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Abstract—Emerging applications with low-latency requirements such as real-time analytics, immersive media applications, and intelligent
virtual assistants have rendered Edge Computing as a critical computing infrastructure. Existing studies have explored the cloudlet
placement problem in a homogeneous scenario with different goals such as latency minimization, load balancing, energy efficiency, and
placement cost minimization. However, placing cloudlets in a highly heterogeneous deployment scenario considering the next-generation
5G networks and loT applications is still an open challenge. The novel requirements of these applications indicate that there is still a gap in
ensuring low-latency service guarantees when deploying cloudlets. Furthermore, deploying cloudlets in a cost-effective manner and
ensuring full coverage for all users in edge computing are other critical conflicting issues. In this article, we address these issues by
designing a bifactor approximation algorithm to solve the heterogeneous cloudlet placement problem to guarantee a bounded latency and
placement cost, while fully mapping user applications to appropriate cloudlets. We first formulate the problem as a multi-objective integer
programming model and show that it is a computationally NP-hard problem. We then propose a bifactor approximation algorithm, ACP, to
tackle its intractability. We investigate the effectiveness of ACP by performing extensive theoretical analysis and experiments on multiple
deployment scenarios based on New York City OpenData. We prove that ACP provides a (2,4)-approximation ratio for the latency and the
placement cost. The experimental results show that ACP obtains near-optimal results in a polynomial running time making it suitable for both
short-term and long-term cloudlet placement in heterogeneous deployment scenarios.

Index Terms—Edge computing, cloudlets, placement cost, latency, full coverage, approximation algorithm

1 INTRODUCTION

HE advances in wireless network technologies and
Tcomputational capabilities of smart connected devices
have now made it possible to use many novel and sophisti-
cated applications not feasible before. Domains such as
healthcare, connected vehicles, and smart cities have gen-
erally been beneficiaries of this innovation and so have
contemporary applications like live streaming on social
media apps and games on virtual reality headsets [1].
Despite massive improvements in mobile hardware capa-
bilities over past few years, it is still a challenge to run
computation and data-intensive applications on mobile
devices since they are restricted by weight, size, battery
life, and heat dissipation [2]. These restrictions impose lim-
itations on processing power, memory, and storage capaci-
ties of these devices.

Edge computing is a relatively new computing paradigm
that provides a distributed computing solution at the edge of
the network. As such, mobile users are able to consume the
computing resources in their vicinity. These resource-rich
components placed closer to the users are called “Cloudlets”
or “micro data centers” [3], [4]. The mobile devices can
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offload their resource-intensive applications to cloudlets to
augment their resources while experiencing significantly
reduced latency compared to the conventional cloud [5], [6].
Since cloudlets are geo-distributed, a challenge lies in strate-
gically placing them in an area to reduce the placement cost
while providing low-latency edge services.

Despite existing research literature in cloudlet placement
in edge computing, very few view the problem from the het-
erogeneous perspective and evolving needs of the next-gen-
eration 5G networks and IoT applications. As we move into
5G networks, presence of micro network operators (MNOs),
smaller cell towers, and short-range millimeter wave com-
munication lead to a highly localized and heterogeneous
deployment environment [7]. Cloudlet placement is at the
core of providing ultra-low latency services by the likes of
Verizon Inc. with their 5G Edge service [8]. Ensuring consis-
tent low-latency across the region and providing full cover-
age to all users is computationally and economically
expensive in such scenarios. Therefore, many factors such as
cost, latency, capacity, and coverage must be considered for
heterogeneous cloudlet placement. One-track approach to
optimize only one of these objectives, persistently presented
by multiple studies, is very limited in heterogeneous real
world scenarios. As a result, they fall short of addressing all
the practical aspects of the cloudlet placement problem.

In this paper, we address the placement challenges com-
prehensively by designing a bicriteria approximation algo-
rithm. Our goal is to deploy cloudlets with heterogeneous
capacities and coverage radius in a region to provide edge
services to heterogeneous devices in order to guarantee
bounded service latency, placement cost, and full coverage.
We formulate a thorough representation of the optimal
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heterogeneous cloudlet placement problem as an Integer
Program (IP).

The cloudlet placement problem is NP-hard as we
prove that the decision version of the problem is NP-com-
plete (see Theorem 1). For any NP-hard problem, it is not
possible to design algorithms that can simultaneously
achieve optimal results in polynomial time and for all
instances of the problem [9]. When designing a solution
for such problems, we must choose any two out of
these three properties. Designing either a meta-heuristic
approach or an approximation algorithm is an effective
way to solve such hard problems. While a fast converging
meta-heuristic approach is useful, one of the major limita-
tions of such approaches is the apparent lack of guarantees
on its solutions.

An approximation algorithm is a stronger notion where
we can formally claim that our proposed approximate cloud-
let placement (ACP) always results in near-optimal solution,
with simultaneously guaranteed theoretical upper-bounds
on both latency and cost, and ensures full device coverage
and consistent performance over all instances. We use the
linear programming (LP) relaxation of our IP formulation to
design ACP as a “bifactor” approximation algorithm, i.e., it
provides separate worst-case bounds for the two objectives.
Having a bifactor approximation allows us to isolate and
independently analyze the worst-case scenario for each
objective instead of the overall approximation of their linear
combination.

We perform extensive theoretical analysis and several
experiments to show the effectiveness of ACP in finding
approximate solutions in polynomial time for different
deployment scenarios. We prove that ACP provides a (2,4)-
approximation ratio for the latency and the placement cost,
while providing full coverage. Our experiments are
designed based on real data containing the latest WiFi hot-
spot locations and usage statistics obtained from NYC
OpenData [10], provided by NSF COSMOS [11]. The results
show that ACP efficiently finds near-optimal solutions in
these real world-based scenarios.

1.1 Related Work

We have divided our related work section into two catego-
ries: classical placement problem approaches and edge com-
puting placement approaches.

