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Using Fock–Goncharov higher Teichmüller space variables we derive log-canonical coordinate representation for entries

of general symplectic leaves of the An groupoid of upper-triangular matrices and, in a more general setting, of

higher-dimensional symplectic leaves for algebras governed by the reflection equation with the trigonometric R-matrix.

The obtained results are in a perfect agreement with the previously obtained Poisson and quantum representations of

groupoid variables for A3 and A4 in terms of geodesic functions for Riemann surfaces with holes. We realize braid-group

transformations for An via sequences of cluster mutations in the special An-quiver. We prove the groupoid relations for

normalized quantum transport matrices and, as a byproduct, obtain the Goldman bracket in the semiclassical limit. We

prove the quantum algebraic relations of transport matrices for arbitrary (cyclic or acyclic) directed planar network.

Dedicated to the memory of great mathematician and person Boris Dubrovin.

1 Introduction

1.1 Symplectic groupoid, induced Poisson structure on the unipotent upper triangular matrices

Let V denote an n-dimensional vector space, A be some subspace of bilinear forms on V . Fixing the basis in
V , one can identify A with a subspace in the space of n× n matrices. The matrix B of a change of a basis in
V takes a matrix of bilinear form A ∈ A to BABT.

Below we consider an important particular case when A is the space of unipotent forms identified with the
space of the unipotent matrices. The space of unipotent forms is equipped with a natural Poisson structure as
follows. The basis change B acts on A only if the product BABT is unipotent itself. We thus introduce the
space of morphisms identified with admissible pairs of matrices (B,A) such that

M =
�
(B,A)

�� B ∈ GL(V ), A ∈ A, BABT ∈ A
�
.

We then have the standard set of maps:

source s : M → A (B,A) → A,
target t : M → A (B,A) → BABT,
injection e : A → M A → (E,A),
inversion i : M → M (B,A) → (B−1, BABT),
multiplication m : M(2) → M

�
(C,BABT), (B,A)

�
→ (CB,A)
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such that the following diagram, where p1 and p2 are natural projections to the first and the second morphism
in an admissible pair of morphisms, is commutative:

M

M(2) A

M

sp2

p1 t

The crucial point of the construction is the existence of a symplectic structure: a smooth groupoid endowed
with a symplectic form ω ∈ Ω2M on the morphism space M that satisfies the splitting (consistency) condition
[28, 43]

m⋆ω = p⋆1ω + p⋆2ω,

which implies, in particular, that the source and target maps Poisson commute being respectively an
automorphism and an anti-automorphism of the initial Poisson algebra. Since p⋆1ω and p⋆2ω are nondegenerate,
they admit a (unique) Poisson structure, and because the immersion map e is Lagrangian, this Poisson structure
yields a Poisson structure on A.

Identifying A with An—the space of unipotent upper triangular matrices, in 2000, Bondal [3] obtained the
Poisson structure on An using the algebroid construction; assuming B = eg, we obtain the Bondal algebroid
using the anchor map DA to the tangent space TAAn

DA : gA → TAAn

g �→ Ag + gTA, A ∈ An,
(1.1)

where gA is the linear subspace

gA :=
�
g ∈ gln(C), |A+Ag + gTA ∈ An

�

of elements g leaving A unipotent.

Lemma 1.1. [3] The map

PA : T ∗
An

A → gA
w �→ P−,1/2(wA) − P+,1/2(w

TAT),
(1.2)

where P±,1/2 are the projection operators:

P±,1/2ai,j :=
1± sign(j − i)

2
ai,j , i, j = 1, . . . , n, (1.3)

and w ∈ T ∗An is a strictly lower triangular matrix, defines an isomorphism between the Lie algebroid (g, DA)
and the Lie algebroid (T ∗An, DAPA).

The Poisson bi-vector Π on An is then obtained by the anchor map on the Lie algebroid (T ∗An, DAPA)
(see Proposition 10.1.4 in [33]) as:

Π : T ∗
A
An × T ∗

A
An �→ C∞(An)

(ω1, ω2) → Tr (ω1DAPA(ω2))
(1.4)

It can be checked explicitly that the above bilinear form is in fact skew-symmetric and gives rise to the Poisson
bracket

{ai,k, aj,l} :=
∂

∂dai,k
∧

∂

∂daj,l
Tr (dai,kDAPA(daj,l)) , (1.5)

having the following form in components:

{ai,k, aj,l} = 0, for i < k < j < l, and i < j < l < k,

{ai,k, aj,l} = 2 (ai,jak,l − ai,lak,j) , for i < j < k < l, (1.6)
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{ai,k, ak,l} = ai,kak,l − 2ai,l, for i < k < l,

{ai,k, aj,k} = −ai,kaj,k + 2ai,j , for i < j < k,

{ai,k, ai,l} = −ai,kai,l + 2ak,l, for i < k < l.

Another approach to this Poisson structure as a Dirac bracket on the subset of a natural involution in the dual
group was developed in [2], see Appendix A.

This bracket turned out to coincide with the bracket previously known in mathematical physics as Gavrilik–
Klimyk–Nelson–Regge–Dubrovin–Ugaglia bracket [23, 35, 36, 15, 42] and it arises from skein relations satisfied
by a special finite subset of geodesic functions (traces of monodromies of SL2 Fuchsian systems, which are
in 1-1 correspondence with closed geodesics on a Riemann surface Σg,s) described in [7]; a simple constant
log-canonical bracket on the space of Thurston shear coordinates zα on the Teichmüller space Tg,s of Riemann
surfaces Σg,s of genus g with s = 1, 2 holes was shown [6] to induce the above bracket on a special subset of
geodesic functions identified with the matrix elements ai,k.

Recall that coordinates {xi}ni=1 on an n-dimensional Poisson variety are called log-canonical if the Poisson
structure written in such coordinates is log-canonical: i.e., {xi, xj} = λijxixj , or, equialently, {log(xi), log(xj)} =
λij , where (λij)

n
i,j=1 is a constant skew-symmetric rational matrix.

All such geodesic functions admit an explicit combinatorial description [16], which immediately implies that
they are Laurent polynomials with positive integer coefficients of ezα/2. The algebra of Casimirs of the Poisson
bracket has s generators c1, . . . , cs, which are independent linear combinations of shear coordinates incident
to the holes. The linear subspace of the vector space span{zα} orthogonal to the subspace span{c1, . . . , cs}
parametrizes a symplectic leaf in the Teichmüller space which we call a geometric symplectic leaf.

In [7], the Poisson embedding of a geometric symplectic leaf into An was constructed. Note however that
the size n of matrix A is related to the genus and the number of holes as n = 2g + s (with s taking only
two values, 1 and 2) and that the (real) dimension of Tg,s is 6g − 6 + 3s increasing linearly with g whereas
the total dimension of An is obviously n(n− 1)/2 increasing quadratically with n; for n = 3 and n = 4 these
two dimensions coincide and the geometric symplectic leaf having the dimension 6g − 6 + 2s is of maximum
dimension.

For n = 5, the dimension of the geometric symplectic leaf has still the maximum value 8 of dimensions
of symplectic leaves in A5, but we have just one central element in the corresponding Teichmüller space T2,1

and two central elements in A5. For all larger n the dimension of geometric symplectic leaf is strictly less than
the maximal dimension of symplectic leaf in An, so the geometric systems do not describe maximal symplectic
leaves in the total Poisson space of An.

The log-canonical coordinates in geometric situation are well known to be the above shear coordinates,
but, as just mentioned, they can not help in constructing log-canonical coordinates in An for n ≥ 5.

The first problem addressed in this publication is a construction of log-canonical coordinates for a
general symplectic leaf of An and explicit expressions of matrix elements ai,j in terms of these log-canonical
coordinates. It was expected for long, and we show below that these log-canonical coordinates are related to
cluster algebras, similar to the geometric cases n = 3, 4. More exactly, Fock and Goncharov described in [17]
the space of parameters {Zα} defining an element (of Borel subgroup B) of SLn equipped with the Poisson
structure (see details in Section 2.3). We construct a Poisson map B → An. Poisson structure in Fock-Goncharov
coordinates has the log-canonical form {logZα, logZβ} = λαβ , are described by the corresponding An-quiver,
see for example Figure 13. Parameters Zα’s are attached to the vertices of An-quiver: for two vertices α and β
the corresponding constant λα,β equals the number of arrows from α to β minus the number of arrows from β
to α. Canonical Darboux coordinates can be obtained as rational linear combinations of logZα’s. In particular,
generators of algebra of Casimirs are obtained as monomials in Zα’s.

From the integrable models standpoint, algebras (1.6) (either with a unipotent A or with a general
Agen ∈ gln are known under the name of reflection equation algebras. A task closely related to the first problem is
to construct a log-canonical coordinate representation for a general matrix Agen enjoying the reflection equation.

We also define a quantized symplectic groupoid utilizing explicit construction of (normalized) quantum
transport matrices. Both normalized and non-normalized quantum transport matrices satisfy standard RTT =
TTR relations. We prove additionally that normalized transport matrices enjoy quantum groupoid relations [11].

1.2 Braid-group action on the unipotent matrices

The next important result concerning An is that this space admits the discrete braid-group action generated
by morphisms βi,i+1 : An → An, i = 1, . . . , n− 1, such that

βi,i+1[A] = Bi,i+1AB
T
i,i+1 ≡ �A ∈ An, (1.7)
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where the matrix Bi,i+1 has the block form

Bi,i+1 =

...
i

i + 1
...




1
. . .

1
ai,i+1 −1
1 0

1
. . .

1




, (1.8)

and this action is a Poisson morphism [3], [42]. When acting on A, βi,i+1 satisfy the standard braid-
group relations βi,i+1βi+1,i+2βi,i+1A = βi+1,i+2βi,i+1βi+1,i+2A for i = 1, . . . , n− 2 together with the additional
relation βn−1,nβn−2,n−1 · · ·β2,3β1,2A = SnA, where Sn is an element of the group of permutations of matrix
entries ai,j whose nth power is the identity transformation. Note that β2

i,i+1A �= A.
In [8], the quantum version of the above transformations was constructed for a quantum upper-triangular

matrix

A� :=




q−1/2 a�1,2 a�1,3 . . . a�1,n
0 q−1/2 a�2,3 . . . a�2,n

0 0 q−1/2 . . .
...

...
...

. . .
. . . a�n−1,n

0 0 . . . 0 q−1/2



. (1.9)

In the geometric cases n = 3, 4 elements ai,j are identified with geodesic functions—traces of monodromy
elements of Fuchsian systems and double hyperbolic cosines of half-lengths of geodesics on a Riemann surface;
these elements were identified with “observables” in physical literature on 2D gravity thus being, by postulates
of quantum mechanics, self-adjoint operators. Kashaev in [29] found presentation of the quantum elements
a�i,j self-adjoint unbounded operators acting in the dense subspace of a Hilbert space H of L2

�
Rd

�
and made

an extensive analysis of their spectrum; note that, even in a non-geometrical case, all these operators have
continuous spectrum [2,∞). This postulate is consistent with the quantum algebra of these operators and with
their quantum modular transformations (Dehn twists in the geometrical case). However, if we want to express

these modular transformations in the matrix form A� → B�A�
�
B�

�†
, we have to require [8] all diagonal elements

of A� to be non-selfadjoint constant operators q−1/2.
We assume that a�i,j are self-adjoint unbounded operators for larger n > 4 also. This statement is shown in

Corollary 4.3 to follow from the expression (4.1) for A� in terms of quantum Fock-Goncharov parameters Z�
α.

Operators a�i,j are enjoying quadratic–linear algebraic relations following from the quantum reflection
equation (see Theorem 4.2) and coinciding with the relations obtained for quantum geodesic functions upon
imposing quantum skein relations on the corresponding geodesics and q = e−i�. The analogous quantum braid-

group action is A� → B�
i,i+1A

�
�
B�

i,i+1

�†
with

B�

i,i+1 =

...
i

i+ 1
...




1
. . .

1
q1/2a�i,i+1 −q

1 0
1

. . .

1




, (1.10)

In the geometric cases, the above braid-group morphisms are related to modular transformations generated
by (classical or quantum [29]) Dehn twists along geodesics corresponding to the geodesic functions ai,i+1 (see
[7]). In the absence of geometric interpretation, the only possibility we may resort to is to address the second
problem: to find a sequence of cluster mutations in a quiver still to be constructed that produces the above
braid-group transformation for a generic symplectic leaf of An.
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We solve both of the formulated problems in this paper: we explicitly construct the quiver (called an An-
quiver) such that the entries ai,j of the unipotent matrix A are positive Laurent polynomials of the cluster
quiver variables, construct a quantum version of these Laurent polynomials thus realizing the representation
(1.9) and finding explicitly chains of mutations of the An-quiver that produce the braid-group transformations.

1.3 Results of the paper

Below we list the main results of the paper divided into three groups.

1.3.1 Results on a special PGLn Fock–Goncharov–Shen quiver for Σ0,1,3

For a triangular network corresponding to monodromies on the disc with three marked points on the boundary,
we established the following results.

• Theorem 2.12 establishes R-matrix commutation relations for normalized transport matrices M1 and M2

of the PGLn-quiver.
• Theorem 2.14 contains the proof of the groupoid condition T3T2T1 = Id for quantum transport matrices
Ti in the triangular network of Σ0,1,3. This condition can be easily generalized to PGLn-monodromies on
any Riemann surface Σg,s,n with n > 0.

• In Theorem 3.1 we show that a corollary of Theorem 2.12 establishes quantum Goldman commutation
relations for monodromy matrices corresponding to graph-simple paths in the fat graph dual to the triangle
decomposition of Σg,s,n.

1.3.2 Results on a symplectic groupoid of upper-triangular matrices and algebras of quantum reflection equation

• Theorem 4.2: For any n× 2n quantum transport matrix composed out of two (nonnormalized) n× n
matrices M1 and M2, their combination A� := MT

1 M2 satisfies the quantum reflection equation

Rn(q)
1

A�Rt1
n (q)

2

A� =
2

A�Rt1
n (q)

1

A�Rn(q).
• If we identify n× 2n quantum transport matrix with that of the PGLn-quiver, A� becomes upper
triangular, and we construct a special (nonplanar) An quiver corresponding to it. Lemma 5.5 describes a
special sequence of Y -variable cluster mutations of this quiver that leaves invariant the form of this quiver
acting therefore by an automorphism on its variables. We prove in Theorem 5.6 that these automorphisms
are braid-group transformations on the entries ai,j of a classical A-matrix. We leave constructing quantum
version of these automorphisms to future studies.

• In a separate Section 6 we describe Casimir operators of the general PGLn-quiver and those of the
An-quiver.

1.3.3 Results on general quantum directed networks

• The most general statement is Theorem 8.3 establishing quantum algebra of elements of a transport matrix
of any planar network, with or without cycles.

• In Lemma 7.16 we prove R-matrix commutation relations Rm(q)
1

Qq ⊗
2

Qq =
2

Qq ⊗
1

QqRn(q) valid for the
quantum transport matrix Qq of any acyclic planar network with separated n sources and m sinks. Here
Rk(q) is the quantum trigonometric R-matrix (2.17) of size k2 × k2.

• For an oriented acyclic graph embedded in the disk we develop the theory of quantum measurements
parallel to the theory of commutative Grassmann measurements by A.Postnikov. We proved that the
quantum Grassmann measurement does not change under orientation reversing of rigid oriented path.
This establishes groupoid relations (see Theorem 2.14) for normalized quantum transport matrices.

The structure of the paper is as follows:
In Sec. 2, we describe quantum algebras of transport matrices in the Fock–Goncharov PGLn-quiver

(Theorem 2.12); this quantum algebra is based on a more general Lemma 7.16 proven in Sec. 7 for any
planar (acyclic) directed network. We also prove the groupoid condition (Theorem 2.14) satisfied by normalized
quantum transport matrices in the PGLn-quiver as a corollary of the fact that quantum Grassmannian
measurement map does not change under reversion of orientation of a rigid path (see Lemma 7.14).

In Sec. 3, we briefly describe general algebraic relations enjoyed by (normalized) quantum transport matrices
for SLn character variety on a general triangulated Riemann surface Σg,s,p with p > 0 marked points on the
hole boundaries; namely we demonstrate that quantum Goldman relations are satisfied.
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Section 4 contains the first main result: out of cluster variables of the PGLn-quiver we construct a unipotent
A satisfying the quantum reflection equation (Theorem 4.2). We generalize this construction to solutions of
quantum reflection equation that are not necessarily unipotent (Theorem 4.5).

Taking the semiclasical limit of Theorem 4.5 we observe in Theorem 5.1 that Fock-Goncharov parameters
provide log-canonical coordinates for the Poisson bracket (1.5).

In Sec. 5, we associate the unipotent A constructed in the preceding section with a special An-quiver and
prove that special sequences of mutations at vertices of this quiver generate braid-group transformations of
elements of A (Theorem 5.6).

In Sec. 6, we collect statements about Casimir elements of PGLn- and An-quivers.
In Sec. 7 we consider quantum transport matrices for general acyclic planar directed networks, establish

the relation to Postnikov’s quantum Grassmannians and measurement maps, and prove the general R-matrix
relation for the corresponding quantum transport matrices (Lemma 7.16).

In Sec. 8, we generalize the results of Sec. 7 to arbitrary planar directed network (relaxing the acyclicity
condition) showing in Theorem 8.3 that quantum transport elements in any such network satisfy the same closed
algebraic relations as elements of an acyclic planar directed network.

Section 9 is a brief conclusion.

2 SLn-algebras for the triangle Σ0,1,3

Let Σg,s,p denote a topological genus g surface with s boundary components and pmarked points. In this section,
we concentrate on the case of the disk with 3 marked points on the boundary Σ0,1,3. (To simplify notations, we
use Σ = Σ0,1,3.)

2.1 Quantum torus and (quantum) cluster mutations

Let lattice Λ = Zm be equipped with a skew-symmetric Z/2-valued form �·, ·�. Introduce the q-multiplication

operation in the module Υ = Span{Zλ}λ∈Λ over the ring k[q±
1
2 ] by the following formula

ZλZµ = q�λ,µ�Zλ+µ. (2.1)

The algebra Υ is called a quantum torus. Fix a basis {ei} in Λ, we consider Υ as a non-commutative algebra
of Laurent polynomials in variables Zi := Zei , i ∈ [1,m]. For any sequence s = (s1, . . . , st), sj ∈ [1,m], let Πs

denote the monomial Πs = Zs1Zs2 . . . Zst . Let λs =
�t

j=1 esj . Element Zλs
is called in physical literature the

Weyl form of Πs and we denote it by two-sided colons
•

•Πs•
• It is easy to see that

•

•Πs•
• = Zλs

= q−
∑

j<k�esj ,esk �Πs.

Below we need to consider also an extension Υ
1
n of Υ that contains n-th roots Z

1
n

i for a fixed n. We replace

Λ by 1
nΛ = Λ ⊗ 1

nZ. Let Υ
1
n be an k[q±

1

2n2 ]-module spanned by 1
nΛ with the same commutation relations

ZλZµ = q�λ,µ�Zλ+µ as before. Weyl ordering is naturally extended to elements of Υ
1
n . Υ is naturally embedded

in Υ
1
n .
In what follows, a fractional power of Zi means an element of Υ

1
n .

2.2 Positive representation of quantum torus Υ

Let Zj = Z(ej), i = 1 . . .m be generators of quantum torus Υ as above, b ∈ R, ωjk = �ej , ek�. An associated
topological ∗-Heisenberg algebra H is an algebra over C with generators xj satisfying [xj , xk] =

1
2πiωjk. Here ∗

acts as a antiholomorphic, involutive antiisomorphism mapping z ∈ C to z̄, ∗b = b, ∗xj = xj . Then, expressions

Zj = e2πbxj and q = eπib
2

define an embedding of quantum torus into Heisenberg algebra Υ →֒ H.
Denote by ΛR = Λ⊗R, and by k ⊂ ΛR the kernel of the form �∗, ∗�. A central character χ ∈ Λ∗

R
determines

an irreducible ∗-representation Vχ where xj act by unbounded operators in the Hilbert space and a central
element k ∈ k acts by scalar χ(k). More exactly, let us pick a symplectic basis {pi, qi} in ΛR/k and set Λχ to
be the Hilbert space of L2-functions on the Lagrangian subspace in ΛR/k spanned by qis. Operators qj act
by multiplication while pj act as 1

2πi∂/∂qj. Different choices of symplectic basis lead to unitary equivalent
realizations of Vχ. All Zj act by positive, essentially self-adjoint, unbounded operators [26, 40].

In particular, the n-th root Z
1
n

j is a well defined unique positive essentially self-adjoint operator, q
1

2n2 =

exp(πib
2

2n2 ). Hence, the Weyl ordering of monomial
•

•

�
α Z

tα
n

α •

• = exp( 1n
�

α tαxα) is well defined and coincides

with
•

•

�
α Ztα

α •

•

1
n for all tα ∈ Z.

We recall the definition of quantum mutations of Υ.
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Definition 2.1. A cluster seed σ is a quadruple σ = (Λ, � , �, {ei}, I0) where

• Λ is a lattice
• I0 ⊂ [1, rank(Λ)]
• {ei} is a basis of Λ
• � , � is a skew-symmetric Z/2-valued form on Λ and ωij = �ei, ej� ∈ Z unless (i, j) ∈ I0 × I0.

