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Abstract—In this paper, we propose TrulLook, a framework that
employs approximate computing techniques for GPU acceleration
through computation reuse as well as approximate arithmetic
operations to eliminate redundant and unnecessary exact com-
putations. To enable computational reuse, GPU is enhanced with
small lookup tables that are placed close to the stream cores that
return already computed values for exact and potential inexact
matches. Inexact matching is subject to a threshold controlled by
the number of mantissa bits involved in the search. Approximate
arithmetic is provided by a configurable approximate multiplier
that dynamically detects and approximates operations which are
not significantly affected by approximation. TruLook guarantees
the accuracy bound required for an application by configuring
the hardware at runtime. We have evaluated TruLook efficiency
on a wide range of multimedia and deep learning applications.
Our evaluation shows that with 0% and less than 1% quality
loss budget, TruLook yields on average 2.1x and 5.6x energy-
delay product improvement over four popular networks on the
ImageNet dataset.

I. INTRODUCTION

The past decades have witnessed the exponential growth of
data production where over 90% of the available data today,
has been produced in the last two years [1], [2], [3]. Evi-
dently, the so-called data explosion outpaces the performance
boost offered by technology scaling, hence making traditional
processors incapable of keeping up with this large amount of
produced data [4], [5]. One key aspect of many applications
is their tolerance of error, meaning they can accept a certain
level of error within their intermediate computations or even
final results [6], [7], [8], [9]. For instance, in several computer
vision applications, the exact output is not required as humans
cannot perceive small visual distortion. Web searching service
is another example where producing related results is crucial,
but the order of the results is not always the primary concern.
Machine learning algorithms, e.g., Deep Neural Networks
(DNNs), have also shown considerable tolerance to error due
to the pooling layers that filter out a majority of computation,
as well as the stochastic nature of gradient [10], [11], [12],
[13]. In all these examples, approximate computing is a viable
solution to take advantage of error tolerance to exchange
accuracy for energy-saving and/or performance boosting. Par-
ticularly, these applications are continuously growing in size,
demanding more power-hungry GPU acceleration [14], [15].

The inherent temporal locality in machine learning applica-
tions has shown promising energy reduction attributes through
computation reuse [16], [17], [18]. This can be enabled by
associative memory that stores highly frequent arithmetic
operations and avoids repeated computation. Previous works
exploited computational reuse to enable GPU approximation,
where associative memory stores the highly frequent patterns
beside each GPU floating-point unit. However, it is unlikely
to find an exact or even approximate match over the entire
exponents and mantissa bits of pre-stored operands [16].
This significantly reduces the associate memory hit rate and
eliminates the advantage of approximation.
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Fig. 1. TrulLook framework enabling GPU approximation.

An orthogonal approach for realizing approximation is to
employ approximate arithmetic units [19], [20]. These units
identify the input operands with minimal impact on the compu-
tation accuracy when approximated. The configurable floating-
point unit executes the operation in the approximate mode. The
main drawback of these approaches is having low control over
the quality loss, especially when the overall quality budget is
tight (e.g., < 2% error).

In this paper, we present TruLook, a configurable approx-
imate computing framework that targets accelerating GPU
applications. TruLook enables each GPU core to leverage
data locality, whilst it approximates benign input operands,
as well. For data locality, TruLook utilizes a small lookup
Table located near the stream core for enjoying computational
reuse. Rather than relying on the approximate match on the
entire input operands, TruLook only checks for the similarity
of the mantissa bits, while computes the sign and exponent bits
of the result in exact mode. This method not only improves
the hit rate of the lookup Table by reducing the design
space (for a given lookup Table size), but also enhances
computation accuracy by eliminating inexact matches on the
critical exponent and sign bits. For approximate arithmetic,
we propose a configurable approximate multiplier to detect
and approximate operands that are less susceptible to error.
TruLook ensures high accuracy through runtime hardware
configuration based on the quality determined by the user.

