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As is well known, cluster transformations in cluster structures of geometric type are
often modeled on determinant identities, such as short Pliicker relations, Desnanot—
Jacobi identities, and their generalizations. We present a construction that plays a
similar role in a description of generalized cluster transformations and discuss its
applications to generalized cluster structures in GL,, compatible with a certain subclass
of Belavin-Drinfeld Poisson-Lie brackets, in the Drinfeld double of GL,,, and in spaces

of periodic difference operators.

1 Introduction

Since the discovery of cluster algebras in [4], many important algebraic varieties were
shown to support a cluster structure in a sense that the coordinate rings of such
variety are isomorphic to a cluster algebra or an upper cluster algebra. Lie theory
and representation theory turned out to be a particularly rich source of varieties
of this sort including but in no way limited to such examples as Grassmannians

[5, 19], double Bruhat cells [1], and strata in flag varieties [16]. In all these examples,
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cluster transformations that connect distinguished coordinate charts within a ring
of regular functions are modeled on three-term relations such as short Pliicker
relations, Desnanot-Jacobi identities, and their Lie-theoretic generalizations of the
kind considered in [3]. This remains true even in the case of exotic cluster structures
on GL, considered in [8, 10] where cluster transformations can be obtained by
applying Desnanot-Jacobi-type identities to certain structured matrices of a size far
exceeding n.

On the other hand, as we have shown in [7, 9], there are situations when, in
order to stay within a ring of regular functions, one has to employ generalized cluster
transformations, that is, exchange relations in which the product of a cluster variable
being removed and the variable that replaces it is equal to a multinomial expression in
other cluster variables in the seed rather than a binomial expression appearing in the
definition of the usual cluster transformation. Generalized cluster transformations of
this kind were first considered in [2], and in [7, 9] we used them, in a more general form,
to construct a generalized cluster structure in the standard Drinfeld double of GL,, and
several related varieties. There, we had to rely on an (n+1)-term identity [9, Proposition
8.1] (see also Proposition 3.6 below) for certain polynomial functions on the space Mat,,
of n x n matrices; this identity involved, as coefficients, conjugation invariant functions
on Mat,,.

In this paper, we argue that in constructing generalized cluster structures,
identities of the kind we employed in [7, 9] play a role similar to the one classical
three-term determinantal identities do in a construction of usual cluster structures. To
support this argument, we derive identity (3.7) that is associated with a class of infinite
periodic block bidiagonal staircase matrices and that generalizes [9, Proposition 8.1].
We then present three examples in which our main identity is applied to construct an
initial seed of a regular generalized cluster structure.

The paper is organized as follows. In Section 2, we review the definition of
generalized cluster structures. Section 3 is devoted to the proof of the main identity
(3.7) (Theorem 3.2). In the next three sections, we apply (3.7) to construct generalized
cluster structures on the Drinfeld double of GL, (Section 4), thus providing a con-
struction alternative to the one presented in [7, 9], on the space of periodic band
matrices (Section 5), and, in Section 6, on GLg equipped with a particular Poisson-Lie
bracket arising in the Belavin-Drinfeld classification. In the latter case, the resulting
generalized cluster structure is compatible with that Poisson bracket. The last section
contains the proofs of several lemmas about the properties of certain minors of a

periodic staircase matrices.
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2 Generalized Cluster Structures

Following [9], we remind the definition of a generalized cluster structure represented
by a quiver with multiplicities. Let (Q,d;,...,dy) be a quiver on N mutable and M
frozen vertices with positive integer multiplicities d; at mutable vertices. A vertex is
called special if its multiplicity is greater than 1. A frozen vertex is called isolated
if it is not connected to any other vertices. Let F be the field of rational functions
in N + M independent variables with rational coefficients. There are M distinguished
variables corresponding to frozen vertices; they are denoted xy,,..., Xy . The coef-
ficient group is a free multiplicative abelian group of Laurent monomials in stable
variables, and its integer group ring is A = Z[le\c,}rl,...,xlj\:,}rM] (we write x*! instead
of x,x71).

An extended seed (of geometric type) in F is a triple ¥ = (x,Q,P), where x =
(Xy,-. - Xy, Xyy1,-- - Xy4pp) 18 @ transcendence basis of F over the field of fractions of
A and P is a set of N strings. The ith string is a collection of monomials Dir € A =
Zlxp v, Xyl 0 < 7 < d;, such that p;y = Pig, = L it is called trivial if d; = 1,
and hence both elements of the string are equal to one. The monomials p,, are called
exchange coefficients.

Given a seed as above, the adjacent cluster in direction k, 1 < k < N, is defined
by x' = (x\ {x;}) U {x;}, where the new cluster variable x, is given by the generalized

exchange relation

di
/ r [r] . dg—r_ldx—rl,
XX = Zpkruk}>vk;>uk;< Vk,'< ' (2.1)
r=0

here U~ and Up.., 1< k < N, are defined by

Ug,> = H Xir Up. <« = H X

k—icQ i—keQ

where the products are taken over all edges between k and mutable vertices, and stable

r-monomials vy, and vy ,1 <k <N, 0 <r < dy, defined by

V}:L = H xroki/del V};L = H x\rbie/del (2.2)

1 1
N+1<i<N+M N+1<i<N+M

Zz0z 1snbny Lo uo Jesn Ateiqi Ansieniun elieq Aq 608658S/1 81 1/9/220Z/8191e/ulwi/woo dno olwepeoe//:sdjy woly pspeojumod



4184 M. Gekhtman et al.

where by; is the number of edges from k to i and b;; is the number of edges from i to
k; here, as usual, the product over the empty set is assumed to be equal to 1. The right
hand side of (2.1) is called a generalized exchange polynomial.

The standard definition of the quiver mutation in direction k is modified
as follows: if both vertices i and j in a path i — k — j are mutable, then this
path contributes d; edges i — j to the mutated quiver Q’; if one of the vertices
i or j is frozen then the path contributes dJ- or d; edges i — j to Q. The multi-
plicities at the vertices do not change. Note that isolated vertices remain isolated
in Q.

The exchange coefficient mutation in direction k is given by

Pigi—r 1=Kk
Pp=1 """ . (2.3)
Dirr otherwise.

Given an extended seed ¥ = (x,Q,P), we say that a seed ¥ = &, Q’,P)
is adjacent to X (in direction k) if %, Q’, and P’ are as above. Two such seeds
are mutation equivalent if they can be connected by a sequence of pairwise
adjacent seeds. The set of all seeds mutation equivalent to X is called the
generalized cluster structure (of geometric type) in F associated with ¥ and denoted
by GC(Z).

Fix a ground ring A such that A € A € A. The generalized upper cluster algebra
A(GC) = A(GC(X)) is the intersection of the rings of Laurent polynomials over A in
cluster variables taken over all seeds in GC(X). Let V be a quasi-affine variety over C,
C(V) be the field of rational functions on V, and O(V) be the ring of regular functions
on V. A generalized cluster structure GC(¥) in C(V) is an embedding of x into C(V)
that can be extended to a field isomorphism 6 between F ® C and C(V). It is called
regular on V if any cluster variable in any cluster belongs to O(V), and complete if A(GC)
tensored with C is isomorphic to O(V). The choice of the ground ring is discussed in
[9, Section 2.1].

The following proposition is borrowed from [9].

Proposition 2.1. Let V be a Zariski open subset in CY*™ and GC = GC(X) be a
generalized cluster structure in C(V) with N cluster and M stable variables such
that
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(i) there exists an extended cluster x = (xy,...,Xy, ) in GC such that 6(x;) is
regularon V for 1 <i < N + M, and 6(x;) and 6(x;) are coprime in O(V) for 1 <i #j <
N + M;

(ii) for any cluster variable X;C, 1 <k < N, obtained via the generalized exchange
relation (2.1) applied to x, Q(X]/c) is regular on V and coprime in O(V) with 6(x;).

Then GC is a regular generalized cluster structure.

If additionally

(iii) each regular function on V belongs to 6(Aq(GC)),
then JTlC(gC) is naturally isomorphic to O(V).

Remark 2.2. (i) The definition above is a particular case of a more general definition
of generalized cluster structures given in [9].

(ii) Quivers with multiplicities differ from weighted quivers introduced in [15].

3 Identity for Minors of a Periodic Staircase Matrix

Consider a periodic block bidiagonal matrix
L= , (3.1)
Y

where X € Mat,, and Y € GL,, are matrices of the form

0
X B [ aXb ; ] ’ Y B [ * : } , (3.2)
0 0 O(n—a)xb *

with a > b+ 1 > 1, the entries in the submatrices of X and Y denoted by * can take
arbitrary complex values. This choice ensures that L has a staircase shape. Below is an

example of a dense submatrix of L forn =9,a=5,b = 2:
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X17
X27
X37
X47

X57

X18
X28
X38
X48

X58

Gekhtman et al.