Definition 2.2. For k ∈ [1, rank(Λ)] the cluster mutation µk transforms the seed σ to the seed µk(σ) by the
basis change {ei} to {e′i = µk(ei)}, where e′i = −ek, if i = k; and e′i = ei + [ωik]+ek, otherwise.

Recall the compact quantum dilogarithm function Ψq(z) =
�∞

i=1

1

1 + q2i+1z
.

The mutation µk induces an automorphism AdΨq(X
e
′

k
) of the fraction field Frac(Υ). Despite that Ψq(z)

is an infinite series its properties imply that AdΨq(X
e
′

k
) is a rational transformation. Namely, µq

k(Xk) = X−1
k ,

µq
k(Xi) = Xi

�ωki

ℓ=1

�
1 + q2ℓ−1X−1

k

�−1
if i �= k and ωki ≥ 0 and µq

k(Xi) = Xi

�−ωki

ℓ=1

�
1 + q2ℓ−1Xk

�
if i �= k and

ωki ≤ 0 which become the classical commutative mutation formulas for q = 1.

2.3 Moduli space XPGLn,Σ(R>0)

In this section we review the definition of quantized moduli space XPGLn,Σ of framed PGLn-local systems
on the disk with three marked points Σ ([17]). We call disk with three marked points 1, 2, 3 on its boundary
triangle with vertices 1, 2, 3 and use also notation △123 = Σ (see Fig 6) when we want to distinguish the roles
of particular sides and vertices.

A framed PGLn-local system on Σ is defined in [17] as a triple of flags in Rn. If the flags are pairwise
in general position the framed PGLn-local system in the triangle △123 (see Figure 1) determines transport

matrices �Ti. If �Ti is associated to a directed path then the inverse matrix
�
�Ti

�−1

corresponds to the same path

in the opposite direction.
Recall that a complete flag F• is a collection of consecutively embedded subspaces {0 = F0 ⊂ F1 ⊂

· · · ⊂ Fk ⊂ · · · ⊂ Fn−1 ⊂ Fn = Rn} where Fk is a linear subspace of dimension k. Denote by F a = Fn−a,
a = 0, 1, . . . , n, the vector subspace of codimension a. Let (F1)•, (F2)•, (F3)• be three complete flags in general
position in Rn assigned to the vertices 1, 2, 3 of triangle △123 (see Fig. 1).

Z111

1 2

3

�T3
�T2

�T1

Fig. 1. Fock-Goncharov parameters for XSL3,Σ. Arrows shows the direction of transport matrices T̂1, T̂2, T̂3.

Consider the subtriangulation of △123 into
�
n
2

�
white upright triangles and

�
n−1
2

�
black upside-down

triangles. Label all white upright triangles by triples {(a, b, c)|a, b, c ≥ 0& a+ b+ c = n− 1}. Each white
triangle (a, b, c) corresponds to a line ℓabc = (F1)

a ∩ (F2)
b ∩ (F3)

c. Similarly, label black upside-down triangles
by triples {(a, b, c)|a, b, c ≥ 0& a+ b+ c = n− 2}. Each upside-down triangle (a, b, c) is associated with the
plane Pabc = (F1)

a ∩ (F2)
b ∩ (F3)

c. Note that every plane Pabc of a black triangle contains all three lines
ℓ(a+1)bc, ℓa(b+1)c, ℓab(c+1) of white triangles which are neighbors of the black one. In Figures 2, 3, 5 we draw
gray triangles with vertices ℓ(a+1)bc, ℓa(b+1)c, ℓab(c+1). Each such gray triangle corresponds to the plane Pabc.
For every such plane Pabc choose three vectors v(a+1)bc ∈ ℓ(a+1)bc, va(b+1)c ∈ ℓa(b+1)c, vab(c+1) ∈ ℓab(c+1) such
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that they satisfy condition v(a+1)bc = va(b+1)c + vab(c+1). Hence, given a configuration of lines corresponding
to triple of flags ((F1)•, (F2)•, (F3)•), the choice of one vector vabc ∈ ℓabc determines uniquely all other vectors
in the lines ℓa′b′c′ for all (a

′b′c′) (see Fig. 2).
Thus, the configuration of lines ℓabc determines projective collection of vectors {vabc} modulo scalar scaling.

Note that exactly two vectors at vertices of any gray triangle are independent.
Define a snake as an oriented piecewise linear path running downwards from the top black triangle containing

the line ℓ00n−1 to a bottom black triangle containing ℓab0 consisting of sides of gray triangles (for example, bold
red path in Fig 2).

ℓ002

ℓ011ℓ101

ℓ020ℓ110ℓ200

P001

P010P100

Fig. 2. Configuration of lines corresponding to triple of flags in R3. Black triangles are equipped with planes
Pabc. Plane P100 contains lines ℓ200, ℓ110, ℓ101, P010 contains lines ℓ110, ℓ020, ℓ011, P001 contains lines ℓ101, ℓ011, ℓ002.
Vectors vabc ∈ ℓabc satisfy relations v101 = v002 + v011,v200 = v101 + v110,v110 = v011 + v020. The bold red broken
line indicates a snake.

Any snake defines a projective basis vα1
, . . . ,vαn of Rn. Note that choosing another corner of triangle as a

top one leads to different choice of projective basis. In particular, if the basis defined by the only snake running
from ℓ00n−1 to ℓn−100 is vα1

, . . . ,vαn then the basis defined by the only snake in the opposite direction from
ℓn−100 to ℓ00n−1 is vαn ,−vαn−1

. . . , (−1)n−1vα1
.

Denote by bp the basis defined by snake p. Let b32 be the basis defined by the unique snake from ℓ00n−1

to ℓ0n−10 in the triangle △123 and by b13 the basis defined by the snake ℓn−100 to ℓ00n−1 (see Figure 3). The
bases take the following form b32 = (v002,v101,v020), the basis b13 = (v200,−v101,v002).

1 2

3

Fig. 3. Snakes b32 on the right and b13 on the left.

Note that such construction identifies each inner vertex of barycentric subdivision (i, j, k), i, j, k ∈
Z>0, i+ j + k = n with three-dimensional vector subspace W space spanned by the three lines ℓi−1,j,k, ℓi,j−1,k,
and ℓi,j,k−1. By construction, W contains three planes Pi−1,j−1,k = span{ℓi−1,j,k, ℓi,j−1,k}, Pi−1,j,k−1 =
span{ℓi−1,j,k, ℓi,j,k−1}, and Pi,j−1,k−1 = span{ℓi,j−1,k, ℓi,j,k−1}, and lines ℓi−1,j−1,k+1 ⊂ Pi−1,j−1,k,
ℓi−1,j+1,k−1 ⊂ Pi−1,j,k−1, ℓi+1,j−1,k−1 ⊂ Pi+1,j−1,k−1 also lie in W . Projectively, we obtain a plane with
three lines and three points (one point on each line). It is well known that such projective configuration is
described by one projective invariant parameter. These projective invariant parameters form Fock-Goncharov
coordinates Zi,j,k inside triangle i, j, k ∈ Z>0, i+ j + k = n (see Figure 1). Zi,j,k parametrize change of basis
corresponding to snakes under elementary snake transformations.
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In what follows we restrict ourselves only to positive parameters Zi,j,k. It is well known [17] that the
choice of positive Fock-Goncharov parameters is compatible with flipping surface triangulations and describes
one connected component XPGLn,Σ(R>0) of the moduli space of framed PGLn-local systems called higher
Teichmüller space. Such restriction determines, in particular, the canonical (positive) choice of n-th root of any
monomial in Zijk.

Let br,bb,bg be the bases corresponding to red, blue, and green snakes on Figure 4. Then, L2 =



1 0 0
0 1 0
0 1 1




is a transformation matrix from br to bb; L1H2(Z111) is a transformation matrix from bb to bg, where

L1 =



1 0 0
1 1 0
0 0 1


, H2(Z111) =



Z

−1/3
111 0 0

0 Z
−1/3
111 0

0 0 Z
2/3
111


, S =



0 0 1
0 −1 0
1 0 0


.

H2(Z111)

L1

L2

Fig. 4. Snakes br (red) ,bb (blue) and bg (green) .

Define �T1 ∈ SLn as the transformation matrix from basis b13 to b32, namely, i-th column of �T1 is [(b13)i]b32
,

i.e. coordinate vector (b13)i with respect to basis b32. It is factorizable in a product of elementary basis changes
corresponding to the following left-to-right sequence of snake transformations.

L2 L1H2(Z111) L2 S

Fig. 5. Sequence of elementary snake moves factorizing transport matrix T̂1

Note that both b32 and b13 are projective bases defined up to the same multiplicative scalar, because, in
particular, each of these two bases contains either v00n or −v00n. Hence, the transformation matrix �T1 does not
depend on the choice of this scalar and is well defined as an element of SLn. To define a �T2 ( �T3 ) we rotate the

triangle △123 by 2π/3 (4π/3) counterclockwise and then use the rule for �T1.

2.4 Moduli space of pinnings PPGLn,Σ(R>0) and transport matrices.

Next we will add some additional parameters to the sides of △123 and obtain modified versions Ti of
transport matrices �Ti. We recall the moduli space of pinnings PPGLn,Σ introduced by Goncharov and Shen in [26].
Let (B,B−) be a generic pair of flags. Let U = [B,B] and U− = [B−, B−] be maximal unipotent subgroups. Let
xi : A

1 → U be a unipotent subgroup associated to the simple root αi. Equivalently, the choices of x1, . . . , xn−1

determine an additive isomorphism (χ1, . . . , χn−1) : U/[U,U ] ≃ An−1 , χi(xj(a)) =

�
a, if i = j

0, , if i �= j.

Let yi : A
1 → U− be a unipotent subgroup associated to the simple root −αi.
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3

21
M1

M2

Fig. 6. Triangle △123.

Definition 2.3. The datum p = (B,B−, xi, yi, i ∈ [1, n− 1]) is called a pinning over (B,B−) if it gives rise

to a homomorphism γi : SL2 → PGLn for each i ∈ [1, n− 1] such that γi

��
1 a
0 1

��
= xi(a), γi

��
1 0
a 1

��
=

yi(a), γi

��
a 0
0 a−1

��
= α∨

i (a), where α∨
i is a simple positive coroot.

PPGLn,Σ extends XPGLn,Σ assigning a pinning to each side of the triangle Σ, hence equipping each oriented
side of triangle Σ with additional Cartan element. This Cartan element can be parametrized by assigning one
parameter Zi,j,k to each of n− 1 vertices of barycentric subdivision on the corresponding side. More exactly, we
add Zi,j,k, i = 0, j + k = n, j, k ∈ Z>0, Zi,j,k, j = 0, i+ k = n, i, k ∈ Z>0, and Zi,j,k, k = 0, i+ j = n, i, j ∈ Z>0

shown on Figure 7 (see [26] for details). Pinning of sides allows an amalgamation of two sets of parameters
for two different triangles creating the set of parameters describing moduli space PPGLn,O where O is the
quadrangle obtained by gluing of two triangles along the common side. Amalgamation identifies two tuples of
n− 1 vertices of the baricentric subdivisions of the common sides in two glued triangles. In the case when such
vertex α1 of the first triangle is glued to vertex α2 of the second triangle forming vertex α of the common
subtriangulation we have Zα = Zα1

Zα2
. Note that by our agreement the parameters in different triangles

commute and Zα1
Zα2

=
•

•Zα1
Zα2•

•.

Z111

Z012Z102

Z021Z201

Z120Z210

1 2

3

Fig. 7. Fock-Goncharov parameters for PPGL3,Σ. Arrows shows the direction of transport matrices T̂1, T̂2, T̂3.

Define transport matrix T1 as �T1 precomposed and postcomposed with multiplications by diagonal matrices
defined by the pinnings on the sides 3− 2 and 1− 3, which can be thought as elements of SLn for PGLn(R>0).
In terms of Zijk transport matrix takes form (2.3). Similarly, we define the transport matrix T2 as similar
transformation matrix from side 2− 3 to 1− 2 and T3 as transformation from 2− 1 to 1− 3.

Finally, denote
M1 = T1,M2 = T−1

2 (see Fig. 6). (2.2)

Matrix M1 is an upper-anti-triangular matrix and M2 is a lower-anti-triangular matrix (see Example 2.7).
The expressions for classical transport matrices were first found in [19], (see also [14] Appendix A.2).
Let u(k) = {0, k < 0, and 1, k ≥ 0} denote the integer step function.

Definition 2.4. Define n× n matrices

1. (S)ij = (−1)i−1δi,n+1−j .

2. Hk(t) = t−
n−k
n diag(tu(1−k−1), tu(2−k−1), . . . , tu(n−k−1)),
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3. Ȟk(t) = SHk(t)S
T = t−

n−k
n diag(tu(n−k−1), . . . , tu(2−k−1), tu(1−k−1)),

4. Ek, where (Ek)i,j = δk+1,i · δk,j is the matrix whose only nonzero element is 1 at the position (k + 1, k).
5. Lk = Idn +Ek for k ∈ [1, n− 1] where Idn is the identity n× n matrix.

Remark 2.5. Note that ST = S−1

Then,
T1 = H13

out · �T1 ·H
32
in , where (2.3)

H13
out =

n−1�

j=1

Ȟn−j(Zn−j,0,j) is the diagonal matrix induced by the pinning of the side 1− 3; (2.4)

H32
in =

n−1�

j=1

Hj(Z0,j,n−j) is the diagonal matrix induced by the pinning of the side 3− 2; (2.5)

�T1 =S Ln−1

n−2�

p=1

� p�

q=1

Ln−q−1Hn−q(Zp,q,n−p−q)
�
Ln−1 is the transformation matrix from b13 to b32. (2.6)

Equally, the transport matrix can be written as

T1 =S
�n−1�

j=1

Hn−j(Zn−j,0,j)
�
Ln−1

n−2�

p=1

� p�

q=1

Ln−q−1Hn−q(Zp,q,n−p−q)
�
Ln−1

�n−1�

j=1

Hj(Z0,j,n−j)
�
. (2.7)

Here, H31
out =

��n−1
j=1 Hn−j(Zn−j,0,j)

�
and H13

out satisfy relation H13
out = SH31

outS
T .

Let I = {(a, b, c)|a, b, c ∈ Z≥0, a+ b+ c = n} be the set of barycentric indices in the triangle with side n, τ :
I → I be the clockwise rotation by 2π/3, τ acts naturally on the sequences of barycentric parameters and hence
on sequences of Fock-Goncharov parameters: for Z = (Zα1

, . . . , Zαk
) the sequence τZ = (Zτ(α1), . . . , Zτ(αk)), if

O(Z) is an object depending on the collection Z = (Zαi)
k
i=1 of Fock-Goncharov parameters then τO = O(τZ).

Note that T2 = τT1, T3 = τ2T1 (see Fig. 1). The transport matrix M2 = (τM1)
−1

.

Example 2.6. For n = 3, we have H1(t) =



t−2/3 0 0

0 t1/3 0
0 0 t1/3


, H2(t) =



t−1/3 0 0

0 t−1/3 0
0 0 t2/3


,

L1 =



1 0 0
1 1 0
0 0 1


, L2 =



1 0 0
0 1 0
0 1 1


, S =



0 0 1
0 −1 0
1 0 0


.

Transport matrices T1 from side 1− 2 to side 1− 3, T2 from side 2− 3 to side 2− 1 and T3 from side 3− 1
to side 3− 2 (see Fig. 1) have the following form

M1 = T1 = SH2(Z201)H1(Z102)L2L1H2(Z111)L2H1(Z012)H2(Z021)

T2 = SH2(Z012)H1(Z021)L2L1H2(Z111)L2H1(Z120)H2(Z210)

T3 = SH2(Z120)H1(Z210)L2L1H2(Z111)L2H1(Z201)H2(Z102).

M1 =




Z
−1/3
021 Z

1/3
102Z

−1/3
111 Z

−2/3
012 Z

2/3
201 Z

−1/3
021 Z

1/3
102 (Z

−1/3
111 + Z

2/3
111 )Z

1/3
102Z

2/3
201 Z

2/3
021Z

1/3
102Z

2/3
111Z

1/3
012Z

2/3
201

−Z
−1/3
021 Z

−1/3
102 Z

−1/3
111 Z

−2/3
012 Z

−1/3
201 −Z

−1/3
021 Z

−1/3
102 Z

−1/3
111 Z

1/3
012Z

−1/3
201 0

Z
−1/3
021 Z

−2/3
102 Z

−1/3
111 Z

−2/3
012 Z

−1/3
201 0 0


,

Finally, M2 = T−1
2 . We can easily factorize M2 in the product of elementary matrices noting that

S−1 = (−1)n−1S, Hk(t)
−1 = Hk(t

−1) = SHn−k(t)S, L
−1
k = Idn −Ek = SLT

n−kS, where LT
j is the transpose of

matrix Lj . Then,

M2 = H2(Z210)
−1H1(Z120)

−1L−1
2 H2(Z111)

−1L−1
1 L−1

2 H1(Z021)
−1H2(Z012)

−1S−1

= SH1(Z210)SSH2(Z120)SSL
T
1 SSH1(Z111)SSL

T
2 SSL

T
1 SSH2(Z021)SSH1(Z012)SS(−1)n−1
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= (−1)n−1SH1(Z210)H2(Z120)L
T
1 H1(Z111)L

T
2 L

T
1 H2(Z021)H1(Z012)

= STH1(Z210)H2(Z120)L
T
1 H1(Z111)L

T
2 L

T
1 H2(Z021)H1(Z012).

M2 =




0 0 Z
1/3
210Z

1/3
111Z

1/3
012Z

2/3
120Z

2/3
021

0 −Z
1/3
210Z

1/3
111Z

1/3
012Z

−1/3
120 Z

−1/3
021 −Z

1/3
210Z

1/3
111Z

1/3
012Z

−1/3
120 Z

2/3
021

Z
−2/3
210 Z

−2/3
111 Z

−2/3
012 Z

−1/3
120 Z

−1/3
021 Z

−2/3
210 (Z

−2/3
111 + Z

1/3
111 )Z

1/3
012Z

−1/3
120 Z

−1/3
021 Z

−2/3
210 Z

1/3
111Z

1/3
012Z

−1/3
120 Z

2/3
021




To obtain normalized quantum transport matrices we expand all entries of classical transport matrix Mi

in the sum of monomials mj(Zα) and replace all mj by the corresponding Weyl form
•

•mj•
• . For instance, the

(1, 2)-entry of quantum M1 becomes

(M1)12 =
•

•Z
−1/3
021 Z

1/3
102Z

−1/3
111 Z

1/3
102Z

2/3
201 •

• +
•

•Z
−1/3
021 Z

1/3
102Z

2/3
111Z

1/3
102Z

2/3
201 •

•

In Section 2.5 we generalize this construction to non-normalized quantum transport matrices defined for
more general class of planar quivers.

Example 2.7. A toy example is the one in which all Zα are the units. Matrix entries then just count numbers
of monomials entering the corresponding matrix elements ai,j ∈ (−1)i+1Z≥0[[Z

±1
α ]]. Then, for the M1 matrix,

we have the following representation:

M1 =




1 2 1
−1 −1 0
1 0 0


 ,




1 3 3 1
−1 −2 −1 0
1 1 0 0

−1 0 0 0


 , etc, (2.8)

that is, (M1)ij = (−1)i+1
�
n−i
j

�
for PGLn. We introduce the antidiagonal unit matrix |S| = (δi,n+1−j)

n
i,j=1 (to

distinguish it from Sij = (−1)i+1δi,n+1−j).
For M2 we have

M2 = M2
1 =




0 0 1
0 −1 −1
1 2 1


 ,




0 0 0 1
0 0 −1 −1
0 1 2 1

−1 −3 −3 −1


 , etc (2.9)

A riddle-thirsty reader can check the following relations between these matrices:

M2
1 = M2 = (−1)n+1|S| ·M1 · |S|, M3

1 = (−1)n+1[|S| ·M1]
2 = (−1)n+1I

MT
1 M2 = A =




1 3 3
0 1 3
0 0 1


 ,




1 4 6 4
0 1 4 6
0 0 1 4
0 0 0 1


 , etc (2.10)

that is (A)ij =
�

n
j−i

�
.

2.5 Quantum transport matrices and Fock-Goncharov coordinates

In this section we describe how quantized transport matrices are expressed in terms of quantized Fock-Goncharov
parameters.

Remark 2.8. See [14] for description of quantum algebra of loop functions and [18] for detailed description
of quantum cluster algebras and its unitary representations. Non-normalized quantum boundary measurements
were introduced in the same way and studied by G.Schrader and A.Shapiro in [40].

In the quantization of PPGLn,Σ the quantized Fock-Goncharov variables form a quantum torus Υ
1
n with

commutation relation described by the quiver shown on Fig. 8. Vertices of the quiver label quantum Fock-
Goncharov coordinates Zα (we use Greek letters to indicate barycentric labels) while the arrows encode
commutation relations: if there are m arrows from vertex α to β then ZβZα = q−2mZαZβ . Dashed arrow counts
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as m = 1/2. In particular, a solid arrow from Zα to Zβ implies ZβZα = q−2ZαZβ, a dashed arrow from Zα to
Zβ implies ZβZα = q−1ZαZβ, and, for the future use, a double arrow from Zα to Zβ means ZβZα = q−4ZαZβ .
Vertices not connected by an arrow commute.

Fig. 8. The quiver of Fock-Goncharov parameters in the triangle Σ0,1,3 parametrizing PPGL6,Σ; note that the vertices
(600), (060), and (006) are excluded.

