
0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

D2ABS: A Framework for Dynamic Dependence
Analysis of Distributed Programs

Haipeng Cai and Xiaoqin Fu

F

Abstract—As modern software systems are increasingly developed for
running in distributed environments, it is crucial to provide fundamental
techniques such as dependence analysis for checking, diagnosing, and
evolving those systems. However, traditional dependence analysis is
either inapplicable or of very limited utility for distributed programs due to
the decoupled components of these programs which run in concurrent
processes at physically separated machines.

Motivated by the need for dependence analysis of distributed soft-
ware and the diverse cost-effectiveness needs of dependence-based
applications, this paper presents D2ABS, a framework of dynamic de-
pendence analysis for distributed programs. By partially ordering dis-
tributed method execution events and inferring causality from the or-
dered events, D2ABS computes method-level dependencies both within
and across process boundaries. Further, by exploiting message-passing
semantics across processes, and incorporating static dependencies
and statement coverage within individual components, D2ABS offers
three additional instantiations that trade efficiency for better precision.
We present the design of the D2ABS framework and evaluate the four
instantiations of D2ABS on distributed systems of various architectures
and scales using our implementation for Java. Our empirical results
show that D2ABS is significantly more effective than existing options
while offering varying levels of cost-effectiveness tradeoffs. As our
framework essentially computes whole-system run-time dependencies,
it naturally empowers a range of other dependence-based applications.

1 INTRODUCTION

In response to scientific and societal demands on the scalability of
data storage and computation, a rising number of modern software
systems are distributed by design [1] to leverage decentralized,
high-performance computing infrastructures and resources. In
fact, most critical software and services today, such as financial
systems, web search, airline services, and medical networks, are
all distributed systems in nature [2]. The quality (e.g., reliability
and security, among other quality factors) of these systems is thus
of paramount importance. Significant advances in these regards
have been made in the areas of parallel and distributed computing,
yet mainly from coarse, system-level perspectives such as those of
architecture, networking, and resource management. In contrast,
code-level quality via deeper analyses of programs in distributed
systems has not been much studied, and there is a lack of tool
support for code quality assurance for distributed software.

To attain and sustain various quality factors of distributed
systems, it is crucial to model and reason about the complex

• Haipeng Cai and Xiaoqin Fu are with the School of Electrical Engineering
and Computer Science, Washington State University, Pullman, WA. E-
mail: haipeng.cai@wsu.edu, xiaoqin.fu@wsu.edu

Manuscript received April 1, 2018; revised August 26, 2015.

interactions among code entities via dependencies in these sys-
tems. Historically, dependence analysis has been a foundational
methodology that underlies a wide range of code-based software
engineering tasks and associated techniques [3], [4], [5]. Gener-
ally, a dependence analysis can be static or dynamic (either purely
dynamic or mixed with some static analysis).

Static dependence analysis is a core static analysis that com-
putes and reasons about possible dependencies among program
entities. As it attempts to produce results that hold for all possible
execution scenarios, it is known to be imprecise in general.
For distributed systems, it has to be even more conservative,
hence is subject to even greater imprecision, due to the implicit
interactions among the components of these systems that are
decoupled by networking facilities [6]. As a result, there are
no explicit references or invocations among code entities across
those components [7], [8], on which existing dependence analysis
approaches typically rely. In consequence, existing approaches are
largely limited to centralized software which mostly runs in a
single process (whether the program is single- or multi-threaded)
hence has explicit interactions (via invocations or references)
among code entities. There is also no trivial adaptation of existing
static dependence analyses to distributed programs [9], [10], [11].

In contrast, dynamic dependence analysis computes and rea-
sons about dependencies among program entities that are exercised
in a particular execution of the program. It has two advantages
relative to static dependence analysis. First, dynamic analysis has
a generally better potential for discovering implicit relationships
among code entities because it looks at concrete executions of the
code. For instance, implicit calling relationships via reflection in
Java can be readily resolved by dynamic analysis which simply
identifies the call targets actually invoked. The second merit lies
in its greater precision than static approaches [12], because it is
only concerned about dependence relations with respect to specific
program executions [13] instead of considering all possible ones.
For developers working with these concrete executions (e.g., those
driven by regression tests), dynamic dependence analysis can
be a powerful technique to assist them with development and
maintenance tasks (e.g., selecting/prioritizing regression tests that
cover program entities dependent on changed locations), as it
narrows down the search space of complex dependency relations
to the focused executions of a program. Therefore, in this paper,
we focus on dynamic dependence analysis of distributed systems.