1.1.1 Classical Placement Problem Approaches

The classical approaches to tackle the placement problems
include approaches for facility location problems, clustering
problems, and assignment problems. The most studied
among them is the metric uncapacitated facility location
problem. Multiple studies [12], [13], [14], [15], [16] have pro-
posed approximation algorithms for this problem. Byrka
and Aardal [15] provided a bifactor approximation algo-
rithm for the facility cost and the connection cost, which are
analogous to our placement costs and latency. However,
there are no capacity constraints. Mahdian ef al. [12] addi-
tionally provided a 2-approximation algorithm for the soft-
capacitated version of the problem. However, capacity is a
hard constraint in our problem. Thus, these approaches are
not directly applicable to our problem.
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For capacitated k-facility location problem, Aardal et al.
[17] provided a (7 + ¢€) approximation algorithm for uniform
opening costs and non-uniform capacities by placing at
most 2k facilities. However, as full coverage service is signif-
icantly important in edge computing, it is not known that k
cloudlets will suffice in any scenario. Also, the costs depend
on multiple parameters such as the capacity of a cloudlet
and coverage radius. General clustering approaches such as
k-means and k-medoids do not apply well to our problem
for the same reasons. Raghavan et al. [18] did the first study
to formulate integer programming models for capacitated
mobile facility location problem. They provided algorithms
to find fractional LP solutions and an LP rounding heuristic
that works well with homogeneous facilities. However, the
heuristic is not guaranteed to terminate with a feasible inte-
ger solution.

Lin and Vitter [19] is a useful study since they provided
important assignment properties for an LP-based approxima-
tion algorithm for finding geometric means. Efficient approx-
imation algorithms are available for Generalized Assignment
Problems as presented in studies such as [20], [21] which
have hard capacity constraints. However, they are more suit-
able for task assignment with profit maximization.

1.1.2 Edge Computing Placement Approaches

Multiple clustering-based approaches have been proposed
to place cloudlets. Kang et al. [22] used a greedy geographic
clustering approach to balance workload and collaborative
scheduling to reduce access delay. Jia et al. [23] proposed
density-based clustering and k-means clustering of users to
minimize response time. Zhang et al. [24] focused on reduc-
ing latency by greedily selecting cloudlets with minimum
distance to the center of the user cluster. However, none of
them consider placement costs and heterogeneity of cloud-
lets in their approach. Furthermore, a cloudlet is most often
placed at the centroid of each cluster of users. This is unlike
real world where the connectivity requirements of the users
must be met individually.

Further greedy approaches include Zeng et al. [25], who
proposed a greedy-based algorithm that minimizes the num-
ber of cloudlets to be placed considering latency require-
ments. A greedy heuristic approach was proposed in [26] to
reduce access delay for users served from nearby access
points. Li et al. [27] proposed energy-aware placement of
cloudlets using swarm optimization, while assuming users
are mapped to cloudlets through base stations. Yao et al. [28]
presented a greedy approach with heterogeneous cloudlets
and placement costs. However, they considered user cover-
age in terms of probability of user contact with access points.
Only the last study directly considers the placement cost and
none of these studies consider full coverage of individual
users.

Other approaches include Wang et al. [29] proposing a
binary-based differential evolution cuckoo search (BDECS)
algorithm. They emphasized on deployment of cloudlets
based on cost and latency for Internet of Things (IoT) scenario.
However, they considered fixed placement cost ignoring het-
erogeneity. Fan and Ansari [30] proposed a Lagrangian heu-
ristic algorithm for cost aware placement to obtain sub-
optimal solutions. Their approach only indirectly addresses
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cloudlet heterogeneity and lacks device heterogeneity
entirely. Mondal et al. [31] proposed a hybrid cost-optimiza-
tion framework for optimal cloudlet placement specifically
for three-tier fiber wireless network topology. However, they
only proposed a mixed integer non-linear programming
model as their solution. Another study [32] investigates
deployment of edge servers cost-effectively so that the collec-
tive area of edge servers is maximized. Their focus is primar-
ily on maximizing coverage at a reduced placement cost.

Wang ef al. [33] used Mixed Integer Programming (MIP)
to find K locations to place edge servers. Their approach
uses CPLEX, an optimization solver, to get results. The
work has been extended in [34] by combining K-means clus-
tering and MIP. The placed servers are still homogeneous.
Ma et al. [35] used Particle Swarm Optimization (PSO) to
place K cloudlets at K access points (APs) to reduce access
delay. Like most other studies, they lack capacity considera-
tions, placement costs, and heterogeneity.

There have been a few studies that provide approxima-
tion algorithms for the cloudlet placement problem. Meng
et al. [36] use direct reduction of capacitated k-facility place-
ment problem [17] to their problem formulation to provide
a (7 + ¢) approximation bound. This is the best bound pro-
vided by them which assumes placement of up to 2k cloud-
lets with identical capacities. Xu et al. [26], which we
already discussed under greedy approaches, have also pro-
vided an approximation algorithm with a bound of 16(
1+ ¢€) on average access delay.

As summarized in Table 1, none of these studies provide
approximate solutions with worst-case performance guaran-
tees on both the placement cost and the latency. Moreover,
they do not investigate heterogeneous deployment. Another
point to consider is that the experiments performed in these
studies are based on either synthetic or randomly generated
networks. Only a few studies have used scenarios based on
real datasets for their experiments (cellular base stations
data: [27], [33], [34], transportation network data: [23]).
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Finally, none of these studies consider full mapping of indi-
vidual users or devices to cloudlets.

1.2 Organization

The rest of the paper is organized as follows. In Section 2,
we introduce the cloudlet placement problem and provide a
mathematical optimization model. In Section 3, we present
our proposed LP-based approximation approach, ACP, in
detail. In Section 4, we evaluate the performance of ACP by
extensive experiments. In Section 5, we summarize our
results and present possible directions for future research.

2 CLOUDLET PLACEMENT PROBLEM

We aim to efficiently place cloudlets to specific locations in a
region to serve the demands of all the end devices (IoT) that
require edge services. We model the region as a two-dimen-
sional space (grid), where cloudlets and devices can exist.
The devices could be at any point in the space. On the other
hand, we assume only a set of candidate points within the
grid are available where the cloudlets can be placed and the
devices can be best served from. The candidate points are
selected based on the load of user requests and the location
of user demands over a long period. The determination of
candidate points are also constrained by technological and
economic aspects such as available locations in the existing
infrastructure, network bottlenecks, lack of sufficient space,
unavailable private property, and high placement and oper-
ating expenses. The set of candidate points is hence defined
as P={py, ps, ..., p,}, where each refers to a preselected,
feasible placement location in the grid (in coordinate axes).