Consider the following planar oriented graph G in the disk dual to the quiver above. Label vertices on
the left, on the right and on the bottom sides from 1 to n as shown on Figure 9. Now barycentric indices
label the vertices of the quiver which correspond to the faces of the dual oriented graph. Vertices of the new
dual graph are colored black and white depending on whether there are two or one incoming arrows. Faces of
G are equipped with q-commuting weights Zα. We add also three face weights Zn,0,0, Z0,n,0, and Z0,0,n with
commutation relations:

Zn,0,0Zn−1,1,0 = q−1Zn−1,1,0Zn,0,0, Zn,0,0Zn−1,0,1 = qZn−1,0,1Zn,0,0

Z0,n,0Z1,n−1,0 = qZ1,n−1,0Z0,n,0, Z0,n,0Z0,n−1,1 = q−1Z0,n−1,1Z0,n,0

Z0,0,nZ1,0,n−1 = q−1Z1,0,n−1Z0,0,n, Z0,0,nZ0,1,n−1 = qZ0,1,n−1Z0,0,n

All the remaining variables not explicitly mentioned above commute with Zn,0,0, Z0,n,0, Z0,0,n.
Any maximal oriented path in the dual graph connects a vertex on the right side 1–2 of the triangle

either with a vertex of the left side 1–3 or with a vertex on the bottom side 2–3. We assign to every oriented
path π : j ❀ i′ from the right side to the left side or to the bottom side π : j ❀ i′′ the quantum weight

w(π) =
•

•

�

face α lies to the
right of the path π

Zα•

•

1

2

3

4

5

6

1′

2′

3′

4′

5′

6′

1′′ 2′′ 3′′ 4′′ 5′′ 6′′

Z600 Z060

Z006

Fig. 9. The plabic graph G dual to the quiver of Fock-Goncharov parameters for PPGL6,Σ0,1,3
. Face weights

Z600, Z060, Z006 (colored red) are added forming extended PGL6-quiver.
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Definition 2.9. We define two n× n non-normalized quantum transition matrices

(M1)ij =
�

directed pathπ:j❀i′

from right to left

w(π) and (M2)i,j =
�

directed pathπ:j❀i′′

from right to bottom

w(π).

Note that each M1 is a lower-triangular matrix and M2 is an upper-triangular matrix.

In section 7 we generalize this definition. Let Γ be a planar oriented graph in the rectangle with no sources
or sinks inside (see Fig 36), m univalent boundary sinks on the left labeled 1 to m top to bottom and n univalent
boundary sources on the right labelled 1 to n top to bottom. All arcs of Γ are oriented right to left, in particular,
G has no oriented cycles. Note that this condition is in particular satisfied by the plabic graph G (see Fig 9)
considered as a graph with n sources and 2n sinks. Indeed, we can redraw G in a rectangle such that the right
side of the triangle becomes the right vertical side of the rectangle while union of the left and the bottom sides
becomes the left side of the triangle.

Faces of Γ are equipped with q-commuting weights Zα whose commutation relations are governed by the
plabic graph (see Section 7 for details). In the same way as for the case of triangle shown in Figure 9, we define
weight of the maximal oriented path π from a source a to a sink b in Γ as

w(π) =
•

•

�

face α lies to the
right of the path π

Zα•

•. (2.11)

Then, for all 1 ≤ a ≤ m, 1 ≤ b ≤ n the entry (a, b) of a m× n non-normalized transport matrix is given by the
formula

[M]ab =
�

directed pathπ:b❀a

w(π). (2.12)

Lemma 7.16 implies that the matrix M satisfies the quantum R-matrix relation Rm(q)
1

M⊗
2

M =
2

M⊗
1

MRn(q), where Rk(q) is a k2 × k2 matrix

Rk(q) =
�

1≤i,j≤k

1
eii ⊗

2
ejj + (q − 1)

�

1≤i≤k

1
eii ⊗

2
eii + (q − q−1)

�

1≤j<i≤k

1
eij ⊗

2
eji (2.13)

Here, the superindices 1 and 2 means the order of spaces in the tensor product (1 means the left factor, 2
means the right one) while the order of spaces means the order of factors in the each coordinate of the tensor

product. For instance,

1�
a
b

�
⊗

2�
c d

�
=

�
ac ad
bc bd

�
while

2�
c d

�
⊗

1�
a
b

�
=

�
ca da
cb db

�
.

Note that Rk has the following properties:

R−1
k (q) = Rk(q

−1), Rk(q)−RT
k (q

−1) = (q − q−1)Pk, (2.14)

where Pk is the standard permutation matrix Pk :=
�

1≤i,j≤k

1
eij ⊗

2
eji. Note that the total transposition of

Rk(q) results in interchanging the space labels 1 ↔ 2. In Sec. 8 we show that this algebra remains valid also in
the case of a planar directed network with loops.

In Fig. 9 we have an example of a directed network with 6 sources and 12 sinks. Adding face weights
Z600, Z060, Z006 supplied with “natural” commutation relations Z600Z501 = qZ501Z600 and Z600Z510 =
q−1Z510Z600, etc., we obtain extended PGL6-quiver and graph Γ in the rectangle with n = 6 sources and

2n = 12 sinks; then M has a block matrix form M =

�
M1

M2

�
in which we let M1 be the upper n× n block and

M2 be the lower n× n block. We want to show that Lemma 7.16 implies the following commutation relations
for M1 and M2:

Rn(q)
1

Mi ⊗
2

Mi =
2

Mi ⊗
1

MiRn(q), i = 1, 2, (2.15)

and
1

M1 ⊗
2

M2 =
2

M2 ⊗
1

M1Rn(q). (2.16)
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Let now indices i, j run from 1 to n. We rewrite the above matrix R2n(q) as

R2n(q) =
�

1≤i,j≤n

1
eii ⊗

2
ejj + (q − 1)

�

1≤i≤n

1
eii ⊗

2
eii + (q − q−1)

�

1≤j<i≤n

1
eij ⊗

2
eji

+
�

1≤i,j≤n

1
en+i,n+i ⊗

2
en+j,n+j + (q − 1)

�

1≤i≤n

1
en+i,n+i ⊗

2
en+i,n+i

+ (q − q−1)
�

1≤j<i≤n

1
en+i,n+j ⊗

2
en+j,n+i

+
�

1≤i,j≤n

1
ei,i ⊗

2
en+j,n+j

+
�

1≤i,j≤n

1
en+i,n+i ⊗

2
ej,j + (q − q−1)

�

1≤i,j≤n

1
en+i,j ⊗

2
ej,n+i

In the first two lines we immediately recognize Rn(q) in two diagonal n× n blocks of R2n(q): the relations for
the pair of first indices (i, j) and (n+ i, n+ j) generate (2.15) for M1 and M2 respectively; setting (i, n+ j),
which corresponds to the fourth line, we obtain just a unit matrix in the left-hand side thus producing relation
(2.16), whereas in the case (n+ i, j) (the fifth line), we have the equation

1

M2 ⊗
2

M1 + (q − q−1)Pn

1

M1 ⊗
2

M2 =
2

M1 ⊗
1

M2Rn(q).

We first push the permutation operator Pn through the M-matrix product interchanging the labels of spaces
in the tensor product and then use the identity (q − q−1)Pn = Rn(q)−RT

n (q
−1) obtaining

1

M2 ⊗
2

M1 +
2

M1 ⊗
1

M2(Rn(q)−RT
n (q

−1)) =
2

M1 ⊗
1

M2Rn(q),

or
1

M2 ⊗
2

M1 =
2

M1 ⊗
1

M2R
T
n (q

−1),

which is just another form of writing relation (2.16). This accomplishes the proof of relations 2.15 and 2.16.
Now, in order to eliminate extra variables Zn,0,0, Z0,n,0 and Z0,0,n we normalize the matrices Mi, i = 1, 2

by multiplying them by corresponding special functions. Namely, we multiply the matrix M1 by D−1
1 , where

D1 =
•

•

�n
k=1

��
i+j=n−k

�
Zi,j,k

�k/n�
•

• is the quantum function (6.10) commuting with all elements of M1. Note

that, Z0,0,n commutes with D1 and all entries ofM1. Moreover, Z0,0,n enters in the first power into all monomial
summands of any matrix entry of M1 and also into D1. Therefore we conclude that any entry of D−1

1 M1 is
independent of Z0,0,n. Similarly, we multiply M2 by

•

•D−1
1 D−1

2 •

• where D2 = τ2D1 is the similar element that
starts with the variable Zn,0,0. These multiplications preserve the form of relations (2.15) and their only effect
on (2.15) is the appearance of the constant factor in the R-matrix in the right-hand side (this is because D1

commutes with M1, and •

•D−1
1 D−1

2 •

• commutes with M2; only D1 and D2 do not commute.
We now define the normalized quantum transport matrices of the standard PGLn-quiver:

Definition 2.10. Normalized quantum transport matrices for the quantum space PPGLn,Σ are defined by the
following expressions

T1 = QSM1D
−1
1 , T2 = τ(T1) and T3 = τ2(T1)

M1 = T1 = QSM1D
−1
1 ,M2 = (T2)

−1
= QSM2•

•D−1
1 D−1

2 •

• and M3 = T3

where Q = diag{q
1−n
2n −j+1}j=[1,n] and S is defined in 2.4 . They are quantizations of the classical normalized

transport matrices 2.2. Abusing notations, we use Ti andMi for both classical and quantum normalized transport
matrices.

Remark 2.11. Since D1 commutes with any Zα entering M1 we have QSM1D
−1
1 = QS

•

•M1D
−1
1 •

• . Similarly,
QSM2•

•D−1
1 D−1

2 •

• = QS
•

•M2D
−1
1 D−1

2 •

• .
Entries of Mi are neither Weyl-ordered symmetric operators nor they are positive definite. We can note

however that each entry of Mi is a symmetric positive-definite operator multiplied by ±qα with a rational α.
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Note that
1

Q⊗
2

QRn(q) = Rn(q)
1

Q ⊗
2

Q for any diagonal matrix Q

or taking transposition and noting that
1

Q⊗
2

Q is invariant under transposition

1

Q⊗
2

QRT
n (q) = RT

n (q)
1

Q ⊗
2

Q

and
1

S ⊗
2

SRn(q) = RT
n (q)

1

S ⊗
2

S for any antidiagonal matrix S.

We have therefore proved the following theorem.

Theorem 2.12. The normalized quantum transport matrices M1 and M2 (see Definition 2.10) satisfy the
relations

RT
n (q)

1

M i ⊗
2

M i =
2

M i ⊗
1

M iRn(q), i = 1, 2,

1

M1 ⊗
2

M2 =
2

M2 ⊗
1

M1Rn(q)

where

Rn(q) = q−1/n

�
�

i,j

1
eii ⊗

2
ejj + (q − 1)

�

i

1
eii ⊗

2
eii + (q − q−1)

�

i>j

1
eij ⊗

2
eji

�
(2.17)

is the quantum trigonometric R-matrix

Remark 2.13. Relations 2.15 and 2.16 and Theorem 2.12 were independently proved by G.Schrader and
A.Shapiro [41].

Theorem 2.14. The normalized quantum transport matrices Ti (see Definition 2.10) satisfy the quantum
groupoid relation

T1T2T3 = Id .

Remark 2.15. Recalling M1 = T1, M2 = T−1
2 ,M3 = T3 we have

M3M1 = M2.

Proof. The product (QS)−1T3T1 is given by the following double sum over directed paths:

[(QS)−1T3T1]ij =

n�

k=1

(−1)kq
1−n
2n −k+1

�

paths k→i

:
�

Zα : (τ2(D1))
−1

�

paths j→k

:
�

Zβ : D−1
1 , (2.18)

where the second sum is taken over all oriented path connecting vertex j to k (see Figure ”Case I” below) where
orientations of edges are shown in the Figure 9 while orientations of all non-vertical edges in the first sum are
reversed compared to the Figure 9 and τ2(D1) = D2.

Recall again that D1 commutes with all elements of M1. Therefore, (2.18) equals

D−1
2

n�

k=1

(−1)k−1q
1−n
2n −k+1

�

paths k→i

•

•

�
Zα•

•

�

paths j→k

•

•

�
Zβ•

• D−1
1 (2.19)

We now consider the pattern in the figure below. We do not indicate arrows on edges recalling that all paths
in T1 go from right to left and from top to bottom whereas all paths in T3 go from left to right and from top
to bottom. A continuous consecutive sequence of edges either directed alternatingly to the left downwards and
to the left upwards or directed alternatingly to the right downwards and to the right upwards (located on the
same horizontal level) and attached to the left side of triangle of hexagons in Fig. Case I is called a horizontal

leg (see, for example, the interval of top (or bottom) edges of yellow hexagons B in Fig. Case I).
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Two paths: j → k from T1 and k → i from T3 share the common horizontal leg; if we remove this leg then
the remaining part of the union of j → k and k → i is a path that first goes from right to left and top to bottom,
then (in a general Case I) has the leftmost vertical edge, then goes from left to right and top to bottom . In
a very special Case II, the path does not have the last part; this happens only for k = 1 and only if the last
horizontal part of the path j → k = 1 is strictly longer than the shared horizontal leg

A

B

C

j

k + 1

k

i

Case I

In Case I, given a path j → k encompassing the regions A and B and a path k → i encompassing the region C
we have the corresponding path j → k + 1 encompassing the regions A and the path k + 1 → i encompassing the
regions B and C. These pairs of paths are in bijection being the only two possible combinations of paths having
the same union of domains A ∪B ∪C. Contributions from these two pairs of paths have opposite signs and
since commutation relations and definition of normal ordering imply

•

•CB
•

• = q
1
2
•

•C
•

•

•

•B
•

• and
•

•BA
•

• = q−
1
2
•

•B
•

•

•

•A
•

•

we obtain
•

•CB
•

•

•

•A
•

• = q
•

•C
•

•

•

•BA
•

• and these contributions are mutually canceled in the sum (2.18).

The only pairs of paths (j → k + 1, k + 1 → i) that do not have counterparts are those for which the region
C is absent (Case II):

A

B

j

1

i

Case II

In this case,
•

•B
•

• commutes with
•

•A
•

• and therefore
•

•B
•

•

•

•A
•

• =
•

•BA
•

•, k is necessarily equal to 1, and after
removing the common leg, all these pairs of paths are in bijection with single paths going from right to left and
top to bottom and encompassing the regions A and B; note that these paths are exactly paths constituting the
matrix M2. So the sum in (2.19) just gives

q
1
2nD−1

2


 �

paths j→i

•

•

�
Zα•

•


 D−1

1 (2.20)

Note that the weight w(P ) of any path P from j to i is a monomial which contains only one variable

Z00n not commuting with D−1
2 . Therefore, D−1

2 w(P ) = q2�D
−1

2
,w(P )�w(P )D−1

2 = q−
1
nw(P )D−1

2 . Since the same
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commutation relation holds for any path weight, it holds for their sum also and we rewrite (2.20) as

q−
1
2n


 �

paths j→i

•

•

�
Zα•

•


 D−1

2 D−1
1 =


 �

paths j→i

•

•

�
Zα•

•




•

•D−1
2 D−1

1 •

• =
�

paths j→i

•

•(
�

Zα)D
−1
2 D−1

1 •

• (2.21)

because D−1
2 D−1

1 = q
1
2n

•

•D−1
2 D−1

1 •

• and
•

•D−1
2 D−1

1 •

• commutes with any
•

•

�
Zα•

• from the sum.
The right hand side of (2.21) coincides with the corresponding element of M2 ( after multiplication of both

sides by QS on the left). We have therefore proved that T3T1 = M2 �

Note that we shall present in §7.2 the second proof of the groupoid property using quantum Grassmannian.

Remark 2.16. The semiclassical limit of Theorem 2.12 statement reads

{
1

M1 ⊗
,

2

M2} =
2

M2 ⊗
1

M1

�
−
1

n

1

I ⊗
2

I + rn

�

where

rn =
�

i

1
eii ⊗

2
eii + 2

�

i>j

1
eij ⊗

2
eji (2.22)

is the semiclassical r-matrix. Equivalently,

{(M1)ab, (M2)cd} = −
1

n
(M1)ab(M2)cd + (M1)ad(M2)cbθ(b− d), θ(x) =





2, if x > 0,

1, if x = 0,

0, if x < 0.

Remark 2.17. For the trigonometric R-matrix (2.17) the quantum relation

RT
n (q)

1

M i ⊗
2

M i =
2

M i ⊗
1

M iRn(q)

has an equivalent form of writing

1

M i ⊗
2

M iR
T
n (q) = Rn(q)

2

M i ⊗
1

M i for i = 1, 2.

Both these relations generate the same quantum algebra on elements of the matrices M1 and M2 and have the
same semiclassical limit

{(Mi)ab, (Mi)cd} = (Mi)ad(Mi)cb(θ(b − d)− θ(a− c)) i = 1, 2, θ(x) =





2, if x > 0,

1, if x = 0,

0, if x < 0.

Example 2.18. For n = 3 transport matrices are computed in Example 2.6. Direct computations show

1

M1 ⊗
2

M2 =
2

M2 ⊗
1

M1R3(q),

where

R3(q) = q−1/3




q 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 q − q−1 0 1 0 0 0 0 0
0 0 0 0 q 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 q − q−1 0 0 0 1 0 0
0 0 0 0 0 q − q−1 0 1 0
0 0 0 0 0 0 0 0 q




Similarly, for both i = 1, 2, we have RT
3 (q)

1

Mi ⊗
2

Mi =
2

Mi ⊗
1

MiR3(q).
Direct computations show that in this example Theorem 2.14 also holds.
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3 Goldman brackets and commutation relations between transport matrices

To obtain a full-dimensional (without zero entries) form of transport matrices we define transport matrices
along more general paths.

Namely, let O = (O,M) be a disk O with four marked boundary points M = {A,B,D,C} in clockwise
order, (∆ABC,∆BCD) be a triangulation of O and we also assume clockwise orientation of all triangle sides
inside every triangle. The space PPGLn,O coincides with the space of quadruple of complete flags (one flag
assigned to each marked point) and pinnings (one pinning for every interval of O between marked points.

A snake inside a triangle determines a projective basis as explained above. Each oriented side of triangulation
determines such a snake and a corresponding projective basis in Cn. Fix a clockwise orientation of both triangles.
We use the following agreement: if a side of a triangulation is common for two adjacent triangles then the
orientation of a side determines one adjacent triangle whose orientation is compatible with the orientation of
the side. For instance, the oriented side BC determines the unique snake from B to C inside triangle ∆ABC,
while the side CB is associated with the snake from C to B inside triangle ∆BCD, with corresponding projective
basis chosen in each case.

Subtriangulation of O has n− 1 nodes p1, . . . , pn−1 on the side BC and we denote the corresponding Fock-
Goncharov parameters by Zpj . Factor every Zpj into a product Zpj = Z∆ABC

pj
· Z∆BCD

pj
. Parameters Z∆ABC

pj

define a pinning of the side BC in the triangle ∆ABC while parameters Z∆BCD
pj

define a pinning of the side
CB in the triangle ∆BCD.

Gluing sides of two distinct triangles and multiplying corresponding parameters is called in [26] an

amalgamation procedure. By an amalgamation procedure, the transition matrix �TBC←CB from basis bCB to
bBC is the product �TBC←CB = HBC

in · S ·HCB
out where HBC

in (HCB
out ) are diagonal matrices defined in terms of the

Fock-Goncharov parameters on the side BC (CB, correspondingly) by Formula 2.5(2.4) and S is introduced
in Definition 2.4. This allows to define transport matrix for any pair of oriented sides as transition matrix for
the pair of corresponding bases; the matrix S acts by changing the orientation of the corresponding side. Let
�TBC←AB be a transport in ∆ABC from side AB to BC. Pay attention that the sides are oriented and the
order of endpoints in side notation matters. Similarly, �TCB←DC is a transport matrix in ∆BCD from DC to
CB. Note that �TDC←CB = �T−1

CB←DC . Then, we define a transport �TDC←AB from AB to DC as �TDC←AB =
�TDC←CB

�TCB←BC
�TBC←AB = �T−1

CB←DC
�TCB←BC

�TBC←AB. Similarly, �TBD←AB = �TBD←CB
�TCB←BC

�TBC←AB.

Finally, to obtain transport matrix TCD←BA from one boundary interval BA to another boundary interval
CD we need to precompose and postcompose �TCD←BA with diagonal matrices determined by the pinnings on
boundary intervals BA and CD, TCD←BA = HCD

out
�TCD←BAH

BA
in .

D

B

C

A

�TDB←BC
�TCB←BA

�T−1
BC←CD

Fig. 10. Disk with four marked points.