X19
X29
X39
X49

X59

Y11
Y
Y3
Va1

Y51

Y12
Y22

Y13
Y23
Y33
Yy
Y53
Y63
¥73
Y83
Y93
x13
x23
X33
X3

X53

Y14
Y24
Y34

Va4

Yy

Y74
Y84
Y94
X14
X24
X34
X44

X54

Y15 Y16 Y17
Y25 Y26 Y27
Y35 V36 Y37
Va5 Va6 Va7
Y55 Y56 V57
Yes Y66 V67
Y75 Y76 Y77
Y85 Ygg Vg7
Y95 Y96 Yg7
X15 X16 X17
X25 X26 X27
X35 X36 X37
X45 X46 X47

X55 X56 X57

Y19
Y29
Y39
Y49
Y59
Y69
Y79
Y89
Y99
X19
X29
X39
X49

X59

Y12

Y22

Y35

Y52

Y15

Y25

Y16
Y26
Y36
Va6
Y56
Y66
Y76
Vg6
Y96
X16
X26
X36
X46

X56

Y17
Y27
Y37
Va7

Y57

Y18

Y28

Denote k = a — b. We say that a diagonal of L is inner if when it is viewed as the

main diagonal of L then L is not block triangular. In the example above, there are two

inner diagonals whose entries are underlined. In general, Lhasa —b —1 =k — 1 inner

diagonals. We define the core ® of L as follows. Delete the 1st row in every block row of
L, then in the resulting matrix pick the dense ((k — 1)n + b) x ((k — 1)n + b) submatrix

whose upper left entry is y,;, so that

Yio.n

Xion)

Yo nl

X[2,q)

Y[l,b]

[2,a] |

(3.3)
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(the Y-block in the lower right corner does not exist when b = 0). Here and in what
follows, for two index sets I, J, we write A{ for the submatrix with rows indexed by I and
columns indexed by J; if I (respectively, J) coincides with the set of all rows (respectively,
columns) of A, it is omitted in the notation. Further, for p < g, we denote by [p, gl the
setp,p+1,...,q notation [p, p] is shortened to [p]. For our example above, the core is a

20 x 20 matrix.

Yo, Y22 Y23 Y24 Y25 Y26 V27 Y28 Y29
Y31 Y3, V33 Y34 Y35 Y36 V37 V38 Y39
Va1 Yo Y45 V44 V45 V46 Y47 V48 V49
Y51 Y52 Ygq Y54 Y55 Y56 Y57 Y58 Y59
Y63 Yg4 Y5 Y66 Y67 Y68 Y69
Y73 Y74 Y55 Y56 Y77 Y78 Y79
Y83 V84 V85 Vg Yg; Y88 Y89
Y93 Y94 Y95 Y96 Y97 Ygg Y99
X23 X24 X35 X26 X27 X28 Xo9 YV, V22 V23 V24 V25 V26 Y27 Y28 V29
X33 X34 X35 X36 X37 X38 X39 V5, V3, V33 V34 V35 V36 Y37 V38 V39
X43 Xa4 X45 X46 X47 X48 X49 Va1l V.o Y,q Y44 Va5 Va6 Y47 Y48 Y49
X53 X54 X55 X56 X57 X58 X59 V61 V52 YVg5a Vg, Y55 V56 Y57 V58 Y59
Y63 Ygq Ye5 Y66 V67 Y68 Y69
Y73 Y74 Yu5 Y56 Y77 Y78 Y79
Y83 Y84 V85 Vgg Yg; Y88 Y89
Y93 Y94 Y95 Y96 Yg; YVgg Y99
X23 X24 X25 X26 X27 X28 Xp9 YV, Y22
X33 X34 X35 X36 X37 X38 X39 VYV Vg,
X43 X44 X45 X46 X47 X48 X49 V41 Yy,

X53 X54 X55 X56 X57 X583 X59 V51 V52

Consider n-element segments of inner diagonals in L obtained as intersections
with a single block row. The main diagonal of ® is made of the entries 2 to n of such
segment belonging to the uppermost inner diagonal, followed by the entries 2 to n of
the segment belonging to the next inner diagonal from the top, and so on, followed by
entries 2 to n of the segment belonging to the lowest inner diagonal, followed by entries
Xon—kt+2r- 1 Xknr Y110 - - -+ Yap- Consequently, each matrix entry that lies on an inner
diagonal of L and does not belong to the 1st row of X or Y enters the main diagonal of

® exactly once.
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Fori=1,...,(k—1)n+blet

_ [, (k—1)n+b]
¢ = det Oy g1y ) (3.4)

be the trailing minors of ®. In particular, ¢; = det ® is called the core determinant.
Additionally, we set ¢x_1)p4p41 = 1.

We consider ¢; as polynomials in the entries of X and Y indicated by * in
(3.2). Our goal is to establish a generalized exchange relation for ¢; that involves the

coefficients of the characteristic polynomial det(AX + ©Y).

Denote
w w w Y
nyl — [ }, W[l,a] — |: 11 12 }, Y[[]l,‘l;]] — [ 1 },
On—a)xn Wa1 Wy, ' Y,
where Wisa xn, Wy, isk x k, W,,is b x b, Y, isk x b, and Y, is b x b. Let
~1
U=Wy, - YY, W,

If b =0, we set U = W;; and use a standard convention det Y, = 1.

Lemma 3.1. For any A, i,
det (MY + uX) = A" ¥ det Y det(r11; + uU).

Proof. Lett= % then det (AY + uX) = u" det (tY + X). In turn,
w
det (tY + X) = det Ydet(tln + [ 0 D =t""%det Y det (tla + W[[IIZ]]) )

Note that Wit YI[IIS]] = (wy)bl = X[[llfz’]] =0, and so

1, -Y,v;! 1, v, v;! U 0
k 142 W[[ll,g]] k 142 _ ; (35)
0 1, ' 0 1, x 0
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here and in what follows, exact expressions for submatrices denoted by * are not

relevant for further discussion. Consequently,

*

Uu o
det (tY + X) = t" % det Ydet(tla + [ 0 D = t"*detYdet (t1; + U),

and the claim follows. ]

As an immediate corollary from Lemma 3.1, we can write
k . .
det (WY + pX) = 2"7F > (X, v)uak, (3.6)

i=0

where c;(X,Y) are polynomials in the entries of X and Y.

Theorem 3.2. The generalized exchange relation for the core determinant ¢; is

given by
k B} i
0107 =D G(X,Y) ((—1)”‘1 det Y(pn+1) ok, (3.7)
i=0
where ¢f is a polynomial in the entries of X and Y and Y = Y[[Zz:ll]]

Proof. We start from expressing functions ¢,, ¢,, and ¢, ; via U.
Lemma 3.3. The core determinant ¢, can be written as
¢, =& (det V)* 1 det v, det [Uk*e1 ...U%, Ue, el] ,

k(k—1)
2

where ¢; = (—1)" and e, =(1,0,...,0) € Ck.

Lemma 3.4. The minor ¢, can be written as
9, = £, (det V)¥ "2 det ¥ det Y, det [Uk_zvy U*2e, ... U%e, Ue, el] ,
where ¢, = —¢; and v,, = U(e, + ye;) with

det yt2m
_ 1U[3,n] (3.8)

v detY
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and e, = (0,1,0,...,0) € C*,
Lemma 3.5. The minor ¢, ; can be written as

Prir = Enyy (et V)2 det v, det[Uk_zel U*3v, UF e, ... UPe, Ue el],
where ¢,,,, = (~1)"*~2*=3/2 and v, is the same as in Lemma 3.4.

Proofs of Lemmas 3.3-3.5 are given in Section 7.1.

Now we can invoke a result proven in [9, Proposition 8.1].
Proposition 3.6. Let A be a complex k x k matrix. For u,v € Ck, define matrices

K(A;u) = [u Au A%u.. .Akilu] ,
Kl(A; u,v) = [V ulAu.. .Ak_zu:l , KZ(A; u,v) = [AV uAu.. .Ak_zu] )
In addition, let w be the last row of the classical adjoint of K;(4;u,v), so that

wK(4;u,v) = (detKl(A; u,V)) e,f. Define K*(4;u,v) to be the matrix with rows

w, WA, ..., wA¥"1 Then

k(k—1)
2

det(detKl (A; u, VA — detKy(A; u, v)1k) = (1) 7" detK(4; u) detK*(4; u,v). (3.9)

We will make use of the following properties of matrices K and K*.

Lemma 3.7. (i) For any y € C, there exists an invertible matrix A such that
detK(4;e;) =0, but detK*(4;e;, A (e, + ye;)) #0O.
(ii) Moreover, A can be chosen in such a way that all principal leading minors of

A do not vanish.

The proof of the Lemma is given in Section 7.3.
Using notation introduced in Proposition 3.6, we can re-write the claims of

Lemmas 3.3-3.5 as

detK(U 1 e)) = &, (det V) % (det V) ' (det 1) F g,
detK, (U ';e;,v,) = ¢, (det v)27F (det 17)_1 (det Yz)*l (et 1) % gy,

detK,(U Y ey, v,) = —e,,, (detY)? ¥ (dety,) ™ (detU)*F g, .
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Consequently, the matrix in the left hand side of (3.9) equals

(det V)% (det 7) ™" (det V) " (det U)K (5,0, 15 + 6,41 det Vg, U) U,

and (3.9) becomes

det (5051 + &, det Yo, U)

_ (3.10)
Je(— detK*(U™!; ey, - =
= (1) 7 & Wien¥) o x, 1) DE2 (der v,)*" (det 7)",
detY
since ¢ (X,Y) = detY detU.
Using Lemma 3.1 and equations (3.6) and (3.10), we get (3.7) with
k(k— _ —
of = (=1) 7 syek detK* (U ey, v, o (X, V)*VED (det v,)" ' (det 7)*. 3.11)

Note that detK*(U™!; e, v,) is a rational function of X, Y whose denominator
can contain only powers of detY, detY,, and det Y. It remains to establish that ¢y is
a polynomial function of X and Y. By (3.7), this fact is an immediate corollary of the

following statement.