A set of cloudlets is denoted by C = (¢y, ¢, ..., ¢,). The
cloudlets are heterogeneous, and each ¢; € C is represented
by a 4-tuple ¢; = {I1;, M;, S}, r;} denoting its attributes: pro-
cessor capacity II; (in GHz), RAM M; (in GB), storage
capacity S; (in GB), and coverage radius r; (euclidean dis-
tance units). We define a distance function d(a, b) for calcu-
lating the euclidean distance between points a and b. A set
of heterogeneous devices requiring edge computing serv-
ices is denoted by & = (ey, ey, ..., €,). Each ¢; € £ is repre-
sented by a 4-tuple e; = {r;, m;, s;, \;} denoting its attributes,
where 7; is the processing demand (in GHz), m; is its mem-
ory demand (in GB), s; is its storage demand (in GB), and \;
represents the location of the device (in coordinate axes).

The incurred cost of placing cloudlet ¢; € C at a candidate
point p;, € P on the grid is defined by a cost function ®(c;,
py) (simply, ¢;.). The cost may include procurement cost,
space (rented, public) cost, and maintenance costs as
needed. We consider that the cost function is linearly corre-
lated with cloudlet capacities and coverage radius. While
our approach is applicable for a non-linear cost function, we
cannot theoretically bound the obtained cost in that case
(see Theorem 4).

Devices may experience delays in receiving their comput-
ing services based on the availability of bandwidth and dis-
tance metrics [37]. To capture that, we define a latency
function L(e;, p;) (simply, l;z) that represents the latency
when device e; € £ is served by a cloudlet placed at candidate
point p, € P of the grid. We assume a homogeneous band-
width across the grid in our model. As a result, latency is pre-
dominantly affected by distance. Well-known models have
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TABLE 2
Notations
Symbol Description
P set of candidate points
C set of cloudlets
& set of devices
Pr a candidate point in P
cj a cloudletin C
e adevicein &
I1;, M;, S; capacity parameters of ¢;
7§ coverage radius of c;
T, My, S demand parameters of ¢;
i coordinate location of e;

cost of placing c; at p,
latency between e; and p,

D(cj, py) or by,
L(E“ pk’) or llk

shown that latency is logarithmically related with distance in
wireless networks, including 5G. Our model supports any
latency function increasing on distance. The notations used in
our system model are summarized in Table 2.

Our goal is to simultaneously minimize the cost of
deploying heterogeneous cloudlets in the region and mini-
mize the latency in accessing edge services, while providing
the services to all devices (full coverage). This is a bicriteria
optimization problem and computationally NP-hard.

2.1 Optimal Cloudlet Placement

We now formulate the heterogeneous cloudlet placement
problem as a bicriteria optimization model. We define the
following decision variables:

1
Yir =90

and

1
aik:{o

We mathematically formulate the optimal cloudlet place-
ment (OCP) as an Integer Program (IP) as follows:

if cloudlet ¢; is placed at candidate point py,
otherwise,

if device e; is served from candidate point py,
otherwise.

Q=min} 7 >0 B Yk 1)
L=min) ;] >0  lwax
Subject to
w n
Z yie < [C| 2)
=1 k=1
d(Xi p)aix <D iy Vei €E,p € P (3)
J=1
v w
> miai <> My Vor €P (4)
i1 =1
> sian <Y Sy Vor € P (5)
i=1 Jj=1
> mian <Y My Vo, €P (6)
i-1 =1
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w

aj < Zyjk Ve; € &, o €P (7)
p=

> yp <1 Vo, €P (8)
j=1
> yp<i Ve €C (9)
k=1

Al = 1 Vei e& (10)
k=1
yjr €{0,1}  Ve¢;€Cp,€P (11)
;i € {O, 1} Ve, € &, Pr. € P. (12)

The objective functions shown in Eq. (1) minimize the
total cost of placing the cloudlets and the total latency suf-
fered by the devices. Constraint (2) ensures that the total
number of cloudlets placed in the grid does not exceed the
number of available cloudlets. Constraints (3) guarantee
that each device must be within the coverage range of some
cloudlet. Constraints (4), (5), and (6) satisfy supply and
demand in terms of memory, storage, and processing
requirements. Constraints (7) guarantee that a device can be
served from a candidate point only if at least one cloudlet is
placed there. Constraints (8) ensure that at most one cloud-
let is placed at any candidate point. Constraints (9) ensure
that a cloudlet can only be placed at a single candidate
point. Constraints (10) guarantee that all devices must be
served, and each is served from exactly one candidate point.
Finally, constraints (11) and (12) ensure the integrality
requirements of the decision variables.

OCP finds the optimal placement of the cloudlets mini-
mizing both the placement cost and the service latency,
while guaranteeing full coverage. Our goal is to solve OCP
in the presence of trade-offs between these two conflicting
objectives. OCP can run equally well or better without the
full coverage constraint or a lower coverage (e.g., 90%)
threshold. However, our goal is to look into low-latency
edge services for all devices, where latency of connection to
the cloud is unbearable. The cost obtained is an appropriate
representation of the worst cost at the time of planning.
Next, using an example we show the e-constraint method
and its limitations in solving our multi-objective problem.

2.2 Optimization Example

Fig. 1a represents a scenario with 20 grid points, 7 candidate
points, 25 devices, and 5 cloudlets to be placed such that the
optimization criteria of OCP are met. In this figure, the candi-
date points are denoted by numbered circles with their respec-
tive index. Likewise, low-demand devices are represented by
smartwatch icons, and high-demand devices are shown as
cellphone icons. For this example, the specifications of cloudlets
and devices are provided in Tables 3 and 4, respectively.

In this example, among the 5 available cloudlets, 1 is
large, 3 are medium, and 1 is of small size, according to their
capacity and coverage radius factor.

We now use the e-constraint method for solving our
multi-objective problem. In the e-constraint method, we
optimize one of the objective functions and use the other
objective functions as constraints [38]. We use this approach
to find a set of Pareto-optimal solutions, where none of the
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(a) A Cloudlet Placement Scenario

(b) Optimal Cost Placement
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(c) Optimal Latency Placement

Fig. 1. A cloudlet placement scenario along with single-objective optimal cloudlet placement solutions.

objective functions can be improved in value without
degrading the other objective value.

