
FPGA Acceleration of Protein Back-Translation
and Alignment

Sahand Salamat, Jaeyoung Kang, Yeseong Kim, Mohsen Imani∗, Niema Moshiri, Tajana Rosing

Department of Computer Science and Engineering, UC San Diego, CA 92093, USA
∗Department of Computer Science, University of California, Irvine, CA 92697, USA

{sasalama, j5kang, yek048, a1moshir, tajana}@ucsd.edu; ∗m.imani@uci.edu

Abstract—Identifying genome functionality changes our under-
standing of humans and helps us in disease diagnosis; as well as
drug, bio-material, and genetic engineering of plants and animals.
Comparing the structure of the protein sequences, when only
sequence information is available, against a database with known
functionality helps us to identify and recognize the functionality of
the unknown sequence. The process of predicting the possible RNA
sequence that a specific protein has originated from is called back-
translation. Aligning the back-translated RNA sequence against
the database locates the most similar sequences, which is used to
predict the functionality of the unknown protein sequence. Pro-
viding massive parallelism, FPGAs can accelerate bioinformatics
applications substantially. In this paper, we propose, FabP1, an
optimized FPGA-based accelerator for aligning a back-translated
protein sequence against a database of DNA/RNA sequences. FabP
is deeply optimized to fully utilize the FPGA resources and the
DRAM memory bandwidth to maximize the performance. FabP
on a mid-range FPGA provides 8.1% and 23.3× (24.8× and
266.8×) speedup and higher energy efficiency as compared to the
GPU-based implementation on a high-end NVIDIA GPU (state-
of-the-art CPU implementation), respectively.

I. INTRODUCTION

The Central Dogma of Biology describes the process of

information flow in cells: the DNA, a double-stranded molecule

made up of two chains of A,C,G,T nucleotides, contains genes,

which are transcribed to messenger RNA (mRNA), which are

then translated to protein, which is generally considered the

functional unit of the cell [1]. Proteins are made up of one

or more chains of 20 common amino acids. An unknown

protein can be characterized when its sequence shares significant

similarity with a protein with known characteristics. Pairwise

searches can find the most similar sequences in a database to

the unknown query sequence [2], [3], and the task of searching

for a known protein sequence against a database of DNA or

RNA sequences is often desired by biologists. Such searches

have enabled crucial discoveries in biomedical research, such as

improving our understanding of the mechanism of human can-

cers [4], [5], discovering novel potential cancer therapeutics [6],

and identifying and screening potent antimicrobial peptides [7].

Protein sequencing is the biochemical process of determining

the amino acid sequence of a given protein. Figure 1 describes

the overview of the computational task flow. From a compu-

tational standpoint, a protein sequence can be considered as

a string over a set that includes different amino acid letters,

e.g., S = 〈Met,Phe, · · · 〉. The protein sequence is originally

translated from an mRNA which can be considered a string

over the four alphabets, A,C,G,U}. Each non-overlapping three-

letter window of the mRNA, known as a Codon, encodes a

1FabP is also the name of a family of proteins, “Fatty-Acid-Binding
Proteins”.

Fig. 1. Protein back-translation and alignment flow

specific letter in the amino acid alphabet according to the Codon

table (Figure 2). The protein sequence is the result of replacing

each codon of the mRNA sequence from start to end with its

corresponding amino acid. The task of “back-translation” uses

the Codon table to generate an mRNA sequence representing

the most likely non-degenerate coding sequence. Since the

back-translation in most cases does not yield a unique result, a

consensus sequence derived from all possible Codons is needed.

The mentioned protein sequence S can be back-translated to

AUGUUU · · ·, and AUGUUC · · ·. The encoding step converts the

consensus sequence to the binary representation while preserving

all the isomorphic back-translated sequences of amino acids.

Sequence alignment finds the regions with high similarity to the

query sequence. The regions with high similarity, called hits,

are used in many applications to predict the functionality of the

unknown query sequence.

Several algorithms exist for aligning protein sequences.