Lemma 3.8. The core determinant ¢; = ¢;(X,Y) is an irreducible polynomial in the

entries of X and Y.

The proof of the Lemma is given in Section 7.2. ]

Remark 3.9. Infinite block Toeplitz matrices with finitely many diagonals, of which
(3.1) is an example, are naturally associated with polynomial loops in GL,. In fact,
examples of applications of our construction considered in the next two sections can
be viewed as two instances of generalized cluster structures on Poisson submanifolds
in the space of polynomial loops with respect to the Poisson structure defined by the
trigonometric R-matrix. This hints at a possibility to extend the construction to produce
generalized cluster structures in a wider class of such Poisson submanifolds. We hope

to pursue this line of inquiry in the future.

4 Example 1: A Generalized Cluster Structure on the Drinfeld Double of GL,,

In [7, 9], we presented a generalized cluster structure on the standard Drinfeld double
D(GL,) = GL, x GL, and studied its properties. In this section, we explain how the

construction of Section 3 can be applied to obtain an alternative seed that gives rise
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to a generalized cluster structure on D(GL,). As discussed in Remark 4.4 below, this
generalized cluster structure likely does not coincide with the one considered in [7, 9].
In this case, X and Y in (3.1) are arbitrary n x n matrices, and hence b = 0 and

a = k = n. Consequently, the core ® is an N x N matrix

Yionl
Xonm Yz
d=>(X,Y) =

X[2,n] Y[Z,n]
Xi2,n)

with N = (n — )n and ¢; = detd){i’%}. Further, we have U = W = XY~ ! and
det WY + uX) = Do ci(X, Y)uian,
Following [9], we define 9 = det xVds+n-i

Jin—lfor1 <j <i<n,and, h; = det Y7

li,i+n—jl
for1 <i<j<n;notethaty;=g; y . p 1; nyin_1fori>N—n+1,andthat h,, =Y. The

family F,, of 2n? functions in the ring of regular functions on D(GL,)) is defined as
Fp= {{<Pi}i~vz_1n+1; Gih<j<izni hijh<icj<ni {51'}?:_11}

with &,(X,Y) = (-=1)!® Vc,(X, V) forl <i<n—1.

The corresponding quiver Q,, is defined below and illustrated, for the n = 4
case, in Figure 1. It has 2n? vertices corresponding to the functions in F,,. Then — 1
vertices corresponding to ¢;(X,Y), 1 <i <n — 1, are isolated; they are not shown. There
are 2n frozen vertices corresponding to g;;, 1 <i <n, and hlj, 1 <j < n; they are shown
as squares in the figure below. All vertices except for one are arranged intoa (2n—1) xn
grid; we will refer to vertices of the grid using their position in the grid numbered top
to bottom and left to right. The edges of Q,, are (i,j) - (i+1,j+ 1) fori=1,...,2n -2,
j=1,....n—-1,@G,j)) > (@, j—1),and (i,j) > (i—1,j) fori=2,...,2n—-1,j=2,...,n,and
(i,1) > (i—1,1) fori=2,...,n. Additionally, there is an oriented path

m+1,n)—- 31)- n+2,n)—-%1)—---n,1) > (2n—-1,n).

The edges in this path are depicted as dashed in Figure 1. The vertex (2, 1) is special; it
is shown as a hexagon in the figure. The last remaining vertex of Q,, is placed to the left

of the special vertex and there is an edge pointing from the former one to the latter.
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hll hlZ h13 h14

8 e

Fig. 1. Quiver Q4.

Functions hiJ- are attached to the vertices (i,j), 1 <i <j < n, and all vertices in
the upper row of Q, are frozen. Functions g;; are attached to the vertices (n +i—1,)),
1<j<i=<n, GJ) # (1,1), and all such vertices in the 1st column are frozen. The
function g,, is attached to the vertex to the left of the special one, and this vertex is
frozen. Functions ¢y, ; are attached to the vertices i+ k+ 1,i)for1 <i <n,0 <k <
n — 3; the function ¢y_,,,, is attached to the vertex (n, 1). All these vertices are mutable.
The set of strings P,, contains a unique nontrivial string (1,¢,(X,Y),...,¢,_;(X,Y),1)

corresponding to the unique special vertex.

Theorem 4.1. The extended seed %, = (F,,Q,,P,) defines a regular generalized

cluster structure on D(GL,,).

Proof. We start with checking that relation (3.7) with k¥ = n indeed defines a
generalized exchange relation as described in (2.1). The degree of the exchange relation

is d,, = n, exchange coefficients are given by p;, = ¢,.(X,Y) forr = 1,...,n—1, the cluster
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T-monomials are u;.. = hyy¢,,, and u;._ = ¢,. The stable r-monomials are defined as

follows:

Vll'l.‘]>=h11=detY, V[lr;]>=1 forO0<r<n-1,
and

V[1'.”<=gu=detX, V[lr_]<=1 forO<r<n-1.

Let us show that cluster transformations defined by the quiver Q, produce
regular functions. For the special vertex, this follows from Theorem 3.2. For the vertices
corresponding to g;; and h;; with i # j, the claim is wellknown from the study of the
standard cluster structure on GL,. For other mutable vertices, we use determinantal
identities often utilized for this purpose (see, e.g., [8], [9], [10]). The 1st is the Desnanot—

Jacobi identity for minors of a square matrix A:
detAdetA”’ + detAd detA” = detA? detA’, (4.1)
ap o B o B

where “hatted” subscripts and superscripts indicate deleted rows and columns, respec-

tively. The 2nd is a version of a short Pliicker relation for an m x (m + 1) matrix B:

deth‘ﬂ detBY + deth}; det BY = detB‘gW detB?, (4.2)

and the 3rd is the corollary of (4.2):

detB%?mJrl detB%2 detB™t! + detherl detB?erl det B!
o ] L (4.3)
= detB%erl (detB%;”mJrl detB? — deth”mJrl detBl) )

In more detail, for functions ¢; with 2 < i < n — 1, we use (4.3) for the matrix

B 7qli—1,N+1] [n—1,N]
B = [q’ eN][i—l,N] Pp 1w

a=y=1,8=2,8=N-—n+ 2. For functions ¢; withn+1 <i <N — 1, we consider a

. For ¢, we use (4.1) for the matrix A = with parameters

perturbation ®(0) = ® +6e;,_1)2,1,_1)2—; of the core and use (4.3) for the matrix B(¢) =
<I>(0)[i_”_1'N] (for i = n + 1 the range of columns [0, N] stands for ® prepended with the

[i—n,N]
previous column of the infinite periodic matrix (3.1); this column contains X" ) to the

[2n
left of the uppermost copy of Y}, ,; in (3.3)). A direct check shows that the identity (4.3)
for B() yields a polynomial of degree 3 in 6 that vanishes identically. The coefficient of
this polynomial at 6 is the exchange relation we are looking for. For ¢,, we use (4.2) for
CD%:Z;VI]'N] with parameters e =8 =1, 8 = 2, y = n + 2. For functions h;;
with 3 < i < n, we consider a perturbation ®(0) = [® e}, ey]|+0e,_; .1 +0ey_; yy and

the matrix B =
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use (4.3) for the matrix B(#) = 5(6)5:;%?2]. A direct check shows that the identity (4.3)
for B(9) yields a polynomial of degree 4 in 6 that vanishes identically. The coefficient
of this polynomial at 62 is the exchange relation we are looking for. Finally, for h,,, we
prepend a row [Y;; 0] to the matrix ®(0) and proceed with the obtained matrix exactly
as in the previous case.

By Proposition 2.1, it remains to check that any two functions in F,, are coprime
and that for any nonfrozen f € F,, the function f* that replaces f after the mutation
is coprime with f. The 1st claim above is an immediate corollary of the following

statement.

Lemma 4.2. All functions in the family F,, are irreducible.

The proof of Lemma 4.2 is given in Section 7.2. The 2nd claim above is provided

by the following statement.
Lemma 4.3. Every nonfrozen f € F,, does not divide the corresponding f*.
The proof of Lemma 4.3 is given in Section 7.3. ]

Remark 4.4. (i) The regular generalized cluster structure described in Theorem 4.1
is complete in O(D(GL,)) and compatible with the standard Poisson-Lie bracket on
D(GL,).

(ii) In [9], we used a different initial seed f)n to define a regular complete
generalized cluster structure GC (in) on D(GL,,) compatible with the standard Poisson-
Lie structure on D(GL,). Moreover, the sets of frozen variables for both structures
coincide. However, for n = 4, the initial seed described above is not mutation equivalent

to the one constructed in [9].
Details and proofs of assertions mentioned in the above remark are given in [11].

5 Example 2: Generalized Cluster Structure on Periodic Band Matrices.

In this section, we consider the case of L in (3.1) being a (k + 1) diagonal n-periodic
band matrix with k < n. In other words, L represents a periodic difference operator.
Such operators play an important role in spectral theory; they also appear as Lax
operators in the theory of integrable systems, such as periodic Toda lattices and
their multicomponent analogues (see, e.g., [17]). More recently, periodic difference

operators found applications that, in turn, proved to be related to the theory of cluster
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4196 M. Gekhtman et al.

algebras, in particular, in the investigation of frieze patterns and pentagram maps and
their generalizations [13, 18]. In this section, we will use Theorem 3.2 to construct a
generalized cluster algebra structure on the space of periodic difference operators.