However, developing a dynamic dependence analysis for dis-
tributed programs faces multiple challenges. The first challenge is
that, despite its generally greater potential for resolving implicit
dependencies, it remained unknown how exactly the implicit code

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

dependencies among distributed components may be inferred
from distributed program executions. The majority of current ap-
proaches to dynamic analysis of distributed program dependencies
(e.g., [14], [15], [16]) were designed only for procedural pro-
grams [15]. For distributed object-oriented programs, backward
dynamic slicing algorithms have been developed, yet it is still
unclear whether they can work with real-world systems [14], [15].
Also, for many maintenance and evolution tasks (e.g., impact
analysis), forward dependence analysis would be needed instead
(e.g., given a query, entities that transitively depend on the query
are considered potentially impacted).

As the second challenge, dynamic dependence analysis is
subject to a common, fundamental difficulty with balancing the
analysis cost and effectiveness, evidenced by relevant prior works
on centralized programs [12], [13], [17]. To deal with its sub-
stantial analysis overheads, dynamic analysis has been mostly
studied in two directions. In one direction, efficient analysis
often provides fast answers to dependence queries [18], [19],
yet with coarse results that require tremendous efforts for post-
analysis inspection [20], [21], [22]. In the other direction, highly
precise analysis saves developers’ inspection efforts by producing
few false positives, yet incurring analysis overheads that may
not be practically affordable [23], [24]. Frameworks offering
better cost-effectiveness tradeoffs along with more such tradeoff
options also have been studied recently [12], [25]. However,
the frameworks were developed for centralized, single-process
software, without a straightforward path to extending them for
distributed programs [26]. Given their typically large size, great
complexity, and long executions, distributed systems represent a
software domain where achieving good cost-effectiveness balances
in dynamic dependence analysis is even more challenging.

The third challenge lies in the practicality barriers induced
by the distributed nature of the program under analysis. As
other dynamic analyses, a dynamic dependence analysis has to
collect certain forms of execution data of the program before
analyzing them. System-level approaches to data collection (i.e.,
using dynamic instrumentation or customized run-time environ-
ment) are non-intrusive but would cause portability issues. Purely
application-level approaches (i.e., analyzing the application itself
without any run-time environment modification) are much more
portable, yet they could also be intrusive as they commonly use
static instrumentation to collect execution data needed, which may
cause interference with the execution of the original program. In
fact, in our early effort [27], we experienced substantial difficul-
ties in making such static instrumentation work with real-world
distributed software. For example, common ways of probing for
communications among distributed components led to abnormal
system behaviors in network I/O [26] hence system crashes. As it
turned out, designing non-interfering probing for application-level
dynamic analysis for distributed software is not trivial.

To address these challenges, we develop D2ABS1, a frame-
work of dynamic dependence analysis for the most commonly
deployed kind of distributed systems—where components com-
municate through message passing via standard socket facilities
and/or their encapsulations. By exploiting the happens-before
relation [28] between method execution events and the semantics
of message passing among distributed components, the framework
abstracts dynamic dependencies to method level for a given system
and its executions both within and across its concurrent processes.

1. D2ABS stands for Distributed program Dependence ABStraction.

Our approach offers rapid results that are safe [29] relative to (i.e.,
guaranteed to hold for) the analyzed executions, while relying
on neither well-defined inter-component interfaces nor message-
type specifications needed by peer approaches (e.g., those for
distributed event-based systems—DEBS [7], [9], [10]).

Further, utilizing intra-component static dependence analy-
sis [17], [30] that incorporates threading-induced and exception-
driven dependencies, and whole-system dynamic statement cov-
erage data, D2ABS trades efficiency for precision by pruning
false-positive dependencies. As a whole, the framework unifies
four dynamic dependence analysis algorithms each providing
a distinct level of cost-effectiveness balance. D2ABS naturally
empowers dynamic impact analysis of distributed programs that
accommodates different usage scenarios with varying demands
for precision and budgets for analysis and inspection costs.

