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A B S T R A C T

A new solute transport inverse method is proposed for estimating plume trajectory and source release location
under unknown solute transport boundary conditions in a steady-state, non-uniform groundwater flow field.
Solute concentration is modeled by proposing a set of local approximation solutions (LAS) of transport that are
discretized over the problem domain. At a given time step, the inverse method imposes continuities of con-
centration and total solute mass flux at a set of collocation points in the inversion grid, whereas the LAS are
conditioned to measured breakthrough concentrations. By enforcing transport physics at selected points in space
and time, the inverse problem becomes well-posed and a single system of inversion equations is assembled and
solved with a parallel iterative solver. Unlike most of the inversion techniques that minimize a model-data
mismatch objective function, the inverse method does not require the simulation of a forward transport model
for optimization, thus both solute initial and boundary conditions can be recovered. Assuming dispersivity es-
timates are available, the method was demonstrated using synthetic breakthrough data from various sampling
densities and designs, i.e., irregular versus uniformly spaced well networks. Different measurement errors and
source release histories (e.g., uniform-in-time, single, and multiple pulses) were also investigated. Results sug-
gest that for the source release histories tested, 1) inversion is stable under increasing measurement errors up to
5% of the maximum observed concentration; 2) accurate plume trajectory and source release location can be
estimated from solute breakthrough concentrations; 3) inversion accuracy appears the most sensitive to sam-
pling well density and its information content.

1. Introduction

Worldwide, groundwater contamination from point- and non-point-
sources is widespread. In the U.S., cleanup of over 300,000 soil and
groundwater sites is projected to cost $200 billion by 2033 (National
Research Council, 2013). Identification of pollutant pathways and
sources is of particular importance for remediation design and the long-
term planning and management of contaminated sites. Various tech-
niques have been proposed for identifying contaminant pathways and
sources and they can be divided into two general groups: (1) solute
transport is solved with a forward- or backward-in-time numerical
model with which plume trajectory is recovered by optimizing a model-
date mismatch or objective function (Chadalavada et al., 2012;
Mirghani et al., 2012; Yeh et al., 2016; Michalak and Kitanidis, 2004;
Prakash and Datta, 2013; Sun, 2007). Because transport is dispersive
and irreversible, inverse modeling using reverse time is considered ill-
posed (Skaggs and Kabala, 1994). On the other hand, when a forward

model is used, solute transport is simulated with a set of assumed initial
and boundary conditions (BC) in order to provide simulated measure-
ments to match with observations. For aquifers where hydraulic con-
ductivity (K) is heterogeneous, various techniques have been extended
to invert transport in non-uniform flows. To account for uncertainty in
inversion, geostatistical methods have also been developed. (2) Solute
transport is inverted using analytical solutions and regression techni-
ques (Alapati and Kabala, 2000; Bagtzoglou and Atmadja, 2005; Sun
et al., 2006; Woodbury and Ulrych, 1996; Bagtzoglou, 2003; Neupauer
et al., 2000). To develop such solutions to describe plume migration,
flow fields are usually considered uniform. Importantly, both groups of
techniques assume that solute transport BC are known a priori in order
to develop numerical and analytical solutions for optimization. At
aquifer sites with limited or incomplete BC information, application of
these techniques can lead to non-unique inverse solutions (Ayvaz,
2016).

To identify contaminant trajectory and source in a non-uniform flow
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field, this study proposes a new inverse method by developing local
approximate solutions (LAS) of concentration and by conditioning them
to solute breakthrough measurements. Key difference between this new
approach and the majority of existing inversion techniques is that
standard regression techniques are not employed. Thus, a solute
transport forward model does not need to be built and simulated in
order to optimize a model-data mismatch, and as a result, non-un-
iqueness in inversion that is due to an incorrect assumption of transport
BC is eliminated. (The same issue in groundwater flow inversion exists,
which has been demonstrated in Irsa and Zhang, 2012). This article
explains the new transport inverse method for estimating the state
variable (i.e., concentration and its spatial-temporal evolution) as-
suming appropriate dispersivity data are available as prior information
for inversion. The method was verified using synthetic concentration
breakthroughs, with or without measurement errors, that were sampled
from a “true” model that simulated several source release histories at a
given source location. Note that the true model can be an analytical or
numerical solution of the solute transport equation subject to a set of
known initial and BC, or it can be a physical system created in a la-
boratory. In this article, because transport in non-uniform flows is of
interest, a numerical model was adopted as the true model to test the
inverse method.