Dynamic Programming based (DP-based) algorithms consider all

the possible sequence mutations [8], [9]. There are two general

types of DNA mutations: substitutions, in which the letter at a

single position of a sequence is replaced with another letter, or

indels (short for “insertions and deletions”), in which one or

more letters are either inserted into or deleted from the sequence,

typically in contiguous blocks [10]. The other works rely on

heuristic approaches to reduce the computation complexity of

dp-based algorithms. The most widely-used heuristic solution

is Basic Local Alignment Search Tool (BLAST), a sequence

similarity search program developed by the National Center for

Biotechnology Information (NCBI) to accelerate the alignment

process [11]. It supports varieties of searches by type, and

TBLASTN finds matches between protein sequences and a

database of DNA/RNA sequences [12].

The size of the genomics data is doubling every 7 months [13],

which is considerably higher than Moore’s Law, which expects

to double the computation power every 2 years. As the amount

of the generated data increases, general-purpose processors have

become incapable of processing the genomics data. Thereby,

FPGAs have been used to accelerate sequence alignment

822978-3-9819263-5-4/DATE21/ c©2021 EDAA

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

algorithms including both pairwise and heuristic algorithms [3].

Recent popularity of FPGAs as accelerators has led to widely

deployment of FPGAs in data centers to provide easier access

for users to implement their accelerators on cloud FPGAs [14],

[15], [16]. The existing pairwise alignment algorithms require

significantly high computational power and resources since the

algorithm complexity grows quadratically with the length of

sequences, i.e., O
(
k

2
)
. Besides, heuristic-based solutions could

not guarantee optimal results.

In this paper, we propose, FabP, a novel deeply optimized

architecture for aligning back-translated protein sequences

against a database of DNA/RNA sequences. Considering the

biological fact that the likelihood of observing indels is relatively

low [17], [18], FabP reduces the computation complexity

of alignment by only support substitutions in the alignment

process. FabP proposes an FPGA-friendly encoding approach

that preserves the non-uniqueness features of the back-translated

protein sequence while simplifying the alignment hardware. We,

in turn, perform lookup table-level optimizations to minimize the

resource utilization of each required module, maximizing the

performance of the entire protein alignment. Our evaluation

shows that FabP outperforms state-of-the-art solutions. As

compared to the multi-threaded CPU-based TBLASTN, FabP

provides 24.8× speedup and 266.8× higher energy efficiency.

the state-of-the-art solutions.

II. BACKGROUND AND RELATED WORK

The sequence alignment problem for a query sequence Q =

{N1,N2 . . . ,Nq} and a reference sequence R = {N1,N2 . . . ,Nr}
r > q, can be formulated as finding the regions of the reference

sequence with highest similarity to the query sequence [3].

Query and/or reference sequence elements N can be either

amino acids or nucleotides. Dynamic programming algorithms

have been widely used to solve the alignment problem by finding

the optimum result. The Smith-Waterman (SW) algorithm

is a dynamic programming technique widely used for local

alignment [8], [9]. It calculates a scoring matrix for all possible

alignments supporting both substitution and indel mutations.

The scoring matrix size is equal to Lr ×Lq where Lr and Lq are

the length of the reference and the query sequences respectively.

Due to the high computational cost of SW algorithm, prior work

tried to accelerate it on GPUs, FPGAs, and ASICs [3], [19].

The computation complexity of the SW algorithm increases

quadratically with the length of the sequences. Heuristic

algorithms have been proposed to reduce the computation

complexity of the dynamic programming based algorithms while

delivering near-optimal results [20], [21].

Among the heuristic alignment algorithms, Basic Local

Alignment Search Tool (BLAST) is the most widely used

algorithm [20], [22]. It is being developed by the National

Center for Biotechnology Information (NCBI) for three decades.

BLAST looks for similar k-mers, subsequences of length k,

in both reference and query sequences. All the k-mers of the

query sequence in a hash-table and use k-mers of the reference

sequence to find the similar subsequences (hits) in the reference

and query sequences. Finally, it calculates the alignment score

for each hit using SW algorithm.

Adapting high-performance hardware platforms such as

GPUs [23] and FPGAs [24], [25] for running the BLAST

Fig. 2. Three-base RNA translation to amino acids (Codon table)

algorithm has emerged as a trend. Different variations of

BLAST support alignment of protein/nucleotide sequences [26].