Minimizing Cost (OCP-Cost). Fig. 1b shows the perspec-
tive of minimizing only the cost (i.e., latency objective is
ignored), while providing full coverage. In the figure, the
sizes of cloudlets are depicted by the radius around the can-
didate point. The larger the radius, the larger is the cloudlet
placed at the candidate point. The devices can be observed
to be within the coverage of multiple cloudlets but they are
assigned optimally. The figure shows that only three (2
medium, 1 large) cloudlets are placed to serve all the devi-
ces, and the minimum cost is 127. However, this solution
does not lead to the minimum latency for the users (the
obtained latency is 48).

Minimizing Latency (OCP-Latency). Fig. 1c depicts the per-
spective of only minimizing the latency (i.e., cost is relaxed),
while providing full coverage. Unlike the solution of OCP-
Cost, the optimal solution of OCP-Latency consists of all
available cloudlets. The minimum latency is 22.

Cost-Latency Tradeoff. We now investigate how the Par-
eto-optimal solutions behave when using the e-constraint
method. Note that the other objective becomes an additional
constraint with different threshold values in OCP.

For our analysis, we use the latency value of OCP-Cost
solution as the initial threshold, which is an upper bound
on latency in the added constraint. We then gradually
decrease the threshold value until there is no solution to
OCP-Cost, meaning that we reach the optimal solution of
the latency objective. This is shown in Fig. 2. When the mini-
mum cost obtained by OCP-Cost is 127, the value of latency
is 48, but the best value of latency at this cost is 37 (see green

TABLE 3
Specifications of Cloudlets
Type 11; M; 5; T Pk
Large 20 20 20 3 63
Medium 10 10 10 2 32
Small 5 5 5 1 16
TABLE 4
Specifications of Devices
Type T m; S
High-Demand (Cellphone) 2 2 2
Low-Demand (Smartwatch) 1 1 1

“x”). By adding a new hard constraint on latency (e.g., 25),
the best achievable cost increases to 145. If we further
decrease the latency constraint to 22 (optimal latency), the
best cost becomes 175 (see red “x”).

All of these suggest a clear trade-off between cost and
latency, and optimizing one does not give the best value for
the other. It is even more challenging when the problem size
is large since the trade-off range becomes even larger. There-
fore, approximation of any one objective is insufficient,
which is why we need to design a bifactor approximation
algorithm. We discuss our proposed approach to address
this challenge in the upcoming sections.

3 BIFACTOR APPROXIMATION OF CLOUDLET
PLACEMENT

We design a bifactor approximation algorithm for the
cloudlet placement problem as shown in Algorithm 1. The
algorithm, called ACP, uses linear programming (LP) relax-
ation of OCP as a guide to obtain a feasible solution and to
provide separate bounds on the total placement cost and
the total latency. To achieve this, ACP runs in three phases
(two parts): 1) filtering, 2) rounding (the first part), and 3)
supplementing (the second part).

ACP receives the set of candidate points, cloudlets and
users, and the cost and latency matrices as inputs. It then sol-
ves LP—0OCP—Cost() to obtain fractional solutions v, a;, €
R (line 2). Two sets A¢ and A¢ are defined to store the map-
pings of cloudlets and devices to the candidate points, respec-
tively (lines 3-4). Each set holds a pair that shows such a
mapping. Next, ACP calculates the total fractional latency D;
for each device e; € £ to all candidate points and creates a set
of nearby candidates N; such that IV; is the set of fractionally
assigned (non-zero) candidate points within 2D; of the device

175 Q\
\
\\
150 %
Re.
125 “®o—eo-x- °
+ 100
Qo
(]
75
Varying
50 —e— Latency
—-o-- Cost
25
0
Q AQ N N [N
Latency

Fig. 2. Cost versus latency trade-off in OCP.
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(line 5-7). This is the “filtering” phase of the algorithm and has
a property that at least half of every device is assigned to candi-
dates in N; of the device (see Lemma 2). ACP then creates a
skipped set S and a temporary unassigned devices set 7. ACP
uses the temporary devices set to iteratively assign devices to
candidate points or skip them (lines 10-28).

Algorithm 1. ACP: Approximate Cloudlet Placement

1: Input:C, &, P, ®, L

2: (yj» ajy) < LP—0CP—Cost()

3: Ac=10 > cloudlet to candidate mapping

4: Ae =0 > device to candidate mapping
/* Filtering */

5: fore; € £do

6: D=3y, cplinay, o> Fractional total latency

7:  N; «— All p;, € P with aj;, > 0 within 2D; of ¢;

8 S=10 > Set of skipped devices

9:T=¢ > Temporary set of devices
/* Rouding */

10: while |T| > 0do

11: e «—MaxD(T)

12:  p; < BestCandidate (e;)
13: ¢ < BestCloudlet (e;, p;)
14: if ¢; = () then

15: S=SuU {61'}

16: else

17 Ag=Ag Ul(er, p))

18: Ac=Ac U (¢, pp}

19: Adjust remaining capacities of ¢;
20: E; — Alle, € £with p; € N,

21: while |E;| > 0do

> Device with the largest D;
> Closest p;, € N; toe;
> Selected cloudlet

> Extended set

22: e, +— MaxD (E;) >>Device with the largest D,
23: if RangeCap (e,,¢;) then
24: Ag = Ag U {(ey, p)}
25: Adjust remaining capacities of ¢;
26: T=T \ {ev}
27: E;=E;\ e}
28: T =T\ e}
/* Supplementing */

29: fore; € Sdo

30: (¢}, p}) — BestFeasiblePair (e;, Ac)
31: if (¢}, p;) = ) then

32: (¢}, p}) — UpgradeCloudlet (p})
33: A¢=AcUl(c, p)}

34:  Ag=Ag Ul(es, o)}

35 Adjust remaining capacities of ¢;

36: Calculate @, L

37: Output: Ag, Ac, @, L

Algorithm 2. BestCloudlet(e;, p;)

