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ABSTRACT

Bubble and crystal textures evolve during magma ascent, altering properties that control
ascent such as permeability and viscosity. Eruption style results from feedbacks between
ascent, bubble nucleation and growth, microlite crystallization, and gas loss, all processes
recorded in pyroclasts. We show that pyroclasts of the mafic Curacautin ignimbrite of Llaima
volcano, Chile, record a history of repeated autobrecciation, fusing, and crystallization. We
identified pyroclasts with domains of heterogeneous vesicle textures in sharp contact with
one another that are overprinted by extensive microlite crystallization. Broken crystals with
long axes (/) >10 pum record fragmentation events during the eruption. A second population
of unbroken microlites with / <10 um overprint sutures between fused domains, suggesting
the highly crystalline groundmass formed at shallow depths after autobrecciation and fusing.
Nearly all pyroclasts contain plutonic and ancestral Llaima lithics as inclusions, implying
that fusing occurs from a few kilometers depth to as shallow as the surface. We propose that
Curacautin ignimbrite magma autobrecciated during ascent and proto-pyroclasts remained
melt rich enough to fuse together. Lithics from the conduit margins were entrained into the
proto-pyroclasts before fusing. Autobrecciation broke existing phenocrysts and microlites;
rapid post-fusing crystallization then generated the highly crystalline groundmass. This
proposed conduit process has implications for interpreting the products of mafic explosive
eruptions.

INTRODUCTION zation dynamics, magma ascent, and gas loss

The textural properties of erupted magmas
and their associated deposits record conduit
ascent dynamics and eruption mechanics, in
particular the processes that lead to crystalli-
zation, gas loss, and fragmentation. For exam-
ple, bubble textures in mafic magmas inform
on the state of magmatic volatiles at the time
of eruption (Valdivia et al., 2022), microlites
are used to investigate magma ascent rates
and rheological evolution (Vona et al., 2011;
Arzilli et al., 2019), broken crystals record
fragmentation and healing of melt (Cordon-
nier et al., 2012; Taddeucci et al., 2021), and
deposit granulometry records fragmentation
style and efficiency (White and Valentine,
2016). The interplay of bubble and crystalli-

gives rise to the diversity of eruption styles
(Cassidy et al., 2018).

We examined pyroclast (clast) textures from
the mafic Curacautin ignimbrite of Llaima vol-
cano, Chile. We argue that domains of hetero-
geneous textures and entrained lithic fragments
within clasts reflect episodes of autobrecciation
and fusing of magma during ascent. In addition,
size-restricted fractured plagioclase microlites
suggest distinct episodes of crystallization,
which has implications for using crystal size
distributions to constrain decompression rates.
These textures challenge our understanding of
mafic explosive volcanism and impart a need
for scrutinizing potentially overlooked pyroclast
textures.

The Curacautin Eruption

The Curacautin ignimbrite is a 4.0-4.5
km?® (dense-rock equivalent) unwelded basal-
tic andesite ignimbrite that erupted at ca. 12.6
ka from Llaima volcano, Chile (Marshall et al.,
2022). Curacautin ignimbrite clasts exhibit
two vesicle populations: a polylobate, tortuous
vesicle network of 99% pore connectivity; and
a second population of smaller, micrometer-
scale, isolated vesicles (Fig. 1; Valdivia et al.,
2022). The groundmass contains high microlite
number densities and little glass. Recent stud-
ies suggest the eruption was the result of brittle
fragmentation of a rapidly ascending, largely
non-degassed magma (Marshall et al., 2022;
Valdivia et al., 2022).

METHODS

We collected bulk Curacautin ignimbrite
deposits and hand samples in the field and
selected sieved clasts for further investigation.
We used clast textures to constrain conduit pro-
cesses during the eruption. High-magnification
images were acquired using a tabletop scanner,
scanning electron microscopy, and X-ray com-
puted microtomography (uCT). Marshall et al.
(2022) measured plagioclase microlite number
densities, and Valdivia et al. (2022) computed
crystal size distributions. We fit regressions to
plagioclase crystal size distributions for size
populations with long axes (/) <10 pm and
>10 pm (see extended methods in the Supple-
mental Material').