TBLASTN aligns protein queries against references of nu-

cleotide sequences. It translates the reference sequences to

proteins and then aligns the query with the translated reference

sequence. The performance of the hash-table lookup step in all

variations of BLAST algorithm including TBLASTN is limited

by the numerous random memory accesses [24]. Biological

observations have shown that the likelihood of observing indels

in protein sequences is low [17]. Therefore, FabP calculates

the alignment score based on the number of substitutions,

thereby significantly reduces the computation complexity of

the alignment without affecting the accuracy of the alignment.

Unlike hash-table based alignment algorithms, FabP reads the

reference sequences sequentially which significantly increases

the memory bandwidth as compared to the random memory

accesses. Thanks to the proposed highly efficient comparison

module and sequential memory accesses, FabP is able to utilize

the FPGA parallelism and accelerates the protein alignment.

III. PROPOSED FABP

FabP aligns protein sequences against a reference of nu-

cleotide sequences that can be either DNA or RNA sequences.

FabP back-translates the amino acid sequences to all the

possible RNA sequences (section III-A). To support the non-

unique elements of the back-translated sequence, FabP proposes

an FPGA-friendly encoding method to store the back-translated

amino acid sequence, proposed in subsection III-B. FabP

proposes a highly optimized and pipelined accelerator which

utilizes the FPGA resources characteristics to accelerate the

alignment excessively, as described in section III-C.

A. Back-Translation

Figure 2 shows how proteins are back-translated to their

building RNA bases according to the Codon table. To find the

functionality of an unknown protein sequence, we search in a

database for a known sequence that has a high similarity and

characteristics. First, each amino acid in the unknown query

sequence is back-translated to it’s building RNA three-base

sequence (codon). As the codon table shows, multiple codons

can be translated to the same amino acid (e.g., both UUC

and UUU represent Phe amino acid); therefore, protein back-

translation will not create a unique RNA sequence. Elements

in the back-translated RNA sequence can be divided into

three types: Type I: elements that are uniquely back-translated,

Type II: elements with non-unique back-translation without

dependency to the previous elements, and Type III: elements

which are dependent on the previous elements of the RNA.

Design, Automation and Test in Europe Conference (DATE 2021) 823

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

For instance, Phenylalanine (Phe) amino acid can be

originated from {UUU,UUC} RNA sequences. To simplify the

representation, we represent the back-translated codon of Phe

with UUU/C, where U/C represents both of the nucleotides. In

this back-translation, both of the first and second U elements

refer to Type I, since they both remain the same in both of the

codons; however, the last element is a Type II element since

it can be either U or C. Similarly, Isoleucine (Ile) is back-

translated to ATG, where G means that the element can be any

nucleotide except G (Type II). Serine (Ser) amino acid can be

translated from four RNA sequences {UCU,UCC,UCA,UCG},

all the four codons can be aggregated and represented as UCD

(D represents all the four nucleotides–Type II). In addition,

Leucine (Leu) back-translation can be represented as CUD or

UUA/G, which means if the first element is C the last element

can be any element, while if the first element is U, the third

element can be either A or G (Type III).

Aligning back-translated sequences with the RNA sequence

requires a comparison function handling all the three types.

For Type I elements, FabP requires to perform an exact

element-wise comparison. Type II elements require conditional

comparison. For Type III elements, FabP needs to perform a

dependent comparison. To implement the comparator, FabP

keeps the information of each element, including the type, and

the matching condition and uses a flexible comparison logic

to handle all the three types of elements. Thus, we proposed

FabP encoding preserving all the above-mentioned information

such that it simplifies the comparison logic in the FPGA.

B. FabP Encoding

The reference RNA sequences contain four different nu-

cleotides, {A,C,G,U}, which can be encoded into 2-bit numbers

as {00,01,10,11}, respectively. The query sequence is an

RNA sequence back-translated from a protein sequence. Due

to back-translation non-uniqueness, FabP requires more than

two bits to encode the back-translated elements to preserve

all the aforementioned information, including the type of

the element and the condition by which the query should

be compared against the reference. The query elements are

encoded and stored as 6-bits instruction. This instruction has

three distinct fields: variable-length opcode, matching condition,

and the configuration bits. Opcode field stores the type of

the elements and since we have only three types we use a

variable-length opcode to fully utilize the 6-bit instructions. The

matching condition field keeps the condition of matching and

the configuration bit field controls the flow of data.

