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As is well known, cluster transformations in cluster structures of geometric type are

often modeled on determinant identities, such as short Plücker relations, Desnanot–

Jacobi identities, and their generalizations. We present a construction that plays a

similar role in a description of generalized cluster transformations and discuss its

applications to generalized cluster structures in GLn compatible with a certain subclass

of Belavin–Drinfeld Poisson–Lie brackets, in the Drinfeld double of GLn, and in spaces

of periodic difference operators.

1 Introduction

Since the discovery of cluster algebras in [4], many important algebraic varieties were

shown to support a cluster structure in a sense that the coordinate rings of such

variety are isomorphic to a cluster algebra or an upper cluster algebra. Lie theory

and representation theory turned out to be a particularly rich source of varieties

of this sort including but in no way limited to such examples as Grassmannians

[5, 19], double Bruhat cells [1], and strata in flag varieties [16]. In all these examples,
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4182 M. Gekhtman et al.

cluster transformations that connect distinguished coordinate charts within a ring

of regular functions are modeled on three-term relations such as short Plücker

relations, Desnanot–Jacobi identities, and their Lie-theoretic generalizations of the

kind considered in [3]. This remains true even in the case of exotic cluster structures

on GLn considered in [8, 10] where cluster transformations can be obtained by

applying Desnanot–Jacobi-type identities to certain structured matrices of a size far

exceeding n.

On the other hand, as we have shown in [7, 9], there are situations when, in

order to stay within a ring of regular functions, one has to employ generalized cluster

transformations, that is, exchange relations in which the product of a cluster variable

being removed and the variable that replaces it is equal to a multinomial expression in

other cluster variables in the seed rather than a binomial expression appearing in the

definition of the usual cluster transformation. Generalized cluster transformations of

this kind were first considered in [2], and in [7, 9] we used them, in a more general form,

to construct a generalized cluster structure in the standard Drinfeld double of GLn and

several related varieties. There, we had to rely on an (n+1)-term identity [9, Proposition

8.1] (see also Proposition 3.6 below) for certain polynomial functions on the space Matn
of n×nmatrices; this identity involved, as coefficients, conjugation invariant functions

on Matn.

In this paper, we argue that in constructing generalized cluster structures,

identities of the kind we employed in [7, 9] play a role similar to the one classical

three-term determinantal identities do in a construction of usual cluster structures. To

support this argument, we derive identity (3.7) that is associated with a class of infinite

periodic block bidiagonal staircase matrices and that generalizes [9, Proposition 8.1].

We then present three examples in which our main identity is applied to construct an

initial seed of a regular generalized cluster structure.

The paper is organized as follows. In Section 2, we review the definition of

generalized cluster structures. Section 3 is devoted to the proof of the main identity

(3.7) (Theorem 3.2). In the next three sections, we apply (3.7) to construct generalized

cluster structures on the Drinfeld double of GLn (Section 4), thus providing a con-

struction alternative to the one presented in [7, 9], on the space of periodic band

matrices (Section 5), and, in Section 6, on GL6 equipped with a particular Poisson–Lie

bracket arising in the Belavin–Drinfeld classification. In the latter case, the resulting

generalized cluster structure is compatible with that Poisson bracket. The last section

contains the proofs of several lemmas about the properties of certain minors of a

periodic staircase matrices.
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Periodic Staircase Matrices 4183

2 Generalized Cluster Structures

Following [9], we remind the definition of a generalized cluster structure represented

by a quiver with multiplicities. Let (Q,d1, . . . ,dN) be a quiver on N mutable and M

frozen vertices with positive integer multiplicities di at mutable vertices. A vertex is

called special if its multiplicity is greater than 1. A frozen vertex is called isolated

if it is not connected to any other vertices. Let F be the field of rational functions

in N + M independent variables with rational coefficients. There are M distinguished

variables corresponding to frozen vertices; they are denoted xN+1, . . . ,xN+M . The coef-

ficient group is a free multiplicative abelian group of Laurent monomials in stable

variables, and its integer group ring is Ā = Z[x±1
N+1, . . . ,x

±1
N+M ] (we write x±1 instead

of x,x−1).

An extended seed (of geometric type) in F is a triple � = (x,Q,P), where x =
(x1, . . . ,xN ,xN+1, . . . ,xN+M) is a transcendence basis of F over the field of fractions of

Ā and P is a set of N strings. The ith string is a collection of monomials pir ∈ A =
Z[xN+1, . . . ,xN+M ], 0 ≤ r ≤ di, such that pi0 = pidi

= 1; it is called trivial if di = 1,

and hence both elements of the string are equal to one. The monomials pir are called

exchange coefficients.

Given a seed as above, the adjacent cluster in direction k, 1 ≤ k ≤ N, is defined

by x′ = (x \ {xk}) ∪ {x′
k}, where the new cluster variable x′

k is given by the generalized

exchange relation

xkx
′
k =

dk∑
r=0

pkru
r
k;>v

[r]
k;>u

dk−r
k;< v[dk−r]

k;< ; (2.1)

here uk;> and uk;<, 1 ≤ k ≤ N, are defined by

uk;> =
∏

k→i∈Q
xi, uk;< =

∏
i→k∈Q

xi,

where the products are taken over all edges between k and mutable vertices, and stable

τ -monomials v[r]k;> and v[r]k;<, 1 ≤ k ≤ N, 0 ≤ r ≤ dk, defined by

v[r]k;> =
∏

N+1≤i≤N+M

x�rbki/dk	
i , v[r]k;< =

∏
N+1≤i≤N+M

x�rbik/dk	
i , (2.2)
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where bki is the number of edges from k to i and bik is the number of edges from i to

k; here, as usual, the product over the empty set is assumed to be equal to 1. The right

hand side of (2.1) is called a generalized exchange polynomial.

The standard definition of the quiver mutation in direction k is modified

as follows: if both vertices i and j in a path i → k → j are mutable, then this

path contributes dk edges i → j to the mutated quiver Q′; if one of the vertices

i or j is frozen then the path contributes dj or di edges i → j to Q′. The multi-

plicities at the vertices do not change. Note that isolated vertices remain isolated

in Q′.
The exchange coefficient mutation in direction k is given by

p′
ir =

⎧⎨⎩pi,di−r, if i = k;

pir, otherwise.
(2.3)

Given an extended seed � = (x,Q,P), we say that a seed �′ = (x′,Q′,P ′)
is adjacent to � (in direction k) if x′, Q′, and P ′ are as above. Two such seeds

are mutation equivalent if they can be connected by a sequence of pairwise

adjacent seeds. The set of all seeds mutation equivalent to � is called the

generalized cluster structure (of geometric type) in F associated with � and denoted

by GC(�).

Fix a ground ring Â such that A ⊆ Â ⊆ Ā. The generalized upper cluster algebra

A(GC) = A(GC(�)) is the intersection of the rings of Laurent polynomials over Â in

cluster variables taken over all seeds in GC(�). Let V be a quasi-affine variety over C,

C(V) be the field of rational functions on V, and O(V) be the ring of regular functions

on V. A generalized cluster structure GC(�) in C(V) is an embedding of x into C(V)

that can be extended to a field isomorphism θ between F ⊗ C and C(V). It is called

regular on V if any cluster variable in any cluster belongs toO(V), and complete ifA(GC)

tensored with C is isomorphic to O(V). The choice of the ground ring is discussed in

[9, Section 2.1].

The following proposition is borrowed from [9].

Proposition 2.1. Let V be a Zariski open subset in C
N+M and GC = GC(�) be a

generalized cluster structure in C(V) with N cluster and M stable variables such

that
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Periodic Staircase Matrices 4185

(i) there exists an extended cluster x = (x1, . . . ,xN+M) in GC such that θ(xi) is

regular on V for 1 ≤ i ≤ N + M, and θ(xi) and θ(xj) are coprime in O(V) for 1 ≤ i �= j ≤
N + M;

(ii) for any cluster variable x′
k, 1 ≤ k ≤ N, obtained via the generalized exchange

relation (2.1) applied to x, θ(x′
k) is regular on V and coprime in O(V) with θ(xk).

Then GC is a regular generalized cluster structure.

If additionally

(iii) each regular function on V belongs to θ(AC(GC)),

then AC(GC) is naturally isomorphic to O(V).

Remark 2.2. (i) The definition above is a particular case of a more general definition

of generalized cluster structures given in [9].

(ii) Quivers with multiplicities differ from weighted quivers introduced in [15].

3 Identity for Minors of a Periodic Staircase Matrix

Consider a periodic block bidiagonal matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎣
. . .

. . .
. . .

. . .

0 X Y 0

0 X Y 0
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.1)

where X ∈ Matn and Y ∈ GLn are matrices of the form

X =
[

0a×b ∗
0 0

]
, Y =

[
∗ ∗

0(n−a)×b ∗

]
, (3.2)

with a > b + 1 ≥ 1; the entries in the submatrices of X and Y denoted by ∗ can take

arbitrary complex values. This choice ensures that L has a staircase shape. Below is an

example of a dense submatrix of L for n = 9, a = 5, b = 2:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/6/4181/5859809 by H
aifa U

niversity Library user on 01 August 2022
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x17 x18 x19 y11 y12 y13 y14 y15 y16 y17 y18 y19

x27 x28 x29 y
21

y22 y23 y24 y25 y26 y27 y28 y29

x37 x38 x39 y
31

y
32

y33 y34 y35 y36 y37 y38 y39

x47 x48 x49 y41 y
42

y
43

y44 y45 y46 y47 y48 y49

x57 x58 x59 y51 y52 y
53

y
54

y55 y56 y57 y58 y59

y63 y
64

y
65

y66 y67 y68 y69

y73 y74 y
75

y
76

y77 y78 y79

y83 y84 y85 y
86

y
87

y88 y89

y93 y94 y95 y96 y
97

y
98

y99

x13 x14 x15 x16 x17 x18 x19 y11 y12 y13 y14 y15 y16 y17 y18

x23 x24 x25 x26 x27 x28 x29 y
21

y22 y23 y24 y25 y26 y27 y28

x33 x34 x35 x36 x37 x38 x39 y
31

y
32

y33 y34 y35 y36 y37 y38

x43 x44 x45 x46 x47 x48 x49 y41 y
42

y
43

y44 y45 y46 y47 y48

x53 x54 x55 x56 x57 x58 x59 y51 y52 y
53

y
54

y55 y56 y57 y58

y63 y
64

y
65

y66 y67 y68

y73 y74 y
75

y
76

y77 y78

y83 y84 y85 y
86

y
87

y88

y93 y94 y95 y96 y
97

y
98

x13 x14 x15 x16 x17 x18

x23 x24 x25 x26 x27 x28

x33 x34 x35 x36 x37 x38

x43 x44 x45 x46 x47 x48

x53 x54 x55 x56 x57 x58

Denote k = a− b. We say that a diagonal of L is inner if when it is viewed as the

main diagonal of L then L is not block triangular. In the example above, there are two

inner diagonals whose entries are underlined. In general, L has a − b − 1 = k − 1 inner

diagonals. We define the core � of L as follows. Delete the 1st row in every block row of

L, then in the resulting matrix pick the dense ((k − 1)n + b) × ((k − 1)n + b) submatrix

whose upper left entry is y21, so that

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y[2,n]

X[2,n] Y[2,n]
. . .