To describe the quantum case, we split each quantum Fock-Goncharov parameter (or quantum cluster
parameter) on the side BC into a product of two, one inside triangle ∆ABC the other inside triangle ∆BCD.
The quantum parameters in triangle ∆ABC commute with those of triangle ∆BCD, so the product of two
Weyl-ordered monomials is itself a Weyl-ordered monomial, in which we perform an amalgamation of variables
on the side BC. Due to the double action of the matrix S, the amalgamation of boundary (frozen) variables in
neighbor triangles respects the surface orientation, so, we amalgamate pairwise variables on the sides BC of the
two triangles ordered in the same direction, from B to C. After the amalgamation, we unfreeze the obtained
new variables. Therefore, in a network on a surface obtained as a union of several triangles, the Weyl ordering
of weights of any path that does not go through any given triangle more than once is the product of Weyl
orderings of weights inside each triangle.
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It was explicitly demonstrated in Proposition 4.2 of [40] that the elements of non-normalized quantum
transport matrices defined by such Weyl ordering are preserved by a special type of quantum mutations at a
4-valent quiver vertex with alternating incoming and outgoing arrows (we include mutations of amalgamated
variables as well as mutations of variables in the interior of triangles). This implies, in particular, that the
corresponding normalizing factor stays invariant. Let us explain this in more details on the example of an PGL3

parallelogram composed out of two extended PGL3-quivers. We perform the chain of mutations and in the
Figure 11 we paint black the quiver vertices at which mutations occur at the given step; if the corresponding
mutations commute (for vertices not connected by an edge) then, for the brevity of presentation, we perform
the corresponding mutations simultaneously; dotted lines indicate splitting into triangles in the original and
resulting quivers:

D
(1)
1

D
(2)
1

D
(1)
2

1 2 3

1′

2′

3′

A B

CD

D′(1)
1

D′(2)
2

D′(1)
2

A B

CD

1 2 3

1′

2′

3′

Fig. 11. The chain of mutations that leads to a flip of triangulation

We perform mutations for non-normalized cluster variables and the corresponding transport matrices.
Note, for example, that frozen variables at the corners of the parallelogram are not changed by this sequence
of mutations, likewise all elements of a non-normalized transport matrix since all mutations correspond to
Postnikov’s moves of type M1.

In the first and last quivers we indicate by double directed arrows the dual networks defining the
corresponding transport matrices Ti′,j . Since all cluster mutations correspond to Postnikov’s moves of type
M1, elements of these transport matrices remain invariant under each move/mutation.

According to [40], for any planar acyclic network, defining quantum non-normalized transport matrix

elements
�
�TDA←AB

�
i′,j

by formula (2.12) (see also, Fig. 10), all these elements are preserved by Postnikov

moves of type M1; these moves correspond to mutations of cluster variables at four-valent vertices.
Consider a network and the dual quiver amalgamated from two GLn (nonnormalized) Fock–Goncharov

networks with the corresponding transport matricesM
(1)
1 and M

(2)
1 . The total non-normalized transport matrix

is then �TDA←AB = M
(1)
1 M

(2)
1 . We now normalize each M

(i)
1 , i = 1, 2, by D

(i)
1 and consider the product of

normalized matrices. Using the fact that all matrix elements of both M
(1)
1 and M

(2)
1 commute with both D

(1)
1

and D
(2)
1 we observe that �

D
(1)
1

�−1
M

(1)
1

�
D

(2)
1

�−1
M

(2)
1 =

�
D

(1)
1 D

(2)
1

�−1
T.

All quantum transport matrix elements of the network T ′ obtained after a sequence of mutations/M1 Postnikov
moves coincide with the corresponding matrix elements in the network T before normalization,

T ′
i′,j = M′

1 = Ti′,j .

We do not mutate the normalizing factor; we compute the normalization factor for T ′ obtained after the complete
sequence of mutations corresponding to a MCG transformation and compare it with the the normalizing factors
in the original network.

The normalizing factor for T ′ is D
′(1)
1 (as in the previous case, all T ′

i′,j commute with D
′(1)
1 . It therefore

remains only to show that

D
′(1)
1 = D

(1)
1 D

(2)
1

Consider
�
D

′(1)
1

�n
and

�
D

(1)
1 D

(2)
1

�n
. Both expressions are Weyl-ordered products of integer powers of Ti′,i—the

diagonal elements of the transport matrices. All these diagonal elements are monomials in cluster variables
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being therefore automatically positive-definite, and their fractional powers are the corresponding products
of fractional powers of Z-variables. Since all Z-variables have homogeneous commutation relations, the only

possible mismatch between D
′(1)
1 and D

(1)
1 D

(2)
1 could be a power of q, but since both expressions, being Weyl-

ordered, are self-adjoint and qα⋆ = q−α, α = 0 and we come to the desired equality.

The matrix Ti′,j is lower-triangular in the first and in the last quiver, and its determinant, which is the

product of elements Ti′,i, is equal
�
D

(1)
1 D

(2)
1

�n

in the left quiver and is equal D′(1)
1 in the right quiver. So, we

have that
�
D

(1)
1 D

(2)
1

�n

=
�
D′(1)

1

�n

. It implies D
(1)
1 D

(2)
1 = D′(1)

1 because all operators in the last equality are

positive definite self-adjoint. We similarly obtain the second relation D
(2)
1 = D′(1)

2 D′(2)
2 , so all elements of the

corresponding normalized transport matrices are preserved by flips of “big” triangles.
We now show that the commutation relations from Theorem 2.12 together with the groupoid condition

(Theorem 2.14) imply the commutativity relations and Goldman brackets.

Theorem 3.1. Consider a triangle decomposition of any surface Σg,s,n. Then for two normalized quantum
transport matrices T1,3 and T2,4 corresponding to graph-simple paths in this triangle decomposition with distinct
starting edges (“windows”) 1,2,3,4 and such that paths 1 → 3 and 2 → 4 has a single intersection, commutation
relations of Theorem 2.12 induce the quantum Goldman relation

q−1/nT1,3T2,4 − q1/nT2,4T1,3 = (q−1 − q)T1,4T2,3,

where the quantum transport matrices T1,4 and T2,3 correspond to disjoint paths obtained by a natural resolution
of the intersection; moreover, T1,4 and T2,3 mutually commute.

Proof . We begin with the pattern in the figure below. In both (left and right) triangles the dashed line plays
the role of side 2− 3 in Fig. 6.

1

M−1
l

2

M−1
k

1

Mj

2

Mi

1

S ⊗
2

S

We use the identities

1

M−1
l ⊗

2

M−1
k = Rn(q)

2

M−1
k ⊗

1

M−1
l

1

Mj ⊗
2

Mi =
2

Mi ⊗
1

Mj

�
R−1

n (q)
�T

Rn(q)
1

S ⊗
2

S =
1

S ⊗
2

SR
T
n (q),

where the last identity holds for any antidiagonal matrix S whose elements commutes with all elements of
quantum torus.

We then have

[
1

Mj

1

S
1

M−1
l ]⊗ [

2

Mi

2

S
2

M−1
k ] =

2

Mi ⊗
1

Mj

�
R−1

n (q)
�T 1

S ⊗
2

SRn(q)
2

M−1
k ⊗

1

M−1
l

=
2

Mi ⊗
1

Mj

1

S ⊗
2

SR
−1
n (q)Rn(q)

2

M−1
k ⊗

1

M−1
l = [

2

Mi

2

S
2

M−1
k ]⊗ [

1

Mj

1

S
1

M−1
l ],

so two transport matrices corresponding to nonintersecting paths commute. This is consistent with the quantum
mapping class group transformations: flipping BC edge separates the paths AB → BD and AC → CD into two
adjacent triangles.



22 L. Chekhov and M. Shapiro

Consider now the case of two intersecting paths (we consider a single intersection inside a quadrangle).

2

M−1
l

1

M−1
k

1

Mj

2

Mi

1

S ⊗
2

S

We then have

q−1/n[
1

Mj

1

S
1

M−1
k ]⊗ [

2

Mi

2

S
2

M−1
l ]− q1/n[

2

Mi

2

S
2

M−1
l ]⊗ [

1

Mj

1

S
1

M−1
k ]

=
2

Mi ⊗
1

Mj

1

S ⊗
2

S[q
−1/nR−1

12 (q)− q1/nRT
12(q)]

1

M−1
k ⊗

2

M−1
l

=(q−1−q)
2

Mi ⊗
1

Mj

1

S ⊗
2

SPn

1

M−1
k ⊗

2

M−1
l = (q−1−q)

2

Mi

2

S
2

M−1
k ⊗

1

Mj

1

S
1

M−1
l Pn.

The second equality follows from total transposition of the basic relation (2.14) (with accounting for PT
n = Pn).

So we have a quantum Goldman relation

q−1/n −q1/n = (q−1 − q) Pn

with Pn the permutation matrix. In the semiclassical limit with q = eπi� (where � = b2) the term linear in �

gives rise to the Goldman bracket for SLn [25].

Let a polygon be triangulated into collection of triangles containing triangle ∆ABC, let EF be another
side of triangulation different from sides of ∆ABC, let γ be a path connecting EF to AB crossing any side
of triangulation at most once and crossing neither AC nor BC (see Figure 12). Denote by Tγ = TBA←EF the
composition of transport matrices along the path γ, define normalized transport matrices M1 = T−1

AB←CASTγ ,
M2 = TBC←ABSTγ .

C

A

B

T−1
AB←CA

TBC←AB

Tγ

E

F

Fig. 12. M1 = TCA←ABSTBA←EF , M2 = TBC←ABSTBA←EF .

Theorem 3.2. The normalized transport matrices M1 and M2 in Fig. 12 satisfy the commutation relations

(i)
1

M1 ⊗
2

M2 =
2

M2 ⊗
1

M1Rn(q),

(ii) RT
n (q)

1

M i ⊗
2

M i =
2

M i ⊗
1

M iRn(q) for i = 1, 2.
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(iii) M−1
2 MBC←CAM1 = 1 .

Proof. The first two relations (i) and (ii) are simple corollaries of the respective two relations in (2.16)
and (2.15). Relation (iii) is the quantum groupoid condition (2.14) proved earlier. Another proof will be given
in Section7.2 Now we show how to derive relation (i) from (2.16). The proofs of the other two are similar.

Consider a transport matrix corresponding to a path not passing twice through the same triangle. It is

given by the matrix product M
(m−1)
im−1

S · · ·SM
(2)
i2

SM
(1)
i1

= TBA←EF where ik = 1, 2 and variables of M
(k)
ik

and

M
(p)
ip

commute for distinct k and p. Every such product satisfies the relation RT
n (q)

1

T ⊗
2

T =
2

T ⊗
1

TRn(q). Then,

1

M
(m)
1

1

S
1

T ⊗
2

M
(m)
2

2

S
2

T =
1

M
(m)
1 ⊗

2

M
(m)
2

1

S ⊗
2

S
1

T ⊗
2

T =
2

M
(m)
2 ⊗

1

M
(m)
1 Rn(q)

1

S ⊗
2

S
1

T ⊗
2

T

=
2

M
(m)
2

2

S ⊗
1

M
(m)
1

1

SR
T
n (q)

1

T ⊗
2

T =
2

M
(m)
2

2

S
2

T ⊗
1

M
(m)
1

1

S
1

TRn(q). �

General algebras of transport matrices in an ideal triangle decomposition of Σg,s,p—a genus g Riemann
surface with s holes and p > 0 marked points on the hole boundaries are governed by a quantum version of the
Fock–Rosly Poisson algebra [20] also considered in [11].

4 Solving reflection equation via transition matrices

In this section, we consider a special combination of non-normalized quantum transition matrices M1 and M2

from Definition 2.9:
A� := MT

1 M2. (4.1)

Note that the transposition in the quantum case is formal: the quantum ordering is preserved, only matrix
elements are permuted. Also, since both MT

1 and M2 are upper-triangular matrices, the matrix A� is
automatically upper-triangular.

Remark 4.1. The matrix A� is defined as a matrix with quantum entries; we denote by A a (semi-)classical
object.

Theorem 4.2. The matrix A� = MT
1 M2 (Equation (4.1)) satisfies the quantum reflection equation

Rn(q)
1

A�Rt1
n (q)

2

A� =
2

A�Rt1
n (q)

1

A�Rn(q)

with the trigonometric R-matrix (2.13), where Rt1
n (q) is a partially transposed (w.r.t. the first space) R-

matrix.

Note that, since two R-matrices (2.13) and (2.17) differ only by a constant multiple, we can use any of
them in the relation in the theorem.

The proof is a short direct calculation that uses only R-matrix relations (2.15) and (2.16). Note that
transposing (2.16) with respect to the first space, we obtain

1

MT
1 ⊗

2

M2 =
2

M2R
t1
n (q)

1

MT
1

and the total transposition of relation (2.15) gives

1

MT
1 ⊗

2

MT
1 R

T
n (q) = RT

n (q)
2

MT
1 ⊗

1

MT
1 .

However, since the total transposition of RT
n (q) is equivalent to interchanging indices 1 ↔ 2 of spaces in the

direct product, we can equivalently write this relation as

2

MT
1 ⊗

1

MT
1 Rn(q) = Rn(q)

1

MT
1 ⊗

2

MT
1 ,

that is, R-matrix relations have the same form for both Mi and MT
i .
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Note that
1

M2Rt1
n (q)

2

MT
1 =

2

MT
1

1

M2. Indeed, let us obtain this formula out of the defining relation
1

M1

2

M2 =
2

M2

1

M1Rn. First, we interchange indices of spaces 1 ↔ 2, which results in the similar expression

with fully transposed R-matrix:
2

M1

1

M2 =
1

M2

2

M1RT
n . Second, we perform the transposition in the second

space; note that this transposition does not affect the quantum space, so the order of operators remains the

same. On the left-hand side we merely obtain
2

MT
1

1

M2, whereas on the right-hand side we must take into account
that components of the classical R-matrix lying in the second space must be interchanged with components of
2

M1 and components of R-matrix lying in the first space commute with
2

M1, so the order of their multiplication

with
2

M1 is irrelevant. Altogether, this can be written as
� 2

M1RT
n

�t2
=

�
RT

n

�t2 2

MT
1 = Rt1

n

2

MT
1 , which produces

the desired equality.
Hence,

Rn(q)
1

MT
1

� 1

M2R
t1
n (q)

2

MT
1

� 2

M2 =
�
Rn(q)

1

MT
1

2

MT
1

� 1

M2

2

M2 =
2

MT
1

1

MT
1

�
RT

n (q)
1

M2

2

M2

�

=
2

MT
1

� 1

MT
1

2

M2

� 1

M2Rn(q) =
2

MT
1

2

M2R
t1
n (q)

1

MT
1

1

M2Rn(q),

which completes the proof.
Our claim is that, in a semi-classical limit, the coordinates Zα parameterize Poisson leaves of A. Bondal [2]

demonstrated that dimensions of these leaves are dictated by the Jordan form of the matrix Ω := AA−T, which
undergoes adjoint transformations Ω → BΩB−1 under the standard groupoid transformation of the matrix A.
Whereas we do not intend to perform a complete analysis of dimensions of the corresponding symplectic leaves,
note that in the case where all eigenvalues of Ω are distinct, corresponding symplectic leaves have maximum
dimension. Theorem 1 in [12] explicitly expresses eigenvalues of Ω as special monomials of Casimirs Ck (see (5.3))
of A-quiver; all these eigenvalues are distinct for Casimirs determined by Xα in a general position. Therefore,
we can conclude that the image of the map from the space of parameters Zα to A intersects any maximal
symplectic leave, and since the map is Poisson the image contains the whole symplectic leave as well.

Let X be a Poisson variety with a Poisson bracket {, }. Recall that a collection of functions fi ∈ C∞(X,R)
is called log-canonical if {fi, fj} = cijfifj for some constants cij ∈ R. A log-canonical collection {f1, . . . fdimX}
is called a log-canonical coordinate system if functions fi are functionally independent. If X is an affine algebraic
variety with an algebraic Poisson bracket which possesses a log-canonical collection of regular functions then
according to [32] Darboux coordinate system consisting of meromorphic functions does not exist, and log-
canonical coordinates are regular coordinates such that the Poisson bracket takes a simple form.

We thus conclude that collection of Fock-Goncharov parameters Zα provide a log-canonical coordinate

representation for operators satisfying the reflection equation. Moreover all matrix elements of A are Laurent

polynomials with positive coefficients of Zα and q. In particular, positive integers in equation (2.10) count
numbers of monomials in the corresponding Laurent polynomials.

By construction of normalized quantum transport matrices in Sec. 2.5, all matrix elements of M1 and M2

are Weyl-ordered. For
�
A�

�
ij
=

j�
k=i

(M1)ki (M2)kj we obtain that for i < j, (M1)ki commutes with (M2)kj (

a path contribution to (M1)ki equals Weyl ordering of a product of all parameters Zα above the path while the
a path contribution to (M2)kj equals to the Weyl ordering of a product of all Zα below, therefore the set of Zα

contributing to (M1)ki is disjoint from the set contributing to (M2)kj for i < j and any element from one set
commutes with any element of the second set ), so the corresponding products are automatically Weyl-ordered,

�
A�

�
ij
=

j�

k=i

•

•(M1)ki (M2)kj•
•.

For i = j,
�
A�

�
ii
= (M1)ii (M2)ii since the remaining terms of the sum vanish. Moreover, there is a unique

path contributing to (M1)ii and a unique path contributing to (M2)ii and these paths have exactly one
common starting half-edge. This implies that (M1)ii(M2)ii = q−1(M2)ii(M1)ii implying

•

•(M1)ii (M2)ii•
• =

q1/2 (M1)ii (M2)ii. Therefore,
�
A�

�
ii
= (M1)ii (M2)ii = q−1/2

•

•(M1)ii (M2)ii•
•.

This explains the appearance of q−1/2 factors on the diagonal of the quantum matrix A� (see (1.9), [8]).
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Corollary 4.3. Entries a�ij of A� for i < j are symmetric operators.

Proof . Quantized Fock-Goncharov parameters Zα can be represented as self-adjoint unbounded operators
acting on a dense subspace H of a Hilbert space L2

�
Rd

�
with a positive spectrum (see, [18, 26]). In particular

any (rational) power of Zα is self-adjoint and the Weyl ordering of any monomial of self-adjoint operators is
self-adjoint and, therefore, a�ij is an unbounded symmetric operator on H because (M1)ki and (M2)kj are Weyl
orderings of monomials in rational power of Zα’s.

Remark 4.4. Although spectral theory of operators a�ij is beyond the scope of this paper, we have a strong
evidence that these operators are essentially self-adjoint: their spectra are [2,∞), and their von Neumann index
is presumably zero, so we can conjecture that they admit self-adjoint extensions.

As usual we call a function on a Poisson variety X a Casimir function or simply a Casimir if it Poisson
commute with any other function on X . If the algebra of functions on X is quantized to some operator algebra
then Casimirs become operators which commute with any other operator, a quantization of a function on X . In
particular, quantizing algebra of functions on An we notice that all Weyl-ordered products of (rational powers
of) Z�

α are self-adjoint and the whole classical algebra of functions on An is generated by polynomials in these
rational powers of Zα’s, Casimir operators commute with any such Weyl product, are monomial in Zα, and we
may always assume that all Casimirs are taken to be self-adjoint operators.

We have that
•

•(M1)ii (M2)ii•
• =

i�

j=1

Kj, where Kj are quantizations of special Casimirs (5.2) of the An-

quiver introduced in the next section.
To obtain a full-dimensional (not upper-triangular) form of the matrix Agen let us consider adjoint action

by any transport matrix:

Theorem 4.5. Any matrix A�
gen := MT

γ STDA�DSMγ , where Mγ is a normalized quantum transport matrix

satisfying commutation relations of Theorem 2.12 such that its elements commute with those of A� = MT
1 M2

and D is any diagonal matrix whose entries commute with each other and with all entries of Mγ and A� ,
satisfies the quantum reflection equation of Theorem 4.2.

The proof is again a direct computation; note also that if we represent A� = MT
1 M2, thenM′

1 = M1DSMγ

and M′
2 = M2DSMγ satisfy commutation relations (2.15) and (2.16) and A�

gen := M′
1
TM′

2 then satisfy the
quantum reflection equation.

In the semiclassical limit the quantum reflection relation (Theorem 4.2) leads to a Poisson bracket on the
set of the matrices that are represented as a product MT

1 M2. By Theorem 4.2 the push forward of the Poisson
bracket on the moduli space of pinnings PPGLn,Σ induces a Poisson bracket on the set of matrices factorizable
as MT

1 M2 that is an open subset F in the space B of nondegenerate upper-triangular matrices. It is well known
[9] that An is a Poisson subvariety of F . We show in Section 5.1 that the set An of unipotent matrices is
obtained from F by fixing the values of Casimirs Ki = 1, i = 1 . . . n− 1 defined by Equation 5.2.

Summarizing, we obtain the following result.

Corollary 4.6. The Poisson bracket on PPGLn,Σ induces canonical Poisson structure (1.6) on the space of
unipotent upper triangular matrices An.

5 The quiver for an upper-triangular A and the braid-group action

In this section we consider classical commutative ring of functions on the set An of upper-triangular
matrices and commutative Fock-Goncharov parameters equipped with the corresponding Poisson brackets. We
first construct the quiver corresponding to the log-canonical coordinates on An and, second, present the braid-
group action on An via chains of mutations in the newly constructed quiver. We would like to notice that the
quasi-cluster braid group action on the transport matrices and therefore on the framed moduli space PPGLn

was constructed in [26]. However, our construction seems to be different.