Cj — @
if {(c], p;)} € Ac then
if RangeCap (e;, ¢;) then
¢ —C
else
¢; — SmallestFeasibleCloudlet ()
return c;

> Cloudlet already exists

In each iteration, MaxD () function takes the temporary
devices set T as an input and returns a device, e;, that has
the largest value of total fractional latency, D; (line 11). This
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is to ensure the worst possible cases are handled first, which
simplifies the assignment problem as the algorithm pro-
gresses. Next, ACP selects candidate point p; from set N;
that leads to the lowest latency for e; by calling the Best-
Candidate (¢;) function. Then, the best cloudlet is selected
using the BestCloudlet (e;, p;) function, given in Algo-
rithm 2. If a cloudlet ¢ with sufficient capacity and range is
already placed at candidate point p; (Algorithm 2, lines 3-
4), c! is selected and returned as the best cloudlet ¢;. Other-
wise, the smallest possible cloudlet that can cover the device
is selected to be placed at p; (Algorithm 2, lines 7-8). If no
such a cloudlet is found, ie., BestCloudlet (e;, p;)
returns null (9), ACP simply skips the device by adding it
to S (lines 14-15). The skipped devices are handled in the
second part of the algorithm. The successful mappings of a
cloudlet to a candidate point and a device to a candidate
point are added to the respective solution sets A¢ and Ag¢
(lines 17-18). The demands (processing, memory, and stor-
age) of the assigned device e; are then subtracted from the
the capacity of the selected cloudlet c;.

For every device with a successfully selected candidate
point and feasible cloudlet, ACP creates an extended neigh-
borhood set E; containing all unassigned devices, e, € T,
that have candidate point p; in their neighborhood set N,
(line 20). ACP then assigns all devices in E; that are within
the radius and capacity of cloudlet ¢; and removes them
from 7" (line 22-26). These devices are prioritized based on
the value of their total fractional latencies. Device ¢; is finally
removed from the temporary set (Iine 28). This concludes the
“rounding” phase, where the assignments are finalized for
all devices except the skipped devices keptin S.

The second part of the algorithm (lines 29-35) is for all
skipped devices added to S. Here, ACP assigns each indi-
vidual device e; to the best existing candidate-cloudlet
pair {c},p;}. That is, the candidate point with the least
latency among the ones having feasible cloudlets for
device ¢; is chosen. If no feasible candidate-cloudlet pair is
found for the device, ACP then upgrades the cloudlet at the
least-latency candidate point p; so that it can meet the
device’s demand and cover it sufficiently (line 32). The
upgrade here is the addition of the capacity and radius
equivalent to the smallest cloudlet to the existing cloudlet.
This is the “supplementing” phase of ACP.

Once the mappings are completed for all devices, ACP
calculates the approximate cost (®) and the approximate
latency (L) based on the final mappings in Ac and Ag,
respectively (line 36). The algorithm terminates by display-
ing the mapping sets and the approximate values (line 37).

ACP has two notable properties: the latency for a device
does not go beyond the initial 2D; bound since it is still
assigned within 2D;, and the upgraded cloudlets do not
increase the overall cost by more than the cost of filtering
and rounding. We prove both bounds in Theorems 3 and
Theorem 4, and demonstrate that ACP is a (2,4)-approxima-
tion algorithm for the OCP problem. Our proposed algo-
rithm always finds a feasible solution with performance
guarantees if LP-OCP-Cost () has a feasible solution.
Given the cloudlet upgrades, ACP eventually covers all
devices skipped due to insufficient capacity or radius. We
structure our algorithm in this manner since checking if a
feasible solution exists for OCP is NP-complete. For that, we
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Fig. 3. Reduction of set cover decision problem to OCP.

need to strictly know, for every instance, if w cloudlets
placed across n candidate points are sufficient for covering v
devices. We prove this NP-completeness next.

Theorem 1 Checking feasibility of the OCP problem is NP-
complete.

Proof Given an instance and a feasible solution of the OCP
problem, we can verify if all devices are covered by the
deployed cloudlets in polynomial time. It takes O(|€])
time to check coverage for all devices. However, given an
arbitrary instance with w cloudlets, n candidate points,
and v devices, it is NP-complete to check if a feasible solu-
tion exists. We prove this by reducing the Set Cover deci-
sion problem to OCP and vice versa in polynomial time.

We first briefly explain the Set Cover problem. Given a
set of elements U = {1,2,...,u} called the universe and a
collection G of |G| sets whose union equals the universe,
the Set Cover decision problem is to identify whether
there is a sub-collection of G with k sets G¥ C G whose
union equals the universe U [39]. The decision version of
the set cover problem is NP-complete.

For a given instance of the Set Cover decision problem,
we can always construct an equivalent instance of the
OCP problem. In doing so, we construct a collection of
candidate point-to-device assignments, then the universe
is A¢, which equals to all assignments to cover the devices.
Each device is required to be covered by at least one
cloudlet. For every set (and their elements) in the collec-
tion set of set-cover (G, we construct a set of corresponding
assignments in A¢ and assume it is the set of assignments
that can be covered by deploying a cloudlet ¢ on a candi-
date point p. Intuitively, the union of all such sets equals
to Ag¢. The set of cloudlets placed at the candidate points
in Ag to cover all devices is hence A¢.

We claim that there is a sub-collection of G with k& sets,
whose union equals the universe, if and only if there
exist k candidate points to deploy cloudlets, which can
cover all devices. We illustrate the reduction using an
example of Set Cover decision problem with 4 elements
{e1,...,es}, and OCP with 4 devices, 3 cloudlets, and 3
candidate points (as shown in Fig. 3). In the example, the
sub-collections of G are G = {es, €1, €4}, G2 = {e, €1}, and
G5 = {e3}. The minimum number of subsets whose union
equals the universe set is £ = 2, with G1 and G3. Now, in
the corresponding OCP problem, {es} can be covered
from p;, {e4,e1,€e4} are the devices that can be covered
from p,, and {e;,es} can be covered from p;. Placing

Proof We need to prove )

cloudlets ¢; and ¢; on p; and p, respectively is sufficient to
cover all devices. Thus, the minimum number of candi-
date points to deploy cloudlets is 2. The assignment set
is Ae = {(p1, €3), (2, €2), (02, €1), (02, €4) }, and the cloudlet
assignment setis Ac = {(p1, 1), (P2, 2)}.