We choose Y in (3.2) to be a lower triangular band matrix with k + 1 nonzero
diagonals (including the main diagonal); consequently, X is an upper triangular with
zeroes everywhere outside of k x k upper triangular block in the upper right corner. We
assume that entries of the lowest and highest diagonals are all nonzero. X and Y are

now n x n matrices of the form

0 0 a Ay
0 0 ap
X = ’
0 ay
0
- h _ (5.1)
ak+1’1 0 0
gy Agpr2 O
Y = ,
A1 k41 A2k41 0 Qkprksr O
0 )
L 0 A Aon ak-i—l,n _
and we can choose a = k, b = 0. Consequently,
air o A
_ _ . . . —1\[1,kl
U=Wy=| 0 (Y ) ik (5.2)
0 e alk
and hence
a P a
detv=—21_"In (X, VY)=a,, --a, (5.3)

Apt1,1 " Akt1,n
Furthermore, y in (3.8) is equal to 0, and therefore v, = Ue,.
The core @ is a reducible (k—1)n x (k—1)n matrix, and fori=1,...,(k—1)(n—1)
we have ¢; = ¢;a,, - - - a; with

5. — [i,(k=1)(n—-1)]
¢ = det P 1)1 (5.4)
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Relation (3.7) can be rewritten as

k o
G107 = (ar2--- alk)kil ZCi(Xr Y)((—D)" ' det ¥, )¢5 ', (5.5)
i=0

for k > 2 and as
~ ~ _ = . -\N2 _
G190} = co(X, V)@5a,, + (=1)" ey (X, V) det Y, + c,(X, V) (det ¥) aj,, (5.6)

for k = 2, since in this case ¢, = @k_1n+p+1 = 1 according to the convention
introduced in Section 3. In both cases, ¢} is a polynomial function in matrix entries
of X,Y, according to Theorem 3.2. Since cy(X,Y) = detY = Ajy11 det Y, the right hand
side of (5.5) is divisible by detY = a;,, ;- Gz, ,. On the other hand, it is easy to see

that ¢, is not divisible by a,;, @, ; fori =2, ..., n. This means that for k > 2,
k-1 =~
o1 = (a1 ay)  detYgy,

where ¢] is a polynomial function in matrix entries of X and Y. Thus, (5.5) becomes

k
§18% = ary1105 + D &(X, V) (det V)ITIGL @5, (5.7)
i=1

where ¢;(X,Y) = (=1)!""D¢,(X,Y) for 1 <i < k. In what follows, it will be convenient to
introduce @,; = (—-1)¥™Va,,, so that (X, Y) = @;,a,5 - ;-
Similarly, for k = 2, ¢} = ¢} detY where ¢} is a polynomial function in matrix

entries of X and Y, and (5.6) becomes
$10F = a3,a,,05 + (X, V)Py +E,(X, V) det ¥ (5.8)

with ¢;(X,Y) = (-1)" L) (X, V) and ¢,(X, V) = ¢, (X, Y) /a1y = G11Q13 - Ay -

For k < n, denote by £;,, the space of periodic difference operators represented
by n-periodic (k + 1)-diagonal matrices with all entries of the lowest and the highest
diagonals nonzero. A generalized cluster structure in the space of regular functions on
L, is defined by the following data.

Consider the family F,, of functions on £;,:

- (k—1)(n—1). =~ ~ _
Fin = [{‘Pi}gﬂ o ); apy; {ayhisy {ak+1,i}?=1" {¢;(X, Y)}i‘czll}'
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Let Qy,, be the quiver with (k + 1)n vertices, of which k — 1 vertices are isolated
and are not shown in the figure below, (k + 1)(n — 1) are arranged inan (n — 1) x (k+ 1)
grid and denoted (i,j), 1 <i<n-1,1 <j < k+ 1, and the remaining two are placed
on top of the leftmost and the rightmost columns in the grid and denoted (0,1) and
(0,k + 1), respectively. All vertices in the leftmost and in the rightmost columns are
frozen. The vertex (1,k) is special, and its multiplicity equals k. All other vertices are
regular mutable vertices.

The edge set of Q;,, consists of the edges (i,j) - (i+1,j) fori=1,...,n -2,
j=2,....k; G,)) > G, j—1) fori=1,....,.n—-1,j=2,...,k, (i,)) # 1,k); G+ 1,j) —
@i, j+1)fori=1,...,n—2,j=2,...,k, shown by solid lines. In addition, there are edges
n-1,3—-(1,2,1,2)> n-1,49,(n-1,4 - (1,3),...,(1,k—1) > (n—1,k+ 1) that
form a directed path (shown by dotted lines). Save for this path, and the missing edge
(1,k) — (1,k—1), mutable vertices of Q;,, form a mesh of consistently oriented triangles

Finally, there are edges between the special vertex (1, k) and frozen vertices (i, 1),
(i,k+ 1) fori =0,...n — 1. There are k — 1 parallel edges between (1,k) and (i,k + 1)
fori=1,...,n—1, and one edge between (1, k) and all other frozen vertices (including
(0,k+1)). If k > 2, all of these edges are directed towards (1, k), and if k = 2, the direction
of the edge between (1, 1) and (1, k) is reversed. Quiver Q,, is shown in Figure 2.

We attach functions a;;,a,,,...,a;,, in a top to bottom order, to the vertices
of the leftmost column in Q,, and functions Ai11r++1Qgp1 s D the same order, to
the vertices of the rightmost column in Q;,. Functions ¢; are attached, in a top to
bottom, right to left order, to the remaining vertices of Q;,,, starting with ¢; attached
to the special vertex (1,k). The set of strings P, contains a unique nontrivial string

1,¢6,X,Y),...,¢,_;(X,Y),1) corresponding to the unique special vertex.

Theorem 5.1.  The extended seed Xy, = (Fiy,, Qky, Pky) defines a regular generalized
cluster structure GC(Zy,,) on Ly,.

Proof. Similarly to the proof of Theorem 4.1, let us check first that relation (5.7) indeed
defines a generalized cluster transformation as described in (2.1). The degree of the
exchange relation is d; = k, exchange coefficients are given by p,;, = ¢,.(X,Y) forr =
1,...,k—1, and the cluster r-monomials are u,.. = ¢, and u;._ = ¢, for k > 2 (for

k =2, u,._ =1). The stable r-monomials are defined as follows:

a ifk > 2,
V[lk]> N hala st . V[lr]> =1 forO<r<k-1,
asa,, ifk=2,
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8

ap

Fig. 2. Quiver Qg7.

and
~ k-1 k-1 :
Kl A11@1p--- Q1A 9--- A1, Hk>2,
V1;< = .
a11a13...alnak_,’_llz...ak_i_l'n 1fk=2,

[rl _ r—1 r—1

Ve =03 19 Qi1q forl<r<k-1,
[0] _ 4.

V1;< =1

the expression for V[lr;]< follows from (2.2) via | (k — 1)r/k| =r — 1.

as

4199

Let us show that cluster transformations defined by the quiver Q, produce

regular functions. For the special vertex, this follows from Theorem 3.2. For other

mutable vertices, we use determinantal identities (4.1)—(4.3).
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In more detail, consider a perturbation

n—1

Q@) =D +6 Z €(k—2)(n—1)+i,(k—2)(n—1)+i—2
i=1

of the core. For every six-valent vertex (i, j) in Q;,, we apply (4.3) to the submatrix B(9) =

[((k—j—D(n-1)+i-2,(k—1)(n—-1)]
¢ (0)[(k—j—1)(n—l)+i—l,(k—1)(n—l)]

in 6. The claim follows from considering the coefficient at #”~!. Indeed, the submatrix

[t,(k—1)(n—1)]
Pitk—1)(n-1)]

size with the upper left corner at row ¢t —s(n — 1) and column ¢t —sn fors =1, 2,.... Note

that for the function attached to (i,j) we have t = (k—j)(n— 1) +1i, and the result follows.

of ®(9) and get a polynomial identity of degree 3(n — 1)

that defines the function ¢, coincides with the submatrix of ® of the same

For vertices (i,2), i = 1,...,n — 1, one needs to apply (4.2) to the submatrix

(k—3)(n—1)+i—2,(k—1)(n—1)]
(k—3)(n—1)+i—1,(k—1)(n—1)]

holds for the vertex (n — 1, 3) with i = 0. Finally, for vertices (i,k),i = 2,...,n — 1, one

e witha =y =1, =2,and s

being the last column. The vertex (1,k — 1) is treated in the same way.

B = d>{ with e =8 =1, 8 = 2, and y being the last row. The same

needs to apply (4.1) to the submatrix A = @{

Similarly to the proof of Theorem 4.1, it remains to prove that all functions in
Fir, are coprime and that each nonfrozen f € ¥, is coprime with f*. The 1st of the above

claims is an immediate corollary of the following statement.

Lemma 5.2. All functions in the family 7, are irreducible.

The proof of Lemma 5.2 is given in Section 7.2. The 2nd claim above is provided

by the following statement.
Lemma 5.3. Every nonfrozen f € F;, does not divide the corresponding f*.
The proof of Lemma 5.3 is given in Section 7.3. ]

Remark 5.4. (i) The regular generalized cluster structure described in Theorem 5.1 is
complete in O(L;,,).

(ii) Under certain mild nondegeneracy conditions, for any generalized cluster
structure, there exists a compatible quadratic Poisson structure (see [9, Proposition
2.5] for details). This compatible Poisson structure coincides with a natural Poisson
structure on the space of periodic finite difference operators considered in [13] and

used in the proof of complete integrability of generalized pentagram maps.