The first two bits of the instruction are dedicated to the

opcode field in the elements of Types I and II (opcodes 00,

and 01, respectively). Elements of Type III are represented with

a single-bit opcode 1. In elements of Type I, two bits of the

opcode are followed by the element that needs to be perfectly

matched. In elements of this type, since the elements must be

exactly matched in both sequences, the 2-bit representation of

nucleotides is used as the matching condition. In elements of

Type II, opcode bits are set to 01 and FabP uses the next

two bits to represent the matching conditions. Five conditions

observed in the Codon table (U/C,A/G,G, A/C, and D). Since

two bits are dedicated to represents the conditions, the first four

conditions are represented. Although D is a Type II element, for

the sake of hardware simplicity, FabP encodes it with opcode

1 along with the Type III elements.

Type III elements are represented with opcode 1, followed

by two bits to identify four unique functions. Each function

is dedicated to a particular amino acid that has an element

of the Type III. FabP uses Function F : 00 to describe the

third element of Stop, and uses functions F : 01 and F : 10

to describe Leu and Arg amino acids. Since there are only

three amino acids that require a special function, F : 11 remains

useless. Thus, FabP uses it to represent the element D. FabP

sets the fourth bit to zero for the encoded elements of Type III.

FabP dedicates the first four bits of the instructions to

store the information of the back-translated codons. It uses

the last two bits of the 6-bit instructions as the configuration

bits to control the flow of the data. These two bits are set

to 00 for elements of Type I and II. In elements of Type III,

FabP sets the configuration bits based on the amino acid. In

Type III, comparison of the query element i
th depends on the

previous nucleotides (either element of (i−1)th or (i−2)th) of

the corresponding codon in the back-translated RNA sequence.

Therefore, the configuration bits are connected to a multiplexer

to select from one of the earlier elements (illustrated in Figure

5(a)).

The back-translated sequence of a query sequence Q with 5

amino acids according to the codon table is as follows:

Q = {Met−Phe−Ser−Arg−Stop}
back−translation
−−−−−−−−−→

{AUG−UU(U/C)−UUD−(A/C)G(F : 10)−U(G/A)(F : 00)}

FabP first creates the back-translated sequence. Then, it

encodes that sequence and stores it in the FPGA main memory

(DRAM). To encode the query sequence, Met has a unique back-

translated sequence (AUG). The next amino acid is Phe, the

next two elements of the back-translated sequence are uniquely

back-translated as UU; while, the next nucleotide can be either

U or C. The first 5 elements (AUGUU) are Type I and will be

encoded as {00A00,00U00,00G00,00U00,00U00}. The next

element can be either U or C (Type II) and it will be encoded

as {010000}. FabP back-translates and encodes the next amino

acid in the sequence, Ser, as {00U00,00U00,001100}. In Arg

back-translation, the first element can be either C or A, followed

by a G. Then, if the first element is C the third element can be

any nucleotide, D. However, if the first element is A, the last

element can be only A or G. FabP implements this dependent

comparison as Function:10 in the comparison module. Thus,

FabP encodes Arg as {010100,00U00,110001}. Similarly it

encodes Stop element as {00U00,010100,100010}.

C. FabP Alignment

The protein alignment algorithm finds the locations where

the back-translated query has a high similarity to the reference

sequence. It calculates the alignment score by accumulating the

results of pairwise comparisons between the query elements and

sub-sequences of the reference. Calculating the alignment score

for all the positions in the reference sequence is a compute-

intensive task that can be parallelized in FPGA. FabP utilizes

the FPGA resources to parallelize the alignment computation. At

first, the database of the reference sequences is transferred to the

FPGA DRAM. Then the query sequences are back-translated,

824 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The proposed architecture of FPGA-based FabP

Fig. 4. Pop-Counter architecture

encoded, and transferred to the FPGA distributed memory, Flip-

Flops (FFs). Then, FabP streams the reference sequence into

the FPGA and aligns the query against the incoming reference

subsequence.