RESULTS
Domains of heterogeneous vesicle textures
exist in all hand samples, 86% of thin sections

'Supplemental Material. Detailed sampling methods and locations, stratigraphic descriptions for samples analyzed in this study, operating conditions for
sample imaging, crystal size distribution analyses of Valdivia et al. (2022), and Pearson coefficients for regressions in Figure 3. Please visit https://doi.org/10.1130
/GEOL.S.20164283 to access the supplemental material, and contact editing @ geosociety.org with any questions.
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(54 of 63), and 53% of pCT data sets (25 of
47) (Figs. 2A-2F). Some domains are separated
by void space but most commonly are in sharp
contact with one another. When these domains
are in sharp contact, the groundmass across
both domains is characterized by high micro-
lite crystallinities of plagioclase, pyroxene,
olivine, and Fe-Ti oxides and 29%—-54% glass
(Figs. 2D-2F). We were unable to collect glass
compositions across fused domains because the
groundmass of all clasts is too microlite rich. We
identified entrained lithics of plutonic rocks and
mafic to intermediate lavas in all hand samples
and 92% of our thin sections and pCT data sets
(101 of 110). Lithics are mostly medium ash to
fine lapilli in size (Figs. 1B, 1C, 2B, and 2C).
We observe broken phenocrysts and microlites
at high magnifications (Figs. 2G-2I).

DISCUSSION

Crystallization times () inferred from crys-
tal size distributions (Fig. 3) suggest disequilib-
rium crystallization of microlites and, thus, rapid
ascent (Valdivia et al., 2022). Increased magma
bulk viscosity and the abundant microlites con-
fined bubbles during expansion, leading to the
convoluted, but mostly connected, vesicle net-
work. Bubble number densities of 1.1-2.3 x 10°
mm~* and permeabilities of 0.3-6 x 10~ m?
(Valdivia et al., 2022) are similar to those of
other volatile-driven mafic explosive eruptions,

Figure 1. Microscale
Curacautin (Chile) ignim-
brite clast textures in thin
section captured in plain
polarized light. (A) Block
consisting of agglomer-
ated pyroclasts (Marshall
et al.,, 2022). (B) Small
block that contains crys-

such as the 60 ka Fontana Lapilli basalt and
Masaya Triple Layer eruptions (Nicaragua;
Constantini et al., 2009; Bamber et al. 2020),
the 122 BCE Etna eruption (Italy; Coltelli et al.,
1998; Houghton et al., 2004; Sable et al., 2006;
Moitra et al., 2013), the 1886 CE Tarawera erup-
tion (New Zealand; Carey et al., 2007; Sable
et al., 2009; Schauroth et al., 2016), and mafic
ignimbrites of the Roman magmatic province
(Giordano et al., 2010; Vinkler et al., 2012).
Valdivia et al. (2022) estimated a minimum
average decompression rate for the Curacau-
tin ignimbrite eruption of 1.4 MPa s~! in the
upper conduit. These results further highlight
the role of rapid ascent for driving explosive
mafic volcanism (Szramek et al., 2006; Moitra
et al., 2018; Arzilli et al., 2019).

Curacautin ignimbrite clast textures record
repeated episodes of autobrecciation and/or
fragmentation, particle recapture and fusing,
and further fragmentation within the conduit
and during the eruption. The strongest evi-
dence for autobrecciation and recapture are the
heterogeneous vesicle domains within clasts
(Fig. 2). Here, autobrecciation represents the
shear-induced tearing of magma as it ascends,
analogous to the processes in a‘a flows (Fig. 4).
Fragmentation, the breakup of magma into dis-
crete pieces, may occur simultaneously due to
gas overpressure and/or localized phreatomag-
matic activity (Gonnermann, 2015). Like ash

tal mush and intermediate
lavas (white arrow). (C)
Block with dioritic and
intermediate lava lithics.
(D) Flow banding between
two domains of non-
sheared magma (dotted
white lines). (E) Dense,
jointed clast or cored
bomb (Sottili et al., 2010).

sintering during rhyolitic eruptions (Gardner
et al., 2017; Wadsworth et al., 2020), fusing is
the welding together of melt-rich particles above
the glass transition temperature within the con-
duit prior to eruption. Unlike sintering, however,
fused clasts retain their original porosity. Fused
domains exist throughout clasts, suggesting this
process occurred when proto-clasts were still
melt rich and hot enough to fully fuse prior to
climactic fragmentation. The lack of deforma-
tion within fused clasts suggests autobrecciation
likely occurred prior to final fragmentation into
a turbulent gas-pyroclast mixture; however, we
recognize that fusing may have occurred in this
phase as well. We identified fused clasts from
the micrometer scale to as large as fine block
in size, the latter being the upper limit of sizes
preserved in accessible Curacautin ignimbrite
deposits, implying this process occurred over a
range of spatial scales (Figs. 1 and 2). The ubig-
uity of fusing suggests that autobrecciation may
have extended across the entire conduit (Fig. 4).