We evaluate D2ABS on eight distributed Java software, includ-
ing six enterprise-scale systems, and demonstrate that it is able to
work with large, complicated distributed systems using blocking
and/or non-blocking (e.g., selector-based [31]) communication.
In the absence of more advanced prior peer techniques, we use
our coarse dynamic dependence analysis purely based on control
flows [26] as the baseline, and measure the effectiveness of
the three more precise abstraction techniques against it in the
application context of dynamic impact analysis. We also gauge the
costs of each technique, including those for different phases of our
framework (static analysis, run-time profiling, and post-processing
for dependence querying), and compare against the baseline.

Our results show that, without using static dependencies or
dynamic coverage data, D2ABS can reduce the size of baseline
impact (dependence) sets to be inspected by over 15% on average.
The average cost was 73 seconds to finish the one-time instrumen-
tation and 61 milliseconds for answering a query, with run-time
overhead of 8%. Incorporating static dependence analysis in our
framework largely further reduced baseline impact (dependence)
sets by 41% on average, at the cost of reasonable additional
overheads for most of our subject systems. Exploiting whole-
system statement coverage additionally even further enhanced the
precision of our analysis (54% impact-set reduction of baseline re-
sults), which causes generally negligible increases in total analysis
overheads compared to just incorporating static dependencies.

The development of D2ABS started with our preliminary work
DISTIA [26], where we presented the first two levels of abstraction
(i.e., based on method-level control flows with/without message-
passing semantics exploited to enhance effectiveness). Techni-
cally, this paper represents a substantial expansion of that earlier
work by developing two more levels of abstraction, using method-
level static dependencies with/without run-time statement-level
coverage data. Experimentally, we expand the scale of empirical
study by including two more real-world subject distributed pro-
grams and examining an additional research question (on variable
cost-effectiveness). We used the basic abstraction in [26] as the
baseline (instead of using all methods covered in an execution as
baseline impacts) in assessing the cost and effectiveness of these
newly added levels of abstraction. We also conducted extensive
statistical analyses to understand how various forms of program
information used in our framework contribute to its effectiveness.

The main contributions of this work include:
• A framework of dynamic dependence analysis for distributed

programs that unifies four analysis algorithms, each provid-
ing a distinct level of cost-effectiveness tradeoff.

• An extensive evaluation of our framework for dynamic im-

2

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

1 public class S { /* the Server component */
2 Socket ssock = null;
3 public S (int port) {
4 ssock = new Socket (port);
5 ssock.accept();
6 }
7 char getMax(String s) {...}
8 void serve() {
9 String s = ssock.readLine();/* message receiving */

10 char r = getMax(s);
11 ssock.writeChar(r); /* message sending */
12 }
13 public static int main(String[] a) {
14 S s = new S(33);
15 s.serve();
16 return 0;
17 }
18 }
19

20 public class C { /* the Client component */
21 Socket csock = null;
22 public C (String host, int port) {
23 csock = new Socket (host,port);
24 }
25 void shuffle (String s) {...}
26 char compute (String s) {
27 shuffle(s);
28 csock.writeLine(s); /* message sending */
29 return csock.readChar(); /* message receiving */
30 }
31 public static int main (String[] a) {
32 C c = new C ('localhost', 33);
33 System.out.println(c.compute(a[0]));
34 return 0;
35 }
36 }

Fig. 1: An example distributed program D consisting of two
components: S (server component) and C (client component).

pact analysis against subject programs of varied sizes and
domains that shows its promising effectiveness and scalabil-
ity, as well as flexible cost-effectiveness tradeoffs.

• An empirical investigation of how the use of various forms
of data in the framework affects its cost-effectiveness.

• An open-source implementation of the framework that works
with diverse, large enterprise distributed systems with either
or both of blocking and non-blocking communication.

In the rest of this paper, we first motivate our work while intro-
ducing a running example for illustration purposes in Section 2.
To present our technical approach, we start with the definitions of
dependence analysis related terms in Section 3. Then, we give
an overview in Section 4, followed by details on the design,
instantiations, and implementation of the D2ABS framework pre-
sented in Sections 5, 6, and 7, respectively. We evaluate D2ABS

in Section 8, where we describe our experimental setup and
methodology before discussing empirical results, and then discuss
additional issues with our evaluation and the use of our technical
approach in Section 9. Prior work related to D2ABS is discussed
in Section 10, before we give concluding remarks in Section 11.