. . .

X[2,n] Y[2,n]

X[2,a] Y [1,b]
[2,a]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)
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Periodic Staircase Matrices 4187

(the Y-block in the lower right corner does not exist when b = 0). Here and in what

follows, for two index sets I, J, we write AJ
I for the submatrix with rows indexed by I and

columns indexed by J; if I (respectively, J) coincides with the set of all rows (respectively,

columns) of A, it is omitted in the notation. Further, for p ≤ q, we denote by [p,q] the

set p,p + 1, . . . ,q; notation [p,p] is shortened to [p]. For our example above, the core is a

20 × 20 matrix.

y
21

y22 y23 y24 y25 y26 y27 y28 y29

y
31

y
32

y33 y34 y35 y36 y37 y38 y39

y41 y
42

y
43

y44 y45 y46 y47 y48 y49

y51 y52 y
53

y
54

y55 y56 y57 y58 y59

y63 y
64

y
65

y66 y67 y68 y69

y73 y74 y
75

y
76

y77 y78 y79

y83 y84 y85 y
86

y
87

y88 y89

y93 y94 y95 y96 y
97

y
98

y99

x23 x24 x25 x26 x27 x28 x29 y
21

y22 y23 y24 y25 y26 y27 y28 y29

x33 x34 x35 x36 x37 x38 x39 y
31

y
32

y33 y34 y35 y36 y37 y38 y39

x43 x44 x45 x46 x47 x48 x49 y41 y
42

y
43

y44 y45 y46 y47 y48 y49

x53 x54 x55 x56 x57 x58 x59 y51 y52 y
53

y
54

y55 y56 y57 y58 y59

y63 y
64

y
65

y66 y67 y68 y69

y73 y74 y
75

y
76

y77 y78 y79

y83 y84 y85 y
86

y
87

y88 y89

y93 y94 y95 y96 y
97

y
98

y99

x23 x24 x25 x26 x27 x28 x29 y
21

y22

x33 x34 x35 x36 x37 x38 x39 y
31

y
32

x43 x44 x45 x46 x47 x48 x49 y41 y
42

x53 x54 x55 x56 x57 x58 x59 y51 y52

Consider n-element segments of inner diagonals in L obtained as intersections

with a single block row. The main diagonal of � is made of the entries 2 to n of such

segment belonging to the uppermost inner diagonal, followed by the entries 2 to n of

the segment belonging to the next inner diagonal from the top, and so on, followed by

entries 2 to n of the segment belonging to the lowest inner diagonal, followed by entries

x2,n−k+2, . . . ,xkn,yk+1,1, . . . ,yab. Consequently, each matrix entry that lies on an inner

diagonal of L and does not belong to the 1st row of X or Y enters the main diagonal of

� exactly once.
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For i = 1, . . . , (k − 1)n + b let

ϕi = det�
[i,(k−1)n+b]
[i,(k−1)n+b] (3.4)

be the trailing minors of �. In particular, ϕ1 = det� is called the core determinant.

Additionally, we set ϕ(k−1)n+b+1 = 1.

We consider ϕi as polynomials in the entries of X and Y indicated by ∗ in

(3.2). Our goal is to establish a generalized exchange relation for ϕ1 that involves the

coefficients of the characteristic polynomial det(λX + μY).

Denote

XY−1 =
[

W

0(n−a)×n

]
, W [1,a] =

[
W11 W12

W21 W22

]
, Y [1,b]

[1,a] =
[

Y1

Y2

]
,

where W is a × n, W11 is k × k, W22 is b × b, Y1 is k × b, and Y2 is b × b. Let

U = W11 − Y1Y
−1
2 W21.

If b = 0, we set U = W11 and use a standard convention detY2 = 1.

Lemma 3.1. For any λ,μ,

det (λY + μX) = λn−k detY det(λ1k + μU).

Proof. Let t = λ
μ
, then det (λY + μX) = μn det (tY + X). In turn,

det (tY + X) = detY det

(
t1n +

[
W

0

])
= tn−a detY det

(
t1a + W [1,a]

[1,a]

)
.

Note that W [1,a]Y [1,b]
[1,a] = (WY)[1,b] = X [1,b]

[1,a] = 0, and so

[
1k −Y1Y

−1
2

0 1b

]
W [1,a]

[1,a]

[
1k Y1Y

−1
2

0 1b

]
=
[

U 0

� 0

]
; (3.5)
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here and in what follows, exact expressions for submatrices denoted by � are not

relevant for further discussion. Consequently,

det (tY + X) = tn−a detY det

(
t1a +

[
U 0

� 0

])
= tn−k detY det

(
t1k + U

)
,

and the claim follows. �

As an immediate corollary from Lemma 3.1, we can write

det (λY + μX) = λn−k
k∑

i=0

ci(X,Y)μiλk−i, (3.6)

where ci(X,Y) are polynomials in the entries of X and Y.

Theorem 3.2. The generalized exchange relation for the core determinant ϕ1 is

given by

ϕ1ϕ
∗
1 =

k∑
i=0

ci(X,Y)
(
(−1)n−1 det Ȳϕn+1

)i
ϕk−i
2 , (3.7)

where ϕ∗
1 is a polynomial in the entries of X and Y and Ȳ = Y [2,n]

[2,n] .

Proof. We start from expressing functions ϕ1, ϕ2, and ϕn+1 via U.

Lemma 3.3. The core determinant ϕ1 can be written as

ϕ1 = ε1 (detY)k−1 detY2 det
[
Uk−1e1 . . .U2e1 Ue1 e1

]
,

where ε1 = (−1)n
k(k−1)

2 and e1 = (1, 0, . . . , 0) ∈ C
k.

Lemma 3.4. The minor ϕ2 can be written as

ϕ2 = ε2 (detY)k−2 det Ȳ detY2 det
[
Uk−2vγ Uk−2e1 . . .U2e1 Ue1 e1

]
,

where ε2 = −ε1 and vγ = U(e2 + γ e1) with

γ = detY [2,n]
1∪[3,n]

det Ȳ
(3.8)
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and e2 = (0, 1, 0, . . . , 0) ∈ C
k.

Lemma 3.5. The minor ϕn+1 can be written as

ϕn+1 = εn+1 (detY)k−2 detY2 det
[
Uk−2e1 Uk−3vγ Uk−3e1 . . .U2e1 Ue1 e1

]
,

where εn+1 = (−1)n(k−2)(k−3)/2 and vγ is the same as in Lemma 3.4.

Proofs of Lemmas 3.3–3.5 are given in Section 7.1.

Now we can invoke a result proven in [9, Proposition 8.1].

Proposition 3.6. Let A be a complex k × k matrix. For u,v ∈ C
k, define matrices

K(A;u) =
[
u Au A2u . . .Ak−1u

]
,

K1(A;u,v) =
[
v u Au . . .Ak−2u

]
, K2(A;u,v) =

[
Av u Au . . .Ak−2u

]
.

In addition, let w be the last row of the classical adjoint of K1(A;u,v), so that

wK1(A;u,v) = (
detK1(A;u,v)

)
eTk . Define K∗(A;u,v) to be the matrix with rows

w,wA, . . . ,wAk−1. Then

det
(
detK1(A;u,v)A − detK2(A;u,v)1k

)
= (−1)

k(k−1)
2 detK(A;u)detK∗(A;u,v). (3.9)

We will make use of the following properties of matrices K and K∗.

Lemma 3.7. (i) For any γ ∈ C, there exists an invertible matrix A such that

detK(A; e1) = 0, but detK∗(A; e1,A−1(e2 + γ e1)) �= 0.

(ii) Moreover, A can be chosen in such a way that all principal leading minors of

A do not vanish.

The proof of the Lemma is given in Section 7.3.

Using notation introduced in Proposition 3.6, we can re-write the claims of

Lemmas 3.3–3.5 as

detK(U−1; e1) = ε1 (detY)1−k (detY2

)−1
(detU)1−k ϕ1,

detK1(U
−1; e1,vγ ) = ε2 (detY)2−k (det Ȳ)−1 (

detY2

)−1
(detU)2−k ϕ2,

detK2(U
−1; e1,vγ ) = −εn+1 (detY)2−k (detY2

)−1
(detU)2−k ϕn+1.
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Consequently, the matrix in the left hand side of (3.9) equals

(detY)2−k (det Ȳ)−1 (
detY2

)−1
(detU)2−k (ε2ϕ21k + εn+1 det Ȳϕn+1U

)
U−1,

and (3.9) becomes

det
(
ε2ϕ21k + εn+1 det Ȳϕn+1U

)
= (−1)

k(k−1)
2 ε1ϕ1

detK∗(U−1; e1,v)

detY
ck(X,Y)(k−1)(k−2)

(
detY2

)k−1 (det Ȳ)k , (3.10)

since ck(X,Y) = detY detU.

Using Lemma 3.1 and equations (3.6) and (3.10), we get (3.7) with

ϕ∗
1 = (−1)

k(k−1)
2 ε1ε

k
2 detK

∗(U−1; e1,vγ )ck(X,Y)(k−1)(k−2)
(
detY2

)k−1 (det Ȳ)k . (3.11)

Note that detK∗(U−1; e1,vγ ) is a rational function of X,Y whose denominator

can contain only powers of detY, detY2, and det Ȳ. It remains to establish that ϕ∗
1 is

a polynomial function of X and Y. By (3.7), this fact is an immediate corollary of the

following statement.

Lemma 3.8. The core determinant ϕ1 = ϕ1(X,Y) is an irreducible polynomial in the

entries of X and Y.

The proof of the Lemma is given in Section 7.2. �

Remark 3.9. Infinite block Toeplitz matrices with finitely many diagonals, of which

(3.1) is an example, are naturally associated with polynomial loops in GLn. In fact,

examples of applications of our construction considered in the next two sections can

be viewed as two instances of generalized cluster structures on Poisson submanifolds

in the space of polynomial loops with respect to the Poisson structure defined by the

trigonometric R-matrix. This hints at a possibility to extend the construction to produce

generalized cluster structures in a wider class of such Poisson submanifolds. We hope

to pursue this line of inquiry in the future.

4 Example 1: A Generalized Cluster Structure on the Drinfeld Double of GLn

In [7, 9], we presented a generalized cluster structure on the standard Drinfeld double

D(GLn) = GLn × GLn and studied its properties. In this section, we explain how the

construction of Section 3 can be applied to obtain an alternative seed that gives rise
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4192 M. Gekhtman et al.

to a generalized cluster structure on D(GLn). As discussed in Remark 4.4 below, this

generalized cluster structure likely does not coincide with the one considered in [7, 9].