Conversely, if we can deploy cloudlets on k candidate
points to cover devices, then we can select corresponding k
sets from G. As all devices are covered, the union of the
sub-collection sets of G equals the universe. Therefore,
since the Set Cover decision problem is an NP-complete
problem, checking feasibility of the OCP problem is NP-
complete. o

To prove the bounds, we first need to prove the following

lemma.

Lemma 2 Using LP—0CP—Cost(), at least half of every

device e; € & is assigned to the candidate points in its neighbor-
hood set N;.

pen; @i, = 1/2. Let X;(B) denote
the subset of candidate points to which device e; is frac-
tionally assigned and are more than BD; latency from e;.
Therefore, N; in our formulation is equivalent to remain-
ing candidate points to which e; is fractionally assigned,
ie., Vp, ¢ X;(B), where B =2.

Let zi, = >, cpaj,. We know that for any feasible
solution, z;, = 1. Suppose if > preXs(p) i > %" Then,

PrEXi(B) or & Xi(B)
> Z Lir ajk

PLEXi(B)
>pD; Y ap,

PrEXi(B)
> BD;,—
B

> D,

S . .
which is a co.ntrad1ct10n. Therefore, > peeX(p) Gir < 5
And by extension, we have

1 1
Z az‘k,zzik<1—5> > I—B.
B

o ¢ Xi

If we set 8 = 2, which is our condition for 2D;,
2opeé X2 %k = 1/2. This proves 3, .y aj >1/2. In
other words, the sum of non-zero fractional assignments
to filtered candidate points in NV; is at least 1/2. O

Theorem 3 ACP is a 2-approximation algorithm for latency

(L < 2L).

Proof ACP begins by assigning device e; with the largest D;

to the closest candidate point p; in its neighborhood set V;
(within 2D; of ¢;). Any device selected using this criterion
is always assigned to a candidate point within 2D;.

Next, it builds an extended set for every candidate
point p; selected above. The extended set contains all
devices e, € £ that have p; in their respective neighbor-
hood set N,. All devices that can be covered by
cloudlet ¢; placed at p; are assigned to p;. Since this p; is
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in N, of any device e, (by the definition of the extended
set), all such devices are within 2D, from p;.

Any skipped device ¢; € S is assigned in the second
part of the algorithm. These devices are evaluated
against cloudlet-candidate point pairs established in the
solution set A¢ in the first part. An important observation
here is that the devices are skipped if and only if they
were selected as the initial device (in line 11) with the
largest D, i.e., they are never skipped from an extended
set. This means an empty (null) cloudlet was returned by
BestCloudlet () function due to capacity or radius
constraint. Since we can upgrade the cloudlet when the
BestFeasiblePair() has insufficient capacity or
radius, any cloudlet-candidate pair assigned in the sec-
ond part should be either in the device’s N; or not in V;.

Ifitisin N;, we know the latency is within 2D;. If it is not
in N;, it means BestFeasiblePair (), which always
selects the candidate point with the least latency among
available, has found a candidate point with better latency
than the candidate points in N;. So, the latency is still
within 2D;. Note that if no candidate point is feasible, ACP
will upgrade the cloudlet, and the latency will remain
in 2D;. Therefore, all skipped devices are within 2D; as
well. Mathematically, we have

L<) 2D, (13)
e €€
We know that
Di= Y lya. (14)
pLEP

Since all individual devices are within 2D;, the sum over
all devices is also within twice the value of LP latency,
denoted by L*.

S Di< YN liray,

;€€ prLEP e; €E
> Disl
;€€
2y Di<2L’
e; €€
L<2L'.

Since the LP latency (L") is a lower-bound on the opti-
mal latency value of the OCP problem (g‘ < L),ACPisa
2-approximation algorithm for latency (L < 2L). O

Theorem 4 ACP is a 4-approximation algorithm for placement
cost (B < 4P).

Proof We prove the placement cost bound for ACP using
properties of the LP-OCP-Cost () solution, linearity of
the cost function, and nature of the upgrades.

The solution of ACP is based on an important assign-
ment property, where for every device ¢;, at least half of
it is fractionally assigned to its neighborhood set N; (see
Lemma 2).

Y @ =1/2 (15)

PREN;
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As we start assigning devices to the candidate points in
their IV; and cloudlets to those candidate points, we round
the fractional o}, and v}, values to either O or 1 to obtain the
approximate assignments a;, and g, respectively (Algo-
rithm 1, line 17-18). Since every device is assigned to
exactly one candidate point in ACP (also in OCP, con-
straint (12)), we have that the approximate device to
cloudlet assignment > el a;, =1, Ye; € £. Combining
with Eq. (15), this leads us to

<2y ai (16)

PEEN; PEEN;

There is also a mathematical relationship between the
two decision variables based on constraint (7) of OCP.
The LP-OCP-Cost () solution must follow this con-
straint for a feasible solution. Thus, we have

ay <Dy

¢j eC

Ve, € &, p, € P. 17

Since the relation above is true for every candidate
point p;, € P, itis true for sum over all p;, € V;. Thus,

D < D D Uk

PLEN; pREN; c;€C

Ve; € . (18)

Combining Egs. (16) and (18), we get

D a<2), >y

PLEN; prEN; ¢;€C

Ve; € E. (19)

In ACP, exactly one cloudlet is placed at p;, to which a
device ¢; is assigned, and a device is assigned to exactly
one p;, which gives us the relation

S k=Y au

cjeC pLEP

Ve; € €. (20)

This equation implies that every device is served by a
single cloudlet uniquely placed at a candidate point.