FPGA communicates with the DRAM using AXI ports

through the existing number of memory channels (CH). If each

channel provides BW bandwidth, the total memory bandwidth

is equal to BW ×CH. In practice, the AXI interface data width

is 512 bits. Assuming the AXI interface can read from DRAM

in every clock cycle, the nominal memory bandwidth equals to

BW = 512×Freq, where Freq is the clock frequency. In practice,

if the memory access pattern is sequential, the achieved memory

bandwidth will be close to the nominal value. In clock cycles

that the AXI port does not have valid data from the DRAM, all

the stages of the FabP will be stalled, and FabP will wait until

the next valid data from the AXI port. In every cycle that the

AXI port has valid data, FabP reads 512 bits of the reference

sequence (per memory channel) from the FPGA DRAM. In

the rest of the paper, we assume only one memory channel is

available in the FPGA. If more memory channels are available,

FabP is able to utilize multiple channels as long as the FPGA

has enough resources. Since each element of the reference

sequence is 2 bits, considering a single AXI interface, FabP

reads 256 elements of the reference in each memory access.

Finally, FabP calculates the alignment scores of a query and

the incoming reference sequence in a multi-stage pipelined

architecture.

Figure 3 shows the architecture of the FabP accelerator. As

Figure shows, Query Seq. memory stores a query sequence

with length of Lq. In each AXI data transfer, 256 elements

of the reference are loaded into the Reference Stream buffer.

The query sequence slides through the reference to calculates

the alignment score for all the possible sequence positions.

Since the probability of observing indels in parts of RNA

sequences that generate proteins is relatively low, FabP only

counts the differences in the query and the reference sequence.

In addition, since the length of the query sequences is less

than the length of the reference sequences (Lq < Lr), sliding

the query sequence over the Reference Stream buffer results in

Lr −Lq +1 independent alignment instances.

Each alignment instance calculates the independent alignment

score for the query and a sub-sequence of the incoming reference

sequence, as a potential solution. Having a highly parallelizable

architecture, FPGAs can execute all the alignment instances

concurrently. The first instance (I1) calculates the alignment

score for the query and Reference Stream elements between

[0 : Lq −1]. The k
th instance (Ik) compares the first element of

the query with the k
th element of the Reference Stream and

the L
th
q element of the query with the Lq + k

th of the Reference

Stream, in order to calculates the alignment score. To cover

the alignment positions that overlap between two consecutive

incoming reference sequences, FabP keeps the last Lq elements

of the current Reference Stream buffer and concatenates it

with the next incoming reference sequence. Therefore in each

iteration, FabP stores a sub-sequence with length LRe f . Stream =

Lq +256 in the Reference Stream buffer.

The number of element-wise comparisons in each alignment

instance is equal to the number of the query elements. Thus, as

the number of query elements increases, FabP requires more

resources for each alignment instance. Due to FPGA resource

limitation, for long query sizes, there are not enough resources

to perform all the operations in one cycle. FabP uses a set

of multiplexers to divide Query Seq. and Reference Stream

into multiple segments and process each segment in a cycle.

Therefore, for longer queries, FabP needs multiple iterations

to calculate all the alignment instances. In each iteration, Lr −
Lq +1 instances of custom comparators compare the query and

reference sub-sequences. The output of a Custom comparator is

Lq bits, where each bit shows if the corresponding elements of

the reference sequence and the query sequence are matched. The

outputs of comparisons are aggregated in the Population Counter

(pop-Counter) module, shown in figure 3 as PC, representing the

alignment score. At the end, FabP uses threshold comparators

to compute and write the position of every alignment instance

with a higher score than a user-defined threshold. The WB buffer

writes back all aligned positions to the FPGA DRAM using an

AXI bus.

D. FPGA Optimization

To implement the custom comparator module, performing

the element-wise comparisons, FabP uses only two Lookup

Tables (LUTs). Each LUT has 6 inputs, and every function

with 6 inputs can be implemented in a LUT. As Figure 5(a)

shows, the last two bits of the query is used to select between

performing dependent comparison (Type III) or exact/conditional

comparison (type I and II). FabP uses a single 6-input LUT to

implement the multiplexer. To map the multiplexers to a single

LUT, we directly instantiate LUT primitives.