In this case, X and Y in (3.1) are arbitrary n × n matrices, and hence b = 0 and

a = k = n. Consequently, the core � is an N × N matrix

� = �(X,Y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y[2,n]

X[2,n] Y[2,n]
. . .

. . .

X[2,n] Y[2,n]

X[2,n]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

with N = (n − 1)n and ϕi = det�
[i,N]
[i,N]. Further, we have U = W = XY−1 and

det (λY + μX) = ∑n
i=0 ci(X,Y)μiλn−i.

Following [9], we define gij = detX [j,j+n−i]
[i,n] for 1 ≤ j ≤ i ≤ n, and, hij = detY [j,n]

[i,i+n−j]

for 1 ≤ i ≤ j ≤ n; note that ϕi = gi−N+n−1,i−N+n−1 for i > N −n+ 1, and that h22 = Ȳ. The

family Fn of 2n2 functions in the ring of regular functions on D(GLn) is defined as

Fn =
{
{ϕi}N−n+1

i=1 ; {gij}1≤j≤i≤n; {hij}1≤i≤j≤n; {c̃i}n−1
i=1

}
with c̃i(X,Y) = (−1)i(n−1)ci(X,Y) for 1 ≤ i ≤ n − 1.

The corresponding quiver Qn is defined below and illustrated, for the n = 4

case, in Figure 1. It has 2n2 vertices corresponding to the functions in Fn. The n − 1

vertices corresponding to c̃i(X,Y), 1 ≤ i ≤ n − 1, are isolated; they are not shown. There

are 2n frozen vertices corresponding to gi1, 1 ≤ i ≤ n, and h1j, 1 ≤ j ≤ n; they are shown

as squares in the figure below. All vertices except for one are arranged into a (2n−1)×n

grid; we will refer to vertices of the grid using their position in the grid numbered top

to bottom and left to right. The edges of Qn are (i, j) → (i + 1, j + 1) for i = 1, . . . , 2n − 2,

j = 1, . . . ,n− 1, (i, j) → (i, j− 1), and (i, j) → (i− 1, j) for i = 2, . . . , 2n− 1, j = 2, . . . ,n, and

(i, 1) → (i − 1, 1) for i = 2, . . . ,n. Additionally, there is an oriented path

(n + 1,n) → (3, 1) → (n + 2,n) → (4, 1) → · · · (n, 1) → (2n − 1,n).

The edges in this path are depicted as dashed in Figure 1. The vertex (2, 1) is special; it

is shown as a hexagon in the figure. The last remaining vertex of Qn is placed to the left

of the special vertex and there is an edge pointing from the former one to the latter.
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Periodic Staircase Matrices 4193

Fig. 1. Quiver Q4.

Functions hij are attached to the vertices (i, j), 1 ≤ i ≤ j ≤ n, and all vertices in

the upper row of Qn are frozen. Functions gij are attached to the vertices (n + i − 1, j),

1 ≤ j ≤ i ≤ n, (i, j) �= (1, 1), and all such vertices in the 1st column are frozen. The

function g11 is attached to the vertex to the left of the special one, and this vertex is

frozen. Functions ϕkn+i are attached to the vertices (i + k + 1, i) for 1 ≤ i ≤ n, 0 ≤ k ≤
n−3; the function ϕN−n+1 is attached to the vertex (n, 1). All these vertices are mutable.

The set of strings Pn contains a unique nontrivial string (1, c̃1(X,Y), . . . , c̃n−1(X,Y), 1)

corresponding to the unique special vertex.

Theorem 4.1. The extended seed �n = (Fn,Qn,Pn) defines a regular generalized

cluster structure on D(GLn).

Proof. We start with checking that relation (3.7) with k = n indeed defines a

generalized exchange relation as described in (2.1). The degree of the exchange relation

is dn = n, exchange coefficients are given by p1r = c̃r(X,Y) for r = 1, . . . ,n−1, the cluster
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4194 M. Gekhtman et al.

τ -monomials are u1;> = h22ϕn+1 and u1;< = ϕ2. The stable τ -monomials are defined as

follows:

v[n]1;> = h11 = detY, v[r]1;> = 1 for 0 ≤ r ≤ n − 1,

and

v[n]1;< = g11 = detX, v[r]1;< = 1 for 0 ≤ r ≤ n − 1.

Let us show that cluster transformations defined by the quiver Qn produce

regular functions. For the special vertex, this follows from Theorem 3.2. For the vertices

corresponding to gij and hij with i �= j, the claim is wellknown from the study of the

standard cluster structure on GLn. For other mutable vertices, we use determinantal

identities often utilized for this purpose (see, e.g., [8], [9], [10]). The 1st is the Desnanot–

Jacobi identity for minors of a square matrix A:

detAdetAγ̂ δ̂

α̂β̂
+ detAδ̂

α̂
detAγ̂

β̂
= detAγ̂

α̂
detAδ̂

β̂
, (4.1)

where “hatted” subscripts and superscripts indicate deleted rows and columns, respec-

tively. The 2nd is a version of a short Plücker relation for an m × (m + 1) matrix B:

detBα̂β̂

δ̂
detBγ̂ + detBβ̂γ̂

δ̂
detBα̂ = detBα̂γ̂

δ̂
detBβ̂ , (4.2)

and the 3rd is the corollary of (4.2):

detB1̂m̂m̂+1
1̂2̂

detB1̂2̂
1̂

detBm̂+1 + detB1̂2̂m̂+1
1̂2̂

detBm̂m̂+1
1̂

detB1̂

= detB1̂m̂+1
1̂

(
detB1̂m̂m̂+1

1̂2̂
detB2̂ − detB2̂m̂m̂+1

1̂2̂
detB1̂

)
.

(4.3)

In more detail, for functions ϕi with 2 ≤ i ≤ n − 1, we use (4.3) for the matrix

B = [
� eTN

][i−1,N+1]
[i−1,N] . For ϕn, we use (4.1) for the matrix A = �

[n−1,N]
[n−1,N] with parameters

α = γ = 1, β = 2, δ = N − n + 2. For functions ϕi with n + 1 ≤ i ≤ N − 1, we consider a

perturbation �(θ) = �+ θe(n−1)2+1,(n−1)2−1 of the core and use (4.3) for the matrix B(θ) =
�(θ)

[i−n−1,N]
[i−n,N] (for i = n + 1 the range of columns [0,N] stands for � prepended with the

previous column of the infinite periodic matrix (3.1); this column contains X [n]
[2,n] to the

left of the uppermost copy of Y[2,n] in (3.3)). A direct check shows that the identity (4.3)

for B(θ) yields a polynomial of degree 3 in θ that vanishes identically. The coefficient of

this polynomial at θ is the exchange relation we are looking for. For ϕN , we use (4.2) for

the matrix B = �
[N−n−1,N]
[N−n,N] with parameters α = δ = 1, β = 2, γ = n + 2. For functions hii

with 3 ≤ i ≤ n, we consider a perturbation �(θ) = [
� eTN eTN

]+θen−1,n+1+θeN−1,N+1 and

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/6/4181/5859809 by H
aifa U

niversity Library user on 01 August 2022



Periodic Staircase Matrices 4195

use (4.3) for the matrix B(θ) = �(θ)
[i−1,N+2]
[i−2,N] . A direct check shows that the identity (4.3)

for B(θ) yields a polynomial of degree 4 in θ that vanishes identically. The coefficient

of this polynomial at θ2 is the exchange relation we are looking for. Finally, for h22, we

prepend a row [Y[1] 0] to the matrix �(θ) and proceed with the obtained matrix exactly

as in the previous case.

By Proposition 2.1, it remains to check that any two functions in Fn are coprime

and that for any nonfrozen f ∈ Fn, the function f ∗ that replaces f after the mutation

is coprime with f . The 1st claim above is an immediate corollary of the following

statement.

Lemma 4.2. All functions in the family Fn are irreducible.

The proof of Lemma 4.2 is given in Section 7.2. The 2nd claim above is provided

by the following statement.

Lemma 4.3. Every nonfrozen f ∈ Fn does not divide the corresponding f ∗.

The proof of Lemma 4.3 is given in Section 7.3. �

Remark 4.4. (i) The regular generalized cluster structure described in Theorem 4.1

is complete in O(D(GLn)) and compatible with the standard Poisson–Lie bracket on

D(GLn).

(ii) In [9], we used a different initial seed �̃n to define a regular complete

generalized cluster structure GC(�̃n) on D(GLn) compatible with the standard Poisson–

Lie structure on D(GLn). Moreover, the sets of frozen variables for both structures

coincide. However, for n = 4, the initial seed described above is not mutation equivalent

to the one constructed in [9].

Details and proofs of assertions mentioned in the above remark are given in [11].

5 Example 2: Generalized Cluster Structure on Periodic Band Matrices.

In this section, we consider the case of L in (3.1) being a (k + 1) diagonal n-periodic

band matrix with k ≤ n. In other words, L represents a periodic difference operator.

Such operators play an important role in spectral theory; they also appear as Lax

operators in the theory of integrable systems, such as periodic Toda lattices and

their multicomponent analogues (see, e.g., [17]). More recently, periodic difference

operators found applications that, in turn, proved to be related to the theory of cluster
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4196 M. Gekhtman et al.

algebras, in particular, in the investigation of frieze patterns and pentagram maps and

their generalizations [13, 18]. In this section, we will use Theorem 3.2 to construct a

generalized cluster algebra structure on the space of periodic difference operators.

We choose Y in (3.2) to be a lower triangular band matrix with k + 1 nonzero

diagonals (including the main diagonal); consequently, X is an upper triangular with

zeroes everywhere outside of k × k upper triangular block in the upper right corner. We

assume that entries of the lowest and highest diagonals are all nonzero. X and Y are

now n × n matrices of the form

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 a11 · · · ak1

0 · · · 0 0 a12 · · ·
...

...
...

...
. . .

. . .

0 · · · 0 · · · 0 a1k

0 · · · 0 · · · · · · 0
...

...
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ak+1,1 0 · · · · · · · · · 0

ak2 ak+1,2 0 · · · · · · · · ·
...

...
. . .

...
...

...

a1,k+1 a2,k+1 · · · ak+1,k+1 0 · · ·
0

. . .
. . .

...
. . .

...

0 · · · a1n a2n · · · ak+1,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(5.1)

and we can choose a = k, b = 0. Consequently,

U = W11 =

⎡⎢⎢⎣
a11 · · · ak1
...

. . .
...

0 · · · a1k

⎤⎥⎥⎦(
Y−1)[1,k]

[n−k+1,n], (5.2)

and hence

detU = a11 · · ·a1n

ak+1,1 · · ·ak+1,n
, ck(X,Y) = a11 · · ·a1n. (5.3)

Furthermore, γ in (3.8) is equal to 0, and therefore vγ = Ue2.