Since ch-ec Yji. is equal to the value of > _,a; for
each device e; and from Eq. (19), we have

SN T2y (21)

pLEN; (’jEC prEN; {ZJ‘EC

pLEP

Having a linear cost function based on capacity and
radius of the cloudlets, any change in the objective value
(cost) from LP-OCP-Cost () to ACP is linearly propor-
tional to a change in yj; values over all candidate points
and cloudlets (as seen in Eq. (21)). This is because no capac-
ity other than the cloudlets fractionally used in LP-OCP-
Cost () isused (only rounded) in the first part of ACP. The
added capacity, hence the added cost, only comes from the
upgrades in the second part of ACP. If the set of the
upgrades (c;) added is £, the overall approximate cost is
given by

® = DD Ut Y D il

c;€C prEN; r]* eL PLEN;

From Lemma 5, the upgrades do not exceed the over-
all placement cost of cloudlets placed in the first part of
ACP.
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<2y D bl

(’jEC prEN;

As all candidate points not in N; of devices are never
chosen for placement, we can perform the above sum
over all candidate points in P, and using Eq. (21) we have

®<2x2Y > ¢

jeC keP

® < 40*

Since the LP cost (®) is a lower-bound on the cost
value of the optimal solution, ACP is a 4-approximation
algorithm for the placement cost (® < 4P). O

Lemma 5 The upgrade cost does not exceed the cost of cloudlets
placed in the first part of ACP.

Proof Based on Lemma 2, at least half-of each device e; is
assigned to the candidate points in their N; by LP-OCP-
Cost (). Consequently, at least half of the device
demands are met by placing cloudlets in ;. Since devices
are either assigned or skipped in the first part, the
upgrades need to meet at most the remaining half of the
overall demands. Hence, in the worst case, the overall
capacity and radius of the cloudlets have to be doubled
by upgrading them. Again, we know that each upgrade is
no larger than the size of the smallest cloudlet. If only
smallest cloudlets are being used to cover the demands, it
leads to the least possible cost for that demand since
cloudlet placement is binary (either place whole cloudlet
or none). This is at worst as costly as the placements in
the first part. Therefore, the worst cost of upgrades does
not exceed the cost of the first part of ACP. O

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

As much as we have theoretically demonstrated the perfor-
mance guarantees of our approach, the practical scenarios
where the approach needs to be implemented can be different
from the extreme cases we analyzed in the proofs. Thus, we
perform an extensive set of experiments to investigate the
effectiveness of ACP. For our deployment scenarios, we use
the five boroughs of New York City as it has been selected by
National Science Foundation (INSF) as a testbed for the new
wave of mobile technology [11], [40]. Also, the presence of
NYC Open Data [10] allows us to access the latest information
about implemented hotspot locations, types of placement
locations, and usage statistics. The primary datasets that we
utilize for our experiments are: NYC WiFi Hotspot Locations,
LinkNYC Map, and LinkNYC Usage Statistics.

To setup the experiments, we treat the five boroughs of
New York City as individual scenarios since they provide
sufficient variety in hotspot locations, candidate point selec-
tion, and usage metrics. NYC Open Data has equivalent 2D
coordinates defined for each geolocation representing a
WiFi hotspot or Kiosk. We use the exact locations in our
experiments without any simplification or reduction so the
experiments represent as close of a scenario to the real
world as possible. The hostspot locations represent the
device locations in our setup. Likewise, the hotspot loca-
tions that represent a feasible space for cloudlet placement

1795
TABLE 5
Experiment Scenarios

Scenario [P IC| €]
Staten Island 7-10 5-8 59-71
Bronx 31-40 24-31 190-210
Queens 57-69 44-52 321-349
Brooklyn 81-97 61-73 428-451
Manhattan 113-127 81-96 1042-1091

such as a subway station or a local library serve as a candi-
date point.

The device demands (processing, memory, storage) are
randomly selected from a uniform distribution, X ~ U(5, 20)
to signify heterogeneous demands. This broad range of
demands also signifies that we are accounting for multiple
devices at some hotspot locations. The cloudlet capacities are
subsequently specified based on the total demand of the
devices in each scenario. Finally, the coverage radii of the
cloudlets is based on the mean latency of the devices from
the candidate points. Each scenario represents a set of experi-
ments than a single experiment. We randomly draw fixed
number of candidate points and devices from each scenario
to create 30 similarly-sized sub-scenarios. This provides fur-
ther experimental variety and ability to statistically analyze
the performance at scenarios of different sizes and scales.
The experiment scenarios and their deployment sizes are
summarized in Table 5.

We run four different types of experiments to compre-
hensively evaluate and compare the performance of the pro-
posed approach ACP to the three related approaches: the
Optimal Cost of the Cloudlet Placement (OCP-Cost), the
Optimal Latency of the Cloudlet Placement (OCP-Latency),
and the Genetic Algorithm-based Cloudlet Placement
(GACP), proposed in [41]. The first experiment shows the
coverage of each approach, visualizing the device assign-
ments and the obtained locations for the cloudlet placement.
The next two experiments show the comparisons for the
placement cost and the latency individually. Finally, we
investigate the scalability of the approaches.

The optimal results from OCP-Cost and OCP-Latency are
found using IBM ILOG CPLEX Concert Technology API for
Java [42]. ACP and GACP partially use CPLEX to obtain LP
results to guide their respective solution approaches. It is
noteworthy that solving any LP optimally (unlike IP) using
CPLEX takes polynomial time as it is in P, and other
approaches can be used to obtain optimal fractional results.
Both ACP and GACP are implemented in the same version
of Java, and the experiments for all approaches are run on
the same JVM on the Nautilus HyperCluster [43] with 16
CPU cores and 64 GB RAM. Note that we could not com-
pare our results with other existing studies because they
either do not have the same objectives or have different con-
straints as we discussed in Section 1.1. Hence, any direct
comparisons would be unfair. It is also noteworthy that
CPLEX provides the optimal results for the small cases of
the problem, which is used as a proper benchmark. How-
ever, it is not able to obtain any results for large-scale prob-
lems due to NP-hardness of the problem. GACP likewise
struggles to converge with full coverage when the experi-
ment instances have narrow solution spaces. As a result,
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Fig. 4. Cloudlet coverage.
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Fig. 5. Summary of Cost and Latency values. GACP* denotes only the instances unable to obtain full coverage due to indefinite convergence time.
OCP-Cost* denotes that CPLEX did not converge to an optimal solution, and the Percentage Gap value from a node-limited CPLEX run has been

used to derive the “best estimated” optimal value.

OCP-Cost and GACP have partial but valid results which
are explained further in the analysis section.