5.1 An-quiver

In this section we will show that the classical space An can be described as a Poisson submanifold U in the
Poisson cluster variety with An-quiver (see definition below). In this section we assume that classical matrices
Mi and Mi have commutative entries.
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Let us have a closer look on the structure of matrix entries of the product (A)ij :=
�
MT

1 M2

�
i,j

=
�

k(M1)ki(M2)kj . All monomials contributing to (M1)ki contain the same factor
�k

i=1 Zi,0,n−i and all

monomials contributing to (M2)k,j contain the same factor
�k

i=1 Zn−i,i,0, so the dependence of all elements of
(A)ij on the frozen variables Zi,0,n−i and Zn−i,i,0 is via their pairwise products, and we therefore amalgamate
these variables pairwise thus obtaining a single new variable

Z̄i := Zi,0,n−iZn−i,i,0, i = 1, . . . , n− 1. (5.1)

This results in a “twisted” pattern shown in Fig. 22.
Theorem 4.2 states that the map from the Poisson space of Fock-Goncharov parameters of PGLn-quiver

to the space of the upper triangular matrices is Poisson. In particular, all Casimir functions of PGLn-quiver
(Lemma 6.1) remain Casimirs with respect to the induced Poisson bracket on the upper triangular matrices.
They are addressed in what follows as ”original Casimir functions”. Explicit monomial forms of ⌊n

2 ⌋ generators
of the ring of Casimirs for PGLn quiver are described in details in Section 6.1.

As a result of the amalgamation procedure we obtain new quiver which admits additionally n− 1 new
independent Casimirs depicted in Fig. 23 (see Lemma 6.5): Note that each of the new Casimirs Ki is again a
monomial expression

Ki := Z2
0,i,n−i

i−1�

j=1

Zj,i−j,n−iZ̄i

n−i−1�

j=1

Zj,i,n−i−j , (5.2)

which contains exactly one square of one of the frozen variable Z0,i,n−i, and we have exactly one such Casimir
per every frozen variable Z0,i,n−i. Notice that the jth diagonal element (A)ii :=

�
MT

1 M2

�
ii
= (M1)ii(M2)ii =�i

j=1 Kj. In particular, setting all Kj = 1 we obtain a unipotent upper-triangular matrix A.

Theorem 5.1. The collection of Fock-Goncharov parameters Zabc, a+ b+ c = n, 1 ≤ a, b, c ≤ n− 2 and
Z̄i, i = 1, . . . , n− 1 equipped with the log-canonical Poisson bracket

{Zabc, Za′b′c′} = λ(a, b, c; a′, b′, c′)ZabcZa′b′c′ ,

−{Z̄k, Zabc} = {Zabc, Z̄k} = µ(a, b, c; k)ZabcZ̄k,

{Z̄k, Z̄k′} = ν(k; k′)Z̄kZ̄k′ ,

where constants λ(a, b, c; a′, b′, c′) =





1, if a′ = a− 1, b′ = b, c′ = c+ 1, or a′ = a, b′ = b+ 1, c′ = c− 1,

or a′ = a+ 1, b′ = b− 1, c′ = c;

−1, if a′ = a+ 1, b′ = b, c′ = c− 1, or a′ = a, b′ = b− 1, c′ = c+ 1,

or a′ = a− 1, b′ = b+ 1, c′ = c;

0, otherwise;

µ(a, b, c; k) = µ∗1∗(a, b, c; k) + µ∗∗1(a, b, c; k),

µ∗1∗(a, b, c; k) =





1, if k = a+ 1, b = 1;

−1, if k = a, b = 1;

0, otherwise

and µ∗∗1(a, b, c; k) =





−1, if k = b, c = 1;

1, if k = b+ 1, c = 1;

0, otherwise;

and ν(k, k′) =





1, if k = k′ + 1 or k = n− 1, k′ = 1;

−1, if k′ = k + 1 or k = 1, k′ = n− 1;

0, otherwise.
form the log-canonical system of coordinates on the space of unipotent upper triangular matrices An with
respect to the canonical Poisson bracket (1.6).

Remark 5.2. The entries aij of unipotent upper triangular A ∈ An are expressed through Zabc and Z̄i as a
sum of weights of paths, where the paths entering in the sum and their weights are explained on Figure 16;

each weight is a product of Z
± 1

2

abc and Z̄
± 1

2

i .

Proof . Let us change the system of coordinates in An replacing Z0,i,n−i by (Ki)
1/2. Note that Ki is a Weyl

ordering of positive essentially self-adjoint operators Zabc, hence a positive essentially self-adjoint operator.
Therefore, its positive self-adjoint fractional power is uniquelly defined. Clearly, it is nondegenerate change
of coordinates. Fixing values Ki = 1 leads to a Poisson submanifold An. Elements Z0bc, b+ c = n are
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dependent of all other Fock-Goncharov parameters through equations Ki = 1, elements Zi,0,n−i and Zn−i,i,0

enter A = MT
1 M2 only pairwise as described by (5.1). We noted already that all Fock-Goncharov parameters

parametrize symplectic leaves of An. Comparing dimension of An with the number of parameters left after
removing Z0,i,n−i and replacing pair (Zk,0,n−k, Zn−k,k,0) by Z̄k we can conclude that Z̄i, i = 1 . . . n− 1 and
Za,b,c, a > 0 form log-canonical coordinate system on An.

It is straightforward to check that expressions in Theorem 5.1 for the Poisson bracket of pair of functions
from the union {Zabc} ∩ {Z̄k} correspond to the quiver obtained by the following construction.

Poisson bracket on An is described by a quiver obtained from PGLn-quiver by the following steps. First,
we remove vertices corresponding to frozen variables Z0,i,n−i. Second, we glue vertices Zk,0,n−k and Zn−k,k,0

into the vertex Z̄k and then unfreeze it. Note that the connected part of the resulting quiver, which we call the
An-quiver, contains only unfrozen variables. A most symmetric way of vizualizing this quiver is to “cut out” the
half-sized triangle located in the left-lower corner, then reflect this small triangle through the diagonal passing
through its left-lower corner preserving the incidence relations for arrows in the both parts of the quiver, then
glue pairwise the amalgamated variables Zk,0,n−k and Zn−k,k,0. Example of the amalgamation operations for
A5 is shown below.

Note each of ⌊n/2⌋ original Casimirs of the PGLn-quiver gives rise to the corresponding Casimir element
of the An-quiver

Ck = Z̄k

n−k−1�

i=1

Zk,i,n−k−iZ̄n−k

k−1�

j=1

Zn−k,j,k−j , (5.3)

and in figures representing An-quivers, cluster variables of sites of the same color contribute (all in power one)
to the same Casimir. We present the An-quivers for n = 3, 4, 5, 6 in Fig. 13 where we indicate [n/2] independent
Casimir elements depicted in Fig. 24.

Since all Casimirs of A ∈ An are generated by λ-power expansion terms for det(A+ λAT) (see, [3]) and
by C1, . . . , C[n/2], we automatically obtain the following result

Lemma 5.3. The coefficient of λk of det(A+ λAT) is a function Pk(C1, . . . , C[n/2]), where Ci are Casimirs of
the An-quiver.

∗

Remark 5.4. In the cases n = 3 and n = 4, the constructed quivers are those of geometric systems: these cases
admit three-valent fat-graph representations in which X -cluster variables are identified with (exponentiated)
Thurston shear coordinates zα enumerated by edges of the corresponding graphs, and nontrivial commutation
relations are between variables on adjacent edges; for n = 3 and n = 4 these graphs are the relative spines of
Riemann surfaces Σ1,1 and Σ1,2 depicted in Fig. 14; the Laurent polynomials for entries of A coincide up to a
linear change of log-canonical variables with the expressions obtained by identifying these entries with geodesic

functions corresponding to closed paths on these graphs; for more details and for the explicit construction of
geodesic functions, see [6], [8]. Note here that, likewise all ai,j constructed in this paper, all geodesic functions
for all surfaces Σg,s are positive Laurent polynomials of ezα/2.

∗Pk are polynomial functions whose explicit expressions were found in [13].
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n = 3 n = 4 n = 5 n = 6

Fig. 13. An -quivers for n = 3, 4, 5, 6.

Γ1,1

a1,2

Γ1,2
a1,2

a1,3

Fig. 14. Fat graphs Γ1,1 and Γ1,2 corresponding to the respective quivers for A3 and A4. We indicate closed
paths that produce elements a1,2 ∈ A ∈ A3 and a1,2 and a1,3 of A ∈ A4. For example, setting all Zα = 1 for
simplicity and using formulas from [6] for the corresponding geodesic functions we obtain a1,2 = tr(LR) = 3 in
A3 and a1,2 = tr(LLR) = 4 and a1,3 = tr(LLRR) = 6 in A4, where L =

�
1 0
1 1

�
and R =

�
1 1
0 1

�
are matrices of

the respective left and right turns of paths occuring at three-valent vertices of a spine. It is easy to see that the
above ai,j coincide with those in Example 2.7.

5.2 Braid-group action through mutations

Our second major goal in this paper is to find a representation of the braid-group action from Sec. 1.2 in

terms of cluster mutations of the An-quiver. In this section we find cluster expressions of generators of braid

group action on the classical space An. It is well-known that for A belonging to a specific symplectic leaf in

An its matrix elements ai,j are identified with the geodesics functions. In this leaf, braid-group transformations

correspond to Dehn twists along geodesics corresponding to geodesic functions ai,i+1 on Σg,s (n = 2g + s and

s = 1, 2). We know that every Dehn twist on a Riemann surface Σg,s is a sequence of cluster mutations since it

can be presented as a chain of mutations of shear variables on edges of the corresponding spine Γg,s. Whereas,

for n = 3 and n = 4, generic symplectic leaves in An are geometric and the corresponding mutation sequences

are identical, for larger n the generic symplectic leaves become essentially different and we have to reinvent a

braid group action. Knowing the answer for n = 3 and 4 helps in guessing the answer for a general n. We begin

with the example of A5-quiver:



Log-canonical coordinates for symplectic groupoid 29

β1,2

β2,3

β3,4

β4,5

β1,2

β2,3

β3,4

β4,5

β5,6

Fig. 15. The braid-group action represented on the union of two triangles, each of which is the copy of the
An-quiver, for n = 5 and 6. The dotted line indicates the line of the triangle gluing. Dashed blocks enclose
cluster variables sequences of mutations at which produce elementary braid-group transformation βi,i+1: every
such sequence commences with mutating the lowest element inside a box (corresponding to a six-valent vertex),
then its upper-right neighbor and so on until we reach the upper element, mutate it, and repeat mutations at
all inner elements in the reverse order. So, every such braid-group transformation is produced by a sequence of
2n− 5 mutations in the corresponding An-quiver.

1 2

4 3

The following chain of mutations β3,4 = µ1µ2µ3µ2µ1 = S3,4 preserves the form of the original quiver with
the interchanged vertices 3 and 4, where µi is a mutation at vertex i.

A convenient way to represent a set of elementary braid-group transformations for a general An quiver
is the process schematically depicted in Fig. 15 below: we take another copy of the triangle representing the
quiver, reflect it and glue the resulting triangle to the original one along the bottom side of the latter in a way
that amalgamated variables on the sides of two triangles match and the colored vertices representing Casimir
elements are stretched along SE diagonals. The sequences of mutations corresponding to elementary generating
elements βi,i+1 of the braid groups are indicated in the figure.

Before presenting the result of the braid-group transformation, we describe contributions of cluster variables
located at sites of the An-quiver to a normalized element ai,j ∈ A with i < j. (Note that this normalization is
different from the one we applied to obtain Mi from Mi.) Before normalization this element is homogeneous in

frozen cluster variables ρk ≡ Z0,k,n−k and is proportional to the product
�i

k=0 ρ
2
k

�j
l=i+1 ρl. We normalize this

element by dividing it by the product
�i

k=0 Kk

�j
l=i+1 K

1/2
l of Casimirs (5.2) thus eliminating the dependence

of A on ρi. This normalization changes the powers in which cluster variables enter sums over paths. We have
eight domains in total in the leftmost part of Fig. 16: let us describe two of them. In the domain labeled “a,”
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i

j

b

a

∼ Z1 ∼ Z−1

∼ Z−1/2

i

j

∼ Z1/2

∼ Z−1/2

i

j

Fig. 16. Paths contributing to ai,j in the glued An-quivers. In the left picture we indicate contributions of
cluster variables of PGLn quiver into a normalized element ai,j : we schematically draw two paths: the upper
path corresponds to (M1)ki and the lower path corresponds to (M2)kj . All cluster variables above the first path
enter in power two and all variables between two path enter with power one into a nonnormalized expression; we

then normalize it by the products of cluster variables entering the product of Casimirs
�i

k=0 Kk

�j
l=i+1 K

1/2
l .

The resulting pattern is presented in the middle picture: cluster variables enter with powers 1/2 or −1/2 and
variables from empty areas do not contribute. In the rightmost figure we take another copy of the An-quiver and
attach it as in Fig. 15; two domains in the original triangle then constitute a parallelogram with a continuous
path joining its opposite vertices.

nonnormalized variables enter with power 1 and each of them enters exactly one Casimir Kk with k ≤ i and one
Casimir Kl with i + 1 ≤ l ≤ j, so the normalization decreases the power by 3/2 and the total power with which
these variables enter the normalized element is −1/2. In the uppermost domain labeled “b,” every element
enters with power two into a nonnormalized sum over paths and it enters two Casimirs Kk with k ≤ i, so the
normalization add power −2 and the total power is zero. We indicate powers by different hatchings, which
overlap in the figure on the left; the resulting powers −1/2, 0, and 1/2 are indicated in the middle figure.

We then glue two copies of the PGLn triangle in the rightmost part of Fig. 16: the union of two domains
containing cluster variables contributing into the normalized element ai,j is then a parallelogram with sides of
positive lengths j − i and n+ i− j, and in order to obtain the element ai,j we have to take a sum over all paths
inside this parallelogram starting at the vertex of the dual lattice located “beyond” NE vertex j and terminating
at the vertex of the dual lattice located “beyond” SW vertex i (a standard exercise in combinatorics is that we
have exactly

�
n

j−i

�
such paths, cf. toy Example 2.7).

In the more detailed picture (Fig. 17), we indicate a part of the directed network inside which we take a
sum over paths from j to i contributing to ai,j (an example of such path is shown in light green color in the
Figure 17); all contributing cluster variables are confined inside the corresponding parallelogram. All cluster
variables inside the parallelogram and above a path contribute with power one to the nonnormalized matrix
entry. Normalization correction (as explained above) changes the power of each cluster variable above the path
and inside the parallelogram to 1/2. Similarly, all cluster variables inside the parallelogram and below the path
enter with the power −1/2. All variables outside the parallelogram do not contribute.

We now explore how cluster variables transform under chains of mutations βi,i+1. Recall that mutation
µZ transforms any variable Y at the head of an outgoing solid arrow Z → Y as Y �→ Y (1 + Z), and at the
head of outgoing double arrow Z ⇒ Y as Y �→ Y (1 + Z)2 whereas a variable X joined to Z by an incoming
solid arrow, Z ← X , transforms as X → X(1 + Z−1)−1, and for incoming double arrow, Z ⇐ X , we have
X → X(1 + Z−1)−2. Finally, µZ(Z) = Z−1 and quiver mutation is standard ([21]).

Before formulating the general statement, let us consider an example of such a quiver transformation for
PGL5. In this case we have a sequence of five consecutive mutations depicted in Fig. 18.
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i

j

Fig. 17. More detailed path weight: all cluster variables inside the drawn parallelogram and above a light
green path enter with the power 1/2 and all cluster variables inside the parallelogram and below the path enter
with the power −1/2. All variables outside the parallelogram do not contribute.
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Fig. 18. The sequence of mutations producing a braid-group transformation in PGL5 case. The vertex at
which mutation takes place is painted black. Three vertices labeled ⋆, ∗, and ∗∗ in the bottom and top parts
of the quiver are copies of the same three vertices; bold arrows connecting these vertices are two copies of the
same arrow in the corresponding quiver (which has to be taken into account when doing mutations). Arrows
between other vertices and between the above three vertices and the rest of vertices are summed up following
standard quiver rules. Note that after the second mutation, we obtain a double arrow ∗ ⇒ ∗∗; at the last step
we interchange positions of transformed variables ∗ and ∗∗ reconstructing the original quiver.
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Ar−1
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B3

Br−1
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S2

S1

S2

C0 = Ar
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A′
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A′
r−1

A′
r

S′
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B′
1

B′
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B′
3

B′
r−1
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r

S′
1

S′
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S′
1

C′
0 = A′

r

C′
1

C′
2

C′
r−1

C′
r

Fig. 19. The transformation of variables under a braid group transformation βi,i+1. We indicate only variables
that are transformed under the corresponding chain of mutations. Note that the cluster variables C0 and Ar (and
therefore C′

0 and A′
r) are two representatives of the same cluster variable taken from two different fundamental

domains; we use different letters to denote the same cluster variable only for making formulas in this section
uniform.

Till the end of this section we let r = n− 3 for brevity. Consider the following sequence of mutations
β = µB1

. . . µBrµS2
µBr . . . µB2

µB1
(see Fig. 19). The net result of this chain of mutations is shown on the right

hand side of Fig. 19. Note that the resulting quiver is isomorphic to the original one when all the mutated
variables except S1 and S2 retain their positions, while the boundary variables S1 and S2 are permuted.

Lemma 5.5. In the notation of Fig. 19, cluster variables transform as follows (recall that for brevity we set
r := n− 3):

B′
k = Bk

ηk+2

ηk
, k = 1, . . . , r; A′

k = Ak
ηk+1

ηk+2
, k = 0, . . . , r − 1; C′

k = Ck
ηk+1

ηk+2
, k = 1, . . . , r;

A′
r = C′

0 = Ar
ηn+1η1

η2
; S′

1 =
S1S

2
2B1 · · ·Br

ηr+1η1
; S′

2 =
η2

S2B1 · · ·Br
,

where

ηr+2 = 1, ηr+1 = 1 + S2, ηr = 1 + S2 + S2Br,

ηr−1 = 1 + S2 + S2Br + S2BrBr−1, . . . , η1 = 1 + S2 + · · ·+ S2Br · · ·B1. (5.4)

Proof . The proof of Lemma 5.3 is a long but straightforward calculation during which we may observe a regular
pattern moving along the strip of cluster variables affected by this chain of mutations: first in one direction,
then in opposite direction reconstructing in its reverse motion the original quiver with transformed variables
at vertices. The chain of quiver mutations is illustrated on Figure 18. Using the structure of quivers in the
mutation sequence the transformation of formulas for cluster variables is straightforward.

Note first that Casimirs (5.3) of the An-quiver are invariant under the transformation in Lemma 5.5. This
immediately follows from the equalities

A′
kB

′
kC

′
k−1 = AkBkCk−1, k = 2, . . . , r − 1,

A′
1B

′
1A

′
rB

′
rC

′
r = A1B1ArBrCr,
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and (5.5)

S′
1S

′
2A

′
0C

′
r = S1S2A0Cr.

We now formulate the main statement

Theorem 5.6. The cluster transformations in Lemma 5.5 generate the braid-group transformations for entries
ai,j of the (classical) matrix A.

Proof. The pivotal calculation is the transformation of quantities ηk defined in (5.4) under transformations
in Lemma 5.5. Let us denote by G the non-normalized transport matrix corresponding to matrix A. First, let
us compute the (non-normalized) element Gi,i+1 of G:

Gi,i+1 := η1 + S2Br · · ·B1S1 = 1 + S2 + S2Br + · · ·+ S2Br · · ·B1 + S2Br · · ·B1S1. (5.6)

Then, after mutation sequence βi,i+1, we obtain

η′k = 1 + S′
1 + S′

1B
′
r + S′

1B
′
rB

′
r−1 + · · ·+ S′

1B
′
rB

′
r−1 · · ·B

′
k

= 1 +
S1S

2
2Br · · ·B1

ηr+1η1

�
1 +

Br

ηr
+BrBr−1

ηr+1

ηrηr−1
+ · · ·+BrBr−1 · · ·Bk

ηr+1

ηk+1ηk

�

(note that 1 +Br/ηr = (1 + S2)(1 +Br)/ηr = ηr+1(1 +Br)/ηr)

= 1 +
S1S

2
2Br · · ·B1

η1

�1 +Br

ηr
+

BrBr−1

ηrηr−1
+ · · ·+

BrBr−1 · · ·Bk

ηk+1ηk

�

�
note that

1 +Br

ηr
+

BrBr−1

ηrηr−1
=

1

ηrηr−1

�
(1 +Br)(1 + S2 + S2Br + S2BrBr−1) +BrBr−1

�

=
1

ηrηr−1
(1 +Br +BrBr−1)ηr =

1+ Br +BrBr−1

ηr−1

�

= · · · = 1 +
S1S

2
2Br · · ·B1

η1

1 +Br +BrBr−1 + · · ·+BrBr−1 · · ·Bk

ηk

= 1 +
S1S2Br · · ·B1(ηk − 1)

η1ηk
=

Gi,i+1

η1
−

S1S2Br · · ·B1

η1ηk
.

We therefore obtain that

η′k =
Gi,i+1

η1
−

S1S2Br · · ·B1

η1ηk
, k = 1, . . . , r + 2, (5.7)

and

G′
i,i+1 = η′r + S′

1B
′
rB

′
r−1 · · ·B

′
1S

′
2 =

Gi,i+1

η1
. (5.8)

We consider several cases of matrix entries aij ; the rest we leave for the reader. Note, first, the relations for
triples of the cluster variables:

A′
k−1B

′
kC

′
k = Ak−1BkCk, k = 1, . . . , r, and S′

1S
′
2A

′
r = S1S2Ar. (5.9)

In particular, these relations imply that the total product of all cluster variables is conserved.
For all elements ai,j we take into account their normalization by taking the sum over paths weighted by

products of cluster variables (in power one) inside the corresponding parallelogram and above the path and
dividing this sum by the product of all cluster variables inside the parallelogram taken with power 1/2.