The core � is a reducible (k−1)n×(k−1)nmatrix, and for i = 1, . . . , (k−1)(n−1)

we have ϕi = ϕ̃ia12 · · ·a1k with

ϕ̃i = det�
[i,(k−1)(n−1)]
[i,(k−1)(n−1)]. (5.4)
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Periodic Staircase Matrices 4197

Relation (3.7) can be rewritten as

ϕ̃1ϕ
∗
1 = (

a12 · · ·a1k

)k−1
k∑

i=0

ci(X,Y)
(
(−1)n−1 det Ȳϕ̃n+1

)i
ϕ̃k−i
2 , (5.5)

for k > 2 and as

ϕ̃1ϕ
∗
1 = c0(X,Y)ϕ̃2

2a12 + (−1)n−1c1(X,Y)det Ȳϕ̃2 + c2(X,Y)
(
det Ȳ

)2
a−1
12 , (5.6)

for k = 2, since in this case ϕn+1 = ϕ(k−1)n+b+1 = 1 according to the convention

introduced in Section 3. In both cases, ϕ∗
1 is a polynomial function in matrix entries

of X,Y, according to Theorem 3.2. Since c0(X,Y) = detY = ak+1,1 det Ȳ, the right hand

side of (5.5) is divisible by det Ȳ = ak+1,2 · · ·ak+1,n. On the other hand, it is easy to see

that ϕ̃1 is not divisible by a1i, ak+1,i for i = 2, . . . ,n. This means that for k > 2,

ϕ∗
1 = (

a12 · · ·a1k

)k−1 det Ȳϕ̃∗
1,

where ϕ̃∗
1 is a polynomial function in matrix entries of X and Y. Thus, (5.5) becomes

ϕ̃1ϕ̃
∗
1 = ak+1,1ϕ̃

k
2 +

k∑
i=1

c̃i(X,Y)(det Ȳ)i−1ϕ̃i
n+1ϕ̃

k−i
2 , (5.7)

where c̃i(X,Y) = (−1)i(n−1)ci(X,Y) for 1 ≤ i ≤ k. In what follows, it will be convenient to

introduce ã11 = (−1)k(n−1)a11, so that c̃k(X,Y) = ã11a12 · · ·a1n.

Similarly, for k = 2, ϕ∗
1 = ϕ̃∗

1 det Ȳ where ϕ̃∗
1 is a polynomial function in matrix

entries of X and Y, and (5.6) becomes

ϕ̃1ϕ̃
∗
1 = a31a12ϕ̃

2
2 + c̃1(X,Y)ϕ̃2 + c̃2(X,Y)det Ȳ (5.8)

with c̃1(X,Y) = (−1)n−1c1(X,Y) and c̃2(X,Y) = c2(X,Y)/a12 = a11a13 · · ·a1n.

For k ≤ n, denote by Lkn the space of periodic difference operators represented

by n-periodic (k + 1)-diagonal matrices with all entries of the lowest and the highest

diagonals nonzero. A generalized cluster structure in the space of regular functions on

Lkn is defined by the following data.

Consider the family Fkn of functions on Lkn:

Fkn =
{
{ϕ̃i}(k−1)(n−1)

i=1 ; ã11; {a1i}ni=2; {ak+1,i}ni=1; {c̃i(X,Y)}k−1
i=1

}
.
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4198 M. Gekhtman et al.

Let Qkn be the quiver with (k + 1)n vertices, of which k − 1 vertices are isolated

and are not shown in the figure below, (k+ 1)(n− 1) are arranged in an (n− 1) × (k+ 1)

grid and denoted (i, j), 1 ≤ i ≤ n − 1, 1 ≤ j ≤ k + 1, and the remaining two are placed

on top of the leftmost and the rightmost columns in the grid and denoted (0, 1) and

(0,k + 1), respectively. All vertices in the leftmost and in the rightmost columns are

frozen. The vertex (1,k) is special, and its multiplicity equals k. All other vertices are

regular mutable vertices.

The edge set of Qkn consists of the edges (i, j) → (i + 1, j) for i = 1, . . . ,n − 2,

j = 2, . . . ,k; (i, j) → (i, j − 1) for i = 1, . . . ,n − 1, j = 2, . . . ,k, (i, j) �= (1,k); (i + 1, j) →
(i, j+1) for i = 1, . . . ,n−2, j = 2, . . . ,k, shown by solid lines. In addition, there are edges

(n− 1, 3) → (1, 2), (1, 2) → (n− 1, 4), (n− 1, 4) → (1, 3), . . . , (1,k− 1) → (n− 1,k+ 1) that

form a directed path (shown by dotted lines). Save for this path, and the missing edge

(1,k) → (1,k−1), mutable vertices of Qkn form a mesh of consistently oriented triangles

Finally, there are edges between the special vertex (1,k) and frozen vertices (i, 1),

(i, k + 1) for i = 0, . . .n − 1. There are k − 1 parallel edges between (1,k) and (i, k + 1)

for i = 1, . . . ,n − 1, and one edge between (1,k) and all other frozen vertices (including

(0,k+1)). If k > 2, all of these edges are directed towards (1,k), and if k = 2, the direction

of the edge between (1, 1) and (1,k) is reversed. Quiver Q47 is shown in Figure 2.

We attach functions ã11,a12, . . . ,a1n, in a top to bottom order, to the vertices

of the leftmost column in Qkn, and functions ak+1,1, . . . ,ak+1,n, in the same order, to

the vertices of the rightmost column in Qkn. Functions ϕ̃i are attached, in a top to

bottom, right to left order, to the remaining vertices of Qkn, starting with ϕ̃1 attached

to the special vertex (1,k). The set of strings Pkn contains a unique nontrivial string

(1, c̃1(X,Y), . . . , c̃k−1(X,Y), 1) corresponding to the unique special vertex.

Theorem 5.1. The extended seed �kn = (Fkn,Qkn,Pkn) defines a regular generalized

cluster structure GC(�kn) on Lkn.

Proof. Similarly to the proof of Theorem 4.1, let us check first that relation (5.7) indeed

defines a generalized cluster transformation as described in (2.1). The degree of the

exchange relation is dk = k, exchange coefficients are given by p1r = c̃r(X,Y) for r =
1, . . . ,k − 1, and the cluster τ -monomials are u1;> = ϕ̃2 and u1;< = ϕ̃n+1 for k > 2 (for

k = 2, u1;< = 1). The stable τ -monomials are defined as follows:

v[k]1;> =
⎧⎨⎩ak+1,1 if k > 2,

a31a12 if k = 2,
v[r]1;> = 1 for 0 ≤ r ≤ k − 1,
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Periodic Staircase Matrices 4199

Fig. 2. Quiver Q47.

and

v[k]1;< =
⎧⎨⎩ã11a12 . . .a1na

k−1
k+1,2 . . .ak−1

k+1,n if k > 2,

a11a13 . . .a1nak+1,2 . . .ak+1,n if k = 2,

v[r]1;< = ar−1
k+1,2 . . .ar−1

k+1,n for 1 ≤ r ≤ k − 1,

v[0]1;< = 1;

the expression for v[r]1;< follows from (2.2) via �(k − 1)r/k	 = r − 1.

Let us show that cluster transformations defined by the quiver Qkn produce

regular functions. For the special vertex, this follows from Theorem 3.2. For other

mutable vertices, we use determinantal identities (4.1)–(4.3).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/6/4181/5859809 by H
aifa U

niversity Library user on 01 August 2022



4200 M. Gekhtman et al.

In more detail, consider a perturbation

�(θ) = � + θ

n−1∑
i=1

e(k−2)(n−1)+i,(k−2)(n−1)+i−2

of the core. For every six-valent vertex (i, j) in Qkn we apply (4.3) to the submatrix B(θ) =
�(θ)

[(k−j−1)(n−1)+i−2,(k−1)(n−1)]
[(k−j−1)(n−1)+i−1,(k−1)(n−1)] of �(θ) and get a polynomial identity of degree 3(n − 1)

in θ . The claim follows from considering the coefficient at θn−1. Indeed, the submatrix

�
[t,(k−1)(n−1)]
[t,(k−1)(n−1)] that defines the function ϕ̃t coincides with the submatrix of � of the same

size with the upper left corner at row t− s(n−1) and column t− sn for s = 1, 2, . . . . Note

that for the function attached to (i, j) we have t = (k− j)(n−1)+ i, and the result follows.

For vertices (i, 2), i = 1, . . . ,n − 1, one needs to apply (4.2) to the submatrix

B = �
[(k−3)(n−1)+i−2,(k−1)(n−1)]
[(k−3)(n−1)+i−1,(k−1)(n−1)] with α = δ = 1, β = 2, and γ being the last row. The same

holds for the vertex (n − 1, 3) with i = 0. Finally, for vertices (i, k), i = 2, . . . ,n − 1, one

needs to apply (4.1) to the submatrix A = �
[i−1,(k−1)(n−1)]
[i−1,(k−1)(n−1)] with α = γ = 1, β = 2, and δ

being the last column. The vertex (1,k − 1) is treated in the same way.

Similarly to the proof of Theorem 4.1, it remains to prove that all functions in

Fkn are coprime and that each nonfrozen f ∈ Fkn is coprime with f ∗. The 1st of the above
claims is an immediate corollary of the following statement.

Lemma 5.2. All functions in the family Fkn are irreducible.

The proof of Lemma 5.2 is given in Section 7.2. The 2nd claim above is provided

by the following statement.

Lemma 5.3. Every nonfrozen f ∈ Fkn does not divide the corresponding f ∗.

The proof of Lemma 5.3 is given in Section 7.3. �

Remark 5.4. (i) The regular generalized cluster structure described in Theorem 5.1 is

complete in O(Lkn).

(ii) Under certain mild nondegeneracy conditions, for any generalized cluster

structure, there exists a compatible quadratic Poisson structure (see [9, Proposition

2.5] for details). This compatible Poisson structure coincides with a natural Poisson

structure on the space of periodic finite difference operators considered in [13] and

used in the proof of complete integrability of generalized pentagram maps.

Details and proofs of assertions mentioned in the above remark are given in [11].
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Let us examine the case k = 2 in more detail. By [2, Theorem 2.7], the finite-type

classification for generalized cluster structures coincides with that for usual cluster

structures. Consequently, GC(�2n) is of type Cn−1. In [20], every cluster structure of finite

type with principal coefficients was given a geometric realization in the ring of regular

of functions on a reduced double Bruhat cell corresponding to a Coxeter element of the

Weyl group and its inverse. In theAn case, this double Bruhat cell consists of tridiagonal

matrices A in SLn+1 with nonzero off-diagonal entries and with subdiagonal entries

normalized to be equal to 1. Then, [20,Theorem 1.1] shows that the set of mutable cluster

variables in such a realization coincides with the set of all dense principal minors of A.

We have the following analogue of [20, Theorem 1.1].