FabP encodes the back-translated query elements to 6-bit

instruction including two configuration bits. The first four bits

of the query element along with the 2 bits of the reference

element are used as the inputs of a LUT, which is programmed

to perform the required comparison function. The first four

bits of the instructions specify the matching condition with the

reference element and the content of the LUT is programmed

with the result of the comparison. As illustrated in Figure 5,

FabP uses one LUT to implement the multiplexer and one LUT

Design, Automation and Test in Europe Conference (DATE 2021) 825

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. (a) Custom comparator module with a multiplexer to select between dependent and independent comparison, and a LUT to perform the comparison. (b)
Custom comparator function implemented on a LUT

to perform the comparison. For example, when the query element

is 01−00−00, the first two bits (01) identify the element as

a Type II element, and the next two bits (00) shows that the

query element (U/C) is matched with reference elements U or

C. Therefore, the first four rows of the third column in the table

(highlighted in Figure 5(b)) show the output of the comparison

between the query element and any reference element.

The comparison LUT outputs whether an element of the query

sequence can be originated from an element in the reference

sequence. The alignment score for each alignment instance is

the summation of the element-wise comparisons. We use a

Pop-Counter module to aggregate the comparison results. We

designed a hand-crafted hardware implementation of the Pop-

Counter, shown in Figure 4, to increase the efficiency of the

generated hardware. Pop-Counters contribute to a significant

portion of the overall area footprint since there are r− q+ 1

PCs (one for each alignment instance). The main building block

of the implemented Pop-Counter is Pop36 that produces a 6-bit

output of summing up a given 36-bit input. The first stage

of Pop36 is made up of six groups of three-LUTs that share

six inputs. This stage outputs the 3-bit resultants which are

summed up together in the subsequent stage according to their

bit order (position). For all the explained modules, We directly

instantiated FPGA LUT6 and FF primitive resources to build up

the custom comparator and the pipelined Pop-Counter. FabP

LUT-level optimized Pop-Counter shows 20% area reduction as

compared to the simple HDL description of a tree-adder-style

Pop-Counter.

IV. EXPERIMENTAL RESULTS

FabP accelerates the protein back-translation and alignment

on FPGA which has been implemented in Verilog HDL. The

synthesized code has been implemented on the mid-range Kintex-

7 FPGA. FabP host code is written in OpenCL to encode the

queries and send them along with the reference sequences from

the host DRAM to the FPGA DRAM. The host code invokes the

RTL kernel which aligns the sequences and writes the results to

the FPGA DRAM. The host code, at the end, reads the results

from the FPGA DRAM. In all experiments, we measured the

end-to-end execution time that includes reading both query

and reference sequences from the FPGA DRAM, aligning the

sequences, and writing the results to the FPGA DRAM. We

compare the performance and energy efficiency of FabP with

the state-of-the-art protein alignment tool (TBLASTN [11])

running on Intel i7-8700K CPU with 16GB memory. To evaluate

the efficiency of the proposed FabP architecture, we compared

FabP with our highly optimized GPU implementation on the

high-end NVIDIA GTX 1080Ti GPU written in CUDA. We

perform all evaluations using the query sequences randomly

sampled from the NCBI protein database [27], and 1 GByte of

reference sequences from the NCBI DNA Database [28].

A. FabP Evaluation

Figure 6(a) compares FPGA-based FabP execution time

and energy efficiency with NVIDIA GPU and Intel CPU. The

state-of-the-art TBLASTN is running on both single-thread

and multi-thread (12 threads) CPU. All results in the figure

are normalized to the single-thread execution time and energy

consumption of the TBLASTN running on a single core.

The results are reported for different protein query lengths

ranging from 50 to 250 elements. After the back-translation,

the length of the query sequence is multiplied by three (ranging

150 to 750). Note that the length refers to the maximum

sequence length, and FabP can work with any sequence

smaller than that. Our evaluation shows that, for all platforms,

increasing the number of query elements increases the execution

time and energy consumption. Comparing the efficiency of

different platforms, we can see that FabP provides slightly

better throughput than the high-end GPU implementation while

consuming significantly less power. Over all lengths of the query,

FabP outperforms GPU (multi-thread CPU) performance, on

average, by 8.1% (24.8×). In terms of energy consumption

(Figure 6(b)), FabP provides significantly higher efficiency than

both of the platforms. As compare to GPU (multi-thread CPU),

FabP provides 23.2× (266.8×) higher energy efficiency at the

cost of negligible drop in the alignment accuracy. This efficiency

comes from FabP LUT-level optimization that enables highly

parallel computing in a deep pipeline architecture, with a

negligible drop in the alignment accuracy. Not supporting indels

has a minimal impact on the alignment accuracy since indels are

infrequent in protein sequences. Statistically, there is a very small

probability that indel affects the protein sequence alignment

results. The work in [18] has shown that the distribution

of empirical frequency of indels in protein-coding regions

has a median of 0 and a mean of 0.09 indels per kilobase

with a standard deviation of 0.36 index per kilobase. In our

experiments, among 10,000 queries, only two of them involved

indels (∼ 0.02%).