Performance of the new inverse method was evaluated using var-
ious sampling densities and designs, i.e., irregular versus uniform well
networks. The irregular network was based on monitoring wells from a
shallow unconfined aquifer in the Texas High Plains where water level
and core hydrogeological measurements were available. This aquifer,
which overlies 4 Texas counties (Parmer, Castro, Bailey, Lamb), extends
to a depth ~30 m and consists of unconsolidated coarse sand, gravel,
minor clays, and carbonate minerals (Seni, 1980). From the numerous
lithology logs and limited core measurements, the aquifer is moderately
heterogeneous where K varies over ~3 orders of magnitude (http://
www.twdb.texas.gov/groundwater/data/index.asp). Water level data
came from USGS National Water Information System (https://
waterdata.usgs.gov/nwis/nwis) and have been quality-checked by
USGS with an approval status of “processing and review completed”.
From the water levels, overall groundwater flow direction is from west
to east.

In the reminder of this article, the true model and the inverse
method are described first, followed by a section describing application
of the new method to plume recovery for different source release his-
tories, e.g., uniform-in-time, single, and multiple pulses. Breakthrough
data with varied measurement quality, density, and distribution were
tested. We then summarize the outcomes while pointing out future
research directions.

2. Method

A new inverse method is proposed for identifying solute plume
history and source release location under unknown solute transport BC.
The solute is assumed to be dilute, non-reactive, and is migrating in a
steady state non-uniform flow field. Variable density coupling with flow
is ignored. Note that groundwater flow and concentration data can be
assimilated using a sequential inversion approach: (1) given hydraulic
head and local K measurements, flow inversion is performed to recover
a steady-state non-uniform flow field of an unconfined aquifer (Jiao and
Zhang, 2014a, 2015a,b). (2) Given the flow field, solute plume history
and source release location are identified by conditioning the estimated
plume trajectory to observed breakthrough curves (BTC) at wells. For
the above steps described, both BC for flow inversion and initial and BC
for transport inversion are unknown. Two separate grids can be used
based on measurement locations, e.g., one for flow inversion using
wells with hydraulic data and one for transport inversion using wells
with BTC data. As the flow inversion step has been previously de-
scribed, this work focuses on plume identification within the estimated
flow field. Below, equation describing the solute transport true model is

presented first, followed by a description of the inverse method.
Groundwater is assumed to have negligible vertical flow, thus transport
inversion is performed in 2D on the horizontal plane. Moreover, the
physics governing solute transport is assumed known and is described
by the advection-dispersion equation (ADE).

To verify the inverse method, numerical transport experiments
(“true model”) were performed solving the ADE subject to different
source release scenarios to provide synthetic measurements for inver-
sion:
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where is computational domain; c is concentration in mass per unit
pore water volume [M/L3]; Ds is porous medium diffusion coefficient.

=v v x y v x y[ ( , ), ( , )]x y is average linear velocity [L/T]; v is related to
Darcy flux =q [q x y( , )x , q x y( , )y ] via effective porosity =v q( / ) which
is assumed a known constant; L and T are local longitudinal and
transverse dispersivities, respectively, assumed known as priori in-
formation. We ignore spatial variation of L and T because the site K
field resolved by flow inversion is moderately heterogeneous. Finally,

1is Dirichlet BC where zero concentration is assigned at the inflow
boundary. Zero mass flux is assigned to the top and bottom while
outflow BC are imposed on the remaining boundary so solute can mi-
grate out of the domain.

For the same computational domain , transport inversion enforces
3 sets of constraints: (1) global continuity of concentration and total
solute flux mass at a set of collocation points at a given (discretized)
time; (2) local conditioning of the inverse solutions, of the given time,
to observed breakthrough concentrations at the same time; (3) equation
constraints that enforces the transport physics at selected points in
space and time. The first set of constraints is written as:
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Where n denotes a discretized inversion time, p denotes a collo-
cation point on mth cell interface ( m) in the inversion grid, is the
number of collocation points on m, and R p( )Jn are residuals of solute
concentration and total solute mass flux at p on m at the nth time,
respectively, Y is the number of cell interfaces in the grid, p( )n is
Dirac delta function at the nth time, and w p( )n is weighting function
which samples the residuals at p on m at the nth time. Details on how
the weight is implemented can be found in Zhang et al. (2014). The
residuals can be expanded as:
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where c is a proposed LAS that varies with space and time: ci
n and ck