Proposition 5.5. The set of mutable cluster variables in GC
(
�2n

)
coincides with the

set of all distinct dense principal minors of L ∈ L2n of size less than n.

Proof. Since GC
(
�2n

)
is a generalized cluster structure of type Cn−1, the number of

mutable cluster variables is n(n − 1), that is, the number of almost positive roots in

Cn−1. Since this is also the number of distinct dense principal minors of L ∈ L2n of size

less than n, we only need to show that every such minor appears as a cluster variable

in GC
(
�2n

)
. In the spirit of [20], we denote by x[i,j] the dense principal minor of L with

diagonal entries a2i,a2,i+1, . . . ,a2,j−1,a2j, where either 1 ≤ i ≤ j ≤ n, (i, j) �= (1,n), or

1 ≤ j < i − 1 ≤ n − 1.

The initial cluster variables ϕ̃1, . . . , ϕ̃n−1 are minors x[i,n], i = 2, . . . ,n, contained

in an (n− 1) × (n− 1) tridiagonal matrix �
[1,n−1]
[1,n−1]. If we treat, temporarily, ϕ̃1 as a frozen

variable, ϕ̃2, . . . , ϕ̃n−1 form an initial cluster of a cluster structure of finite-type An−2,

whose set of mutable cluster variables is the collection x[i,j], 2 ≤ i ≤ j ≤ n− 1, according

to [20, Theorem 1.1]. (In [20], the corresponding tridiagonal matrix is normalized to

have determinant 1, and also all the subdiagonal entries are equal to one; however, the

calculation needed to obtain the desired result goes through without any modifications).

Next, we perform a generalized mutation from our initial cluster in direction 1

using (5.8). We claim that ϕ̃∗
1 is equal to x[3,1]. Clearly, the degree of ϕ̃∗

1 in matrix entries

of L is equal to n − 1. By (3.11),

ϕ∗
1 = (−1)n+1 detK∗(U−1; e1,vγ )

(
det Ȳ

)2
,

and so ϕ̃∗
1 = ϕ1/det Ȳ is proportional to the numerator of detK∗(U−1; e1,vγ ) viewed as

rational function in terms of entries of L with a coefficient that is a monomial in a3j,
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4202 M. Gekhtman et al.

j = 1, . . . ,n. Since the degree of x[3,1] is n−1, we only need to show that detK∗(U−1; e1,vγ )

is proportional to x[3,1].

Recall that for band matrices γ = 0, and so vγ defined in Lemma 3.4 is

equal to Ue2. Then w in Proposition 3.6 becomes w = [−u22,u12

]
, and we obtain

detK∗(U−1; e1,vγ ) = −u12. By (5.2),

u12 = (−1)n+1a31

detY

(
a11 detY

1̂n̂−1
1̂̂2

− a21 detY
1̂n̂
1̂̂2

)
= (−1)nx[3,1]

detY
,

and hence ϕ̃∗
1 = x[3,1]; here in the last equality we used the expansion of x[3,1] with respect

to the last row.

Fig. 3. Quiver Q25.

After the generalized mutation, the quiver is transformed as follows: all edges

incident to the special vertex change direction, edges pointing from the vertex cor-

responding to ϕ̃2 to vertices corresponding to a13 and a32, disappear, but new edges

appear instead pointing to ϕ̃2 from frozen vertices corresponding to a11,a14, . . . ,a1n and

a33, . . . ,a3n (cf. Figure 3). It is easy to check via (4.1) for the submatrix of L obtained

from �
[1,n−1]
[1,n−1] by cyclically shifting 2nd indices of all entries aij up by 1 that mutation at

the vertex (2, 2) transforms ϕ̃2 to x[4,1]. Similarly, consequent mutations at the vertices

(3, 2), (4, 2), . . . , (n − 1, 2) transform each ϕ̃i to x[i+2,1], i = 3, . . . ,n − 2, and ϕ̃n−1 to x[1,1].

Moreover, the resulting quiver coincides with the initial one. Clearly, we can perform a

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/6/4181/5859809 by H
aifa U

niversity Library user on 01 August 2022



Periodic Staircase Matrices 4203

similar shift operation n− 2 more times and recover the rest of functions x[i,j] as cluster

variables. �

Remark 5.6. Proposition 5.5 provides a geometric realization of generalized cluster

structures of finite-type Cn. We should mention that generalized cluster algebras of

this type but with constant exchange coefficients have been recently considered in [12]

in the context of study of representations of the quantum loop algebra of sl2 at roots

of unity, and in [14, section 9], where they were realized as Caldero–Chapoton algebras

associated with a special triangulation of a polygon with one orbifold point.

6 Example 3: Exotic Generalized Cluster Structure on GL6

In [6], we initiated the study of cluster structures in the ring of regular functions on

GLn compatible with R-matrix Poisson–Lie brackets. Such brackets are classified by

Belavin–Drinfeld triples � = (�1,�2, γ : �1 → �2), where �1 and �2 are subsets of the set

of positive simple roots in the An−1 root system and γ is a nilpotent isometry (see [6] for

details). The cluster structures corresponding to nonempty Belavin–Drinfeld triples are

called exotic. In [10], we treated the subclass of Belavin–Drinfeld triples that we called

aperiodic. The 1st instance of a periodic Belavin–Drinfeld triple occurs for n = 6 with

the triple � given by

�1 = {α1,α5}, �2 = {α2,α4}, γ (α1) = α2, γ (α5) = α4. (6.1)

It will be convenient to denote elements of D(GL6) by (R,S). Following the

construction described in [10], we consider a collection of matrices

L�(R,S) =
{
R,R[1,2]

[5,6],R
[1,4]
[3,6],R

[1,3]
[4,6],S

6
1,S

[2,6]
[1,5],S

[4,6]
[1,3],L1(R,S),L2(R,S)

}
,

where L1 = L1(R,S), L2 = L2(R,S) both have a form (3.2), see Figure 4.

Here, 2× 2 and 5× 5 blocks featured in L1 are submatrices R[1,2]
[5,6] and S[2,6][1,5], while

3 × 3 and 6 × 6 blocks featured in L2 are S[4,6][1,3] and R. L1 is 5-periodic, L2 is 7-periodic,

and each has one inner diagonal, which corresponds to k = 2 in (3.2). Overlaps between

blocks in L1, L2 are prescribed by � (see [10] for details).

For L1(R,S), we choose

X1 =
[

S[2,6][4,5]

03×5

]
, Y1 =

[
R[1,2]
[5,6] 02×3

S[2,3][1,3] S[4,6][1,3]

]
,
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4204 M. Gekhtman et al.

Fig. 4. Matrices L1 and L2.

which corresponds to a = 2, b = 0, while for L2(R,S) we choose

X2 =
[

02×4 S[4,6][2,3]

05×4 05×3

]
, Y2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 r14 r15 r16 0

r21 r22 r23 r24 r25 r26 0

r31 r32 r33 r34 r35 r36 0

r41 r42 r43 r44 r45 r46 0

r51 r52 r53 r54 r55 r56 0

r61 r62 r63 r64 r65 r66 0

0 0 0 0 s14 s15 s16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which corresponds to a = 6, b = 4. Thus, (3.3) results in

�1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r61 r62 0 0 0

s12 s13 s14 s15 s16
s22 s23 s24 s25 s26
s32 s33 s34 s35 s36
s52 s53 s54 s55 s56

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

�2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r21 r22 r23 r24 r25 r26 0

r31 r32 r33 r34 r35 r36 0

r41 r42 r43 r44 r45 r46 0

r51 r52 r53 r54 r55 r56 0

r61 r62 r63 r64 r65 r66 0

0 0 0 0 s14 s15 s16
0 0 0 0 s34 s35 s36

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Periodic Staircase Matrices 4205

Consequently, (3.6) yields

det
(
λY1 + μX1

) = λ3
(
detS[2,6][1,5]μ

2 + c11(R,S)λμ + detS[4,6][1,3] detR
[1,2]
[5,6]λ

2
)
,

det
(
λY2 + μX2

) = λ5
(
detS[4,6][1,3] detR

[1,4]
[3,6]μ

2 + c21(R,S)λμ + s16 detRλ2
)
.

(6.2)

Let us denote the functions associated with �1, �2 via (3.4) by ϕ1i, 1 ≤ i ≤ 5, and

ϕ2i, 1 ≤ i ≤ 7, respectively. Taking into account that

det Ȳ1 = r62 detS
[4,6]
[1,3], det Ȳ2 = s16 detR

[2,6]
[2,6],

we obtain from (3.7) and (6.2)

ϕ11ϕ
∗
11 = detS[2,6][1,5] detS

[4,6]
[1,3]r

2
62 + c11(R,S)r62ϕ12 + detR[1,2]

[5,6]ϕ
2
12,

ϕ21ϕ
∗
21 = s16 detS

[4,6]
[1,3] detR

[1,4]
[3,6]

(
detR[2,6]

[2,6]

)2 + c21(R,S)detR[2,6]
[2,6]ϕ22 + detRϕ2

22,
(6.3)

where ϕ∗
11 and ϕ∗

21 are polynomial in the entries of R, S.

Recall that the family

Fst
n =

{
{gij(R)}1≤j≤i≤n, {hij(R)}1≤i<j≤n

}
with gij and hij defined in the previous section is a cluster for the standard cluster

structure on GLn that has a property that for every pair i, j of indices between 1 and n

there is a unique function in Fst
n represented by a minor whose upper left entry is rij.

These functions are attached in a natural way to vertices of the corresponding quiver,

Qst
n , that form an n × n grid with all the vertices in the 1st row and column frozen. The

edges (i, j) → (i+1, j+1), (i+1, j) → (i, j), and (i, j+1) → (i, j) form a mesh of consistently

oriented triangles (except that edges between frozen variables are ignored).

Let now F� be the family of functions that consists of all distinct dense trailing

minors of matrices that comprise L�(R,R). Alternatively, we can describe F� as

F� = (
Fst
6 \ {{gi+1,i(R)}1≤i≤5, g61(R), {hi,i+2(R)}1≤i≤4,h15(R),h26(R)

})
∪ {{ϕ1i(R,R)}1≤i≤4, {ϕ2i(R,R)}1≤i≤6

}
.

Note that F� contains only 34 functions in contrast with Fst
6 , which contains 36.

Specifically, none of the functions in F� is represented as a minor whose upper left

entry is r26 or r46. All other rij do appear in this way, and so we attach them to the
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4206 M. Gekhtman et al.

Fig. 5. Quiver Q� .

corresponding nodes of a 6 × 6 grid that will serve as the vertex set of the quiver

Q� depicted in Figure 5. Here, the white vertices denote functions in the intersection

F� ∩ Fst
6 , the ones with the vertical filling refer to ϕ1i, and the ones with the diagonal

filling, to ϕ2i. The special vertices (6, 1) and (2, 1) correspond to ϕ11 and ϕ21, respectively.