B. FabP Resource Utilization

Table I shows the FPGA available resources as well as the

resource utilization of FabP implementation aligning protein

sequence with length of 50 and 250 elements. As the results

indicate, the FPGA has very high LUTs and FFs utilization

which are used to implement the custom comparator modules

and Pop-Counters. The alignment score is a 10-bit number and

826 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Performance improvement (a) and energy efficiency (b) of FabP over
GPU and 12-threaded state-of-the-art protein alignment (TBLASTN-12) running
CPU TABLE I

RESOURCE UTILIZATION OF FABP FOR THE MAXIMUM PROTEIN QUERY

LENGTH OF 50 AND 250

Resources LUT FF BRAM DSP DRAM BW

Available 326k 407k 16Mb 840 12.8 GB/s
FabP-50 58% 16% 19% 31% 12.2 GB/s
FabP-250 98% 40% 15% 68% 3.4 GB/s

to save the LUTs for the Custom comparators and Pop-Counters,

FabP uses DSPs to compare the alignment score with the user-

defined threshold. Regardless of the supported query length,

FabP uses distributed memory resources (FFs) for the query

sequence and the reference stream buffer rather than using the

BRAMs to avoids the routing congestion that may happen due

to high fanout of the memory blocks, and reduce the power

consumption of the entire design.

As Table I also shows, FPGA has the maximum bandwidth

utilization during processing both sequence lengths, meaning

that the single memory channel is almost fully utilized to read the

reference sequence from the FPGA DRAM. For the sequence

length of 50, the memory bandwidth bounds the maximum

performance/parallelism. Therefore, more memory channels

will further accelerate alignment. Longer query sequences (e.g.,

250) increase the number and the complexity of alignment

instances. Therefore, even with fully utilized FPGA, FabP

still requires multiple iterations to process the alignment. This

results in a lower effective bandwidth for longer sequences.

Therefore, an FPGA with more LUTs can outperform the GPU-

based implementation. Our observation shows that for sequences

longer than ∼70, the resource utilization is the bottleneck of

computation; while for shorter sequences the bandwidth is the

limiting factor.

V. CONCLUSION

In this paper, we proposed a novel FPGA-based accelerator

for aligning back-translated protein sequences against a database

of DNA/RNA sequences. Our proposed back-translation and

encoding method leverages the FPGA characteristics to optimize

the alignment process. FabP is deeply optimized to fully utilize

the FPGA resources. Thanks to the sequential memory access,

it is able to fully utilize the memory bandwidth to maximize the

performance. Our evaluation shows that FabP outperforms the

state-of-the-art CPU-based alignment implementation by 24.8×
in performance and 266.8× in energy, respectively.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six centers

in JUMP, an SRC program sponsored by DARPA, in part

by SRC Global Research Collaboration (GRC) grant, DARPA

HyDDENN grant, and also NSF grants #2028040, #1730158,

#1911095, #2003279 and #1826967.

REFERENCES

[1] C. C. Liu, M. C. Jewett, J. W. Chin, and C. A. Voigt, “Toward an
orthogonal central dogma,” Nature chemical biology, vol. 14, 2018.

[2] W. Haque, A. Aravind, and B. Reddy, “Pairwise sequence alignment algo-
rithms: a survey,” in Proceedings of the 2009 conference on Information

Science, Technology and Applications, 2009.
[3] H.-C. Ng, S. Liu, and W. Luk, “Reconfigurable acceleration of genetic

sequence alignment: A survey of two decades of efforts,” in 2017 27th

International Conference on Field Programmable Logic and Applications

(FPL). IEEE, 2017.
[4] e. a. Neuwald, Andrew F, “Extracting protein alignment models from the

sequence database,” Nucleic Acids Research, vol. 25, 1997.
[5] C. E. Bronner, S. M. Baker, P. T. Morrison, G. Warren, L. G. Smith, M. K.