We begin with the element

ai,i+1 =
�
S2Br · · ·B1S1

�−1/2
Gi,i+1.

Since S′
1B

′
r · · ·B

′
1S

′
2 = S2Br · · ·B1S1η

−2
1 we have that

a′i,i+1 =
�
S′
1B

′
r · · ·B

′
1S

′
2

�−1/2
G′

i,i+1 = ai,i+1,

so, as expected, this element is preserved by the braid-group transformation βi,i+1.
We next consider an arbitrary element al,m with (l,m) �= (i, i+ 1). Note first that the normalizing factor

for any such element is a product of triples of cluster variables (5.9) taken either in powers 1/2 or zero; since
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all these triples are preserved by the transformation, all such factors are invariant under the transformation. It
suffices therefore to consider a nonnormalized sum over paths contributing to al,m. Consider a contribution of
cluster variables to paths that enter the pattern in Fig. 19 from the right between elements Cp−1 and Cp and
exit from the left between elements Ak−1 and Ak−2 (with k ≤ p). This path may cross the “B-line” anywhere
between Bk−1 and Bp and we have to take a sum over all possible variants. The corresponding contribution
therefore has the form

Π′
k,p = C′

pC
′
p+1 · · ·C

′
m ×

�
η′k − η′p+1

�
× S′

2A
′
mA′

m−1 · · ·A
′
k−1

= ηp+1CpCp+1 · · ·Cm ×
S1S2Br · · ·B1

η1ηkηp+1
(ηk − ηp+1)×

η1ηk
S2Br · · ·B1

Am · · ·Ak−1

= CpCp+1 · · ·Cm(ηk − ηp+1)S1Am · · ·Ak−1 = Πk,p,

so all these elements are preserved, as well as all normalizing factors, and a′l,m = al,m.
Consider now

a′i,i+2 =
�
A′

r · · ·A
′
0S

′
1B

′
r · · ·B

′
1

�−1/2�
η′r+2 +A′

rη
′
r+1 +A′

rA
′
r−1η

′
r + · · ·+A′

rA
′
r−1 · · ·A

′
0η

′
1

�

=
�
S1Ar · · ·A0S

2
2B

2
r · · ·B

2
1η

−2
2

�−1/2
�
1 +Ar

ηr+1η1
η2

�Gi,i+1

η1
−

S1S2Br · · ·B1

η1ηr+1

�
+ . . .

+ (Ar · · ·Ak)
ηk+1η1
η2

�Gi,i+1

η1
−

S1S2Br · · ·B1

η1ηk+1

�
+ · · ·+ (Ar · · ·A0)

η1η1
η2

�Gi,i+1

η1
−

S1S2Br · · ·B1

η1η1

��

=
�1 +Arηr+1 + · · ·+ArAr−1 · · ·A0η1

(Ar · · ·A0S2Br · · ·B1)1/2
·

Gi,i+1

(S2Br · · ·B1S1)1/2
−

1 + S1 + S1Ar + · · ·+ S1Ar · · ·A0

(S1Ar · · ·A0)1/2

�

=ai,i+2ai,i+1 − ai+1,i+2.

Next,

a′i−1,i+1 =
�
B′

r · · ·B
′
1S

′
2C

′
r · · ·C

′
0

�−1/2�
1 · (G′

i,i+1 − η′r+2) + C′
r(G

′
i,i+1 − η′r+1)

+ C′
rC

′
r−1(G

′
i,i+1 − η′r) + · · ·+ C′

r · · ·C
′
0(G

′
i,i+1 − η′1)

�

=
1

(Cr · · ·C0S2)1/2

�
1 + Cr + CrCr−1 + · · ·+ CrCr−1 · · ·C1 + CrCr−1 · · ·C1C0ηr+1

�

=
1

(Cr · · ·C0S2)1/2

�
1 + Cr + CrCr−1 + · · ·+ CrCr−1 · · ·C1 + CrCr−1 · · ·C1C0(1 + S2)

�
= ai−1,i.

Proving the rest of relations we leave to the reader.�

6 Casimirs

In this section, we derive complete sets of Casimirs for all relevant (sub)varieties of cluster Poisson varieties
related to regular quivers associated to PGLn and An systems. All Casimirs in consideration are obtained as a
finite product of (rational) powers of Fock-Goncharov parameters Zijk shown on the Figures below (red quiver
vertices carry contributing parameters, red numbers show the corresponding powers). All proofs are direct
calculations: to show that a given monomial is Casimir one can check that the total number of incoming
minus the total number of outgoing arrows weighted by the rational powers connecting any given vertex
of quiver with all vertices of the support of the monomial is zero, independence follows from the fact that
vectors of exponents of Casimirs are independent whereas their completeness follows from the known answers
for dimensions of symplectic leaves ( see [3]). Finally, to obtain quantum Casimirs by a quantization of a
Casimir monomial

�
α Zrα

α we need to take the Weyl ordering
•

•

�
α Zrα

α •

• . This fact follows immediately from

the commutation relation
•

•

�
α Zrα

α •

•Zβ = q�
∑

rαα,β�Zβ•

•

�
α Zrα

α •

• with any Fock-Goncharov parameter Zβ . Note
that for any Casimir

�
α Zrα

α the value �
�

rαα, β� = 0. In the rest of this section we consider only semi-classical
Casimir functions in commutative variables unless explicitly mentioned otherwise.

6.1 The full-rank PGLn-quiver

Lemma 6.1. The complete set of Casimir operators for the full-rank PGLn-quiver are
�
n
2

�
products of cluster

variables depicted in the figure below for the example of PGL6: numbers at vertices indicate the power with
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which the corresponding variable comes into the product; all nonnumbered variables have power zero. All
Casimirs correspond to closed broken-line paths in the PGLn-quiver with reflections at the boundaries (the
“frozen” variables at boundaries enter the product with powers two, powers of non-frozen variables can be 0,1,2,
and 3, and they count how many times the path goes through the corresponding variable. The total Poisson

dimension of the full-rank quiver is therefore (n+2)(n+1)
2 − 3−

�
n
2

�
.

11 11

11 11

11 11

22 22 2222

22 22

22 22

22

33

11 11 11
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11

11

11

11

22

22

22
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22 22

11 11

11 11

11 1122 22

22

Fig. 20. Three central elements of the full-rank quiver for PGL6.

Remark 6.2. All Casimir operators from Lemma 6.1 remain Casimirs for the full-rank GLn-quiver obtained
by adding three more cluster variables at the corners of the triangle (the variables Z6,0,0, Z0,6,0, and Z0,0,6 in
Fig. 25). If we include these three corner variables into the quiver, we have to add one more Casimir operator
which is the product of all frozen (non-corner) variables along all three boundaries of the PGLn-quiver taken
in power one and the product of three corner variables taken in power three.

For completeness, we also present Casimirs for a reduced quiver in which we eliminate one of the three sets
of frozen variables. The remaining n(n+ 1)/2− 1 variables are those parameterizing, say, the transport matrix
M1 (for M2 we have to remove another set of frozen variables). In this case, every Casimir of the full-rank quiver
has its counterpart in the reduced quiver except the element that is represented by a triangle-shaped path in
the full-rank quiver (such an element exists only for even n), which has no counterpart.

Lemma 6.3. The complete set of Casimir operators for the reduced PGLn-quiver are
�
n−1
2

�
products of cluster

variables depicted in Fig. 21 for the example of PGL6: numbers at vertices indicate the power with which
the corresponding variable comes into the product; all nonnumbered variables have power zero. All Casimirs
correspond, as in Fig. 20, to closed broken-line paths in the corresponding full-rank quiver with reflections at
the boundaries (the “frozen” variables at boundaries enter the product with powers two), but now the path
is split into two parts separated by two reflections at the side of the triangle that corresponds to the erased
frozen variables; these two parts enter with opposite signs; the corresponding Casimir therefore contains cluster
variables in both positive and negative powers. As in the case of full-rank quiver, these powers count (with
signs) how many times the path goes through the corresponding variable). The total Poisson dimension of the

reduced PGLn-quiver is therefore
n(n+1)

2 − 1−
�
n−1
2

�
.

11 11

11 11

-1-1 -1-1-2-2 -2-200 00

22 22

22 11

11

11

11

11

11-1-1 -1-1

-1-1 -1-1-2-2 -2-2

22 22

Fig. 21. Two central elements of the reduced quiver for PGL6. Every element of the complete quiver in Fig. 20 has
its counterpart in the reduced quiver except the third element.

In our construction below, an important role is played by the additional Casimir that appears if we add
the variable (0, 0, 6) at the summit of the triangle corresponding to a reduced quiver. In this case, besides the
Casimirs in Lemma 6.3, we have one more central element D described in the following statement.
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Fig. 23. Five new central elements of the main quiver for PGL6 due to amalgamation. (We use these central elements

to set all diagonal elements of the upper-triangular matrix A = MT
1 M2 to be the unities.)

Lemma 6.4. The complete set of Casimirs for the reduced PGLn-quiver with added the (“frozen”) cluster
variable (0, 0, n) comprises all Casimirs described in Lemma 6.3 plus the element D1 given by the following
formula. Let us enumerate the plabic weights Zi,j,k as in Fig. 25 by three nonnegative integers (i, j, k) with
i+ j + k = n. Then the element

D1 =

n�

k=1

� �

i+j=n−k

�
Zi,j,k

�k/n�
(6.10)

is central for the subset of Zi,j,k with k > 0. Moreover, the only elements that have nonzero homogeneous
commutation relations with D1 are Zn,0,0 and Z0,n,0.

Fig. 22. The amalgamation of the quiver corresponding to the triangle Σ0,1,3 (The example in the figure corresponds
to PGL6).

6.2 Casimirs for the upper-triangular matrices

Entries of the matrix A := MT
1 M2 depend on all variables of the PGLn-quiver, but due to the transposition,

two sets of the frozen variables become amalgamated, that is, only their products appear in the entries of the
matrix A. We explicitly show this amalgamation in Fig. 22.

It is easy to see that all Casimirs from Lemma 6.1 remain Casimirs in the amalgamated quiver (just
four, or two, depending on the Casimir element, frozen variables become pairwise amalgamated). More, this
amalgamation results in the appearance of n− 1 new Casimirs; in Sec. 5 we have used these new Casimirs
to eliminate the dependence of A on remaining n− 1 frozen variables: diagonal entries of A = MT

1 M2 are
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Fig. 24. Three remaining central elements of the full-rank quiver for PGL6 after amalgamation and setting the
diagonal elements of A equal to unities.

particular products of these Casimirs in classical case and q−1/2 multiplied by a product of such Casimirs in
the quantum case , and we adjust the values of these Casimirs to make all diagonal elements of A equal to the
unities in the classical case and q−1/2 in the quantum case (recall that all quantum Casimirs are assumed to be
self-adjoint operators).

Lemma 6.5. The complete set of central elements for the amalgamated quiver in Fig. 22 comprises n− 1 new
Casimirs depicted in Fig. 23 for the case of PGL6 and

�
n
2

�
central elements (products of old Casimirs with the

new ones) depicted in Fig. 24.

7 Quantum Grassmannian and measurement maps

7.1 Non-normalized quantum transport matrices

We add additional vertices labelled (n, 0, 0), (0, n, 0) and (0, 0, n) to the quiver of Fock-Goncharov parameters
Zabc and construct dual planar bicolored (plabic) graph G ( Figure 9). Then, we define non-normalized quantum
transport matrices M1 and M2 as quantization of boundary measurement matrices of graph G introduced by
Postnikov in [37]. Namely, we assign to every path P connecting a source of G to a sink a quantum weight w(P )
that is element of the quantum torus Υ. We define the boundary measurement between source p and sink q as

Mpq =
�

path P :p❀q

w(P ). Finally, note that G has n sources and 2n sinks, we organize boundary measurements

Mpq into 2n× n matrix that we divide into two n× n matrices M1 and M2.
Vertices of G are colored into black and white color as follows: a black vertex has two incoming arrows and

one outgoing, while a white vertex has two outgoing and one incoming arrows.
We equip faces of Figure 25 with weights Zα associated with the corresponding vertices of graph Figure 8.

We define the quantum weight of a maximal oriented path in G by formula 2.11 (see Fig.25).

Example 7.1. Consider the triangular network of PGL3 (Fig. 26)

Normalized quantum transport matrices have the following form:

M1 =




q
1
6 : (Z021Z111)

−
1
3 Z

1
3
102

Z
−

2
3

012
Z

2
3
201

: q
1
6 : Z

−
1
3

021
(Z102Z102)

1
3 (Z

−
1
3

111
+ Z

2
3
111

)Z
2
3
201

: q
1
6 : (Z102Z012)

1
3 (Z021Z111Z201)

2
3 :

−q
−

5
6 : (Z021Z102Z111Z201)

−
1
3 Z

−
2
3

012
: −q

−
5
6 : (Z021Z102Z111Z201)

−
1
3 Z

1
3
012

: 0

q
−

11
6 : (Z021Z111Z201)

−
1
3 (Z102Z012)

−
2
3 : 0 0


.

M1 = QSD−1
1 M1, where D1 =

•

•Z
1
3

021Z
2
3

102Z
1
3

111Z003Z
2
3

012Z
1
3

201•
• and

M1 =




•

•Z003•
• 0 0

•

•Z003Z102•
•

•

•Z012Z003Z102•
• 0

•

•Z003Z102Z201•
•

•

•Z012(1 + Z111)Z003Z102Z201•
•

•

•Z021Z012Z111Z003Z102Z201•
•


 .
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600

006

060

051501

015105

024114204

303

Fig. 25. Face and path weights of G. Faces are labeled by indices i, j, k ∈ Z, i+ j + k = 6, the corre-
sponding Fock-Goncharov face weight is denoted by Zijk . The weight w(P ) of the blue path P is w(P ) =

•

•Z024Z015Z114Z006Z105Z204Z303•
• Note that corner faces do not carry Fock-Goncharov variables and don’t contribute to

the normalized transport matrices M1 and M2. However, they do contribute toward non-normalized transport matrices
M1 and M2.

300 210 120 030

201 111 021

102 012

003 3

2

1

1

2

3

1 2 3

Fig. 26. Face and path weigths of GPGL3
. Triples i, j, k ∈ Z, i+ j + k = 3 label faces.

Similarly,

M2 =




0 0 q
1
6 : (Z210Z111Z012)

1
3 (Z120Z021)

2
3 :

0 −q−5/6: (Z210Z111Z012)
1
3 (Z120Z021)

−
1
3 : −q

−
5
6 : (Z210Z111Z012)

1
3 Z

−
1
3

120
Z

2
3
021

:

q
−

11
6 : (Z210Z111Z012)

−
2
3 (Z120Z021)

−
1
3 : q

−
11
6 : Z

−
2
3

210
(Z

−
2
3

111
+ Z

1
3
111

)Z
1
3
012

Z
−

1
3

120
Z

−
1
3

021
: q

−
11
6 : Z

−
2
3

210
(Z111Z012)

1
3 Z

−
1
3

120
Z

2
3
021

:




M2 = QS
•

•D−1
1 D−1

2 •

•M2, where D2 =
•

•Z300Z
2/3
201Z

1/3
102Z

2/3
210Z

1/3
111Z

1/3
120 •

• = τ(D1) and

M2 =




•

•Z003Z300Z201Z102•
•

•

•Z003Z300(1 + Z111)Z012Z201Z102•
•

•

•Z003Z300Z021Z111Z012Z201Z102•
•

0
•

•Z003Z300Z210Z111Z012Z201Z102•
•

•

•Z003Z300Z210Z021Z111Z012Z201Z102•
•

0 0
•

•Z003Z300Z120Z210Z021Z111Z012Z201Z102•
•




Notice that both M1 and M2 are non-normalized quantum transport matrices of network shown on
Figure 26.

7.2 Quantum Grassmannian and proofs of Theorems 2.12 and 3.2

We now prove Theorems 2.12 and 3.2 utilizing the notion of plabic graphs introduced by Postnikov in [37].

Remark 7.2. The semi-classical statement of Theorem 2.12 (see Remark 2.16) was proved in [24].

Following [37] we call a planar network an embedded in the disk D oriented graph with trivalent vertices
inside D (which are neither sources nor sinks) and univalent sources and sinks on the boundary ∂D (sources are
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separated from sinks) and whose faces are equipped with weights. We assume that the both sets of boundary
vertices: the set of sources and the set of sinks are nonempty. An example of such planar network N is drawn
on Figure 27 in rectangle R with sources on the right side and sinks on the left side.

α

β

γ

δ

ǫ

2

15
4

3

Fig. 27. Network N in rectangle R.

Denote by Faces(N) the set of faces of network N . Faces in Figure 27 are labelled by Greek letters,
namely, Faces(N) = {α, β, γ, δ, ǫ}. Represent Faces(N) as a disjoint union of two subsets Faces(N) =
FacesB(N) ∪̇ FacesI(N) where FacesB(N) contains all faces adjoined to the boundary ∂D and FacesI(N)
contains the faces which are not adjoined to ∂D. In Figure 27, Faces(N) = FacesB(N) = {α, β, γ, δ, ǫ},
FacesI(N) = ∅. Consider the integer lattice Λ̃ which is a free abelian group whose generators are elements
of Faces(N) and vector space Ṽ = Q⊗ Λ̃. We equip Λ̃ with the integer skew-symmetric form � , � as described
below. Note that the form on Λ̃ induces a form on Ṽ which we will also denote as � , �.

Definition 7.3. [37] A planar bicolored graph, or simply a plabic graph is a planar (undirected) graph G,
without orientations of edges, such that each boundary vertex bi is incident to a single edge and all internal
vertices are colored either black or white. A perfect orientation of a plabic graph is a choice of orientation of
its edges such that each black internal vertex v is incident to exactly one edge directed away from v; and each
white v is incident to exactly one edge directed towards v. A plabic graph is called perfectly orientable if it has
a perfect orientation.

Let us transform the oriented graph G of network into plabic graph Gpl by coloring inner vertices of G into
black and white colors according to the rule: black vertex has two incoming arcs and one outgoing; white vertex
has one incoming and two outgoing. We forget boundary sources and sinks so that any arcs connecting inner
vertex to the boundary one becomes a half-arc (see Fig. 29). For a plabic graph Gpl we define an oriented dual
graph (Gpl)∗ as follows. Vertices of (Gpl)∗ are faces of Gpl. For every black and white vertex x of Gpl we define
3 arcs of (Gpl)∗ that cross half-edges attached to x in counterclockwise direction if x is black and clockwise
direction if x is white (see Fig. 28).

Fig. 28. Dashed blue arcs are edges of the dual graph (Gpl)∗ around black and white vertex of Gpl.

For θ, φ ∈ Faces(N) let #(θ → φ) denote the number of arcs from θ to φ in (Gpl)∗.

The skew-symmetric form � , � on Λ̃ is defined by the formula

�θ, φ� =
1

2
(#(θ → φ)−#(φ → θ)) . (7.11)

Example 7.4. The plabic graph and its dual for the network Fig. 27 are shown on the Fig. 29.
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α

β

γ

δ

ǫ

Fig. 29. Arcs of plabic graph Gpl corresponding to network N on Fig. 27 are black solid lines; arcs of its dual (Gpl)∗ are
dashed blue arrows. Then, �α, β� = −1/2, �α, δ� = 1, �α, γ� = −1/2, �β, ǫ� = 1/2, �β, δ� = −1, �γ, δ� = −1/2, �δ, ǫ� = −1/2.

Let Z-lattice Λ̃ be generated as an abelian group by elements of Faces(N) equipped with the skew-
symmetric integer form � , �, Υ̃ be the corresponding quantum torus, and (Υ̃)1/n be the quantum torus
corresponding to 1

n Λ̃. It is well-known that a quantum torus is an Øre domain [1] and we denote by the F̃
the corresponding non-commutative fraction field.

Set σ =
�

θ∈Faces(N) θ ∈ 1
n Λ̃. Let V be the quotient space V = Ṽ /σ and Λ = Λ̃/σ be the induced integer

lattice in V . Note that σ lies in the kernel of the skew-symmetric form and its push forward to V is well-defined.
Abusing notation we will use � , � for the induced skew-symmetric form on V . Dual lattice Λ∗ = Hom(Λ,Z).

We construct quantum torus Υ (Υ1/n) associated with the lattice Λ( 1nΛ). Observe that Zσ belongs to

the center Z(Υ1/n) and Zσ − 1 can be factored as (Z
1
n
σ − 1)((Z

1
n
σ )n−1 + (Z

1
n
σ )n−2 + · · ·+ 1). Define the non-

commutative localization F = Ψ−1Υ1/n where Ψ is a complement in Υ1/n to the minimal two-sided ideal
containing all zero divisors. Elements of F can be written as elements of F̃ modulo the relation Zσ = 1.

It was mentioned in the proof of Corollary 4.3 that every face weight Zα ∈ F̃ corresponding to a face
α ∈ Faces(N) is a self-adjoint operator in L2(Rd) having a continuous spectrum (0,∞). Then a rational k

ℓ -power

(Zα)
k
ℓ is a self-adjoint operator with positive spectrum.
We call a plabic network with weights in F a quantum network.
Let p be the maximal oriented path from a source i on the right to the sink j on the left of a network.

Complete p to an oriented loop p̃ by following path p from i to j first and then closing the loop following the
piece of boundary of the rectangle in the clockwise direction from j to i.