Strings of exchange coefficients attached to these vertices are (1, c11(R,R), 1) and

(1, c21(R,R), 1), respectively. These are the only nontrivial strings in the set of strings P�

that we associated with Q� and F�. The corresponding generalized exchange relations

are obtained from (6.3):

ϕ11ϕ
∗
11 = h12h14g

2
62 + c11(R,R)g62ϕ12 + g51ϕ

2
12,

ϕ21ϕ
∗
21 = h16h14g31g

2
22 + c21(R,R)g22ϕ22 + g11ϕ

2
22.
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Periodic Staircase Matrices 4207

Fig. 6. Another partition of matrices L1 and L2.

Proposition 6.1. The seed �� = (F�,Q�,P�) defines a regular complete generalized

cluster structure in the ring of regular functions on GL6. This structure is compatible

with the Poisson–Lie bracket {·, ·}� specified by � given by (6.1).

Proof. The proof is based on lengthy calculations, some of them straightforward, some

ad hoc, and some relying on symbolic computations using Maple . In particular, the

proof of regularity relies on Theorem 3.2 and identities (4.1),(4.2), and (4.3), just like in

the proofs of Theorem 5.1 and Theorem 4.1. The proof of compatibility of �� with {·, ·}�
is Maple assisted. To prove completeness, we constructed sequences of mutations that

recover matrix entries x51,x61 and xij, i = 1, 3, 4, 5, 6, j = 2, 3, 4, 6, as cluster variables.

For each of the remaining matrix entries, we found two Laurent polynomial expressions

of the form M
f , where M ∈ A(��) and f ’s entering two expressions for the same matrix

element are coprime cluster variables. By [8, Lemma 8.3], this guarantees that matrix

entries in question belong to A(��). We omit the details of the proof since the general

case of generalized cluster structures associated with Poisson brackets that arise in the

Belavin–Drinfeld classification will be treated in a follow-up to [10]. �

Note that the choice of the periodic staircase structure for the matrices L1 and L2
is not unique. Each one of them admits one more such structure, as shown in Figure 6.

Any pair of choices presented on Figures 4 and 6 gives rise to a regular complete

generalized cluster structure compatible with the Poisson–Lie structure {·, ·}�. It is

interesting to investigate whether the seeds thus obtained are mutation equivalent.
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4208 M. Gekhtman et al.

7 Properties of Core Minors

7.1 Expressing core minors via U

Proof of Lemma 3.3. Using block-column operations, we obtain

ϕ1 = (detY)k−1 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1n

)
[2,n][

W[2,a]

0

] (
1n

)
[2,n]

. . .
. . .[

W[2,a]

0

] (
1n

)
[2,n]

W[2,a] Y [1,b]
[2,a]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the 2nd determinant above, there are rows containing a single nonzero entry equal

to 1. Removing these rows and corresponding columns, we can further rewrite it as

ε det

⎡⎢⎢⎢⎢⎢⎣
W [1]

[2,a]

(
1a
)
[2,a]

. . .
. . .

W [1,a]
[2,a]

(
1a
)
[2,a]

W [1,a]
[2,a] Y [1,b]

[2,a]

⎤⎥⎥⎥⎥⎥⎦

= ε detY2 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

W [1]
[2,a]

(
1a
)
[2,a]

. . .
. . .

W [1,a]
[2,a]

(
1a
)
[2,a][

U[2,k] �

W21 W22

][
0

1b

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ε detY2 det

⎡⎢⎢⎢⎢⎢⎣
W [1]

[2,a]

(
1a
)
[2,a]

. . .
. . .

W [1,a]
[2,a]

(
1a
)
[2,a][

U[2,k] �

]

⎤⎥⎥⎥⎥⎥⎦ (7.1)

with ε = (−1)n−1+(n−a)([k/2]−1). The 1st equality above is obtained by multiplying the last

block row on the left by

[
1k −Y1Y

−1
2

0 1b

][2,a]

[2,a]

.
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Periodic Staircase Matrices 4209

Next, transform the matrix featured in (7.1) by multiplying the last block column

on the right by W [1,a] and subtracting it from the previous one, then multiplying the

(k − 2)nd block column on the right by W [1,a] and subtracting it from the (k − 3)rd one,

etc., finally, multiplying the 2nd block column by W [1] and subtracting it from the 1st

block column. The resulting matrix equals

⎡⎢⎢⎢⎢⎢⎣
0

(
1a
)
[2,a]

0 0
. . . (

1a
)
[2,a]

V [1]
k−2 · · · V1

[
U[2,k] �

]

⎤⎥⎥⎥⎥⎥⎦ (7.2)

with Vi = (−1)i
[
U[2,k] �

] (
W [1,a]

)i
for i = 1, . . . ,k − 2. Note that for j = 1, . . . ,k we have

V [j]
i = (−1)i

([
1k −Y1Y

−1
2

0 1b

] (
W [1,a])i+1

)[j]

[2,k]

= (−1)i

([
1k −Y1Y

−1
2

0 1b

] (
W [1,a])i+1

[
1k −Y1Y

−1
2

0 1b

])[j]

[2,k]

,

and hence (3.5) implies

V [j]
i = (−1)i

(
Ui+1)[j]

[2,k]. (7.3)

This means that the determinant of the matrix in (7.2) equals

ε′ det
[
V [1]
k−2 . . .V [1]

1 U [1]
[2,k]

]
= (−1)k−1ε′ det

[
Uk−1e1 . . .U2e1 Ue1 e1

]

with ε′ = (−1)(k−1)(k−2)/2+(a−1)([k/2]−1), and the claim of the lemma follows since

(−1)k−1εε′ = (−1)k(k−1)/2+(n−1)[k/2] = ε1. �
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4210 M. Gekhtman et al.

Proof of Lemma 3.4. Define W̄ via X [2,n]Ȳ−1 =
[

W̄

0(n−a)×(n−1)

]
. We proceed as in the

proof of Lemma 3.3 and get

ϕ2 = (detY)k−2 det Ȳ det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1n−1

)
[3,n][

W̄[2,a]

0

] (
1n

)
[2,n]

. . .
. . .[

W[2,a]

0

] (
1n

)
[2,n]

W [1,a]
[2,a] Y [1,b]

[2,a]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −ε (detY)k−2 det Ȳ detY2 det

⎡⎢⎢⎢⎢⎢⎣
W̄ [1]

[2,a]

(
1a
)
[2,a]

. . .
. . .

W [1,a]
[2,a]

(
1a
)
[2,a][

U[2,k] �

]

⎤⎥⎥⎥⎥⎥⎦ ,

where ε is the same as in (7.1). Similarly to the proof of Lemma 3.3, this yields

ϕ2 = (−1)k−1ε1 (detY)k−2 det Ȳ detY2 det
[
w Uk−2e1 . . .U2e1 Ue1 e1

]
,

where w = (−1)k−2
[
U[2,k] �

] (
W [1,a]

)k−3
W̄ [1].

Next, factor Y as Y =
[

1 �

0 1n−1

][
� 0

� Ȳ

]
. Then

XY−1 =
[
0 X [2,n]

] [ � 0

� Ȳ−1

][
1 �

0 1n−1

]

implies W =
[
W [1] W̄

] [ 1 �

0 1n−1

]
. Consequently, W̄ [1] = W [2] + γW [1], where γ is

given by (3.8). It remains to use (7.3) to get w = (−1)k−2Uk−1(e2 + γ e1) = (−1)k−2Uk−2v.

�
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Proof of Lemma 3.5. Similar considerations show that

ϕn+1 = (detY)k−2 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1n

)
[3,n][

W[2,a]

0

] (
1n

)
[2,n]

. . .
. . .[

W[2,a]

0

] (
1n

)
[2,n]

W[2,a] Y [1,b]
[2,a]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ε̄ (detY)k−2 detY2 det

⎡⎢⎢⎢⎢⎢⎣
W [1,2]

[2,a]

(
1a
)
[2,a]

. . .
. . .

W [1,a]
[2,a]

(
1a
)
[2,a][

U[2,k] �

]

⎤⎥⎥⎥⎥⎥⎦

with ε̄ = (−1)(n−a)([k/2]−1), similarly to (7.1). This leads to an analog of (7.2), which yields

ϕn+1 = ε̄ε̄′ (detY)k−2 detY2 det
[
Uk−2e1 Uk−2e2 Uk−3e1 . . .U2e1 Ue1 e1

]
= εn+1 (detY)k−2 detY2 det

[
Uk−2e1 Uk−3vγ Uk−3e1 . . .U2e1 Ue1 e1

]
,

where ε̄′ = (−1)(a−1)([k/2]−1)+k(k−1)/2−1. �

7.2 Irreducibility of core minors

Proof of Lemma 3.8. For X,Y given by (3.2), we say that ϕ1 is of type (n,k,b). The three

parameters satisfy conditions

n ≥ k + b, k ≥ 2, b ≥ 0.

The proof of irreducibility is based on induction on all the parameters.

For type (n, 2, 0), the irreducibility of ϕ1 is a well-known fact, since the

corresponding core is an n × n matrix of independent variables. For type (3, 3, 0), we
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have

ϕ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y21 y22 y23 0 0 0

y31 y32 y33 0 0 0

x21 x22 x23 y21 y22 y23
x31 x32 x33 y31 y32 y33
0 0 0 x21 x22 x23
0 0 0 x31 x32 x33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and its irreducibility can be verified by direct observation. In a similar way, one can

treat the case (4, 3, 0).

Let now ϕ1 be of type (n, 3, 0) with n > 4. Note that ϕ1 is a homoge-

neous polynomial of degree 2 in each variable. Assume that ϕ1 = PQ, then both

P and Q are homogeneous. Let y = y41. Note that the coefficient cy at y2 in

ϕ1 equals ±ϕ1(X
[2,n],Y [2,n]

[1,3]∪[5,n]); the latter is of type (n − 1, 3, 0), and hence is irre-

ducible by induction. Consequently, P = cyy
p + o(yp) and Q = yq + o(yq) with

p + q = 2.

Further, cy has degree 2 in z = y52, and hence degzP = 2, degzQ = 0. Similarly to

the above, the coefficient cz at z
2 in ϕ1 is an irreducible polynomial of degree 2 in y, and

we conclude that p = 2, q = 0, and hence Q is a constant.

Let now ϕ1 be of type (n,k, 0) with k > 3. Note that ϕ1 is a homogeneous

polynomial of degree k − 1 in each variable. Assume that ϕ1 = PQ, then both P and Q

are homogeneous. Let y = y21. Note that the coefficient at yk−1 in ϕ1 equals ±ψ1 detZ1,

where ψ1 = ϕ1(X̄, Ȳ) with X̄ = X [2,n]
[2,n] and Z1 is an (n − 1) × (n − 1) matrix

[
Y [2,n]
[k+1,n]

X [2,n]
[2,k]

]
.