Details and proofs of assertions mentioned in the above remark are given in [11].
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Let us examine the case k = 2 in more detail. By [2, Theorem 2.7], the finite-type
classification for generalized cluster structures coincides with that for usual cluster
structures. Consequently, GC(X,,) is of type C,,_;. In [20], every cluster structure of finite
type with principal coefficients was given a geometric realization in the ring of regular
of functions on a reduced double Bruhat cell corresponding to a Coxeter element of the
Weyl group and its inverse. In the A,, case, this double Bruhat cell consists of tridiagonal
matrices A in SL, ; with nonzero off-diagonal entries and with subdiagonal entries
normalized to be equal to 1. Then, [20,Theorem 1.1] shows that the set of mutable cluster
variables in such a realization coincides with the set of all dense principal minors of A.

We have the following analogue of [20, Theorem 1.1].

Proposition 5.5. The set of mutable cluster variables in GC (,,) coincides with the

set of all distinct dense principal minors of L € £,,, of size less than n.

Proof. Since GC (EZn) is a generalized cluster structure of type C the number of

n—1r
mutable cluster variables is n(n — 1), that is, the number of almost positive roots in
C,,_1- Since this is also the number of distinct dense principal minors of L € £,,, of size
less than n, we only need to show that every such minor appears as a cluster variable

in GC (£,,). In the spirit of [20], we denote by x|; ; the dense principal minor of L with

diagonal entries Qg1 Qg iq1r-- 1 Qg i1, Qo) where either 1 <i <j < n, (i,j) # (1,n), or
l1<j<i—-1=<n-1.
The initial cluster variables ¢,,...,¢,_; are minors X[ nlr i=2,...,n, contained
[1,n—1]

inan (n —1) x (n — 1) tridiagonal matrix ® If we treat, temporarily, ¢; as a frozen

1,n—1]"
variable, ¢,,...,¢,_; form an initial clust([ar of]a cluster structure of finite-type 4,,_,,
whose set of mutable cluster variables is the collection X 2 < i<j<n-1,according
to [20, Theorem 1.1]. (In [20], the corresponding tridiagonal matrix is normalized to
have determinant 1, and also all the subdiagonal entries are equal to one; however, the
calculation needed to obtain the desired result goes through without any modifications).

Next, we perform a generalized mutation from our initial cluster in direction 1
using (5.8). We claim that ¢; is equal to x3 ;;. Clearly, the degree of ¢} in matrix entries

of L is equal ton — 1. By (3.11),
_ =12
oF = (=" detK*(U 1;el,v},) (detY)”,

and so ¢} = ¢,/ det Y is proportional to the numerator of detK*(U~!; ey, v,) viewed as

rational function in terms of entries of L with a coefficient that is a monomial in asj,
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j=1,...,n.Since the degree OfX[311] is n—1, we only need to show that detK*(U1; el,Vy)
is proportional to x5 1.

Recall that for band matrices y = 0, and so v, defined in Lemma 3.4 is
equal to Ue,. Then w in Proposition 3.6 becomes w = [—u,y, u;,], and we obtain
detK*(U‘l;el,Vy) = —Uu;,. By (5.2),

_ (_1)n+1a31

3 _ =EDx
127 dety B

detY

’

(au det yilg—l —a,, det Yllg)

and hence ¢} = x5 1); here in the last equality we used the expansion of x5 ;; with respect

to the last row.

Fig. 3. Quiver Qys.

After the generalized mutation, the quiver is transformed as follows: all edges
incident to the special vertex change direction, edges pointing from the vertex cor-
responding to @, to vertices corresponding to a;; and a,,, disappear, but new edges
appear instead pointing to ¢, from frozen vertices corresponding to a,;,a4,...,a;, and

Qs3,...,Q3, (cf. Figure 3). It is easy to check via (4.1) for the submatrix of L obtained

[1,n—1]
[1,n-1]

the vertex (2, 2) transforms ¢, to x, ;;. Similarly, consequent mutations at the vertices

from & by cyclically shifting 2nd indices of all entries a;; up by 1 that mutation at

(3,2),(4,2),...,(n —1,2) transform each ¢; to Xjjypp 1 =3,...,m—2, and ¢,_; to X[ 1)

Moreover, the resulting quiver coincides with the initial one. Clearly, we can perform a
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similar shift operation n — 2 more times and recover the rest of functions xj; ; as cluster

variables. [ |

Remark 5.6. Proposition 5.5 provides a geometric realization of generalized cluster
structures of finite-type C,,. We should mention that generalized cluster algebras of
this type but with constant exchange coefficients have been recently considered in [12]
in the context of study of representations of the quantum loop algebra of sl, at roots
of unity, and in [14, section 9], where they were realized as Caldero—Chapoton algebras

associated with a special triangulation of a polygon with one orbifold point.

6 Example 3: Exotic Generalized Cluster Structure on GLg

In [6], we initiated the study of cluster structures in the ring of regular functions on
GL, compatible with R-matrix Poisson-Lie brackets. Such brackets are classified by
Belavin-Drinfeld triples I' = (I';, I’, ¥ : 'y — I'y), where I'; and I', are subsets of the set
of positive simple roots in the A,_; root system and y is a nilpotent isometry (see [6] for
details). The cluster structures corresponding to nonempty Belavin-Drinfeld triples are
called exotic. In [10], we treated the subclass of Belavin-Drinfeld triples that we called
aperiodic. The 1st instance of a periodic Belavin—Drinfeld triple occurs for n = 6 with

the triple " given by
Iy ={ay,a5), Ty ={ag, a4}, v(a) =ay, yiag) =ay. (6.1)

It will be convenient to denote elements of D(GLg) by (R,S). Following the

construction described in [10], we consider a collection of matrices

Lr(®,S) = | REE R E Rud, S Sal SHE L R,9), LR, 9),
where L; = L;(R,S), L, = L,(R, S) both have a form (3.2), see Figure 4.

Here, 2 x 2 and 5 x 5 blocks featured in L, are submatrices R{éé} and S{f‘g’} while
3 x 3 and 6 x 6 blocks featured in L, are S{‘fjg} and R. L; is 5-periodic, L, is 7-periodic,
and each has one inner diagonal, which corresponds to k = 2 in (3.2). Overlaps between
blocks in L,, L, are prescribed by I' (see [10] for details).

For L, (R, S), we choose

[2,6] [1,2]
X, = 5[4,5] , Y, = R[5,6] 0243 ,
03,5 gl231  gl4.6l]

[1,3] [1,3]
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Fig. 4. Matrices L; and Lj.

which corresponds to a = 2, b = 0, while for L, (R, S) we choose

[4,6]

X, — O2><4 S[2,3]
5 =

05><4 05><3

which corresponds toa = 6, b = 4.

and

0
0

T2
I3
T4z

52

0
0

&%

Te2
S13
S23
S33

S53

0
0

T2
T2
32
Ta2
T's2

T'e2
0

0
S1a
S2a
S34

S54

T4

T3q

T5q

Tea
0
0

T3
Ta3
33
Ta3
Ts3

T'e3
0

0
S15
S25
S35

S55

Ta

Thus, (3.3) results in

0
S16
S26
S36

S56

I'is
Ta5
35
Tas5
Tss
Tes5

S14

o O ©O O o

S36

o © ©O O O
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Consequently, (3.6) yields

det (LY + uX;) = 23 (det SEAU +cyy (R, S)hp + det S[S) det R{é:é}kz) ,

(6.2)
det (LY, + puX,) = A° (det Sl det RIALZ + oy (R, S)Au + 516 detmz) .

Let us denote the functions associated with ®,, ®, via (3.4) by ¢;;, 1 <1 <5, and
@9, 1 <1 <7, respectively. Taking into account that

. (4,61 v 2,61
detY; = rg, det Sy, detY; = s;gdetR;g),

we obtain from (3.7) and (6.2)

2,6 4,6]_2 1,2] 2
011051 = det ST det SI3r2) + ¢py (R, S)Tgppry + detR{Syt.j(plz,

(6.3)
2
4,6 1,4 2,6 2,6 2
921051 = 516 det S8 det R4 (detR{ZIG}) + 0y (R, S) det R2% g, ) + det Ry},

where ¢}, and ¢3, are polynomial in the entries of R, S.
Recall that the family

Far = {{gij(R)}lgjfisn' {hij(R)}1§i<j§n}

with g;; and h;; defined in the previous section is a cluster for the standard cluster
structure on GL,, that has a property that for every pair i,j of indices between 1 and n
there is a unique function in 75" represented by a minor whose upper left entry is Ty
These functions are attached in a natural way to vertices of the corresponding quiver,
Qf}, that form an n x n grid with all the vertices in the 1st row and column frozen. The
edges (i,j) - (i+1,j+1), (i+1,)) — (i,j), and (i,j+1) — (i,)) form a mesh of consistently
oriented triangles (except that edges between frozen variables are ignored).

Let now Fr be the family of functions that consists of all distinct dense trailing

minors of matrices that comprise £ (R, R). Alternatively, we can describe F. as

Fr = (F&\ {19511, B} 1 <icsr 961 R Ry 0B} <ijcar his(R), hog(R)})
U {{¢1i(R,R)}15i54, {wzl-(R,R)}lSiSe} .
Note that F contains only 34 functions in contrast with Fst, which contains 36.