The contacts between fused domains are
overprinted with extensive microlite crystalli-
zation (Figs. 2 and 4), indicating that the fin-
est microlite population (long axis / < 10 pm)
formed post-fusing and therefore post—initial
fragmentation (Fig. 3). Additionally, while
larger plagioclase microlites are commonly bro-
ken, microlites with / < 10 pm are largely intact,
further indicating crystallization post-fusing.
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Figure 2. Microscale Cura-
cautin (Chile) ignimbrite
clast textures. (A) Mul-

Subtracting the / < 10 pm plagioclase popu-
lation reduces the plagioclase fraction from
29%—44% to 17%—29% and increases the glass
content from 25%—54% to 40%—66% (Table S1
in the Supplemental Material), which may have
enabled fusing. This interpretation is further
supported by two separate regressions in pla-
gioclase crystal size distributions (Fig. 3). The
smallest size population likely formed after the
cycles of autobrecciation and fusing, perhaps
even syneruptively. Rapid microlite crystalli-
zation is expected in the shallow conduit where
undercooling is highest and would be further
enhanced by the increased rate of gas loss fol-
lowing fragmentation (Hammer, 2004, 2008).
The pervasive inclusion of lithics within
Curacautin ignimbrite clasts allows us to con-
strain the depth of autobrecciation (Fig. 4). We
suggest that lithics were entrained via a combi-
nation of shear-induced erosion, phreatic, and/or

phreatomagmatic processes along conduit walls.
While phreatic or phreatomagmatic activity may
have played a role in fracturing wall rock (e.g.,
Owen et al., 2019, their figure 15), there is no
evidence that it played a significant role in the
explosivity of the Curacautin ignimbrite erup-
tion (Marshall et al., 2022). The presence of
plutonic lithics and mafic to intermediate lavas
within the same clasts suggests that autobrec-
ciation and wall-rock rupture and entrainment
occurred over depths from 2 km to as shal-
low as Llaima’s ancestral shield (<1 km). The
abundance of entrained lithics in nearly all clasts
also implies mingling across the entire conduit,
a process Bamber et al. (2020) attributed to lat-
eral variations in velocity, implying that fusing
is not a localized phenomenon (Fig. 4). Alter-
natively, a narrow conduit from an elongated
dike or ring fracture would increase the ratio of
surface area to volume, promoting shear across
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tiple contrasting vesicle
texture domains. (B) Flow
banding around a lithic
inclusion. (C) Layering
of contrasting domains
and lithic inclusion.
(D,E) Scanning electron
microscopy (SEM) images
of fused clasts. (F) Tomog-
raphy scan of a clast with
multiple fused domains
(white polygons) and lithic
inclusions (arrow). Fused
domains are pervasive
in Curacautin ignimbrite
clasts and commonly
trapped in the clast inte-
rior. (G-1) SEM images
of fractured plagioclase
microlites surrounded
by smaller, unbroken
microlites.

the conduit and thus pervasive autobrecciation
and enabling the dispersal of entrained lithics
across the conduit.

Implications for Eruption Interpretation

Bulk properties of fused clasts reflect min-
gled domains of magma with different vesicular-
ity, permeability, and crystallinity. This presents
a challenge for the use of clast-scale data for
eruption interpretation, such as using bubble and
crystal data to estimate ascent rates and time
scales of crystallization. The incorporation and
fusing of both lithics and smaller clasts within
larger clasts alters densities, obscuring the true
nature of the bulk magma. Fused clasts also alter
the pre-fused fragmented grain-size distribution,
which alters final deposit granulometry (Fig. 2;
Giachetti et al., 2021).

Our hypothesis that / <10 pm plagio-
clase microlites formed following fusing has



24 T T T T T T

Figure 3. Curacautin
(Chile) ignimbrite crys-

22 = Contiowim | tal size distributions
T 4 Unit 1 (1op) from Valdivia et al. (2022)

2P B élz oome | with regressions fit to
B & ° Unit 4 long axis, I, <10 pum and

- : £ — s10um I>10 um size popula-
18 \\ 12 owm tions (inset). n° is the
§ \ 105 "0.02 0.04 0.06 0.08 0.1 0.2 0.14 plagioclase nucleation
;16 \s\\\s length (mm) i density. D.owntl_.lrn§ in
N crystal size distribu-

tions are likely due to
the difficulty of inter-

\\A secting small microlites
12r A 1 in two dimensions, and
N not inadequate imag-
10 L L L N L ing resolution (Valdivia
0.02 0.04 0.06 0.08 0.1 0.12 0.14 et aI., 2022), and are not

length (mm)