4.2 Analysis of Results

We first compare the results of ACP with OCP-Cost, OCP-
Latency, and GACP approaches in terms of device cover-
age. In Fig. 4, we visualize the locations of the placed
cloudlets using shaded circles (larger circles represent
larger cloudlets) and the devices covered by those cloud-
lets with different markers (using the same color) in each
approach. As we can see, OCP-Cost, shown in Fig. 4a, uses
the minimum cloudlet resources to obtain the minimum
cost. OCP-Latency, shown in Fig. 4b, covers devices with
the minimum latency (the assignment of the devices are
mostly to their closest cloudlets, and an additional cloudlet
has been used, compared to that of OCP-Cost). GACP,
shown in Fig. 4d, effectively clusters the devices around
the placed cloudlets while using the same number of
cloudlets as OCP-Cost. However, it uses two large cloud-
lets since a medium cloudlet is mutated by GACP to a
large cloudlet. So, it obtains a higher cost. Likewise, the
latency is not minimized in GACP since some devices are
far away from their mapped cloudlet despite the cluster-
ing. In contrast, ACP, shown in Fig. 4c, achieves coverage
similar to OCP-Cost and OCP-Latency. The overall cover-
age scenario of ACP can be seen as a blend of these two
optimal benchmarks. ACP reflects the optimal solutions
closely while taking significantly less running time. We
analyze them in detail next.

Fig. 5a shows the placement costs obtained by the
approaches. Before explaining the results, we should note
that CPLEX was not able to converge to provably optimal sol-
utions for OCP-Cost for more than 24 hours. Hence, a node-

limited solution was used to best estimate the optimal value
(presented by OCP-Cost*) based on the solution gap value
given by CPLEX. The average OCP-Cost* solution gap for
each scenario is presented in Fig. 6b. Likewise, GACP was not
able to converge with full coverage for all instances. Hence,
solutions with partial (yet high) coverage values are pre-
sented for comparison as indicated by GACP*. The amount of
coverage GACP* achieved on average is shown in Fig. 6a.

The results show that the costs obtained by ACP are very
close (and much lower than the proven theoretical bound) to
the optimal costs in all scenarios. Although GACP* costs in
some scenarios are lower, it is because GACP* does not cover
all devices. For the largest Manhattan scenario, ACP, cover-
ing all devices, obtains observably lower cost than GACP*,
which only covers 85% devices on average. Costs obtained
by ACP are similarly much lower than OCP-Latency costs.

The latency values presented in Fig. 5b show that ACP
obtains higher latency than GACP*. However, note that the
results of GACP* do not include the high latency values by
simply not covering those devices. A direct comparison
with full coverage GACP in Staten Island shows no signifi-
cant difference in latency. In addition, despite the fact that
latency values of OCP-Cost* and ACP look comparable for
Staten Island, Bronx, and Queens, ACP is able to achieve
incrementally lower latency than OCP-Cost* as the problem
size grows. Also, all latency values of ACP for the scenarios
are still within the proven theoretical bound.

Finally, we perform experiments to observe running time
and scalability of the approaches. Since the number of
cloudlets is already determined from the device demand,
we only consider the number of candidate points and the
number of devices in our experiments. Fig. 6c shows run-
ning time as a function of the number of candidate points
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Fig. 6. Partial solution scenarios and running time.

and the number of devices in a 3D plot. The vertical axis
uses a logarithmic scale (logs) that shows the running time
in seconds. As we move from left to right, the data points
are closer to the viewer’s perspective, and they correspond
from the smallest to the largest experiment scenarios in
Table 5. We can observe that ACP is faster than the com-
pared approaches in all instances except for the largest sce-
nario (Manhattan), where OCP-Latency is faster. Being an
NP-hard problem, both OCP-Cost and OCP-Latency have
random bursts (peaks) in running time. In addition, both of
them were not able to find a feasible solution for some
instances. ACP and GACP, on the other hand, can find a
solution even in those scenarios because they can perform
upgrades and mutations, respectively.

GACP* seems to coincide in terms of running time with
ACP in most instances because both ACP and GACP rely
on LP-OCP-Cost () solution, which makes up the majority
portion of their running time. However, purely ACP run-
ning time is significantly faster than purely GACP conver-
gence time. Moreover, ACP achieves full coverage which
GACP is simply unable for majority of instances. One of the
weakness of GACP is that it may never converge for diffi-
cult problem instances. This can be seen in Fig. 6a where the
coverage values decrease as the problem size increases.
Therefore, ACP is the only approach which guarantees full
coverage in a polynomial running time.

To summarize, ACP is able to reduce cost and latency
by performing smaller upgrades to existing cloudlets
instead of provisioning new cloudlets. Practically, if
appropriate estimates are made about user demands and
their distribution, and a reasonable set of candidate points
are established, ACP does not even need the upgrades to
find a feasible solution. In that case, we have even tighter
bounds on cost and latency. This is clearly observable in
our results above. The efficient, polynomial running time
makes this method suitable for both short-term and long-
term placements.

Our source code and datasets are publicly available
online. The experiments can be reproduced using our Code
Ocean capsule available at [44].

5 CONCLUSION

The primary motivation of edge computing is to mitigate
latency suffered by the users and save network bandwidth
by placing resources closer to where they are consumed. In
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highly heterogeneous scenarios like 5G networks and IoT,
deployment cost becomes an equally important parameter
since it is extremely expensive to cover all users. Indiscrimi-
nate placement or disregard for heterogeneity necessarily
make any approach both inefficient and ineffective in next
generation networks. Existing literature lacks considering
heterogeneous scenarios while simultaneously reducing
cost and latency. In this paper, we address these challenges
by designing a bifactor approximation algorithm for the het-
erogeneous cloudlet placement problem. Our approach,
ACP, runs in polynomial time and provides a (2,4) approxi-
mation bound for latency and cost, respectively. The rigor-
ous experimental results show that ACP is scalable and
achieves close to the optimal results in experimental scenar-
ios. Our approach, however, does not consider mobility fac-
tors in the placement decision, which need a more
meticulous formulation. Mobility can be handled either pro-
actively (predictive placement) or reactively (adaptive
placement), both of which are possible extensions of our
work. Further enhancements can also be done by introduc-
ing 3D coverage, adaptive user mapping, and distributed
placement decisions.
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