The oriented loop p̃ defines a covector p̃ ∈ Λ∗ as follows. (We use the same notation for the loop and
induced covector.) Let r be a half infinite ray with starting point inside face α and directed towards infinity and
q1, . . . , qs be intersection points of r and loop p̃, Tr be the unit direction vector of r, Tqj p̃ is the unit tangent
vector to p̃ at qj . We assume that r is chosen generic, i.e., for all qj vectors Tr and Tqj p̃ are linearly independent.

We define the intersection index indqj (p̃, r) of p̃ and r at qj to be 1 if orientation of basis (Tqj p̃, Tr) coincides
with counterclockwise orientation of the plane and −1 otherwise and define p̃(α) =

�s
j=1 indqj (p̃, r). Note that

p̃(α) depends neither on exact position of starting point of r provided that the starting point varies inside the
same connected component of complement to p̃ nor on the particular choice of ray r with the same starting
point. Since any face α lies entirely in some connected component of p̃ we conclude that p̃(α) is well defined.
Clearly, p̃ ∈ Λ∗.

Assign to any path p a vector vp =
�

α∈Faces(N) p̃(α)α ∈ Λ. In the example in Section 2.5 where any
maximal oriented path p is non-selfintersecting the vector vp is the sum of all faces to the right from the path.

Set the weight wp of the path p as wp = Zvp .
Let S be the set of all sources of N , F be the set of all sinks. Define for any source a ∈ S and sink b ∈ F a

quantum boundary measurement Measq(a, b) =
�

p:a❀b(−1)cross(p)wp, where the sum is taken over all oriented

paths p from a to b where the crossing index cross(p) is the number of self-crossings of the path p. Classical
boundary measurement is defined by Postnikov in [37], For the network in Section 2.5, no path is selfcrossing
and Measq(a, b) =

�
p:a❀b wp.

Let n = |S|, m = |F |. Define an m× n matrix Qq of quantum boundary measurements as (Qq)ba =
(Measq(a, b))a∈S,b∈F . Note that we label rows of Qq by sinks and columns by sources of N .

In Example 27, the matrix Qq =




Zα+β Zα

Zα+β+γ Zα+γ

Zα+β+γ+δ 0


.

Define (m+ n)× n quantum grassmannian boundary measurement matrix Qgr
q (N) of network N (we also

will denote it by Qgr
q if it does not create a confusion). Columns of Qgr

q are labelled by boundary sources
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of network; rows are labelled by all boundary vertices. To describe matrix elements of Q̃q we introduce the
order of boundary vertex b ∈ N , denoted by ordN (b) (or, simply ord(b)). Enumerate all boundary vertices of
N from 1 to m+ n in counterclockwise direction. Let b ∈ [1,m+ n] be the index of boundary vertex. Let σ(b)
be the number of sources among boundary vertices with indices from 1 to b− 1. The order is defined by the

formula ord(b) =

�
σ(b), if b is not a source;

σ(b) + 1
2 , if b is a source.

. Let J(i) ∈ [1,m+ n] be the index of ith source, i ∈ [1, n];

J : [1, n] → [1,m+ n] is an increasing function.

We define (Qgr
q )ji =

�
(−1)i+ord(j)q− ord(j) Measq(i, j), if j is not a source;

q− ord(j)δ(J(i), j), otherwise.

Example 7.5. In Example 27 , the matrix Qgr
q =




q−1/2 0

0 q−3/2

−q−2Zα+β q−2Zα

−q−2Zα+β+γ q−2Zα+γ

−q−2Zα+β+γ+δ 0



.

Remark 7.6. In [37] a boundary measurement map is defined as a map Meas from the space Netm×n of
networks with n sources, m sinks and commutative weights to Gr(n,m+ n). For each X ∈ Netm×n, boundary
measurements Meas(i, j) form an (m+ n)× n matrix Qgr which represents Meas(X). The space of (m+ n)× n
matrices with elements in ΥN we denote by Mat(m+n)×n(ΥN) and the all invertible n× n matrices with entries
from ΥN form the group GLn(ΥN ). We say that an (m+ n)× n matrix W ∈ Mat(m+n)×n(ΥN ) has rank n if
there is an element G ∈ GLn(ΥN ) such that W ·G has an n× n submatrix with nonzero terms on the main
diagonal and zeros everywhere else. The set of all (m+ n)× nmatrices of rank n is denoted byMatn(m+n)×n(ΥN )

The group GLn(ΥN ) of invertible n× n matrices with entries from ΥN acts on Matn(m+n)×n(ΥN ) by the
right multiplication. We define the homogeneous space Grq(n,m+ n) as the right quotient Grq(n,m+ n) =
Matn(m+n)×n(ΥN )/GLn(ΥN). For a given oriented graph embedded into disk with n sources and m sinks
n ≤ m consider all possible networks with weights assigned to the arrows of the graph. The rank of the
corresponding boundary measurement matrix does not depend on the choice of weights but depends only
on the graph itself. In particular, if there is a collection of n non-crossing oriented paths connecting all n
sources to some n-element subset of sinks (as on Fig.29) then the rank of any network on this graph is
n. We call such graphs and associated networks maximal. In what follows, we assume that the graph N is
maximal. We denote by QNetm×n the space of such maximal quantum networks with n sources, m sinks and
quantum weights from ΥN . We define a quantization Measq : QNetm×n → Grq(m,m+ n) as the composition
QNetm×n → Mat(m+n)×n(ΥN ) → Grq(n,m+ n).

Definition 7.7. Two networks are equivalent if they have the same boundary measurements.

Simple equivalence relations (M1-M3,R1-R3) on the space of networks ( [37]) are simple local network
transformations preserving boundary measurements. Please, note that in the figures below we draw the plabic
graph assuming that it is equipped with a perfect orientation. Different choices of compatible perfect orientation
give the same result.

The following claims generalize similar statements for commuting weights (cf [37]).

Define 6 elementary moves (M1-M3), (R1-R3) as shown below.

Zα

Zβ Zγ

Zδ

Zǫ

Z′
α

Z′
β Z′

γ

Z′
δ

Z′
ǫ

Fig. 30. Elementary move M1: Z′
ǫ = Z−ǫ, Z′

δ = Zδ + Zδ+ǫ, Z′
α = Zα + Zα+ǫ, Z′

β =
∑∞

j=1(−1)j−1Zβ+jǫ, Z′
γ =

∑∞
j=1(−1)j−1Zγ+jǫ.
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Zα

Zβ

Zγ

Zδ

Zǫ

Zα

Zβ

Zγ

Zδ

Zǫ

Fig. 31. Elementary move M2.

Zα

Zβ

Zα

Zβ

Fig. 32. Elementary move M3.

Zα

Zǫ

Zβ

�∞
j=1(−1)j−1Zα+jǫ

Zβ + Zβ+ǫ

Fig. 33. Elementary move R1.

Zα

Zβ
Zǫ

Zα+β+ǫ

Fig. 34. Elementary move R2.

Zǫ

Zǫ

Fig. 35. Elementary move R3.

Definition 7.8. Two networks aremove equivalent if they are connected by a sequence of elementary moves.
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The corresponding (move) equivalence is called quantum (move) equivalence.
The following result extends the results of [37] to quantum networks.

Lemma 7.9. Two quantum move equivalent networks are quantum equivalent.

Proof . The proof follows [37]. Compared to the commutative case we just need to check one additional
condition that elementary moves transform families of face parameters satisfying commutation relations (2.1)
into families of face parameters satisfying the same relations. The cases R2,R3, M2, and M3 are evident. Let’s
consider M1 and R1. The case M1 is proved in [18]. We give the proof here for completeness.

We want to show that Z ′
α, Z

′
β , Z

′
γ , Z

′
δ and Z ′

ǫ q-commute.
Note that �α, β + (k + 1)ǫ� = �α, β� − (k + 1) = �α+ ǫ, β + kǫ�, hence Z ′

αZ
′
β = (Zα + Zα+ǫ)�∞

j=1(−1)j−1Zβ+jǫ = q�α,β+ǫ�Zα+β+ǫ while Z ′
βZ

′
α = q−�α,β+ǫ�Zα+β+ǫ. Therefore, Z ′

βZ
′
α = q−2�α,β+ǫ�Z ′

αZ
′
β .

Commutation relations for all other pairs of parameters can be checked similarly.
Different perfect orientations are in one-to-one correspondence with the almost perfect matchings (see [38]).

Up to evident symmetries, there are only two essentially different almost perfect matchings and, hence, we need
to check two perfect orientations. The straightforward computation shows that the elementary move M1 does
not change measurements for any choice of perfect orientation.

The case R1 is similar.

Definition 7.10. ([37]) We say that a plabic network (or graph) is reduced if it has no isolated connected
components and there is no network/graph in its move-equivalence class to which we can apply a reduction
(R1) or (R2).

The following statements are proved in [37] .

Lemma 7.11. [37] Any network is move equivalent to a reduced network.

Lemma 7.12. [37] Two reduced equivalent networks are (M1-M3)-move equivalent.

Definition 7.13. We call a maximal simple oriented path P = (p0, p1, . . . , ph), pi �= pj for all i �= j unequivocal

if there is no oriented path (pk, q1, . . . , qt, pℓ) such that qs �= pr for all 1 ≤ s ≤ t and 0 ≤ r ≤ h.

Let P be an unequivocal path in a network N ∈ Netm,n. Reverse the orientation of P keeping face weights
we obtain the new network N ′.

Lemma 7.14. Reversing the orientation of unequivocal path P does not change quantum grassmannian
measurement Measq(N

′) = Measq(N).

Example 7.15. Consider networks on the Fig. 36.

α

β

γ

δ

ǫ

2

15
4

3 α

β

γ

δ

ǫ

2

15
4

3

Fig. 36. Changing orientation of the path P : 2 ❀ 4 transforms network N on the left into network N ′ on the right

The corresponding quantum grassmannian measurement matrices are

Qgr
q =




q−1/2 0

0 q−3/2

−q−2Zα+β q−2Zα

−q−2Zα+β+γ q−2Zα+γ

−q−2Zα+β+γ+δ 0




and
�
Qgr

q

�′
=




q−1/2 0
q−1Zβ q−1Zδ+ǫ+β

0 q−1Z−γ

0 q−3/2

−q−2Zα+β+γ+δ 0




.

Note that Qgr
q C =

�
Qgr

q

�′
, where C =

�
1 0

q1/2Zβ q1/2Zδ+ǫ+β

�
.



44 L. Chekhov and M. Shapiro

Indeed, consider for example (Qgr
q C)31 = (Qgr

q )31 + q1/2(Qgr
q )32Zβ = −q−2Zα+β + q−3/2ZαZβ. Recall that

ZαZβ = q−1/2Zα+β . Therefore, (Q
gr
q C)31 = 0 =

�
Qgr

q

�′
31
. Similarly, we can prove equalities for all the entries of

these 5× 2 matrices and we observe that Measq(N) = Measq(N
′) ∈ Grq(2, 5).

Proof of Lemma 7.14. Let N ′ be the network obtained as a result of the change of the directions of all arrows
of the simple unequivocal path P in N from a boundary vertex a to a boundary vertex b. We will denote by
P−1 the path in N ′ obtained from P by orientation reversing. We assume first that the boundary vertices are
labelled so that 1 ≤ a < b ≤ m+ n. Since path P is unequivocal there is only one path P from a to b, and
Qq(a, b) = wP . Moreover, any other path R from s to t where both s and t are distinct from a and b has at
most one common interval [V,W ] with path P . The first point V (counting from s) where two paths meet has
two incoming arrows and one outgoing and, hence, is colored black, the point W where two paths separate is
white (see Figure 37). Similarly, any path from a to a sink different from b separates from P at a white point;
any path from a sink different from a to b joins path P at a black point.

Let Qgr
q be the quantum grassmannian bounded measurement matrix of the network N ,

�
Qgr

q

�′
be

the quantum grassmannian boundary measurement matrix of N ′. Let FP ⊂ Faces denote the subset of
all faces to the right of the path P , vP =

�
α∈Fp

α. Then, wP = ZvP , FP−1 = Faces \ FP , vP−1 = −vP ,

wP−1 = ZvP−1
= Z−vP = (wP )

−1.
Consider first the case 1 ≤ a < b.
Let s < a < t < b in the cyclic order of the boundary vertices (see Figure 37). Observe, wb→W→t =

Zα+β+δ = •

•Zβ+δZα•

• =
•

•wa→V →W→t · w
−1
a→V →W→b•

• =
•

•wa→V →W→t · (Q′
q)ab•

• Since the equality holds for any

directed path from b to t, and
•

•(Q′
q)ab(Qq)ta•

• =
•

•(Qq)ta(Qq)
−1
ba •

• = q−1/2(Qq)ta(Qq)
−1
ba , we conclude

that (Q′
q)tb = •

•(Q′
q)ab(Qq)ta•

• =
•

•(Qq)
−1
ba (Qq)ta•

• = q−1/2(Qq)ta(Qq)
−1
ba . Similarly, (Q′

q)as = •

•(Q′
q)ab(Qq)bs•

• =

•

•(Qq)
−1
ba (Qq)bs•

• = q1/2(Qq)bs(Qq)
−1
ba and (Qq)ts= •

•(Qq)bs(Q
′
q)tb•

• = q1/2(Qq)bs(Q
′
q)tb. Therefore, (Qgr

q )′ts =
(Qgr

q )ts + (Qgr
q )bs(Q

gr
q )′tb = 0. Here, α, β, γ, δ are appropriate subsets of Faces.

α

β
γ

δ

a

s
b

t

V

W α

β
γ

δ

a

s
b

tt

V

W

Fig. 37. Change of the orientation of the path P : a ❀ b, s < a < t < b.

In the same way we investigate all the remaining mutual positions of s, t and 1 ≤ a < b which leads to the
following matrix identity. Let a0 = J−1(a), f0 be the index of source of X such that b lies between the source
f0 and f0 + 1 (equivalently, J(f0) < b < J(f0 + 1). Note that a0 ≤ f0 since a < b. Define n× n matrix C for
1 < a < b as follows

Cij =





δij , if i < a0 or i > f0;

(−1)

�
|j−a0+1/2|

�
q1/2(Qq)ja(Qq)

−1
ba if i = a0;

qδi−1,j , if a0 < i ≤ f0.

Then,
�
Qgr

q

�′
= Qgr

q C.

To study 1 ≤ b < a, note that
�
Qgr

q

�′
= Qgr · C implies Qgr

q =
�
Qgr

q

�′
· C−1 where C−1 is obtained from C

by changing the signs of the off-diagonal elements and adjusting the powers of q. More exactly, define n× n
matrix �C for 1 < b < a as follows

�Cij =





δij , if i ≤ f0 or i > a0;

(−1)

�
|j−a0−1/2|

�
q−1/2(Qq)ja(Qq)

−1
ba if i = a0;

q−1δi+1,j , if f0 < i < a0.

This observation proves Lemma 7.14 1 ≤ b < a.



Log-canonical coordinates for symplectic groupoid 45

Proof . Now we will give another proof of groupoid relation ( part (iii) of Theorem 3.2). Consider the network
for PPGLn,Σ shown for n = 6 in Figure 25. The boundary measurement matrix Qgr

q has size 3n× n. The top

n× n part U = (Qgr
q )[1,n] is the diagonal matrix with jth diagonal elements q−j+ 1

2 ; the middle part of the
quantum grassmannian matrix (Qgr

q )[n+1,2n] = q−nM1S; and the bottom part (Qgr
q )[2n+1,3n] = q−nM2S.

Let’s change the orientation of all snakelike right to left horizontal paths of the network Fig. 25. The result
is shown on the Fig. 38.

Fig. 38. This network is obtained by the simultaneous change of orientations of the snakelike horizontal bold paths
(colored blue). The big arrow shows the direction of non-normalized transport matrix M3.

The orientation change of all bold paths (see Figure 38) leads to the new quantum grassmannian mea-

surement
�
Qgr

q

�′
. Its middle part is the submatrix (

�
Qgr

q

�′
[n+1,2n]

= U , the bottom n× n part (
�
Qgr

q

�′
[2n+1,3n]

=

q−nM3S. Using the fact that Qgr
q and

�
Qgr

q

�′
represent the same quantum grassmann element, we obtain

q−nM1SC = U , q−nM2SC = q−nM3S. Find C from the first equation: C = S−1M−1
1 qnU . Substituting the

expression for C into second equation we obtain M2 = M3SU
−1q−nM1. Note that US = SU−1q−n, then

USM2 = (USM3)(USM1). (7.12)

Recall now that M1 := q
1
2nUSM1D

−1
i , M3 := q

1
2nUSM1D

−1
2 , M2 := q

1
2nUSM1•

•D−1
1 D−1

2 •

•. Equation 7.12

implies q
1
2nUSM2 = q−

1
2n (q

1
2nUSM3)(q

1
2nUSM1). Multiplying both sides by

•

•D−1
1 D−1

2 •

• on the right

we obtain M2 = q−
1
2n (q

1
2nUSM3)(q

1
2nUSM1)•

•D−1
1 D−1

2 •

• = q−
1
2n− 1

2n (q
1
2nUSM3)(q

1
2nUSM1)D

−1
1 D−1

2 =

q−
1
2n− 1

2n+ 1
n (q

1
2nUSM3D

−1
1 )(q

1
2nUSM1)D

−1
2 . We conclude that M2 = M3M1.

This is clearly equivalent to the second part of Theorem 3.2 T1T2T3 = 1.

Commutation relations between face weights induce R-matrix commutation relations between entries of Qq

as described in the next lemma.

Lemma 7.16. Rm

1

Qq ⊗
2

Qq =
2

Qq ⊗
1

QqRn, where Rm, Rn are given by formula 2.13.

Proof . We will prove this statement using factorization of matrix Qq into a product of elementary matrices.
Let N1 be a network in rectangle with m sinks on the left and n sources on the right. N1 can be presented as a
concatenation of elementary networks of two special kinds.

f1

f2a2
f3

. . .

f1

f2 a2
f3

. . .

Fig. 39. Elementary forks
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The boundary measurement matrix for each of the elementary piece (Fig. 39) has the form of an
mi × (mi − 1)-matrix

Li =




t1 0 . . . . . . 0 0 . . .
0 t2 . . . . . . 0 0 . . .
...

. . . 0 0 . . .
0 . . . ti 0 0 . . .
0 . . .

•

•tiZai•
• 0 0 . . .

0 . . . 0 ti+1 0 . . .

. . .
. . .




, t1 =
•

•Zf1•

• , t2 =
•

•Zf1Zf2•

• , . . .

or an mi × (mi + 1)-matrix

Ui =




t1 0 . . . . . . 0 0 . . .
0 t2 . . . . . . 0 0 . . .
...

. . . 0 0 . . .
0 . . .

•

•ti•
•

•

•tiZai•
• 0 . . .

0 . . . 0 0 ti+1 . . .

. . .
. . .




, t1 =
•

•Zf1•

• , t2 =
•

•Zf1Zf2•

• , . . .

Therefore Qq =
�

i Xi, where Xi = Li or Xi = Ui is a rectangular matrix of variable size mi ×mi+1

(mi+1 = mi − 1 in the first case and mi+1 = mi + 1 in the second.)
Note that quantum variables from different elementary pieces commute, commutation relations between

Zfj and Zai in one elementary fork piece Xi are determined by the dual quiver. In particular, they give rise
to commutation relations between ti’s and Zai . More exactly, tj ’s commute with each other and commute with
Zai unless j = i. More, Zaiti = qtiZai , •

•Zaiti•
• = q−1/2Zaiti.

It is clear that in order to check the commutation relations of Lemma 7.16, it is enough to check the
relations for 2× 1 and 1× 2 matrices.

For mi = 2,mi+1 = 1, let Li =

�
a
b

�
. Then Rmi

1

Li ⊗
2

Li =
2

Li ⊗
1

LiRmi+1
. Indeed,



q 0 0 0
0 1 0 0
0 q − q−1 1 0
0 0 0 q







1�
a
b

�
⊗

2�
a
b

�
 =



q 0 0 0
0 1 0 0
0 q − q−1 1 0
0 0 0 q






a2

ab
ba
b2


 =

=



qa2

qba
qab
qb2


 =




2�
a
b

�
⊗

1�
a
b

�
 ·

�
q
�

In a similar way, we can check relation Rmi

1

Ui ⊗
2

Ui =
2

Ui ⊗
1

UiRmi+1
for Ui =

�
a b

�
.

Then,

Rm1

1

Qq ⊗
2

Qq = Rm1

n�

i=1

1

Xi ⊗
n�

i=1

2

Xi = Rm1

1

X1

n�

i=2

1

Xi ⊗
2

X1

n�

i=2

2

Xi =

=
2

X1 ⊗
1

X1Rm2

n�

i=2

1

Xi ⊗

n�

i+2

2

Xi = · · · =

n�

i=1

2

Xi ⊗

n�

i=1

1

XiRmn =
2

Qq ⊗
1

QqRmn .

This accomplishes the proof of Lemma 7.16.

Corollary 7.17. Theorem 2.12 and Remark 2.17 follow from Lemma 7.16.

Proof . Indeed, it is enough to consider 2n× n matrix B of boundary measurements of the network shown on
Figure 25. Denote by M1 the top n× n block of Qq, M2 is the bottom n× n block. Qq satisfies R-matrix
relation 7.16. Choose subset of these relations between tensor products of elements of M1 and M2 we obtain
Theorem 2.12. Relations between tensor products of elements of each matrix Mi give Remark 2.17.
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8 Directed networks with cycles

In this section we generalize Lemma 7.16 to the case of planar networks containing oriented cycles and sources
and sinks distributed arbitrarily along the boundary circle. The R-matrix formulation of commutation relation
of elements of transport matrices is not valid for more general networks with non-separated sources and sinks.
The corresponding statement is formulated in Theorem 8.3. For the case of networks with separated sources
and sinks the commutation relations of Theorem 8.3 coincide with those of Lemma 7.16.