2 MOTIVATING AND WORKING EXAMPLE

In this section, we illustrate a motivating use scenario of dynamic
dependence analysis with a simple distributed program as an
example, for its application in change impact analysis.

When maintaining and evolving a distributed program which
consists of multiple components, the developer needs to under-
stand potential change effects not only in the component where
the change is proposed, but also in all other components. By
design, the components that constitute a distributed system are

decoupled as a result of implicit invocations and/or references
among them, realized via networking-based message passing. This
design paradigm, however, greatly reduces the utility of existing
dependence analysis and its client analysis techniques (e.g., impact
analysis). Consider the program D of Figure 1, which consists of
a server and a client component, implemented in classes S and C,
respectively. The client retrieves the largest character in a string
by delegating the task to the server (Lines 26-28), which finishes
the task and sends the result back to the client (Lines 8-12).

Suppose the developer proposes to change S::getMax as
part of an upgrade plan for the server, and thus needs to determine
which other parts of the program may also have to be changed.
Having an available set I of inputs, the developer wants to
perform a dynamic impact analysis to get a safe estimation of
the potential impacts of the candidate changes with respect to
the program executions against I . Note that static approaches
would be largely disabled by the implicit communication between
these two components (via message passing, which is in this case
realized through a network socket).

To accomplish this task, method-level dynamic impact analy-
ses of varying cost-effectiveness tradeoffs (e.g., [19], [22], [25])
seem able to offer the developer with many options. However,
since there are no explicit dependencies between S and C, existing
approaches would predict impacts within the local component
(i.e., where the changes are located; S in this case) only. In con-
sequence, the developer would have to ignore impacts in remote
components (C in this case), or make a worst-case assumption that
all methods in remote components will be impacted.

One major difficulty here is the lack of explicit invocations or
references among the two decoupled components [8], [9], [32],
whereas traditional, dependence-based approaches often rely on
such explicit information to compute dependencies for impact
prediction. Lately, various analyses that are not based on code
dependencies have also been proposed [7], [8], [10]. While effi-
cient for static impact analysis, these approaches are limited to
systems of special types such as distributed event-based systems
(DEBS) [33], or rely on specialized language extensions like
EventJava [34]. Other approaches are potentially applicable in a
wider scope yet depend on information that is not always available,
such as execution logs of particular patterns [35], or suffer from
overly-coarse granularity (e.g., class-level) [7], [10], [35] and/or
unsoundness [6], in addition to imprecision, of analysis results.

This example illustrates the need for a dynamic impact analy-
sis of distributed programs at method level, a specific application
of dynamic dependence analysis. Also, developers would need
varied tradeoffs between precision and overhead of such analyses
in different task scenarios [13], [25]. For example, if the developer
aims at a quick, high-level understanding about the system behav-
ior (concerning how S::getMax interacts with other methods
across the system), a fast analysis with relatively low precision
would be desirable than a precise yet much slower analysis. Yet,
given a sufficient time budget, if the developer is tasked to fix
a bug in S::getMax, it would be more desirable to have higher
precision so that the developer only needs to inspect a few methods
when deciding how to apply the bug fixes in S::getMax itself
and necessary changes in other methods. Earlier studies have sug-
gested such diverse needs when performing impact analysis (e.g.,
due to various types of change requests [36]) and its application
tasks (e.g., due to varied usage scenarios [37]); Another common
reason lies in varying resource (e.g., time) budget constraints
developers are subject to in conducting these tasks [23], [36].

3

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

Thus, more generally, a framework of dynamic dependence
analysis that offers various levels of cost-effectiveness would be
required to support a wide range of (dependence-based) tasks in
developing and maintaining distributed software. In the rest of this
paper, we demonstrate how to address these challenges and needs
with our framework D2ABS. We also use the program D in many
working examples throughout the paper to illustrate the overall
design ideas and detailed inner workings of our framework.

3 PRELIMINARIES

This paper addresses the topic of program dependence analysis,
particularly focusing on dynamic dependence analysis of dis-
tributed programs. Thus, it is helpful to explicitly define what
the various kinds of dependencies to be computed are. These
definitions provide the basis of all the dependence inference
algorithms offered by our D2ABS framework.

D2ABS addresses code dependencies at the method level,
which are defined based on the classical notions of control and
data dependencies [3] often defined at statement level by default.