n denote
concentrations of cells i and k adjacent to m at the nth time; D is the
dispersion tensor; J n is a proposed LAS for total solute mass flux: J ndepends
on c and c thus is space and time dependent. For a two-dimensional
problem, the total mass flux can be written as (Bear and Cheng, 2010):
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The second set of constraints is defined by conditioning cn to mea-
sured concentrations:
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where pa is a measurement point; cob
n is observed concentration at pa at
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the nth time (A is total number of observations); and w p( )n
a is a

weighting function at the nth time assigned to each observation equa-
tion to reflect the magnitude of measurement errors. w p( )n

a can be time
dependent (i.e., becomes larger) if measurement quality improves with
time.

The inverse method assumes that the governing transport equation
is known, which provides a set of equation constraints for inversion:
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where pe include both collocation points and measurement locations (pe
can be time-dependent, which is not implemented here); Re is the
equation residual at pe at the nth time. For a given time, Eq. (10) en-
forces a set of physical constraints on the LAS of cn and J n at pe. The
system of inverse equations is solved using an iterative solver, where
is on the order of 10−5 or smaller.

In Eqs. (4)–(10), both LAS of cn and J n are approximate rather than
exact solutions, which allows a flexible handling of parameters, initial,
and BC, while Eq. (10) provides physics-based constraints on the ap-
proximations. In the solution domain, v x y( , )x and v x y( , )y are obtained
from flow inversion and are deterministic coefficients in the LAS. For
each inversion grid cell ( e), polynomial functions were chosen as the
LAS:
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where =a i( 1, ,8)i
n are unknown, time-dependent coefficients that

together control the shape of the LAS of concentration. Following Eq.
(11), total mass flux can be approximated as:
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Following Eq. (11), R ine
n Eq. (10) is rewritten as:
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For the discretized inversion spatial and temporal domains, Eqs.
(4)–(10) can be assembled to form a single system of equations that can
be solved using standard techniques. A scalable parallel linear solver
based on the Message Passing Interface, Scalable Parallel LSQR (Huang
et al., 2013), is implemented for its solution, for which the inversion
coefficient matrix is decomposed to a kernel sub-matrix and a damping
sub-matrix to reduce overlapping information. This decreases inter-
processor communication and achieves computational efficiency
(Wang, 2014). For a trial transport inversion problem, a serial solver
and the parallel solver were both employed, yielding nearly identical
results.

3. Results

3.1. Computational domain

A regional-scale, 2D computation domain (112 km E-W and
79 km N-S) was selected to reflect realistic monitoring well designs
from an unconfined aquifer in Texas High Plains. Before transport in-
version was performed, steady state flow was inverted to recover long-
term water table and Darcy fluxes by conditioning to core K and water
level data from 329 (active) wells. To obtain groundwater velocity, an
average effective porosity from core measurements was used. Because
field measurements are never exhaustive, uncertainty exists in the in-
verted flow field. However, it is treated here as deterministic, and is
imported into the transport analysis for both the true/forward model
and the inverse analyses. Specifically, based on observed concentra-
tions, prior dispersivity estimates, and the groundwater velocity, solute
concentration was inverted without the knowledge of both solute initial
and boundary conditions. Moreover, based on site lithology data and
mean groundwater velocity, an average Pe number of ~1.0 was cal-
culated assuming the molecular diffusion coefficient of common dis-
solved hydrocarbons. Thus, for the modeled site, solute transport is
advection-dominated (Perkins and Johnston, 1963; Batu, 2005) and
diffusion is ignored in both the forward model and the inverse analysis.