Note that ψ1 is a core determinant of type (n − 1,k − 1, 0), and hence is irreducible by

induction, whereas detZ1 is irreducible as the determinant of a matrix of independent

variables. Consequently, either

(i) P = ψ1y
p + o(yp) and Q = ±det Z1y

q + o(yq) with p + q = k − 1, or

(ii) P = ψ1 detZ1y
p + o(yp) and Q = ±yq + o(yq) with p + q = k − 1.

In any case, the total degree of P is at least (k − 2)(n − 1) + p, and the total degree of Q

is at most n − 1 + q.

Similarly to the treatment of the case (n, 3, 0) above, we let z = y32 and note that

degzψ1 = k − 2, and hence degzP ≥ k − 2 and degzQ ≤ 1. The same reasoning as above

shows that the coefficient at zk−1 in ϕ1 equals ±ψ ′ detZ′, where ψ ′ is a core determinant

of type (n−1,k−1, 0), and hence irreducible by induction, and detZ′ is the determinant
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Periodic Staircase Matrices 4213

of an (n − 1) × (n − 1) matrix of independent variables. Consequently, P = c′zp′ + o(p′)
with p′ ≥ k − 2, and there are four possibilities for c′:

(a) c′ = α′ψ ′ detZ′,
(b) c′ = α′ψ ′,
(c) c′ = α′ detZ′,
(d) c′ = α′,

where α′ is a nonzero constant.

The last two possibilities are ruled out immediately, since they imply that the

total degree of P is at most n − 1 + p′, which is strictly less than (k − 2)(n − 1) + p.

In case (ia), the comparison of the two expressions for the total degree of P gives (k −
2)(n − 1) + p = (k − 1)(n − 1) + p′, which is equivalent to p = n − 1 + p′, and hence

is impossible. Similarly, case (iib) yields n − 1 + p = p′, which can be satisfied only if

p = 0, p′ = k − 1, and n = k. However, p = 0 in case (iib) means that P = ψ1 detZ1, and

hence p′ = degzP = k − 2, a contradiction. In the remaining cases (ib) and (iia), we get

p = p′ ≥ k − 2 and q = q′ ≤ 1.

Assume first that q = 0. In case (i), we get Q = ±det Z1, and, simultaneously, Q =
α′ detZ′, a contradiction, since Z′ =

[
Y1∪[3,n]
[k+1,n]

X1∪[3,n]
[2,k]

]
. In case (ii), we get that Q is a constant.

So, in what follows, we assume that p = k − 2 and q = 1.

Let now t �= y be an arbitrary entry in the 2nd row of Y or X. Applying the same

reasoning as above, we get that degtP = k − 2, degtQ = 1, and the coefficients at tk−2 in

P and at t in Q have a similar structure, that is, all of them simultaneously look either

as in case (i), or as in case (ii).

Assume that all coefficients are as in case (i). Note that ψ1 and all its analogs do

not depend on the entries of the 2nd row of Y. Consequently, one can write

P =
n∑

j=1

yk−2
2j αjψj + R + S,

where ψj are core determinants of type (n − 1,k − 1, 0) depending on submatrices of X

and Y, αj are nonzero constants with α1 = 1, R contains all monomials in P that depend

on entries in the 2nd row of Y that are not included in the 1st sum, and S contains only

the monomials that do not depend on these entries. Besides, we can write

Q =
n∑

j=1

y2jβj detZj + T,
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4214 M. Gekhtman et al.

where Zj are (n − 1) × (n − 1) matrices built of the entries in the rows [k + 1,n] of Y and

rows [2,k] of X similarly to Z1, βj = ±α−1
j , and T does not depend on the entries in the

2nd row of Y. Consequently, TS = 0, since ϕ1 does not contain monomials that do not

depend on the entries of the 2nd row of Y. Note that S does not vanish since for every

entry t in the 2nd row of X, degtP = k−2 and the coefficient at tk−2 in P does not depend

on the entries in the 2nd row of Y. Therefore, T = 0 and

Q =
n∑

j=1

y2jβj detZj. (7.4)

Let us fix t = x21. Recall that degtQ = 1. Similarly to the treatment of y above,

Q = β̄1tdet Ȳ + o(t), where β̄1 is a nonzero constant. On the other hand, it follows from

(7.4) that Q = tdet Z̄1 + o(t), where

Z̄1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β2y22 β3y23 . . . βny2n
yk+1,2 yk+1,3 . . . yk+1,n

...
...

yn2 yn3 . . . ynn
x32 x33 . . . x3n
...

...

xk2 xk3 . . . xkn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a contradiction.

Assume now that all coefficients are as in case (ii). Then the same treatment as in

case (i) leads to Q = ∑n
j=1 y2jβj for some nonzero constants βj, and hence the coefficient

at x21 in Q vanishes, a contradiction.

To proceed further with the case b > 0, we will need one more basic type, (3, 2, 1),

in which case

ϕ1 =

∣∣∣∣∣∣∣∣∣∣
y21 y22 y23 0

y31 y32 y33 0

0 x21 x22 y21
0 x31 x32 y31

∣∣∣∣∣∣∣∣∣∣
is irreducible via direct observation.

Let now ϕ1 be of type (n,k,b) with b > 0, and let ϕ1 = PQ. Put y = y21 and

note that degyϕ1 = k. It is easy to see that the coefficient ψ̄2 at yk in ϕ1 is itself a core

determinant of type (n−1,k,b−1), and hence is irreducible by induction. Consequently,
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Periodic Staircase Matrices 4215

P = ypψ̄2 + o(yp) and Q = ±yq + o(yq) with p + q = k. In particular, the total degree of P

is (k − 1)(n − 1) + b − 1 + p and the total degree of Q is q.

Similarly, for z = y31, we have P = αzp
′
ψ̄3 + o(zp

′
) and Q = βzq

′ + o(zq
′
) with

p′ + q′ = k, where ψ̄3 is a core determinant of type (n − 1,k,b − 1) and αβ = ±1 (the

opposite case would imply (k − 1)(n − 1)b − 1 + p = q′, which is impossible). Total

degrees of ψ̄2 and ψ̄3 coincide, so p = p′ and q = q′. Consequently, p > 0, since otherwise

P = ψ̄2 = αψ̄3, a contradiction.

Consider first the case b = 1 and n = k + 1 > 3. Let t = y3n, then

degtϕ1 = degtψ̄2 = k − 1, and the coefficient at tk−1 in ϕ1 equals ψ̄ det Z̄, where ψ̄

is a core determinant of type (k,k − 1, 1) and hence is irreducible by induction, and

Z̄ = [X [1,k]
[2,k+1] Y

[1]
[2,k+1]] and hence det Z̄ is irreducible as the determinant of a matrix of

independent variables. Consequently, we have four possibilities similar to (a)–(d) above.

The last two are ruled out via total degree comparison, since k2−k+p > 2k for k > 2 and

p > 0. The 2nd one yields p = 1, in which caseQ = det Z̄ and hence degyQ = 1 < k−1 = q,

a contradiction. The remaining case yields p = k and q = 0, hence Q is a constant.

For b = 1 and n > k + 1 take t = yn2 and note that degtϕ1 = k − 1 and the

coefficient ψ̄n at tk−1 in ϕ1 is a core determinant of type (n − 1,k, 1) and hence is

irreducible by induction. Moreover, degyψ̄n = k, and hence p = k, q = 0 and Q is a

constant.

Finally, for type (n,k,b) with b > 1, take u = y32, then similarly to above, P =
ᾱ′up̄′

ψ̄ ′ + o(up̄′
), where ψ̄ ′ is a core determinant of type (n − 1,k,b − 1) and hence is

irreducible by induction. Moreover, degyψ̄
′ = k, and hence p = k, q = 0 and Q is a

constant. �

Proof of Lemma 4.2. For ϕ1, this fact is proved in Lemma 3.8 (cp. to the case of type

(n,n, 0)). For other functions ϕi the proof is similar. It exploits the fact that one can find

two variables y and z such that the coefficient at the highest degree of the variable in

ϕi is either an irreducible polynomial or a product of two such polynomials and that

the highest degree of z in ϕi equals to the highest degree of z in one of the above two

polynomials for y.

In more detail, for 2 ≤ i ≤ n − 1, one takes y = xn−1,i and z = xn,i+1. Then

degyϕi = degzϕi = n − 1 and the coefficients at yn−1 and zn−1 in ϕi are equal to ψ detZ,

where ψ is ϕ1 for the size n−1 and Z is an (n−i)×(n−i) matrix of independent variables.

For the case of ϕpn+i, 1 ≤ i ≤ n − 1, 1 ≤ p ≤ n − 3, one takes y = xn−1,i and

z = xn,i+1. Then, degyϕpn+i = degzϕpn+i = n − p − 1 and the coefficients at yn−p−1 and

zn−p−1 in ϕpn+i are equal to ϕ(p−1)(n−1)+i for the size n − 1.
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4216 M. Gekhtman et al.

Finally, for the case of ϕpn, 1 ≤ p ≤ n− 2, one takes y = xn−1,n and z = yn1. Then

degyϕpn = n−p and degzϕpn = n−p−1, the coefficient at yn−p in ϕpn equals ϕ(p−1)(n−1)+1

for the size n− 1, while the coefficient at zn−p−1 in ϕpn equals the product of ϕp(n−1) for

the size n−1 by the determinant of an (n−1)× (n−1) matrix of independent variables.

Further details are left to the interested reader.

Irreducibility of the remaining functions in the family Fn is discussed in [9,

Section 6.3]. �

Proof of Lemma 5.2. Irreducibility of the functions in F2n is trivial. For k > 2, we have

to deal separately with functions c̃t and ϕ̃t.

To prove irreducibility of c̃t, 1 ≤ t ≤ k − 1, note that each such function is

linear in all aij, 1 ≤ i ≤ k + 1, 1 ≤ j ≤ n. Assume that c̃t = P1P2 and that P1 is

linear in ak+1,1 (and hence P2 does not depend on ak+1,1). Moreover, P1 depends linearly

in all nonzero entries in the 1st row of X and in the 1st column of Y, whereas P2
does not depend on any of these entries. Note that for any aij as above there exists a

staircase sequence ak+1,1 = ai0j0 ,ai1j1 , . . . ,ailjl , . . . ,airjr = aij such that 1 ≤ il ≤ k + 1,

1 ≤ jl ≤ n for 1 < l < r and every consecutive pair (ail−1jl−1
,ailjl) alternately lies in

the same row or in the same column of the matrix X + Y. Moving along this sequence

and applying the same reasoning as above, we consecutively get that P1 is linear

in ai1j1 ,ai2j2 , . . . ,aij, and hence P2 does not depend on aij, which means that P2 is a

constant.

Irreducibility of ϕ̃t is proved similarly to the proof of Lemma 3.8. Below we

sketch the proof for ϕ̃1; cases t > 1 are treated in a similar way.