Specifically, none of the functions in F is represented as a minor whose upper left

entry is ryg or rue. All other ry; do appear in this way, and so we attach them to the
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Fig. 5. Quiver Qr.

corresponding nodes of a 6 x 6 grid that will serve as the vertex set of the quiver
QO depicted in Figure 5. Here, the white vertices denote functions in the intersection
Fr N F St the ones with the vertical filling refer to ¢,;» and the ones with the diagonal
filling, to ¢,;. The special vertices (6, 1) and (2, 1) correspond to ¢;; and ¢,;, respectively.
Strings of exchange coefficients attached to these vertices are (1,c;;(R,R),1) and
(1,¢5, (R, R), 1), respectively. These are the only nontrivial strings in the set of strings Pp
that we associated with Q and F. The corresponding generalized exchange relations

are obtained from (6.3):

2 2
P11911 = h12h14962 + €11 (R, R)Gga912 + g51912:

2 2
921931 = h16N14931922 + C21 (R, R)G22020 + 911922
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Fig. 6. Another partition of matrices L; and Lj.

Proposition 6.1. The seed X = (Fp,Qp, Pr) defines a regular complete generalized
cluster structure in the ring of regular functions on GLg. This structure is compatible

with the Poisson-Lie bracket {-, -} specified by I" given by (6.1).

Proof. The proofis based on lengthy calculations, some of them straightforward, some
ad hoc, and some relying on symbolic computations using Maple . In particular, the
proof of regularity relies on Theorem 3.2 and identities (4.1),(4.2), and (4.3), just like in
the proofs of Theorem 5.1 and Theorem 4.1. The proof of compatibility of X with {-, -}
is Maple assisted. To prove completeness, we constructed sequences of mutations that

recover matrix entries x5;,x5, and x;;, 1 = 1,3,4,5,6, j = 2,3,4,6, as cluster variables.

i’
For each of the remaining matrix entl"Jies, we found two Laurent polynomial expressions
of the form Z‘T/I where M € A(X}) and f's entering two expressions for the same matrix
element are coprime cluster variables. By [8, Lemma 8.3], this guarantees that matrix
entries in question belong to A(X). We omit the details of the proof since the general
case of generalized cluster structures associated with Poisson brackets that arise in the

Belavin-Drinfeld classification will be treated in a follow-up to [10]. ]

Note that the choice of the periodic staircase structure for the matrices L, and L,
is not unique. Each one of them admits one more such structure, as shown in Figure 6.

Any pair of choices presented on Figures 4 and 6 gives rise to a regular complete
generalized cluster structure compatible with the Poisson-Lie structure {:,-}p. It is

interesting to investigate whether the seeds thus obtained are mutation equivalent.
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7 Properties of Core Minors
7.1 Expressing core minors via U

Proof of Lemma 3.3. Using block-column operations, we obtain

(ln)[z,n]
Wi3,q1

0 (ln)[z,n]

¢; = (det Y)k_1 det

[1,b]
Y[Z,a] _

In the 2nd determinant above, there are rows containing a single nonzero entry equal

to 1. Removing these rows and corresponding columns, we can further rewrite it as

[1]
Wi (1a)iga
edet [1' |
a
Wia (La)a
[1,al [1,b]
W[Z,a] Y[Z,a]
RTT 7]
W[Z,a] (la)[z,a]
= e¢detY, det [1,a]
2 W[2,a] (la)lz,a]
[ Ul * 0 }
i Wy Wy I ]
B [1]
Wi (1a)a
= edetY,det [1'a] (7.1)
Wizlai (1a)z.a
L Upgr *

with ¢ = (—1)?"1+(-a)(k/21-1) The 1st equality above is obtained by multiplying the last

_1 7l2al
1, -Y,Y; }

block row on the left by |: .
b

[2,a]
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Next, transform the matrix featured in (7.1) by multiplying the last block column
on the right by W4 and subtracting it from the previous one, then multiplying the
(k — 2)nd block column on the right by W!4! and subtracting it from the (k — 3)rd one,
etc., finally, multiplying the 2nd block column by W!!! and subtracting it from the 1st

block column. The resulting matrix equals

0 (la)[Z,a]

0 0 (7.2)
(la)[z,a]

v, Vi [ Upy + ]

with V; = (1) [U[z,k] *] (W“'a])L fori=1,...,k— 2. Note that forj=1,...,k we have

- . il
—1
Vm:(_l)i( ly —hY, (Wll,a])iH)
1
L 0 L] [2,k]
— - il
—1 —1
_ (—l)i( I, -YY, (W[l,a])i+1|: 1, -YY, :|)
| O 1, i 0 1, 2.
and hence (3.5) implies
v/ = il (7.3)

This means that the determinant of the matrix in (7.2) equals
[1] [1]77(1] k-1 k—1 2
e det[ Vi, .. VITORL | = (- D¢ det [UF ey .. U, Ue e |

with ¢ = (—=1)*-Dk=2/2+@-D(k/21-1) and the claim of the lemma follows since
(_l)k—lgg/ — (_l)k(k—l)/2+(n—1)[k/2] =¢. [
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_ _ w
Proof of Lemma 3.4. Define W via X©?™y-1 = |: :| We proceed as in the

O(n—a)x(n—l)
proof of Lemma 3.3 and get

(ln—l)[3,n]
w,
[2,a]
0 (ln)[z,n]
¢, = (det V)* "2 det ¥ det
w,
[2,a]
|: 0 :| (ln)[Z,n]
[1,a] [1,b]
L W[Z,a] Y[Z,a] |
wil

[2,a] (la) [2,a]

—¢ (det Y)¥ "2 det Y det Y, det

[1,al
Woa  (ldpa

Ugg *

where ¢ is the same as in (7.1). Similarly to the proof of Lemma 3.3, this yields
9, = (—1)*¥ g, (det V)¥ 2 det ¥ det Y, det [w U*2e, ... U%, Ue, el] ,

where w = (—1)k~2 [ Upy * ] (W[I,a])k—S Wil

1 x [ = 0
Next, factor Yas Y = _ |. Then
01 JL > Y

n—1

xy-1 :[ 0 xizl ] * _0 1 *
x Yyl 01

*

1
given by (3.8). It remains to use (7.3) to get w = (—I)k*zUk*l(e2 +ye) =(-1)

n—1

_ 1 _
implies W = [ wil w ] |: :| Consequently, Wl = w 4 ywll where y is
kfok72V‘
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Proof of Lemma 3.5. Similar considerations show that

@py1 = (det Y)k*2 det

[1,b]
W[Z,a] Y[Z,a] _

1,2l
Wyal (10

=& (det )2 det v, det

Lal
Wiyo (1a)z.a

U[z,k] *
with & = (—1)®~@k/21-1) gimilarly to (7.1). This leads to an analog of (7.2), which yields

Py = €€ (det Y)¥2 det Y, det [U’“ze1 U*2e, U*3e, ... U%, Ue, el]

= £41 (et V)F 2 det ¥, det [ UF2e, UK 2y, UK Pe, . U2, Ue, ey,
where g = (_1)(a—1)([k/2]—1)+k(k—1)/2—1_ ]

7.2 Irreducibility of core minors

Proof of Lemma 3.8. For X, Y given by (3.2), we say that ¢, is of type (1, k, b). The three

parameters satisfy conditions
n>k+b, k=2, b>0.

The proof of irreducibility is based on induction on all the parameters.
For type (n,2,0), the irreducibility of ¢; is a well-known fact, since the

corresponding core is an n x n matrix of independent variables. For type (3, 3,0), we
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have

Vo1 Yoz Vo3 O 0 0
V31 V32 V33 O 0 0

¥ = ’
X371 X33 X33 V31 V32 V33

0 0 0 X5, X9 Xo3

0 0 0 X317 X35 X33

and its irreducibility can be verified by direct observation. In a similar way, one can
treat the case (4, 3,0).

Let now ¢; be of type (n,3,0) with n > 4. Note that ¢, is a homoge-
neous polynomial of degree 2 in each variable. Assume that ¢; = PQ, then both
P and Q are homogeneous. Let y = y,;. Note that the coefficient ¢, at y? in
Y[llzfg]]u[an]); the latter is of type (n — 1,3,0), and hence is irre-

ducible by induction. Consequently, P = c,y? + o(y?) and Q@ = y? + o(y?) with

) equals +¢, (X127,

pt+q=2.

Further, ¢, has degree 2 in z = yj,, and hence deg,P = 2, deg,Q = 0. Similarly to
the above, the coefficient c, at z% in ¢, is an irreducible polynomial of degree 2 in y, and
we conclude that p = 2, g = 0, and hence Q is a constant.

Let now ¢, be of type (n,k,0) with k > 3. Note that ¢, is a homogeneous
polynomial of degree k — 1 in each variable. Assume that ¢; = PQ, then both P and Q
are homogeneous. Let y = y,,. Note that the coefficient at y*~! in ¢, equals +v, detZ,,

[2,n]
[2,k]
Note that v, is a core determinant of type (n — 1,k — 1,0), and hence is irreducible by

[2,n]
- - Y
where ¥, = ¢,(X,Y) with X = X[[ZZZ]] and Z; is an (n — 1) x (n — 1) matrix |: [k+1'”]].
! X

induction, whereas detZ,; is irreducible as the determinant of a matrix of independent
variables. Consequently, either

i) P=vy,yP+o(yP)and Q =tdetZ;y? +o(y?) withp+qg=k—1, or

(ii) P= 1y, detZ,y? + o(yP) and Q = £y?+ o(y9) withp+g=k — 1.
In any case, the total degree of P is at least (k — 2)(n — 1) + p, and the total degree of Q
is at mostn — 1 +q.