3.2. Numerical true model

Four transport models were simulated in the domain, solving Eqs.
(1)–(3) using MT3DMS [Zheng, 2010]. In each model, a tracer was
released in upstream flow field (x = 19.1–19.9 km, y = 55.2–56.1 km)
near the left boundary and migrated towards the right boundary. One
model simulated continuous (constant-in-time) source release for a
period of 1.8 × 106 days, which is also the total simulation time
(Fig. 1a). For a shorter simulation time of 8 × 105 days, the second
model simulated a short (104 day) release of the tracer at the same
location (Fig. 1b). During the release time, a constant concentration of
10 mg/l is specified at the source location in both models. For the si-
mulation time of 8 × 105 days, two additional release scenarios were
simulated, with a Gaussian and multimodal release at the source, re-
spectively (Fig. 1c,d). In the last example, 4 Gaussian distributions were
superimposed at the source to create 4 peak concentrations over time.
In all simulations, L and T , of 0.1 km and 0.03 km, respectively, were
assigned to the grid cells (Gelhar et al., 1992). For the true model,
MT3DMS implements the finite difference scheme (“FDM”) for spatial
and temporal discretization. Various discretizations were experimented
to ensure the accuracy of transport simulations. The final grid has
1120 × 790 cells (Δx = Δy = 100 m) and Δt = 1 day. From the FDM,
concentrations were sampled at hypothetical well locations and then
imposed with unbiased measurement errors:

= +c c rand(1 · )m FDM (15)

where is absolute percent error and rand is a uniform r.v. from [−1,
1]. In inversion, the highest tested is 5% of maximum concentration
in the FDM.

To assess the accuracy of inversion, a root mean square error (RMS)
and a relative root mean square error (RES) of concentration were
computed at each well location at a given sampling time (t):
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where c x y t( , , )true i i is error-free measured concentration from the FDM,
c x y t( , , )i i is inverted concentration at the same location at the same
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time, and Ntotal is total number of measurements at t. From each syn-
thetic well in the FDM, solute BTC was sampled at two discrete times
(t1, t2). The recovered plume was estimated at these times for which
RMS and RES were computed.

3.3. Continuous source release

For the release history in Fig. 1a, 7 tests were carried out to evaluate
the accuracy and stability of inversion under different , well density/

Fig. 1. Source release history: (a) Tests 1–7; (b) Test 8; (c) Test 9; (d) Test 10.

Table 1
Inversion tests for both continuous (Tests 1–7) and short-duration (Test 8–10) source release scenarios. The sampling wells either follows a gridded design (i.e.,
gridded) or a design taken from the Texas field site.

Computational
domain (km)

Inverse grid
discretization

Number of
observation wells

Longitude
dispersivity (km)

Transverse
dispersivity (km)

Absolute percent error in
observed concentrations

RMS (t1) RES (t1)

Test 1 112 × 79 56 × 40 2184
(gridded)

0.1 0.03 0% 6.5 × 10−3 5.5 × 10−3

5% 1.2 × 10−1 7.1 × 10−2

Test 2 112 × 79 14 × 10 329 0.1 0.03 0% 1.2 × 10−1 9.6 × 10−2

5% 1.4 × 10−1 9.9 × 10−2

Test 3 112 × 79 14 × 10 329 1 0.3 5% 3.7 × 10−1 2.4 × 10−1

Test 4 112 × 79 14 × 10 329 0.01 0.003 5% 6.9 × 10−2 4.6 × 10−2

Test 5 112 × 79 14 × 10 140
(gridded)

0.1 0.03 0% 2.7 × 10−2 1.2 × 10−2

5% 4.2 × 10−1 1.8 × 10−1

Test 6 40 × 40 10 × 10 65 0.1 0.03 0% 1.6 × 10−2 2.4 × 10−2

5% 2.3 × 10−2 4.5 × 10−2

Test 7 40 × 40 10 × 10 100
(gridded)

0.1 0.03 0% 1.6 × 10−2 2.3 × 10−2

5% 1.5 × 10−2 2.3 × 10−2

Test 8 112 × 79 56 × 40 2184
(gridded)

0.1 0.03 0% 5.5 × 10−5 4.0 × 10−2

5% 5.4 × 10−4 4.7 × 10−1

Test 9 112 × 79 56 × 40 2184
(gridded)

0.1 0.03 0% 1.4 × 10−6 4.2 × 10−2

5% 1.8 × 10−5 4.8 × 10−1

Test 10 112 × 79 56 × 40 2184
(gridded)

0.1 0.03 0% 1.8 × 10−4 2.1 × 10−2

5% 1.9 × 10−3 4.0 × 10−1
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sampling pattern, and inversion domain size and discretization
(Table 1). For most tests, was increased from 0% to 5%. Test 1 em-
ploys a large number of sampling wells (2184) distributed in a gridded
pattern (average well spacing is 2 km). For this test, a relatively large
inversion grid (56 × 40) was used, coarsened from the true model