Definition 8.1. We assign to every oriented path P : j ❀ i from a source j to a sink i the quantum weight

w(P ) =
•

•

�

face α lies to the right

of the path P

Zα•

•,

where the product is taken with repetitions,

Definition 8.2. For any planar directed network N , define transport elements

(α, a) :=
�

all paths α❀a

(−1)#self-intersectionsw(Pα❀a)

where the sum ranges over all paths from the source j to the sink i. This sum is finite for acyclic networks and
can be infinite for networks containing cycles. In this section, we let Greek letters denote sources and Latin
letters denote sinks. We draw these transport elements as simple directed paths α → a.

Theorem 8.3. For any planar network, we have the algebra of transport elements:

α

β

a

b

[(α, a), (β, b)] = (q − q−1)(α, b)(β, a);

α

β

a

b

[(α, b), (β, a)] = 0,
a

β

α

b

[(α, a), (β, b)] = 0,

α

a

b

(α, a)(α, b) = q−1(α, b)(α, a), a

α

β

(β, a)(α, a) = q−1(α, a)(β, a).

For acyclic networks these theorem was proven above; we now consider the case of network with cycles.
The proof is by induction, is rather technical and is contained in Appendix B where we treat in details only
cases with four distinct sources and sinks (the first three cases in the theorem).

9 Concluding remarks

In this paper, we have found the log-canonical coordinate representation for matrices A enjoying the quantum
reflection equation. We have also solved the problem of representing the braid-group action for the upper-
triangular A in terms of mutations of cluster variables associated with the corresponding quiver.

In conclusion, we indicate some directions of development. The first interesting problem is to construct
mutation realizations for braid-group and Serre element actions that are Poisson automorphisms in the case of
block-upper triangular matrices A (the corresponding action in terms of entries of a block-upper-triangular A
was constructed in [9]). We assume that it is not difficult to construct planar networks producing block-triangular
transport matrices M1 and M2 enjoying the standard Poisson Lie algebra relations. Then A = MT

1 M2 will
satisfy the semiclassical reflection equation.

Next, we have a conjecture that describes explicitly quantum braid group action. Namely, the kth ge-
nerator of the braid group acts on every matrix element of A� by conjugation with U�

k = e2πiℓ
2
k where

a�k,k+1 = 2 cosh(2π�ℓk) (see [29]). It is interesting to analyze this action in quantum cluster coordinates.
Another direction of development is to study alternative system of log-canonical coordinates based on the

following semiclassical groupoid construction. Let B is a general matrix of Poisson-Lie group SLn endowed with
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the standard semiclassical Poisson-Lie bracket. Explicit calculations in Sec.12 of [10] show that, solving the
matrix equation BABT = A′, where A and A′ are unipotent upper-triangular matrices, we obtain that entries
of A are uniquely determined (provided all upper-right and lower-left minors of B are nonzero); the Poisson-Lie
bracket on entries of B gives rise to the reflection equation bracket for entries of A, the mapping A → A′ is
a Poisson anti-automorphism, and finally, entries of A and A′ mutually Poisson commute. Therefore, having
a set Xα of log-canonical coordinates for entries of B we automatically obtain that ai,j ∈ Z[eXα , e−Xα ] (the
determinant of the linear system determining ai,j is the product of central elements of the Poisson-Lie algebra
for B). We therefore obtain a hypothetically alternative log-canonical coordinate representation, this time for
admissible pairs (B,A).
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Appendix A Standard Poisson-Lie group G, its dual and induced bracket

Another description of the Poisson structure on the space of triangular forms An as a push-forward of the
standard Poisson bracket on the dual group G∗ = SL∗

n to the set of fixed points of the natural involution was
given in [2].

A reductive complex Lie group G equipped with a Poisson bracket {·, ·} is called a Poisson–Lie group if the
multiplication map G × G ∋ (X,Y ) �→ XY ∈ G is Poisson. Denote by � , � an invariant nondegenerate form on
the corresponding Lie algebra g = Lie(G), and by ∇R, ∇L the right and left gradients of functions on G with
respect to this form defined by

�
∇Rf(X), ξ

�
=

d

dt

����
t=0

f(Xetξ),
�
∇Lf(X), ξ

�
=

d

dt

����
t=0

f(etξX)

for any ξ ∈ g, X ∈ G.
Let π>0, π<0 be projections of g onto subalgebras spanned by positive and negative roots, π0 be the

projection onto the Cartan subalgebra h, and let R = π>0 − π<0. The standard Poisson-Lie bracket {·, ·}r on G
can be written as

{f1, f2}r =
1

2

��
R(∇Lf1),∇

Lf2� − �R(∇Rf1),∇
Rf2

��
. (A.1)

The standard Poisson–Lie structure is a particular case of Poisson–Lie structures corresponding to
quasitriangular Lie bialgebras. For a detailed exposition of these structures see, e. g., [4, Ch. 1], [39] and
[44].

Following [39], let us recall the construction of the Drinfeld double. The double of g isD(g) = g⊕ g equipped
with an invariant nondegenerate bilinear form ��(ξ, η), (ξ′, η′)�� = �ξ, ξ′� − �η, η′�. Define subalgebras d± of D(g)
by d+ = {(ξ, ξ) : ξ ∈ g} and d− = {(R+(ξ), R−(ξ)) : ξ ∈ g}, where R± ∈ Endg is given by R± = 1

2 (R ± Id). The
operator RD = πd+

− πd−
can be used to define a Poisson–Lie structure on D(G) = G × G, the double of the

group G, via

{f1, f2}D =
1

2

���
RD(▽Lf1),▽

Lf2
��

−
��
RD(▽Rf1),▽

Rf2
���

, (A.2)

where ▽R and ▽L are right and left gradients with respect to ��·, ·��. The diagonal subgroup {(X,X) : X ∈ G}
is a Poisson–Lie subgroup of D(G) (whose Lie algebra is d+) naturally isomorphic to (G, {·, ·}r).

The group G∗ whose Lie algebra is d− is a Poisson-Lie subgroup of D(G) called the dual Poisson-Lie group
of G. The Poisson bracket {·, ·}D induces the Poisson bracket on G∗.

For G = SLn the dual group G∗ = {(X+, Y−)} ∈ B+ ×B− satisfying the additional relation
π0(X+)π0(Y−) = Id where B+(B−) ⊂ SLn are Borel subgroups of nondegenerate upper (lower) triangular matri-
ces.
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The involution ιG∗ : G∗ → G∗ takes (X+, Y−) to (Y t
−, X

t
+).

The subgroup U+ of unipotent upper triangular matrices is embedded diagonally in G∗. The embedding
ǫ : U+ →֒ G∗ maps X ∈ U+ to (X,X). The image ǫ(U+) is the set of fixed points of involution ιG∗ .

The image ǫ(U+) is not a Poisson subvariety of G∗ however the Dirac reduction induces the Poisson bi-vector
Π (1.4) on U+.

To remind the definition of Dirac reduction we consider a subvariety X of a Poisson variety (V, {·, ·}PB)
defined by constraints φi = const. The second class constraints are constraints φ̃a whose Poisson brackets with
at least one other constraint do not vanish on the constraint surface.

Define matrix U with entries Uab = {φ̃a, φ̃b}PB. Note that U is always invertible.
Then, Dirac bracket of functions f and g on X is

{f, g}DB = {f, g}PB −
�

a,b

{f, φ̃a}PBU
−1
ab {φ̃b, g}PB,

see [27] for details.

Appendix B Proof of Theorem 8.3

We consider all possible cases corresponding to the situation in which we close the sink a and the (neighbour)
source α. For a path (β, b) we have two possibilities:

α

β

a

b

α

b

a

β

We begin with observation that in both these cases,

•

•(α, b)(α, a)n(β, a)
•

• = (α, b)(α, a)n(β, a) = (β, a)(α, a)n(α, b),

where on the right we assume the natural order of the product of operators. The effect of closing the line between
a and α changes the transport element from β to b: in the respective cases, we have

(β, b) = (β, b)− (β, a)
1

1 + (α, a)
(α, b), and (β, b) = (β, b) + (β, a)

1

1 + (α, a)
(α, b).

Here and hereafter, we understand rational expressions as geometrical-progression expansions in powers of the
corresponding operator. We also use the standard commutation relation formulas

�
A,

1

1 +B

�
= −

1

1 +B
[A,B]

1

1 +B
∀A,B,

and use the color graphics to indicate permutations of operators in formulas of this section: a pair of operators
painted red produces the factor q upon permuting these operators in the operatorial product, and a pair of
operators painted blue produces a factor q−1 upon the corresponding permutation; pairs of operators painted
magenta commute.

Below we have six cases of mutual distribution of sources {α, β, γ} and sinks {a, b, c} (Note, that planarity
condition requires α and a always to be neighbour), and in each such case we have two choices of transport

elements: {(β, b), (γ, c)} and {(β, c), (γ, b)}, so, altogether, we have 12 variants to be checked.

Case 1.

α

β

γ

a

b

c

Variant (a): {(β, b), (γ, c)}.

[(β, b), (γ, c)] =

��
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

�
,
�
(γ, c)− (γ, a)

1

1 + (α, a)
(α, c)

��
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=(q − q−1)(β, c)(γ, b) + (γ, a)
−1

1 + (α, a)
(q − q−1)(β, a)(α, b)

1

1 + (α, a)
(α, c)

− (q − q−1)(β, c)(γ, a)
1

1 + (α, a)
(α, b) + (β, a)

1

1 + (α, a)
(q − q−1)(α, c)(γ, a)

1

1 + (α, a)
(α, b)

− (q − q−1)(β, a)
1

1 + (α, a)
(α, c)(γ, b) + (β, a)

1

1 + (α, a)
(α, b)(γ, a)

1

1 + (α, a)
(α, c)

− (γ, a)
1

1 + (α, a)
(α, c)(β, a)

1

1 + (α, a)
(α, b)

=(q − q−1)
�
(β, c)(γ, b)− (β, c)(γ, a)

1

1 + (α, a)
(α, b)− (β, a)

1

1 + (α, a)
(α, c)(γ, b)

+ (β, a)
1

1 + (α, a)
(α, c)(γ, a)

1

1 + (α, a)
(α, b)

�

+
�
(q − q−1)− q + q−1

�
(β, a)

1

1 + (α, a)
(α, c)(γ, a)

1

1 + (α, a)
(α, b)

=(q − q−1)(β, c)(γ, b).

Variant (b): {(β, c), (γ, b)}.

[(β, c), (γ, b)] =

��
(β, c)− (β, a)

1

1 + (α, a)
(α, c)

�
,
�
(γ, b)− (γ, a)

1

1 + (α, a)
(α, b)

��

=(γ, a)
−1

1 + (α, a)
(q − q−1)(β, a)(α, c)

1

1 + (α, a)
(α, b) + (q − q−1)(γ, a)

1

1 + (α, a)
(β, b)(α, c)

− (q − q−1)(β, b)(γ, a)
1

1 + (α, a)
(α, c)− (q − q−1)(β, b)(γ, a)

1

1 + (α, a)
(α, c)

− (q − q−1)(β, a)
−1

1 + (α, a)
(α, b)(γ, a)

1

1 + (α, a)
(α, c)

+ (β, a)
1

1 + (α, c)
(α, c)(γ, a)

1

1 + (α, a)
(α, b)− (γ, a)

1

1 + (α, a)
(α, b)(β, a)

1

1 + (α, a)
(α, c)

(two last terms mutually cancelled)

=(q − q−1)

�
−(γ, a)

1

1 + (α, a)
(β, a)(α, c)

1

1 + (α, a)
(α, b)− (γ, a)

�
(β, b),

1

1 + (α, a)

�
(α, c)

+(β, a)
1

1 + (α, a)
(γ, a)(α, b)

1

1 + (α, a)
(α, c)

�

=− (q − q−1)
�
q−1 + (q − q−1)− q

�
(γ, a)

1

1 + (α, a)
(β, a)(α, b)

1

1 + (α, a)
(α, c) = 0.

Case 2.

α

β

c

a

b

γ

Variant (a): {(β, b), (γ, c)}.

[(γ, c), (β, b)] =

��
(γ, c) + (γ, a)

1

1 + (α, a)
(α, c)

�
,
�
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

��

=(γ, a)
−1

1 + (α, a)
(q − q−1)(α, b)(β, a)

1

1 + (α, a)
(α, c)

− (γ, a)
1

1 + (α, a)
(α, c)(β, a)

1

1 + (α, a)
(α, b) + (β, a)

1

1 + (α, a)
(α, b)(γ, a)

1

1 + (α, a)
(α, c) = 0

Variant (b): {(β, c), (γ, b)}.

[(γ, b), (β, c)] =

��
(γ, b)− (γ, a)

1

1 + (α, a)
(α, b)

�
,
�
(β, c)− (β, a)

1

1 + (α, a)
(α, c)

��
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=(q − q−1)(γ, a)(β, b)
1

1 + (α, a)
(α, c) + (β, a)

−1

1 + (α, a)
(q − q−1)(γ, a)(α, b)

1

1 + (α, a)
(α, c)

+ (γ, a)
1

1 + (α, a)
(q − q−1)(α, c)(β, a)

1

1 + (α, a)
(α, b) + (q − q−1)(γ, a)

1

1 + (α, a)
(α, c)(β, b)

+ (γ, a)
1

1 + (α, c)
(α, b)(β, a)

1

1 + (α, a)
(α, c)− (β, a)

1

1 + (α, a)
(α, c)(γ, a)

1

1 + (α, a)
(α, b)

(two last terms mutually cancelled)

=− (q − q−1)

�
−(γ, a)

�
(β, b),

1

1 + (α, a)

�
(α, c) + (β, a)

1

1 + (α, a)
(γ, a)(α, b)

1

1 + (α, a)
(α, c)

−(γ, a)
1

1 + (α, a)
(β, a)(α, c)

1

1 + (α, a)
(α, b)

�

=(q − q−1)
�
(q − q−1) + q−1 − q

�
(γ, a)

1

1 + (α, a)
(β, a)(α, b)

1

1 + (α, a)
(α, c) = 0.

Case 3.

α

c

β

a

b

γ

Variant (a): {(γ, b), (β, c)}.

[(γ, b), (β, c)] =

��
(γ, b)− (γ, a)

1

1 + (α, a)
(α, b)

�
,
�
(β, c) + (β, a)

1

1 + (α, a)
(α, c)

��

=− (q − q−1)(γ, c)(β, b)− (q − q−1)(γ, a)(β, a)
1

1 + (α, a)
(α, c)

− (q − q−1)(β, a)
−1

1 + (α, a)
(γ, a)(α, b)

1

1 + (α, a)
(α, c) + (q − q−1)(γ, c)(β, a)

1

1 + (α, a)
(α, b)

− (γ, a)
1

1 + (α, a)
(α, b)(β, a)

1

1 + (α, a)
(α, c) + (β, a)

1

1 + (α, a)
(α, c)(γ, a)

1

1 + (α, a)
(α, b)

(two last terms mutually cancelled)

=− (q − q−1)(γ, c)

�
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

�
− (q − q−1)(γ, a)

1

1 + (α, a)
(α, c)(β.b)

− (q − q−1)(γ, a)
�
(β, b),

1

1 + (α, a)

�
(α, c) + (q − q−1)(β, a)

1

1 + (α, a)
(γ, a)(α, b)

1

1 + (α, a)
(α, c)

=− (q − q−1)(γ, c)

�
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

�
− (q − q−1)(γ, a)

1

1 + (α, a)
(α, c)(β.b)

− (q − q−1)
�
(q − q−1)− q

�
(γ, a)

1

1 + (α, a)
(β, a)(α, b)

1

1 + (α, a)
(α, c)

=− (q − q−1)

�
(γ, c) + (γ, a)

1

1 + (α, a)
(α, c)

� �
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

�
= −(q − q−1)(γ, c) (β, b)

Variant (b): {(γ, c), (β, b)}.

[(γ, c), (β, b)] =

��
(γ, c) + (γ, a)

1

1 + (α, a)
(α, c)

�
,
�
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

��

=− (γ, a)
1

1 + (α, a)
(q − q−1)(α, b)(β, a)

1

1 + (α, a)
(α, c)

− (γ, a)
1

1 + (α, a)
(α, c)(β, a)

1

1 + (α, a)
(α, b) + (β, a)

1

1 + (α, c)
(α, b)(γ, a)

1

1 + (α, a)
(α, c) = 0.
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Case 4.

α

c

b

a

γ

β

Variant (a): {(γ, b), (β, c)}.

[(γ, b), (β, c)] =

��
(γ, b) + (γ, a)

1

1 + (α, a)
(α, b)

�
,
�
(β, c) + (β, a)

1

1 + (α, a)
(α, c)

��

=(q − q−1)(β, a)
1

1 + (α, a)
(γ, c)(α, b)− (q − q−1)(γ, c)(β, a)

1

1 + (α, a)
(α, b)

+ (γ, a)
1

1 + (α, a)
(α, b)(β, a)

1

1 + (α, a)
(α, c)− (β, a)

1

1 + (α, a)
(α, c)(γ, a)

1

1 + (α, a)
(α, b) = 0.

Variant (b): {(γ, c), (β, b)}.

[(γ, c), (β, b)] =

��
(γ, c) + (γ, a)

1

1 + (α, a)
(α, c)

�
,
�
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

��

=− (q − q−1)(γ, b)(β, c)− (q − q−1)(γ, b)(β, a)
1

1 + (α, a)
(α, c)

− (q − q−1)(γ, a)
1

1 + (α, a)
(α, b)(β, c)

+ (γ, a)
1

1 + (α, a)
(α, c)(β, a)

1

1 + (α, a)
(α, b)− (β, a)

1

1 + (α, a)
(α, b)(γ, a)

1

1 + (α, a)
(α, c)

=− (q − q−1)

�
(γ, b) + (γ, a)

1

1 + (α, a)
(α, b)

� �
(β, c)− (β, a)

1

1 + (α, a)
(α, c)

�
= −(q − q−1)(γ, b) (β, c).

Case 5.

α

c

β

a

γ

b

Variant (a): {(γ, b), (β, c)}.

[(γ, b), (β, c)] =

��
(γ, b) + (γ, a)

1

1 + (α, a)
(α, b)

�
,
�
(β, c) + (β, a)

1

1 + (α, a)
(α, c)

��

=(q − q−1)(β, a)
1

1 + (α, a)
(γ, c)(α, b)− (q − q−1)(γ, c)(β, a)

1

1 + (α, a)
(α, b)

+ (γ, a)
1

1 + (α, a)
(α, b)(β, a)

1

1 + (α, a)
(α, c)− (β, a)

1

1 + (α, a)
(α, c)(γ, a)

1

1 + (α, a)
(α, b) = 0.

Variant (b): {(γ, c), (β, b)}.

[(γ, c), (β, b)] =

��
(γ, c) + (γ, a)

1

1 + (α, a)
(α, c)

�
,
�
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

��

=− (q − q−1)(γ, a)
1

1 + (α, a)
(α, b)(β, a)

1

1 + (α, a)
(α, c)

− (γ, a)
1

1 + (α, a)
(α, c)(β, a)

1

1 + (α, a)
(α, b) + (β, a)

1

1 + (α, a)
(α, b)(γ, a)

1

1 + (α, a)
(α, c) = 0.



Log-canonical coordinates for symplectic groupoid 53

Case 6.

α

β

c

a

γ

b

Variant (a): {(γ, b), (β, c)}.

[(γ, b), (β, c)] =

��
(γ, b) + (γ, a)

1

1 + (α, a)
(α, b)

�
,
�
(β, c)− (β, a)

1

1 + (α, a)
(α, c)

��

=(q − q−1)(γ, c)(β, b)− (q − q−1)(β, a)
1

1 + (α, a)
(γ, c)(α, b)

− (q − q−1)(γ, a)
1

1 + (α, a)
(α, c)(β, a)

1

1 + (α, a)
(α, b) + (q − q−1)(γ, a)

1

1 + (α, a)
(α, c)(β, b)

− (γ, a)
1

1 + (α, a)
(α, b)(β, a)

1

1 + (α, a)
(α, c)− (β, a)

1

1 + (α, a)
(α, c)(γ, a)

1

1 + (α, a)
(α, b)

(two last terms mutually cancelled)

=(q − q−1)

�
(γ, c) + (γ, a)

1

1 + (α, a)
(α, c)

� �
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

�
= (q − q−1)(γ, c) (β, b).

Variant (b): {(γ, c), (β, b)}.

[(γ, c), (β, b)] =

��
(γ, c) + (γ, a)

1

1 + (α, a)
(α, c)

�
,
�
(β, b)− (β, a)

1

1 + (α, a)
(α, b)

��

=− (q − q−1)(γ, a)
1

1 + (α, a)
(α, b)(β, a)

1

1 + (α, a)
(α, c)

− (γ, a)
1

1 + (α, a)
(α, c)(β, a)

1

1 + (α, a)
(α, b) + (β, a)

1

1 + (α, a)
(α, b)(γ, a)

1

1 + (α, a)
(α, c) = 0.

This concludes the proof of the theorem.
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