Definition 1. Given two statements s1 and s2 in a program, s2
is data dependent on s1 if s2 may read (use) a variable v that is
written (defined) at s1.

Definition 2. Given two statements s1 and s2 in a program, s2 is
control dependent on s1 if s1 computes a branching decision that
determines whether s2 may be executed or not.

More formal definitions of data/control dependencies can be
found in [4]. Based on these statement-level dependencies, the
method-level dependencies can then be defined as follows.

Definition 3. For two arbitrary methods m1 and m2 in a
program, m2 is method-level dependent on m1 if there exist a
statement s1 in m1 and another statement s2 in m2 such that
s2 is data or control dependent on s1. Without loss of generality,
we treat formal parameters of a method as defined at the entry
of the method and as data dependent on the corresponding actual
parameter at each call site for that method. In other words, m2 is
data dependent on m1 if m1 defines a variable that m2 might use,
while m2 is control dependent on m1 if m1 computes a decision
that may determine whether m2 (or part of it) executes [17].

We consider a code dependence to be either a data or control
dependence, each defined broadly—other kinds of dependencies
essentially fall in either category (e.g., interference dependencies
as a kind of data dependence and synchronization dependencies as
a kind of control dependence [38]). In general, there are four kinds
of data dependencies: flow (true) dependence, anti-dependence,
input dependence, and output dependence. We focus on flow/true
dependencies while disregarding the other kinds of data depen-
dencies as in prior works on program dependence modeling and
analysis [4], [38], [39]. Also, while control dependencies were
differentiated as strong versus weak in [4], we focus on strong
control dependencies as later in [39]. Then, we have the following
definition for the general dependence notion.

Definition 4. Given two program entities e1 and e2, whether they
are statements, methods, or components, e2 is dependent on e1 if
there is any data or control dependence of e2 on e1.

Here a component is a particular kind of (coarse-grained)
program entity which is common in a distributed program.

Definition 5. In a distributed program, a component is the
collection of code that runs in a separate process from the rest
of the program.

We further define a few other dependence related terms ac-
cording to the different scopes of code dependencies.

Definition 6. Suppose a statement s2 is dependent on a statement
s1. If s1 and s2 are in the same method, the dependence is in-
traprocedural; otherwise, the dependence is interprocedural.

Definition 7. Given two program entities e1 and e2, whether they
are statements or methods, suppose e2 is dependent on e1. If e1
and e2 are in the same thread, the dependence is intra-thread;
otherwise, the dependence is interthread. Interthread dependencies
are induced by multithreading constructs in a program, thus we
also refer to them as threading-induced dependencies.

Definition 8. Given two program entities e1 and e2, whether they
are statements or methods, suppose e2 is dependent on e1. If e1
and e2 are in the same component, the dependence is intra-com-
ponent; otherwise, the dependence is intercomponent.

By default, program dependencies are static, meaning that they
are defined with respect to any possible execution of the program.
In contrast, dynamic dependencies are defined with respect to a
particular, concrete program execution.

Definition 9. Given two program entities e1 and e2, whether they
are statements, methods, or components, if e2 is dependent on e1
and that dependence is exercised in a concrete execution X of
the program against a particular run-time input IX , then e2 is
dynamic(ally) dependent on e1 (with respect to X or IX).

Then, in accordance with different kinds of static dependen-
cies, we have the corresponding kinds of dynamic dependencies as
well. In particular for distributed programs, dependencies across
process boundaries can be defined as the dynamic version (projec-
tion) of dependencies across components.

Definition 10. Given two components c1 and c2 in a distributed
program running in an execution X as two processes p1 and p2,
respectively, if c2 is dynamic(ally) dependent on c1 with respect to
X , then p2 is interprocess dependent on p1 (with respect to X).
If c1 and c2 are the same components, then p2 is intra-process
dependent on p1 (with respect to X).

Finally, we define terms concerning the original input and
ultimate output of a dependence analysis as follows:

Definition 11. Given a program entity e as the input, whether
it be a statement, method, or component, a (static or dynamic)
dependence analyzer produces as the output the set DS of entities
of the program that are found to be dependent on e. The input
entity e is the dependence query (or simply query) and the
corresponding output set DS is the dependence set of the query.