Let ϕ̃1 be of type (n,k). Take x = ak+1,n, then degxϕ̃1 = k − 2. The coefficient

cx at xk−2 in ϕ̃1 equals ψx
1a12 · · ·a1,k−1D

x where Dx = detY [1,n−k+1]
[k,n] . Consider

ψx
1 as a polynomial of degree (k − 2)(n − k − 2) in variables a1,k+1, . . . ,a1,n−1.

The constant term of this polynomial is ϕ̃1 of type (n − 1,k − 1) for a shifted

set of variables, and hence is irreducible by the induction hypothesis. Con-

sequently, ψx
1 is irreducible since it is homogeneous as a polynomial in all

variables aij.

Assume that ϕ̃1 = P′P′′. It follows from above that P′ = xdψx
1R

′ + o(xd) and P′′ =
xk−2−dR′′+o(xk−2−d) with R′R′′ = a12 · · ·a1,k−1D

x. Consequently, degP′ ≥ (k−2)(n−2)+d

and degP′′ ≤ n + k − d − 3.

Take y = ak2, then degyϕ̃1 = k − 1 and degyP
′ ≥ degyψ

x
1 = k − 2, and hence

degyP
′′ ≤ 1. Further, the coefficient cy at yk−1 in ϕ̃1 equals ψ

y
1a13 · · ·a1kD

y where Dy =
detY [2,n−k+1]

[k+1,n] and ψ
y
1 has the same structure as ψx

1 . If degyP
′′ = 0, then P′′ is a factor of
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cy, which is impossible. Consequently, degyP
′′ = 1, and hence either

P′ = yk−2S′ + o(yk−2) and P′′ = yψ
y
1 S

′′ + o(y) with S′S′′ = a13 · · ·a1kD
y

or

P′ = yk−2ψ
y
1 S

′ + o(yk−2) and P′′ = yS′′ + o(y) with S′S′′ = a13 · · ·a1kD
y.

In the 1st of the above two cases, we get degP′′ ≥ (k − 2)(n − 2) + 1, which is

strictly greater than n + k − d − 3 for k > 3. For k = 3, either degxP
′ = 0 or degxP

′′ = 0,

which is impossible for the same reason as degyP
′′ = 0. Consequently, the 2nd case

holds true, and hence degxP
′ = k − 3 and degxP

′ = 1.Taking into account the reasoning

above, we can write P′′ = xR′′ + yS′′ + T ′′, where T ′′ does not depend on x and y.

Consider now the coefficient c at xk−3yk−1 in ϕ̃1. On the one hand, c is equal to

cxyR′S′′, where cxy is the coefficient at yk−2 in ψx
1 . The latter equals ψ

xy
1 a13 · · ·a1,k−1D

xy,

where Dxy = detY [2,n−k+1]
[k,n−1] . On the other hand, c is equal to cyxa13 · · ·a1kD

y, where

cyx is the coefficient at xk−3 in ψ
y
1 . The latter equals ψ

yx
1 a13 · · ·a1,k−1D

yx, where

Dyx = detY [2,n−k+2]
[k,n] . It is easy to see that ψ

xy
1 = ψ

yx
1 , hence we arrive at DxyR′S′′ =

Dyxa13 · · ·a1kD
y, which is clearly impossible. �

7.3 Coprimality results

Proof of Lemma 3.7 (i) Let A be a matrix with distinct nonzero eigenvalues: A =
C−1 diag(λ1, . . . , λk)C with detC �= 0. We follow the proof of [9, Proposition 8.1] and write

detK(A; e1) = Van(λ1, . . . , λk)
k∏

i=1

ci1

and

detK∗(A; e1,A−1(e2 + γ e1)) = Van(λ1, . . . , λk)
k∏

i=1

wi

where Van is the Vandermonde determinant and

wi =
∑
j �=i

±(cj2 + γ cj1)λ
−1
j Van(λ1, . . . , λ̂i, . . . , λ̂j, . . . , λk)

∏
m�=i,j

cm1.
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4218 M. Gekhtman et al.

Pick c11 = 0, then for any choice of ci1 �= 0, 2 ≤ i ≤ k, and c12 �= 0 one has detK(A; e1) = 0

and

wi = ±c12λ
−1
1 Van(λ2, . . . , λ̂i, . . . , λk)

∏
m�=1,i

cm1 �= 0, 2 ≤ i ≤ k.

Next, pick λi = ti. Then for t big enough the expression λ−1
j Van(λ2, . . . , λ̂j, . . . , λk) grows

as t�−j2+2j where � depends only on k. Consequently, the leading term in the expression

w1 =
k∑

j=2

±(cj2 + γ cj1)λ
−1
j Van(λ2, . . . , λ̂j, . . . , λk)

∏
m�=1,j

cm1

is obtained for j = 2, and it suffices to pick c22 such that c22 + γ c21 �= 0 to guarantee

w1 �= 0. The rest of cij can be picked arbitrarily to satisfy condition detC �= 0, which

yields detK∗(A; e1,A−1(e2 + γ e1)) �= 0.

(ii) We have to refine the choice of cij made in the proof of part (i). Note that an

arbitrary principal leading minor of A can be written as

detAI
I =

∑
K

±det(C−1)KI

∏
i∈K

λi detC
I
K = 1

detC

∑
K

±detCIc
Kc

∏
i∈K

λi detC
I
K ,

where I = {1, 2, . . . , |I|} and |K| = |I|. Our choice of λi guarantees that for t big enough the

leading term in the above expression is obtained when K = {k− |I| + 1,k− |I| + 2, . . . ,k}.
Consequently, condition detAI

I �= 0 is guaranteed by detCI
K �= 0 and detCIc

Kc �= 0. Clearly,

these conditions can be satisfied via a suitable choice of the entries cij distinct from ci1,

c12, and c22. �

Proof of Lemma 4.3. The claim for f = ϕ1 follows from Lemma 3.7(i). Indeed,

fix an invertible Y such that det Ȳ �= 0 and define γ via (3.8). Next, pick A that

satisfies the conditions in Lemma 3.7(i) and put X = A−1Y. Consequently, ϕ1(X,Y) =
detK(A; e1)(detX)n−1 = 0, while

ϕ∗
1(X,Y) = ±detK∗(A; e1,A−1v̄)(detX)(n−1)(n−2)(det Ȳ)n �= 0

via (3.11), and the claim follows.

For f = ϕi, 2 ≤ i ≤ n, the claim is trivial, since in this range degf ∗ < degf . In the

case f = ϕi, n + 1 ≤ i ≤ N − n, it follows from the explanations in the proof of Theorem

4.1 that ϕ∗
i = ϕi+nϕ0

i−n − ϕi−nϕ0
i+n, where ϕ0

t is the minor of � obtained by replacing the
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1st column of ϕt by the immediately preceding column. Consider the specialization that

sets to zero the entry z (yst or xst) that occupies position (i, i) in � and all the entries of

the matrices X and Y that lie in the same columns of � below z. It is easy to see that this

specialization implies vanishing of ϕi and ϕi+n, since both minors acquire a zero column.

However, the same specialization for ϕi−n and ϕ0
i+n yields nontrivial polynomials since

the coefficients at z̄n−p in the 1st one and at z̄n−p−3 in the 2nd one are nontrivial, where

z̄ lies immediately above z in � and p = �(i − 1)/n	. Consequently, ϕ̃∗
i is not divisible

by ϕ̃i. The cases f = gii, 2 ≤ i ≤ n, and f = hii, 3 ≤ i ≤ n are treated via the same

specialization. For f = h22, the specialization is given by ynj = 0 for 2 ≤ j ≤ n. �

Proof of Lemma 5.3. To prove the coprimality of ϕ̃t and ϕ̃∗
t , it suffices to check that

the latter is not divisible by the former. For t = 1, we need the following statement.

Proposition 7.1. The image of the map (X,Y) �→ U defined by (5.2) contains an

arbitrary k × k matrix with nonzero trailing principal minors

Proof. In what follows B, B1, B̄1 are k × k invertible upper triangular and N, N̄, N1 are

k×k unipotent lower triangular. It suffices to show that for any B and N as above, there

exist n×nmatrices X, Y of the form (5.1) such that U defined by (5.2) is given by U = BN.

Let Y0 of the form described in (5.1) be totally nonnegative with all combinatori-

ally nontrivial minors nonzero and set Y1 = JY0J, where J = diag
(
(−1)i)n−1

i=0

)
. Then M =(

Y−1
1

)[1,k]
[n−k+1,n] is totally nonnegative and invertible since detM = detY−1

1 detY1
[1,n−k]
[k+1,n].

Thus there exist N1 and B1 as above such that M = N1B1.

It is not hard to see that there exists an invertible positive diagonal matrix D

such that NDB−1
1 = B̄−1

1 N̄ for B̄1 and N̄ as above. Let Y2 be obtained via multiplying

Y1 on the left by an appropriate diagonal matrix so that that
(
Y−1
2

)[1,k]
[n−k+1,n] = MD−1.

Now, let Y = Y2

[
1n−k 0

0 N1N̄
−1

]
and X =

[
0 BB̄−1

1

0 0

]
. Then X, Y are of the required

form,
(
Y−1

)[1,k]
[n−k+1,n] = N̄N−1

1 MD−1 = N̄B1D
−1 and (5.2) gives U = BB̄−1

1 N̄B1D
−1 =

BNDB−1
1 B1D

−1 = BN. �

To complete the proof for t = 1, we invoke Lemma 3.7(ii), which guarantees that

one can choose A in Lemma 3.7(i) in such a way that the trailing principal minors of A−1

are nonzero, and proceed as in the proof of Lemma 4.3.

For 2 ≤ t ≤ n, the claim is trivial, since in this case degϕ̃∗
t < degϕ̃t.
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Let now n < t < (k − 2)(n − 1). Then it follows from the explanations above

that ϕ̃∗
t = ϕ̃t+nϕ̃0

t−n − ϕ̃t−nϕ̃0
t+n, same as in the previous section. Find the unique pair

(i, j), 1 ≤ i ≤ n − 1, satisfying t = (k − j)(n − 1) + i and consider the specialization

aij = ai−1,j+1 = · · · = ai−p,j+p = · · · = a1,j+i−1 = 0, where the index j + p is understood

mod n and its value j+p = 1 is excluded. It is easy to see that this specialization implies

vanishing of ϕ̃t and ϕ̃t+n, since both minors acquire a zero column. However, the same

specialization for ϕ̃t−n and ϕ̃0
t+n yields nontrivial polynomials since the coefficients at

aj
i+1,j−1 in the 1st one and at aj−3

i+1,j−1 in the 2nd one are nontrivial. Consequently, ϕ̃∗
t is

not divisible by ϕ̃t.

Finally, let n ≥ (k − 2)(n − 1). Then it follows from the explanations above that

ϕ̃∗
t = ϕ̃0

t−n, and the same specialization as above proves that ϕ̃∗
t is not divisible by ϕ̃t. �
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