I1. PROPOSED TrulLook
A. Overview

We design a novel framework that enables users to deter-
mine the level of accuracy in exchange for higher efficiency.
Figure 1 illustrates the overview of TruLook’s framework. Our
framework receives specifications from the user to determine
the maximum error allowed. The application and a queue of
the application’s inputs are imported into the data analysis.
During the data analysis, a variety of computation takes place,
including multiplication and Lookup Table M bits matching.
When an input is fed into the design, it is first checked whether
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Fig. 2. TruLook approximate multiplication.

a close approximate match already exists in the lookup table,
so the value can be retrieved from the memory and bypassed to
the output. Otherwise, the inputs are passed to an approximate
multiplier, the result is forwarded to the output, and the lookup
Table is updated with the inputs and produced the result. As
explained earlier, our approach only checks the mantissa bits
similarity and calculates the exponents and sign by itself to
increases the hit rate and avoid extreme accuracy loss.

B. Approximate Arithmetic

We use IEEE 754 32-bit floating-point notation, which is
represented as a 32-bit binary number (Aso, . .., A1) with three
different parts; a sign bit, an exponent part, and a fractional
value. The first bit in the floating-point notation Ass represents
the sign bit. The next eight bits, Asq,..., Asy, represent the
exponent of the binary numbers ranging from —126 to 127.
The following 23 bits, Ass,..., Ay, represent the fractional
part or mantissa and have a value between 1 and 2.

To improve the efficiency of approximate multiplication,
several methods have introduced the idea of removing or
replacing mantissa multiplication. The state-of-the-art approx-
imate multiplier, RMAC [20], replaces (approximates) the
mantissa multiplication with the mantissa addition. Although
this method affords a very low initial error rate, the accuracy
cannot be well-tuned. RMAC is only capable of reducing the
maximum error to approximately 6% error, which is typically
accomplished through using the result of the approximation
by looking at the count of a consecutive number of ‘1’s and
‘0’s in the result. On the other hand, our approach focuses
on using a combination of a small variable multiplier with
an adder. The design is shown in Figure 2, where 23 — N
bits are being multiplied in the exact mode, and the remaining
N bits are being summed using an adder. Simply replacing
the multiplications of mantissa with an adder (i.e., N = 23)
results in a maximum error of 11.11%. The value of N
dictates the partial multiplier’s accuracy level, where a lower
N value results in higher accuracy and vise versa. Our focus
is on reducing the multiplier size as much as a high accuracy
can still be maintained without using a full multiplier. As it
pertains to the exponent and sign bits, they are not partitioned.
The sign bits of both inputs are XORed, and the exponents are
added together.

As multiplication and addition parts are independent, they
are done in parallel. The main reason for the dual multiplier-
adder implementation is based on the behavior of the error rate.
A stand-alone multiplier omitting the least significant mantissa
bits has a high error, which can be fairly compensated, letting
the adder care of remaining values. Figure 3 shows the heat
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Fig. 3. TrulLook error distribution for different tuning parameter K.
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Fig. 4. TruLook and RMAC [20] maximum error for different parameter K

map of the error rate for the different levels of accuracy that
design can achieve for all possible partial multiplications. The
trend we see is like the K = 23 — N (i.e., the size of the
multiplication part) increases, the probability of large errors
diminishes. It remarkably enhances the accuracy level that our
design is able to hit.

Figure 4 compares TruLook and RMAC maximum error
for different values of K. For our design, K = 23 — N
shows the size of the multiplier, in which N is the size of the
accompanying adder. For RMAC, K shows the approximation
level (the smaller K, the better accuracy). As the figure
reveals, RMAC maximum error rate never goes better than
6%, compared to TruLook, which has a maximum error of
0.09% at K = 9 while further improved by increasing K.
As it pertains to a maximum overall error in worst-case
configuration, RMAC has a slightly lower error with 11.11%.
In contrast, our design has a maximum error of 12.46% in its
worst configuration. Another key difference between the two
designs is how they benefit as the degree of approximation
reduces. For the RMAC, the error difference between K = 9
and K = 3 is 0.71%; thus, RMAC does not scale well by
tuning the approximation level. In contrast, our design has a
higher error difference between K values than RMAC. This
is a crucial characteristic considering application requirement,
which makes TruLook to make worthwhile approximation-
gain trade-offs at different application requirements.

C. Computational Reuse

The idea of computational reuse is to exploit a lookup
Table to store frequently used input/output operands and elim-
inate redundant computations. The input values are matched
exactly or approximately with the lookup Table values. Typ-
ically, when utilizing computational reuse, the whole 32-bits
or 64-bits floating-point values are stored in the lookup table,
which results in a very low hit rate even in the approximate
mode. Using the static lookup Table is another reason for
the low hit rate, further degrading the efficiency. We propose
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Fig. 5.