4 D2ABS OVERVIEW

This section gives an overview of our D2ABS framework, focusing
on its architecture, workflow, configuration, and application scope.

4.1 D2ABS Architecture
Figure 2 delineates the high-level conceptual (layered) architecture
of our framework, elucidating its key design elements and their
relationships. The bottom layer consists of a set of static code

4

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

Analysis Data

Static data Dynamic data

Dependence Inference

Basic dependence inference

Leveraging
message-
passing

semantics
Incorporating intra-

component
dependencies

Pruning with
statement coverage

Framework Instantiations

Code Analysis & Profiling Utilities

Analysis algorithms

Framework Design

Analysis Data

Static data Dynamic data

Dependence Inference

Basic dependence inference

Leveraging
message-passing

semantics Incorporating intra-
component dependencies

Pruning with
statement coverage

Framework Instantiations

Code Analysis & Profiling Utilities

Analysis algorithms

Framework Design

Fig. 2: The architecture of D2ABS highlighting its key design
elements, including analysis data used and the underlying depen-
dence inference rules followed by various instantiations of the
framework. Each layer relies on the layer immediately below it.

analysis and profiling utilities (e.g., bytecode parser and instru-
menter) that enable the computation of, and actually purvey, the
various forms of analysis data about the distributed program under
analysis as utilized by the framework. The data includes static data
directly computed from the program’s code (for example, the static
dependence of C::compute on C::shuffle in the client
component), and dynamic data about the program’s execution
(for example, the event of a program D’s execution entering
C::shuffle at Line 25, or that of the execution returning into
C::compute at Line 29 after invoking Socket::readChar).

By using these analysis data in different, combinatorial ways,
the framework infers dynamic dependencies through different
dependence inference rules. Among these rules, basic dependence
inference provides the basic form of dependence approximation
solely based on the execution order among methods. For example,
the dynamic dependence of S::getMax on C::shuffle is
inferred simply from the fact that S::getMax executed after
C::shuffle. On top of this basic inference rule, leveraging
message-passing semantics additionally requires at least one oc-
currence of message passing between two processes to infer
the dynamic dependence between two methods executed across
the two processes. For example, the dynamic dependence of
S::getMax on C::shuffle is inferred from both the exe-
cution order between them and the fact that the client process
(in which C::shuffle is executed) did communicate with the
server process (in which S::getMax is executed).

Also on top of the basic inference rule, incorporating intra-
component dependencies additionally requires two methods within
the same component to have static dependence in order to affirm
dynamic dependence between them. For example, the dynamic
dependence of C::compute on C::shuffle is inferred from
both the execution order between them (i.e., C::compute ex-
ecuted after C::shuffle) and the fact that within the client
component there is indeed static dependence of C::compute
on C::shuffle. Finally, on top of the incorporating intra-
component dependencies rule, pruning with statement coverage
further requires the statements that are actually responsible for
the static dependence between the two methods to be covered
in order to infer the dynamic dependence between them. For

example, suppose there is a condition that guards against the
call to C::shuffle at Line 27 and this condition is evaluated
false during the execution of D being considered, then the call
statement would not be covered hence the dynamic dependence of
C::compute on C::shuffle would not be affirmed.

In Figure 2, the boxes representing the four dependence
inference rules are spatially placed so as to indicate the semantic
relationships among the rules. Together with the analysis data,
these dependence inference rules form our framework design.

Based on this design, D2ABS spawns various framework
instantiations that each corresponds to a concrete dynamic de-
pendence analysis algorithm for distributed programs, by using
different combinations of static/dynamic data and applying dif-
ferent dependence inference rules. Accordingly, each of these
instantiations is expected to have a level of costs (e.g., time
for producing the analysis data and for computing dependencies
with the data) and a level of effectiveness (e.g., precision) that
are both different from those offered by others. For example,
producing static dependencies among methods within each of the
two components of program D and using these static dependen-
cies for computing dynamic dependencies in an execution of D
would contribute to the precision and total cost of the dynamic
dependence analysis, differently from what producing and using
the statement coverage data would do. On the other hand, these
instantiations compute dynamic dependencies through a set of
unified analysis algorithms. These algorithms are abstracted as the
unified workflow of D2ABS, as described next (Section 4.2).

