increases, both the performance and energy efficiency of
NASCENT also improves. With 12 SmartSSDs, NASCENT is 7.6X
(147.2x) faster and 5.6x (131.4X) more energy efficient than the
FPGA (CPU) baseline.

Eventually, Figure 14 shows the speed-up and energy efficiency
of NASCENT compared to the FPGA-equipped system when it sorts
a copy of the largest table (order-line) of the TPCC benchmark in
each SSD [36] (as explained earlier, the performance of sorting the
table with the same size is data-independent, so having multiple
copies of the same benchmark is analogous to having same-size
tables with different entries). We have evaluated the performance
of NASCENT when sorting the on the TPCC benchmark for five
different scale factors {1, 2, 5, 10, 20} (which scales the number of
rows). Compared to the FPGA baseline, NASCENT shows an av-
erage 9.2X speed-up and 6.8X energy reduction when using 12
SmartSSDs. NASCENT shows roughly constant improvement as

The baseline FPGA-equipped system enjoys from the Xilinx’s Alveo U250 with 1,728K
LUTs (compared to 391K in SmartSSD’s FPGA), 64 GB DRAM, 77 GB/s DRAM-to-FPGA
bandwidth, and on-chip BRAMs of total 57MB (compared to 16MB in SmartSSD’s
FPGA).

271

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

10,000 = CPU === FPGA-baseline 8 2
3 C—1SmartSSD —O0— Energy 2
£ 1,000 65
g >
= (=]
2 2
= 100 *E
= >
S 5
£ 25
2 2}
1 2 4 6 8 10 12
Number of SSDs

Figure 13: Execution time of NASCENT as compared to CPU
and FPGA baseline for sorting 1024 x 1024 tables, each stored
in an SSD. The Y-axis is in logarithmic scale.

12
10

B Speedup OEnergy efficiency

(= S e)
T

1 2 10 20

Scale Factor

Figure 14: Execution time of NASCENT compared to the
FPGA-equipped baseline storage when sorting multiple
copies of the largest table of TPCC benchmark on 12 storage
devices. The scale factor denotes the scaling up the number
of benchmark rows.

the table scales (the performance of sort kernel does not scale lin-
early, so the overall improvement, which is dominated by shuffling
performance, is near-constant).

5 CONCLUSION

In this paper, we present NASCENT, a near-storage accelerator for
database sort on SmartSSD based on the bitonic sort. NASCENT
tackles the data transfer limitations in current interface connections
between storage devices and computation platforms. NASCENT
comprise FPGA-based accelerators with specific kernels to acceler-
ate dictionary decoder, sort, and the subsequent shuffling operations
to sort a database table. NASCENT increases the scalability of com-
puter systems by enabling simultaneous operations on different
storage devices. With 12 SmartSSDs, NASCENT is 7.6x faster and
5.6X more energy efficient than the same accelerator on conven-
tional architectures comprising a stand-alone FPGA and storage
devices. NASCENT also shows 147.2x speedup and 131.4X energy
reduction as compared to sorting the database table on the host
CPU.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers whose valuable comments and
suggestions helped improve and clarify this manuscript. This work
was supported in part by CRISP, one of six centers in JUMP, an SRC
program sponsored by DARPA, in part by SRC Global Research
Collaboration (GRC) grant, and also NSF grants #2028040, #1730158,
#1911095, #2003279 and #1826967.

Session 4: Applications

REFERENCES

(1]
(2]
(3]

[4

flaa

[11]

[12]
[13]

[14]

(15

[16

[17]

R. Ramakrishnan, J. Gehrke, and J. Gehrke, Database management systems, vol. 3.
McGraw-Hill New York, 2003.

D. Kumar and M. N. Mohanty, “A survey: classification of big data,” in Cognitive
Informatics and Soft Computing, pp. 299-306, Springer, 2019.

H.-W. Tseng, Y. Liu, M. Gahagan, J. Li, Y. Jing, and S. J. Swanson, Gullfoss: Ac-
celerating and simplifying data movement among heterogeneous computing and
storage resources. Department of Computer Science and Engineering, University
of California ..., 2015.

Z.Ruan and T. H. J. Cong, “Analyzing and modeling in-storage computing work-
loads on eisc—an fpga-based system-level emulation platform,” in 2019 I[EEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1-8, IEEE, 2019.
G. Koo, K. K. Matam, I. Te, H. K. G. Narra, J. Li, H.-W. Tseng, S. Swanson, and
M. Annavaram, “Summarizer: trading communication with computing near stor-
age,” in 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 219-231, IEEE, 2017.

Z.Ruan, T. He, and J. Cong, “{INSIDER }: Designing in-storage computing sys-
tem for emerging high-performance drive,” in 2019 {USENIX} Annual Technical
Conference ({USENIX} {ATC} 19), pp. 379-394, 2019.

“Smartssd.” https://samsungsemiconductor-us.com/smartssd/. Accessed: 2020-
05-27.

“Scaleflux.” http://www.scaleflux.com/. Accessed: 2020-05-27.

“White paper: Smarter data storage, a guide to computational storage on arm,”
tech. rep., Arm, 09 2019.