TruLook computational reuse scheme.

two techniques to improve the lookup Table hit rate: variable
mantissa matching and adaptive lookup table.

Mantissa Matching: TrulLook increases the lookup Ta-
ble hit rate by only matching the mantissa of the input
operands by M number of bits. Meanwhile, TruLook recon-
structs the exponent of output by simply adding the exponents
of the input operands. Figure 5 shows the overview of TruLook
computational reuse. TruLook, first, takes the input tunable
variable M to establish the maximum difference between the
stored values and the incoming input. Once the maximum
allowable difference is determined, the new inputs mantissa are
compared to the stored lookup Table values. If the input lies
within a specified difference range of the lookup Table values,
the corresponding stored key in the lookup Table is fetched
and directed to the output.

Adaptive Lookup Table: Another challenge in reusing
computation is selecting the appropriate Table values. GPUs
are running applications with different types of workloads,
which themselves might also change during time. For in-
stance, GPUs processing images of different seasons may
have different frequent input patterns due to the different
background colors of seasons. As a result, updating the lookup
Table values at the runtime is inevitable. Previous work has
proposed using reinforcement learning to find the highly
frequent patterns at the runtime [21]. The learning method
itself, however, increases the computation cost. In contrast, we
employ a straightforward Least Recently Used (LRU) policy
to dynamically update the lookup Table values in the course
of runtime. Our LRU policy assigns a 4-bit counter to each of
the lookup Table entries to record their usage frequency. The
lookup Table entries with minimum reuse are the candidate
for replacement with a new pattern. The LRU cost can be
amortized in different ways, e.g., calibrating the counter’s
size or allocating a single counter for a bunch of entries
(particularly for entries with close values).

III. EXPERIMENTAL RESULTS
A. Experimental Setup

To implement TrulLook, we use a modified version of
Multi2Sim [22], which is a CPU-GPU simulator. We modified
the kernel code in order to implement the proposed design
for runtime simulations. To demonstrate the versatility of
TruLook, we employed two different GPU architectures: the
AMD Southern Island Radeon HD 7970 and the Nvidia Kepler
GeForce GTX Titan devices, and integrated TruLook within
the floating-point units. We characterized the multiplier and
adder by synthesizing them using 45nm NanGate Open Cell
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Fig. 6. Impact of lookup Table size on the computation reuse hit rate (M = 4
is used for all the evaluations).
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Library [23] in Synopsys Design Compiler. We evaluated
TruLook on four multimedia benchmarks from m2s-bench-
cudasdk-6.5 [22], including BoxSharp, Sobel, Prewitt, and
Robert. For these benchmarks, we use Peak Signal to Noise
Ratio (PSNR) as the accuracy metric.

B. TruLook Computational Reuse

Figure 6 shows the hit rate using different lookup Table sizes
for a fixed tuning parameter of M = 4. Remember that M
denotes the number of mantissa bits used for lookup. The
high hit rate value indicates a promising potential of using
computation reuse for approximation. As expected, the hit rate
is correlated with the size of the lookup table. A large lookup
Table increases the number of approximated computations due
to the wider range of pre-stored inputs. The increase in hit
rate is not linear, and for most of the evaluated applications,
it saturates for tables larger than 32 entries. In addition, larger
tables require higher energy for search operation. That being
said, we found tables with 16 entries as optimal Table size.

Figure 7 shows the impact of the tuning parameter M on the
lookup Table hit rate for a Table with a fixed size of 52 for
64-bit floating-point representation. As expected, increasing
the M value results in a lower hit rate as it degrades the
matching probability. A lower M value increases the number
of least significant mantissa bits that can be overlooked during
the similarity search. On the other hand, a lower value of
M incurs a higher degree of approximation and potentially
leads to larger accuracy degradation. Table I and Table II
summarize the impact of tuning parameter M on the quality
and the efficiency of the computation. Accordingly, a low
value of M provides low computation accuracy, while the
computation efficiency is maximized. To provide an acceptable
quality of computation, based on Table I, TruLook requires
to use M > 16. In such a configuration, TruLook improves
the energy efficiency by 5.5x, and performance by 1.3x as
compared to the baseline GPU.