Lescoe, M. Kane, C. Earabino, J. Lipford, A. Lindblom et al., “Mutation
in the dna mismatch repair gene homologue hmlh 1 is associated with
hereditary non-polyposis colon cancer,” Nature, vol. 368, 1994.

[6] M. J. e. a. Scanlan, “Glycoprotein a34, a novel target for antibody-based
cancer immunotherapy.” Cancer immunity, vol. 6, 2006.

[7] e. a. Duwadi, Deepesh, “Identification and screening of potent antimicro-
bial peptides in arthropod genomes,” Peptides, vol. 103, 2018.

[8] T. F. Smith, M. S. Waterman et al., “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, 1981.

[9] W. R. Pearson, “Searching protein sequence libraries: comparison of the
sensitivity and selectivity of the smith-waterman and fasta algorithms,”
Genomics, vol. 11, 1991.

[10] e. a. Lodish, Harvey, Molecular cell biology. Macmillan, 2008.
[11] S. McGinnis and T. L. Madden, “Blast: at the core of a powerful and

diverse set of sequence analysis tools,” Nucleic acids research, vol. 32,
2004.

[12] E. M. Gertz, Y.-K. Yu, R. Agarwala, A. A. Schäffer, and S. F. Altschul,
“Composition-based statistics and translated nucleotide searches: improving
the tblastn module of blast,” BMC biology, vol. 4, 2006.

[13] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000 x acceleration on long read assembly,”
in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018.

[14] S. Salamat, B. Khaleghi, M. Imani, and T. Rosing, “Workload-aware op-
portunistic energy efficiency in multi-fpga platforms,” in 2019 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD). IEEE,
2019.

[15] C. Kachris and D. Soudris, “A survey on reconfigurable accelerators
for cloud computing,” in 2016 26th International conference on field

programmable logic and applications (FPL). IEEE, 2016.
[16] B. Khaleghi, S. Salamat, M. Imani, and T. Rosing, “Fpga energy

efficiency by leveraging thermal margin,” in 2019 IEEE 37th International

Conference on Computer Design (ICCD). IEEE, 2019.
[17] B. Qian and R. A. Goldstein, “Distribution of indel lengths,” Proteins:

Structure, Function, and Bioinformatics, vol. 45, 2001.
[18] K. Neininger, T. Marschall, and V. Helms, “Snp and indel frequencies

at transcription start sites and at canonical and alternative translation
initiation sites in the human genome,” PloS one, vol. 14, 2019.

[19] A. Al Kawam, S. Khatri, and A. Datta, “A survey of software and hardware
approaches to performing read alignment in next generation sequencing,”
IEEE/ACM transactions on computational biology and bioinformatics,
vol. 14, 2016.

[20] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic
local alignment search tool,” Journal of molecular biology, vol. 215, 1990.

[21] N. Homer, B. Merriman, and S. F. Nelson, “Bfast: an alignment tool for
large scale genome resequencing,” PloS one, vol. 4, 2009.

[22] e. a. McVicar, Nathaniel, “Fpga acceleration of short read alignment,”
arXiv preprint arXiv:1805.00106, 2018.

[23] W. Ye, Y. Chen, Y. Zhang, and Y. Xu, “H-blast: a fast protein sequence
alignment toolkit on heterogeneous computers with gpus,” Bioinformatics,
vol. 33, 2017.

[24] M. Yoshimi, C. Wu, and T. Yoshinaga, “Accelerating blast computation
on an fpga-enhanced pc cluster,” in 2016 Fourth International Symposium

on Computing and Networking (CANDAR). IEEE, 2016.
[25] M. Bekbolat, S. Kairatova, A. Shymyrbay, and K. Vipin, “Hblast: An

open-source fpga library for dna sequencing acceleration,” in 2019 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW). IEEE, 2019.
[26] T. Madden, “The blast sequence analysis tool,” in The NCBI Handbook

[Internet]. 2nd edition. National Center for Biotechnology Information
(US), 2013.

[27] “Ncbi protein database,” ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz.
[28] “Ncbi nucleotide database,” ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.
gz.

Design, Automation and Test in Europe Conference (DATE 2021) 827

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 18,2022 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