J. Wang, D. Park, Y.-S. Kee, Y. Papakonstantinou, and S. Swanson, “Ssd in-storage
computing for list intersection,” in Proceedings of the 12th International Workshop
on Data Management on New Hardware, pp. 1-7, 2016.

S. Salamat, M. Imani, S. Gupta, and T. Rosing, “Rnsnet: In-memory neural network
acceleration using residue number system,” in 2018 IEEE International Conference
on Rebooting Computing (ICRC), pp. 1-12, IEEE, 2018.

S. H. Hashemi, J. H. Lee, and Y. S. KI, “Optimal dynamic shard creation in storage
for graph workloads,” June 18 2020. US Patent App. 16/274,232.

A. DeHon, “The density advantage of configurable computing,” Computer, vol. 33,
no. 4, pp. 41-49, 2000.

J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao, and Y. S. Ki,
“Smartssd: Fpga accelerated near-storage data analytics on ssd,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 110-113, 2020.

B. Khaleghi, S. Salamat, M. Imani, and T. Rosing, “Fpga energy efficiency by lever-
aging thermal margin,” in 2019 IEEE 37th International Conference on Computer
Design (ICCD), pp. 376-384, IEEE, 2019.

B. Falsafi, B. Dally, D. Singh, D. Chiou, J. Y. Joshua, and R. Sendag, “Fpgas versus
gpus in data centers,” IEEE Micro, vol. 37, no. 1, pp. 60-72, 2017.

S. Salamat, B. Khaleghi, M. Imani, and T. Rosing, “Workload-aware opportunistic
energy efficiency in multi-fpga platforms,” arXiv preprint arXiv:1908.06519, 2019.
A. Sohrabizadeh, J. Wang, and J. Cong, “End-to-end optimization of deep learn-
ing applications,” in The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 133-139, 2020.

272

[19]

[20]

[21]

~
&

[31

(32]

33

[34

[36]

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

J. Li, H.-W. Tseng, C. Lin, Y. Papakonstantinou, and S. Swanson, “Hippogriffdb:
Balancing i/0 and gpu bandwidth in big data analytics,” Proceedings of the VLDB
Endowment, vol. 9, no. 14, pp. 1647-1658, 2016.

L Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D. D. Lee, and J. Jeong, “Yoursgl: a
high-performance database system leveraging in-storage computing,” Proceedings
of the VLDB Endowment, vol. 9, no. 12, pp. 924-935, 2016.

J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query processing
on smart ssds: opportunities and challenges,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pp. 1221-1230, 2013.
P. Francisco, “Ibm puredata system for analytics architecture,” IBM Redbooks,
pp. 1-16, 2014.

V. Lagrange Moutinho dos Reis, H. Li, and A. Shayesteh, “Modeling analytics for
computational storage,” in Proceedings of the ACM/SPEC International Conference
on Performance Engineering, pp. 88-99, 2020.

G. Graefe, “Implementing sorting in database systems,” ACM Computing Surveys
(CSUR), vol. 38, no. 3, pp. 10—es, 2006.

C. Liu, M. Umbenhower, H. Jiang, P. Subramaniam, J. Ma, and A. J. Elmore,
“Mostly order preserving dictionaries,” in 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pp. 1214-1225, IEEE, 2019.

L. Boicu, “Adaptive on-the-fly compressed execution in spark,” 2019.

J. Lee, H. Kim, S. Yoo, K. Choi, H. P. Hofstee, G.-]. Nam, M. R. Nutter, and D. Jamsek,
“Extrav: Boosting graph processing near storage with a coherent accelerator,”
Proceedings of the VLDB Endowment, vol. 10, no. 12, pp. 1706-1717, 2017.

S.Pei, J. Yang, and Q. Yang, “Registor: A platform for unstructured data processing
inside ssd storage,” ACM Transactions on Storage (TOS), vol. 15, no. 1, pp. 1-24,
2019.

D. Koch and J. Torresen, “Fpgasort: A high performance sorting architecture
exploiting run-time reconfiguration on fpgas for large problem sorting,” in Pro-
ceedings of the 19th ACM/SIGDA international symposium on Field programmable

ﬁate arrays, pp. 45-54, 201
Muellér, J. Teubner, and G. Alonso, * ‘Sorting networks on fpgas,” The VLDB

Journal, vol. 21, no. 1, pp. 1-23, 2012.

H. Chen, S. Madaminov, M. Ferdman, and P. Milder, “Fpga-accelerated samplesort
for large data sets,” in The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 222-232, 2020.

A.Hematian, S. Chuprat, A. A. Manaf, and N. Parsazadeh, “Zero-delay fpga-based
odd-even sorting network,” in 2013 IEEE Symposium on Computers & Informatics
(ISCI), pp. 128-131, IEEE, 2013.

R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient mapping
of bitonic sorting on fpga,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 240-249, 2015.

A.R. Lipu, R. Amin, M. N. L. Mondal, and M. Al Mamun, “Exploiting parallelism
for faster implementation of bubble sort algorithm using fpga,” in 2016 2nd
International Conference on Electrical, Computer & Telecommunication Engineering
(ICECTE), pp. 1-4, IEEE, 2016.

K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the
April 30-May 2, 1968, spring joint computer conference, pp. 307-314, 1968.

“Tpce benchmark.” http://www.tpc.org/tpee/. Accessed: 2020-05-27.