Similarly to the treatment of the case (n,3,0) above, we let z = y3, and note that
deg,y¥; = k— 2, and hence deg,P > k — 2 and deg,Q < 1. The same reasoning as above
shows that the coefficient at zZ5~! in ¢, equals v’ det Z, where v’ is a core determinant

of type (n — 1,k —1,0), and hence irreducible by induction, and detZ’ is the determinant

Zz0z 1snbny Lo uo Jesn Ateiqi Ansieniun elieq Aq 608658S/1 81 1/9/220Z/8191e/ulwi/woo dno olwepeoe//:sdjy woly pspeojumod



Periodic Staircase Matrices 4213

of an (n — 1) x (n — 1) matrix of independent variables. Consequently, P = ¢'z” + o(p’)
with p’ > k — 2, and there are four possibilities for ¢’:
(a) ¢ =o'y’ detZ,
(b) ¢ =o'y,
() =o' detZ,
(d) ¢ =do,
where o’ is a nonzero constant.

The last two possibilities are ruled out immediately, since they imply that the
total degree of P is at most n — 1 + p’, which is strictly less than (k — 2)(n — 1) + p.
In case (ia), the comparison of the two expressions for the total degree of P gives (k —
2Y((n —1)+p = (k—1)(n — 1) + p/, which is equivalent to p = n — 1 + p/, and hence
is impossible. Similarly, case (iib) yields n — 1 + p = p’, which can be satisfied only if
p=0,p =k—1, and n = k. However, p = 0 in case (iib) means that P = ¢, detZ,;, and
hence p’ = deg,P = k — 2, a contradiction. In the remaining cases (ib) and (iia), we get
p=p >k—2andg=q <1.

Assume first that g = 0. In case (i), we get Q = £ det Z;, and, simultaneously, Q =
1U[3,n]
[k+1,n]
1U[3,n]
[2,k]

So, in what follows, we assume that p =k —2 and g = 1.

o’ detZ’, a contradiction, since Z' = |: :| In case (ii), we get that Q is a constant.

Let now t # y be an arbitrary entry in the 2nd row of Y or X. Applying the same
reasoning as above, we get that deg,P = k — 2, deg,Q = 1, and the coefficients at t*~2 in
P and at t in Q have a similar structure, that is, all of them simultaneously look either
as in case (i), or as in case (ii).

Assume that all coefficients are as in case (i). Note that ¢, and all its analogs do

not depend on the entries of the 2nd row of Y. Consequently, one can write
n
Zyzj ajyi+R+S,

where ; are core determinants of type (n — 1,k — 1,0) depending on submatrices of X
and Y, j are nonzero constants with «; = 1, R contains all monomials in P that depend
on entries in the 2nd row of Y that are not included in the 1st sum, and S contains only

the monomials that do not depend on these entries. Besides, we can write

n
j=1
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where Ziare(n—1 x(n—-1) matrices built of the entries in the rows [k + 1,n] of Y and
rows [2, k] of X similarly to Z;, /3]- = :I:aj_l, and T does not depend on the entries in the
2nd row of Y. Consequently, TS = 0, since ¢; does not contain monomials that do not
depend on the entries of the 2nd row of Y. Note that S does not vanish since for every

tk—2

entry ¢ in the 2nd row of X, deg,P = k —2 and the coefficient at in P does not depend

on the entries in the 2nd row of Y. Therefore, T = 0 and

n
Q=" y,pjdetZ;. (7.4)
j=1

Let us fix ¢ = x,,. Recall that deg,Q = 1. Similarly to the treatment of y above,
Q = B;tdet Y + o(t), where B, is a nonzero constant. On the other hand, it follows from
(7.4) that Q = tdet Z, + o(t), where

BoYaz B3Vazs - BnYon
Yk+12 Yk+13 -+ Yitin
Zl = Yno Yns3 s Yan ’
X32 X33 “ e X3n
B sz Xk3 S an |

a contradiction.

Assume now that all coefficients are as in case (ii). Then the same treatment as in
case (i) leads to Q = Z;l=1 ¥,;B; for some nonzero constants f;, and hence the coefficient
at x,; in Q vanishes, a contradiction.

To proceed further with the case b > 0, we will need one more basic type, (3,2,1),

in which case

Y21 V22 Vo3 O
0, = Y31 V32 Ys3 O
0 X5 Xy Vo
0 X317 X35 Va3
is irreducible via direct observation.
Let now ¢; be of type (n,k,b) with b > 0, and let ¢; = PQ. Put y = y,; and
note that degycp1 = k. It is easy to see that the coefficient v/, at vk in ¢; is itself a core

determinant of type (n —1,k,b—1), and hence is irreducible by induction. Consequently,
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P = yPy, + o(yP) and Q = +y? + o(y?) with p + g = k. In particular, the total degree of P
is (k—1)(n — 1) + b — 1 4+ p and the total degree of Q is g.

Similarly, for z = y5;, we have P = OlZp/l/_fa + 0(zF') and Q = Bz7 + o0(z%) with
p' + q = k, where v, is a core determinant of type (n — 1,k,b — 1) and «f = =+1 (the
opposite case would imply (k — 1)(n — 1)b — 1 + p = ¢/, which is impossible). Total
degrees of ¥, and y/5 coincide, so p = p’ and g = ¢'. Consequently, p > 0, since otherwise
P =y, = ay,, a contradiction.

Consider first the case b = 1 and n = k+ 1 > 3. Let t = y3,, then

t*=1 in ¢, equals  detZ, where ¥

deg,p; = deg,, = k — 1, and the coefficient at
is a core determinant of type (k,k — 1,1) and hence is irreducible by induction, and
Z = [X[[zl,'lkclru Y[[zl?k+1]] and hence detZ is irreducible as the determinant of a matrix of
independent variables. Consequently, we have four possibilities similar to (a)-(d) above.
The last two are ruled out via total degree comparison, since k* —k+p > 2k for k > 2 and
p > 0. The 2nd one yields p = 1, in which case Q = det Z and hence degyO =1<k-1=gq,
a contradiction. The remaining case yields p = k and g = 0, hence Q is a constant.

Forb = 1and n > k+1 take t = y,, and note that deg,p; = k — 1 and the
coefficient 1/_/n at t*~1 in ¢; is a core determinant of type (n — 1,k,1) and hence is
irreducible by induction. Moreover, degytﬁn = k, and hence p = k,q = 0 and Q is a
constant.

Finally, for type (n,k,b) with b > 1, take u = yj3,, then similarly to above, P =
&'uP'’ + o(uP), where ¥’ is a core determinant of type (n — 1,k,b — 1) and hence is
irreducible by induction. Moreover, degyt/_f’ =k, and hence p = k, g = 0 and Q is a

constant. | |

Proof of Lemma 4.2. For ¢, this fact is proved in Lemma 3.8 (cp. to the case of type
(n,n,0)). For other functions ¢; the proof is similar. It exploits the fact that one can find
two variables y and z such that the coefficient at the highest degree of the variable in
¢; is either an irreducible polynomial or a product of two such polynomials and that
the highest degree of z in ¢; equals to the highest degree of z in one of the above two
polynomials for y.

In more detail, for 2 < i < n — 1, one takes y = Xy 1 and z = Xy il Then
deg,¢; = deg,¢; = n — 1 and the coefficients at y"* ! and z"! in ¢; are equal to ¥ detZ,
where ¢ is ¢; for the size n—1 and Z is an (n—1i) x (n—1) matrix of independent variables.

For the case of Ppntis l1<i<n-1,1<p=<n-—3, onetakesy = x and

n—1,i
Z = Xp ;.. Then, deg,¢,, ; = deg,¢,,.; = n — p — 1 and the coefficients at y" P! and

z"P~lin Ppn+i are equal to ¢, _q);_1)4; for the size n — 1.
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Finally, for the case of Ppn 1<p<n-2onetakesy = Xy 1n and z =y,,;. Then
deg,¢,, = n—p and deg,¢,, = n—p—1, the coefficient at y" P in ¢,,, equals ¢, _1);_1)41
for the size n — 1, while the coefficient at z*P~! in Ppn equals the product of Ppn-1) for
the size n — 1 by the determinant of an (n — 1) x (n — 1) matrix of independent variables.
Further details are left to the interested reader.

Irreducibility of the remaining functions in the family F,, is discussed in [9,
Section 6.3]. |

Proof of Lemma 5.2. Irreducibility of the functions in F,,, is trivial. For k > 2, we have
to deal separately with functions ¢, and ¢,.
To prove irreducibility of ¢,, 1 < t < k — 1, note that each such function is

linear inall g;;, 1 <i < k+1,1 < j < n. Assume that ¢, = P;P, and that P, is

ijr
linear in a; ., ; (and hence P, does not depend on a;, ;). Moreover, P, depends linearly
in all nonzero entries in the 1st row of X and in the 1st column of Y, whereas P,
does not depend on any of these entries. Note that for any a;; as above there exists a

staircase sequence a,;; = a = a; such that 1 < i; < k+1,

iojor Firjir e igyr -+ 1 Ly

1 <j;<nforl <1l < r and every consecutive pair (a ) alternately lies in

t-1J1-1" Ul
the same row or in the same column of the matrix X 4+ Y. Moving along this sequence
and applying the same reasoning as above, we consecutively get that P, is linear

in a;

iy Qigjgr - - - 1 Qi and hence P, does not depend on a;;, which means that P, is a

ijr
constant.