(1120 × 790) by ~20 times in each dimension. True L and T were
assigned as prior information for inversion. Tests 2–4 use fewer (329)
sampling wells following the pattern of the Texas aquifer. A coarsened
inversion grid (14 × 10) was used. To test sensitivity of inversion to the
assumed values of L and T , these were modified by 1 order of

Fig. 2. Inverted concentration (dashed contours; mg/l) compared to true concentration simulated by the FDM (solid contours; mg/l) at t1 = 1.6 × 106 day. Shaded
box indicates the source release location; dots indicate the location of sampling wells. (a) 0% error of Test 2; (b) 5% error of Test 2; (c) 5% error of Test 3; (d) 5% error
of Test 4; (e) 0% error of Test 5; (f) 5% error of Test 5.
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magnitude, introducing errors into inversion. Compared to Test 2, Test
5 further reduces sampling density although wells were placed in a
gridded pattern. For Tests 1–5, observed concentrations were sampled
at t1 = 1.6 × 106 and t2 = 1.8 × 106 days since release of the solute:
for most wells, these times largely captured the late-time portion of the
BTCs. In Tests 6–7, BTCs at t1 = 4.0 × 104 and t2 = 4.1 × 104 days
were sampled from the FDM, which captured the early-time portion of
the BTCs. Accordingly, a smaller domain closer to the source location
was used (x= 5–45 km, y= 35–75 km) in inversion along with a
smaller grid (10 × 10). Test 6 adopts the field network while Test 7
uses a gridded pattern. For all tests, RMS and RES of the recovered
concentrations at t1 are tabulated. At t2, similarly valued error measures
were computed (not shown).

Accuracy of plume recovery is evaluated by RMS and RES, and by
comparing the recovered plume against that simulated by FDM (Fig. 2).
For all test cases, inversion outcomes are stable and compare favorably
with the true plume and are relatively insensitive to measurement
error, inversion grid discretization, and dispersivities (prior informa-
tion). In contrast, the number of wells used to condition inversion has
the largest impact on accuracy. Test 1, with the largest number of ob-
servation wells, yields the lowest RMS and RES (for σ = 0, they vary
from 6.5 × 10−3 and 5.5 × 10−3). When sampling density is reduced,
inversion becomes less accurate. Moreover, even though Test 5 has a
lower density than Test 2, its RMS and RES are actually lower. This is

attributed to the gridded sampling pattern with improved information
content. To test this idea, two additional cases (not listed in Table 1)
were created for the problem domain of Tests 1–5. One used an irre-
gular network from the Texas aquifer with 1650 wells, including both
active (329) and abandoned wells (1321). From the FDM, 529 of the
1650 wells were observed to provide positive BTCs. The other used
gridded sampling, with a total of 609 wells for which only 191 wells
have positive BTCs. For both error-free and increased errors in mea-
sured concentrations, plume recovery is more accurate for the gridded
network. Irregular sampling likely suffers from clustering, whereby
closely spaced wells with similar measurements exert undue influences
on data conditioning during inversion. Further research will evaluate
optimal weights for which de-clustering methods will be investigated
(Li et al., 2018).

In Tests 6 and 7, the FDM plume was sampled at earlier times when
the plume was smaller. Inversion adopts a smaller computational do-
main with correspondingly fewer wells that lie close to the source lo-
cation. For Test 6, plume was sampled following the field network; Test
7 sampled the same plume in a gridded pattern. At t1 = 4.0 × 104 day,
only 11 (Test 6) and 16 wells (Test 7) have positive BTCs while the
remaining 54 (Test 6) and 84 wells (Test 7) have no BTC as they lie
outside the plume. Inversion is fairly accurate and robust for both tests
(not shown), although Test 7 (gridded network) yields a slightly better
recovered plume.