C. TruLook Approximate Arithmetic

Figure 8 shows the impact of TruLook tuning parameter
K (size of the multiplier) on the hit rate of the approximate
arithmetic at M = 16. Using a larger K tuning parameter
decreases the degree of approximation as it increases the
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TABLE I
QUALITY OF COMPUTATION (PSNR) FOR DIFFERENT TUNING
PARAMETERS (NUMBERS ARE IN db SCALE).

| Tuning M | Tuning K
Application | 4 8 16 32 | 2 3 4 5 8
BoxSharp 288 386 486 624 | 133 21.8 271 329 449

Sobel 2841 353 429 594 | 165 196 268 321 397
Prewitt 30,50 376 513 68.0 | 189 216 282 341 475
Robert 358 401 632 73.6 | 246 272 345 389 S5l.1

TABLE 1T
ENERGY AND PERFORMANCE IMPROVEMENT OF TruLook FOR DIFFERENT
TUNING PARAMETERS.

[ Tuning [ Tuning N
Application | 4 8 16 32| 2 3 4 5 8

Norm.Energy 009 0.18 046 054 | 055 027 039 072 083
Norm. Execution | 0.69 0.77 0.89 092 | 0.74 079 086 092 0.98

multiplier size. It, however, results in a higher computation
accuracy with a limited impact on computation reuse. The
impact of tuning parameter X can also be observed in Table I.
A larger value of K results in higher energy consumption and
lower performance, though it improves the accuracy until it is
satisfied at K = 8. In terms of efficiency, TruLook using a
smaller K value provided higher computation efficiency.

D. TruLook & Deep Learning

Table T shows TruLook energy-delay product (EDP) im-
provement on popular Deep Neural Networks (DNNs). Us-
ing ImageNet dataset [24], we have evaluated Trulook ef-
ficiency on four popular networks including, AlexNet [24],
VGGNet [25], GoogleNet [26], and SqueezeNet [27]. For a
given accuracy loss budget, we have tuned the parameters to
yield the maximum EDP improvement. The result shows that
TruLook provides, on average, 2.1x (5.7 x) EDP improvement
while ensuring 0% (1%) quality loss. This efficiency comes
from redundancy in the DNN computation, which provides
a superb potential for computational reuse. Particularly, the
efficiency of TruLook is more pronounced on networks with
a larger number of convolution layers, as these networks
experience a larger amount of redundant computation. Another
reason for the improvement is due to the fact that DNN
involves a large number of multiplications with low or no
impact on network accuracy, such as the pooling layers that
discard a major portion of computation results. In addition,
DNNs are stochastic in their nature, so a slight addition
of noise can be perceived as a perturbation of the network
parameters, for which DNNs are resilient to some extent.

IV. CONCLUSION

In this paper, we propose TruLook, a hybrid approximate
GPU architecture. To enable computational reuse, the GPU
is augmented with small lookup tables integrated within the
stream cores. To realize approximate arithmetic, TruLook pro-
poses a configurable approximate multiplier that dynamically

TABLE III
TruLook EDP IMPROVEMENT FOR DIFFERENT DNN NETWORKS AND
ERROR BUDGETS.

Quality Loss | 0% 01% 0.5% 1% 2%
AlexNet 1.6x 2.3%x 2.9x% 3.7x 6.2
VGGNet 19x  2.8x 35x  47x 7.4%

GoogleNet 27x  4.6x 5.8% 85x  10.3x

SqueezeNet | 2.0x 3.1x 4.0x 59x 8.1x

TABLE IV

COMPARING THE HIT RATE AND EDP IMPROVEMENT OF TruLook WITH
PREVIOUS WORK FOR ONE MILLION RANDOMLY GENERATED NUMBERS.

Error Rate | 1% 2% 4% 6% 8% 10%

Hit Rate 34%  15%  147% 194%  31.1%  37.2%

CFPUI28] | Epp Improve | 1.03x  1.07x  116x 122x  14lx  1.54x
Hit Rate 0% 0% 0%  937%  999%  100%

RMAC [20] ‘ EDP Improve |  0x 0x 0x  680x 1107x  1131x
TruLook Hit Rate | 58.36% 94.06% 100%  100%  100%  100%
EDP Improve | 18x  29%  37x  103x  158x  18.0x

detects and approximates operations that are less affected by
approximation. Our framework ensures the accuracy required
by application by configuring the hardware at runtime.
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