included in regressions.
Units 1-4 are the ignim-
brite flow units identified by Marshall et al. (2022) (see the Supplemental Material [see
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Figure 4. Schematic diagram of our conceptual conduit model for the Curacautin (Chile)
ignimbrite eruption. (A) Early crystallization in the reservoir generated 1-3.5 vol% phenocrysts
(Marshall et al., 2022) (red polygons are melt, green are early crystals). (B) As Curacau-
tin magma ascended, bubbles nucleated, grew, and coalesced, and new microlites formed
(white polygons are vesicles, purple are new crystallization). (C) Magma adjacent to conduit
margins autobrecciated and created melt-rich magma particles that were recaptured and
fused. Domains of heterogeneous vesicle textures were preserved within individual particles.
Miocene plutonic country rocks (unit Mm), Pliocene basaltic to andesitic lavas (unit PPlim),
and Middle Pleistocene ancestral Llaima lavas (units Lla1, LLa2; Naranjo and Moreno, 2005)
were incorporated into Curacautin magma prior to fusing. (D) Following fragmentation, rapid
(seconds to minutes) microlite crystallization overprinted sutures between fused particles
resulting in 84%-94% of the total number of plagioclase microlites in the erupted Curacautin
clasts (black lines). The processes in panels A-D occur over many scales. (E) Reconstruction
of the Curacautin vesicle network (Valdivia et al., 2022). Yellow domain is a single, intercon-
nected vesicle, and additional colors are smaller, isolated vesicles. (F) Scanning electron
microscope (SEM) images of a suture between domains of contrasting vesicle textures over-
printed by microlite crystallization. (G) SEM image of shattered phenocryst and microlites
from brittle behavior driven by bubble expansion in a shallow conduit. (H) Thin-section scan
of a Curacautin ignimbrite clast with heterogeneous vesicle domains. The ubiquity of fusing
would be favored by dike-shaped conduits. The nucleation zone for plagioclase with long
axis I <10 pm is not quantified here.

important implications for crystal size-dis-
tribution interpretation. Valdivia et al. (2022)
calculated T of 2-900 s for the smallest pla-
gioclase size fraction using constant nucleation
and growth rates, indicating little time between
fragmentation and eruption (Fig. 3). Interpreting
crystal size distributions with constant microlite
nucleation and growth cannot produce reliable
time-averaged ascent rates if significant micro-
lite crystallization occurred after fragmentation
(e.g., Moore et al., 2022).

While fusing is common in surface flows
from effusive mafic eruptions, such as Hawai-
ian fountains, spatter, or a‘a flows, it is not
widely documented in the products of highly
explosive mafic Plinian and ignimbrite-forming
eruptions. Reported instances include the 1886
CE eruption of Tarawera, New Zealand (Sable
et al., 2009; Schauroth et al., 2016), the 1918
eruption of Katla, Iceland (Owen et al., 2019),
the 11 ka eruption of Tongariro, New Zealand
(Heinrich et al., 2020), ignimbrites of the Roman
magmatic province (Giordano et al., 2010; Vin-
kler et al., 2012), and perhaps the 2.1 ka Masaya
Triple Layer tephra, Nicaragua (Bamber et al.,
2020). Heterogeneous textures of crystalline and
glassy domains in clasts of the Croscat eruption,
Spain (Cimarelli et al., 2010), are attributed to
mingling owing to variable ascent rates across
the conduit. Curacautin ignimbrite clasts, how-
ever, lack glassy domains, which we interpret as
the complete intermingling across the conduit
during fusing while the magma was above the
glass transition temperature. Broken crystals
surrounded by intact melt are typical in clasts
from explosive basaltic eruptions, providing an
additional record of fragmentation and heal-
ing of fractures (Taddeucci et al., 2021). Con-
comitant degassing can facilitate decompres-
sion-induced microlite crystallization in mafic
magmas (e.g., Vinkler et al., 2012), and lithics
may serve as nucleation sites for new crystals.
Together, those processes increase magma vis-
cosity and promote fragmentation.

CONCLUSIONS

Textures preserved within Curacautin ignim-
brite clasts record autobrecciation and particle
fusing within Llaima’s conduit prior to final
fragmentation and eruption. Fused clasts retain
heterogeneous vesicle textures overprinted
by post-fusing plagioclase crystallization of
! <10 pm microlites. Just as sintered obsid-
ian ash records repeated magma brecciation
and welding in the conduit, so do fused mafic
clasts in the Curacautin ignimbrite. Lithics exca-
vated from conduit margins are fully incorpo-
rated into erupted clasts and suggest that brec-
ciation and fusing can occur from a depth of
many kilometers up to shallow (<1 km) depths.
These observations and interpretations provide
insights into conduit conditions preceding and
during highly explosive mafic eruptions. The
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process of conduit autobrecciation and the role
of conduit geometry warrant further exploration
through experimental or numerical studies. Care
should also be taken when interpreting clast bulk
composition and density, vesicle and crystal tex-
tures, and granulometry because heterogeneity
from fusing would alter these measurements and
hence affect interpretations of conduit processes.
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