Fig. 3. Inverted concentration (dashed contours) of Test 8 compared to true concentration simulated by the FDM (solid contours) at t1 = 1.0 × 104 day (top row) and
t2 = 8.0 × 105 day (bottom row). Shaded box indicates the source release location; dots indicate the location of sampling wells. (a) 0% error; (b) 5% error; (c) 0%
error; (d) 5% error.
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3.4. Pulse releases (uniform, Gaussian, multimodal)

For a pulse release scenario (Fig. 1b; Test 8), inversion was carried
out using the gridded sampling of Test 1. Because less solute mass was
released, plume extent was more limited and t1 = 1.0 × 104 days and
t2 = 8.0 × 105 days were chosen as sampling times. Though 2184 ob-
servation wells were used in inversion, only a very small subset (4 at t1
and 24 at t2) has positive BTCs. Result was stable under increasing σ
(Fig. 3), although accuracy is lower at t1 when only 4 wells have BTCs.
At t1, which concurs with the end of tracer release, inversion has largely
identified the release location despite the inaccurate plume shape. At t2,
the plume evolved to be larger and migrated further downstream. More
wells have positive BTCs, and accordingly, the inverted plume was very
accurate. In addition, using the sampling pattern of Test 2 (field net-
work), the pulse release was inverted again. Because none of the wells
have positive BTCs at t1 and t2, inversion cannot recover the plume, as
expected.

In Tests 9 and 10, release history based on a single to multiple su-
perimposed Gaussian functions (Fig. 1c,d) was simulated by the FDM
and subsequently inverted using the gridded sampling of Test 1
(Table 1). While true dispersivities were given as prior information, σ
was again increased. Both RMS and RES and plume recovery suggest
that accurate inversion can be obtained for these cases. For Test 10,

inversion was able to capture the bi-modal plume shape that had
evolved in both early and late times (Fig. 4).

4. Conclusion

A new inverse method, based on approximating solute concentra-
tion and mass flux with local approximate solutions (LAS), is proposed
for estimating plume trajectory and source release location under un-
known solute transport BC. At a given inversion time, the method im-
poses concentration and flux continuities at a set of collocation points in
space, while the LAS are conditioned to measured breakthrough con-
centrations. By enforcing transport physics at selected points in space
and time, the inverse problem becomes well-posed. A single system of
equations is assembled and solved with a parallel linear solver. Unlike
the majority of existing techniques, plume trajectory and source loca-
tion can be recovered efficiently because the new method does not
require the repeated simulations of a forward transport model. For an
unconfined aquifer with a moderately heterogeneous flow field, the
new method was demonstrated by inverting synthetic concentration
breakthroughs from well networks sampling a numerical true model.
Different measurement errors and source release histories (e.g., uni-
form-in-time, single, and multiple pulses) were evaluated. Results
suggest that for the source release histories tested, (1) inversion is

Fig. 4. Inverted concentration (dashed contours) of Test 10 compared to true concentration simulated by the FDM (solid contours) at t1 = 4.0 × 105 day (top row)
and t2 = 8.0 × 105 day (bottom row). Shaded box indicates the source release location; dots indicate the location of sampling wells. (a) 0% error; (b) 5% error; (c) 0%
error; (d) 5% error.
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stable under increasing measurement errors up to 5% of the maximum
observed concentrations; (2) accurate plume recovery and source re-
lease location can be attained from the BTC data; (3) inversion accuracy
is the most sensitive to the sampling well density and its information
content. For the cases investigated herein, the recovered plume also
appears relatively insensitive to the assumed dispersivity values.

This work extends our previous research inverting transient
groundwater flow under unknown fluid flow initial and BC (Jiao and
Zhang, 2014a,b, 2015b) to contaminant source identification. Unlike
flow inversion where parameters were estimated along with the hy-
draulic head, dispersivities were not estimated. Dispersivities were as-
sumed known as prior information for inversion using values con-
sidered representative at the inversion grid scale. Parameter estimation
in transport inversion requires measured solute mass fluxes – both ad-
vective and dispersive components – which are not generally available
from the field. Advancement in measurement technology could extend
the capability of the current technique to joint parameter and state
estimation, similar to the fluid flow inversion problems. Future work
will also investigate joint flow and transport inversion by conditioning
the LAS to both hydraulic and concentration measurements. In this
work, for computational efficiency, solute was sampled two times at
each monitoring well location, which allows the recovery of the plume
history over time. This amount of data, however, is not sufficient to
recover the source release history, for which denser measurements-in-
time are likely needed. Future work will aim to address this for which
computational efficiency is key. Moreover, uncertainty of the flow field,
which gives rise to uncertainty in inferring the plume history, will also
be investigated.
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