Irreducibility of ¢, is proved similarly to the proof of Lemma 3.8. Below we
sketch the proof for ¢,; cases t > 1 are treated in a similar way.

Let ¢, be of type (n, k). Take x = a;,, ,, then deg,$; = k — 2. The coefficient

c® at x¥2 in @, equals Yiayy---a; 1D where D*¥ = detY[[,il';‘]_kH]. Consider
Y7 as a polynomial of degree (k — 2)(n — k — 2) in variables a,j.y,...,aQy ;1.

The constant term of this polynomial is ¢, of type (n — 1,k — 1) for a shifted
set of variables, and hence is irreducible by the induction hypothesis. Con-
sequently, ¥{ is irreducible since it is homogeneous as a polynomial in all
variables a;;.

Assume that ¢; = P'P”. It follows from above that P' = Xdl/f{‘R’ +o0(x%) and P’ =
xk=2-dR" 4 o(x*~2-9) with RR" = @y, - - - a, p_,D*. Consequently, degP’ > (k—2)(n—2)+d
and degP’ <n-+k—d - 3.

Take y = ay,, then deg,¢; = k — 1 and deg, P’ > deg,y{ = k — 2, and hence
deg,P" < 1. Further, the coefficient ¢” at y*lin ¢, equals ¥¥a,5---a;; DY where DY =

det Y[[,ffl_:]ﬂl and 1//{’ has the same structure as . If degyP” = 0, then P” is a factor of
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c?, which is impossible. Consequently, degyP” =1, and hence either
P =y*25 1t o(y*?) and P'=yylS"+o(y) with SS"=a; ---a; DY

or
P = k—2,V o k—2 /o 1/ . rall V4
=y Y{S +o(y"°) and P'=yS"+o(y) with SS"=a;3---a, D"

In the 1st of the above two cases, we get degP” > (k — 2)(n — 2) + 1, which is
strictly greater than n + k — d — 3 for k > 3. For k = 3, either deg, P’ = 0 or deg,P” = 0,
which is impossible for the same reason as deg,P” = 0. Consequently, the 2nd case
holds true, and hence deg, P’ = k — 3 and deg, P’ = 1.Taking into account the reasoning
above, we can write P’ = xR” + yS” + T”, where T” does not depend on x and y.

Consider now the coefficient ¢ at xX*~3y¥~1 in ®;. On the one hand, c is equal to
c*YR'S", where ¢ is the coefficient at y*~2 in . The latter equals ¥, a5 - a, ,_;D*,
where DX = det Y{iﬁ:ﬁ“l. On the other hand, c is equal to c**a,5---a; DY, where
c¥* is the coefficient at x*=% in yY. The latter equals ¥ a;5--- a, 1 D*, where
DY* = det Y[[é’:f]_kﬂ]. It is easy to see that 1/ffy = W{’X, hence we arrive at DX*YR'S” =

DY*a 5 ---aqy, DY, which is clearly impossible. |

7.3 Coprimality results

Proof of Lemma 3.7 (i) Let A be a matrix with distinct nonzero eigenvalues: A =
c! diag(A;,...,A;)C with det C # 0. We follow the proof of [9, Proposition 8.1] and write

k
detK(A4;e;) =Van(i,... ,Ak)Hcil
i=1
and
k
detK*(A;e;, A" (e, + vey)) = Van(ry, ..., Ay) Hwi
i=1

where Van is the Vandermonde determinant and

—1 2 o
wy = D (¢ +ye)r  VanGy, oy g [T e
J# m#ij
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Pick ¢;; =0, then for any choice of ¢;; # 0,2 <i <k, and c¢;, # 0 one has detK(4;e;) =0

and

w; = £cp0  VanQy, .. Ay h) [ e #0, 2<i<k
m#1,i

Next, pick A; = t!. Then for t big enough the expression AJTI Van(i,, ... ,):j, ..., Ag) grows

as t*~/*+2 where x depends only on k. Consequently, the leading term in the expression

k
wy = D H(Cjp +ye)r; Vantuy, Ay ) [ e
j=2 m#1,j

is obtained for j = 2, and it suffices to pick c,, such that c,, + yc,; # 0 to guarantee
w; # 0. The rest of ¢;j can be picked arbitrarily to satisfy condition detC # 0, which
yields detK*(4; e;, A" 1(e, + ye;)) #0.

(ii) We have to refine the choice of ¢;; made in the proof of part (i). Note that an

arbitrary principal leading minor of A can be written as

detAl =" £det(c ) H A; detCk = ﬁ > +detChe H A; det CL,
K ieK K 1eK
whereI ={1,2,...,|I|} and |[K| = |I|. Our choice of A; guarantees that for ¢ big enough the
leading term in the above expression is obtained when K = {k— |I| + 1,k —|I| + 2,...,k}.
Consequently, condition detAl{ # 0 is guaranteed by det Cf{ # 0 and det Cgc # 0. Clearly,
these conditions can be satisfied via a suitable choice of the entries ¢;; distinct from ¢;;,

Cyy, and cy,. |

Proof of Lemma 4.3. The claim for f = ¢; follows from Lemma 3.7(i). Indeed,
fix an invertible Y such that detY # 0 and define y via (3.8). Next, pick A that
satisfies the conditions in Lemma 3.7(i) and put X = A~'Y. Consequently, ¢, (X,Y) =
detK(4; e;)(detX)"! = 0, while

PF(X,Y) = +detK*(4;e;, A" 7)(det X)W V"=2 (det V)" £ 0

via (3.11), and the claim follows.
For f = ¢;, 2 < i < n, the claim is trivial, since in this range degf* < degf. In the
case f = ¢;, n+1 <i <N —n, it follows from the explanations in the proof of Theorem

4.1 that ¢f = ¢;, .0, — ¢;_n9?,,, where ¢ is the minor of ® obtained by replacing the
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1st column of ¢, by the immediately preceding column. Consider the specialization that
sets to zero the entry z (y; or x;) that occupies position (i,7) in ® and all the entries of
the matrices X and Y that lie in the same columns of ® below z. It is easy to see that this
specialization implies vanishing of ¢; and ¢, , ,, since both minors acquire a zero column.
However, the same specialization for ¢;_,, and <p?+n yields nontrivial polynomials since
the coefficients at z"P in the 1st one and at z* P2 in the 2nd one are nontrivial, where

*

z lies immediately above z in ® and p = [(i — 1)/n]. Consequently, ¢; is not divisible

by ¢;. The cases f = g;;, 2 <1 < n,and f = h;, 3 <1 < n are treated via the same

i’

specialization. For f = h,,, the specialization is given by Ypj=0for2<j<n. |

Proof of Lemma 5.3. To prove the coprimality of ¢, and ¢}, it suffices to check that

the latter is not divisible by the former. For ¢t = 1, we need the following statement.

Proposition 7.1. The image of the map (X,Y) — U defined by (5.2) contains an

arbitrary k x k matrix with nonzero trailing principal minors

Proof. In what follows B, B;, B, are k x k invertible upper triangular and N, N, N, are
k x k unipotent lower triangular. It suffices to show that for any B and N as above, there
exist n x n matrices X, Y of the form (5.1) such that U defined by (5.2) is given by U = BN.

Let Y, of the form described in (5.1) be totally nonnegative with all combinatori-

ally nontrivial minors nonzero and set Y; = JY,J, where J = diag ((—l)i)?;ol). Then M =

[1,n—kK]

(Y;l)[l’k] is totally nonnegative and invertible since det M = detY; ' det ¥ 1.

[n—k+1,n]
Thus there exist N; and B, as above such that M = N, B,.
It is not hard to see that there exists an invertible positive diagonal matrix D
such that NDB;! = B['N for B, and N as above. Let Y, be obtained via multiplying

[1,H — MD .

Y, on the left by an appropriate diagonal matrix so that that (YZ_I)[n—k+1 al =

1, ., O 0 BB;! ,
Now, let Y = Y, _ and X = . Then X, Y are of the required
0 NN! 0 O
—1)\[1.k] rar—1 — ~ — . 517 -
form, (Y~'),, 21, = NN, MD™' = NB,D"! and (5.2) gives U = BB, NB, D' =
BNDB;'B,D~! = BN. [ ]

To complete the proof for ¢ = 1, we invoke Lemma 3.7(ii), which guarantees that
one can choose A in Lemma 3.7(i) in such a way that the trailing principal minors of A~!
are nonzero, and proceed as in the proof of Lemma 4.3.

For 2 <t < n, the claim is trivial, since in this case degy; < degg,.
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Let now n < t < (k — 2)(n — 1). Then it follows from the explanations above
that ¢} = ¢,,,0Y ,, — @;_n@esn, Same as in the previous section. Find the unique pair
@@,)),1 <i <n-—1, satisfying t = (k —j)(n — 1) + i and consider the specialization
Qij = Qi 1j41 = " =0Q_pjp ="' = a1 = 0, where the index j + p is understood
mod n and its value j+p = 1 is excluded. It is easy to see that this specialization implies

vanishing of ¢, and ¢, ,,, since both minors acquire a zero column. However, the same
specialization for ¢, , and @2, ,, yields nontrivial polynomials since the coefficients at

ai.'ﬂljfl in the 1st one and at ‘IZ?JA in the 2nd one are nontrivial. Consequently, ¢; is
not divisible by ¢,.
Finally, let n > (k — 2)(n — 1). Then it follows from the explanations above that

oF = @?_n, and the same specialization as above proves that ¢; is not divisible by ¢,. W
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