Details on the design of our framework are presented in Sec-
tion 5, including analysis data and dependence inference, given in
Sections 5.1 and 5.2, respectively. Details on the instantiations
of our framework are presented in Section 6, including key
analysis algorithms given in Section 6.1.

4.2 D2ABS Workflow

The overall workflow of our framework is depicted in Figure 3,
where the three primary user inputs are the program Y under
analysis, a set I of program inputs for Y , and a query set M .
An optional input, a message-passing API list L can also be
specified to help D2ABS identify program locations for profiling
inter-process communications during the execution of Y driven by
I . In practice, typically this list would not be necessary since the
framework implementation for a language (e.g., Java) could handle
most commonly used network I/Os for message passing (e.g., in
Java distributed software) as a built-in feature. This built-in feature
would suffice for precisely and completely capturing inter-process
communications as required for the dynamic dependence analysis
in our framework. The D2ABS output is a set of dependencies of
M (i.e., the set of methods dynamically dependent on any method
in M) computed from the given inputs in four steps as annotated
in the figure and described below.

As mentioned earlier, the key motivation for D2ABS is to en-
able dynamic dependence analysis for distributed programs while
offering varied tradeoffs between analysis precision and efficiency.
To that end, D2ABS utilizes both static and dynamic data about
the program. These data are of different forms each coming with
a different level of cost (i.e., the time cost incurred by generating
and utilizing the data) and benefit (i.e., the data’s contribution to
the dependence analysis effectiveness). At a high level, the four
steps of D2ABS are about generating these data (Step 1 , 2 , 3)
and then utilizing them for dependence computation (Step 4).

5

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

Instrument Y (using L)
for monitoring method execution and

message-passing events while
transferring logical clocks

(and for monitoring statement
coverage)

Distributed
Program Y

Query
Set M

User inputs

Program
Input Set I

Instrumented Program Y’

Run Y’ on I
for generating partially-ordered
method-execution sequence and

message-receiving map per process
(and for generating statement

coverage data)

Message-passing
API List L

Distributed Per-process Traces
(including covered statements)

Gather Traces
for facilitating
dependence
computation

Compute
Dynamic

Dependencies

Centralized
Traces

Dependence Set
of M

D2ABS output

Construct MDGs
for computing static method-level
dependence abstraction of each

component

Per-component
static dependencies

Fig. 3: The unified workflow of D2ABS (consisting of four key
steps as numbered), including its inputs and outputs.

The workflow of D2ABS as regards how these steps collaborate is
elaborated below.

The first step (Step 1) of D2ABS has two aims: (1) computing
the only kind of static data (static dependencies per component)
through a static analysis of Y , and (2) preparing for collecting dif-
ferent forms of dynamic data (method execution events, message-
passing events, and statement coverage) through static instrumen-
tation of Y . The results of this step are the per-component static
dependence graphs and the instrumented program Y ′.

The second step (Step 2) aims to profile the dynamic data
that is probed for in the previous step. Specifically, this is done
by executing Y ′ on the given input set I , during which all the
dynamic data instrumented are generated and collected (serialized
into respective disk files). An additional item of data, message-
receiving map, is derived from the message-passing events and
serialized as part of the resulting execution trace. The map records
for each process the timestamp when it receives the first message
from any other processes. The tracing in each process is performed
concurrently with that in others during the system execution.

In the third step (Step 3), the execution traces separately
generated in individual processes are gathered to the machine
where the dependence computation is to be performed. This
assisting step is necessary as the dependence computation in
D2ABS is offline and centralized, while the tracing is performed
in a distributed manner.

In the fourth step (Step 4), D2ABS takes all the static and
dynamic data as inputs to compute the dependence set of the
query set M , using a unified dependence analysis algorithm. The
algorithm automatically chooses different combinations of the
collected data and utilizes different dependence inference rules
accordingly, as per user configurations.

Illustration. For the example program D of Figure 1, D2ABS

first constructs an intra-component static dependence graph for the

server and client component separately. For example, the client’s
graph includes the dependence of C::main on C::compute
and that of C::compute on C::shuffle, while the server’s
graph includes the dependence of S::serve on S::getMax
and that of S::main on S::serve.

It then instruments at each message-passing API (e.g.,
Socket::readLine and Socket::writeLine) and every
other method call (e.g., the call to shuffle in C::compute).
The instrumentation also probes for all branches in order to gather
statement coverage data at runtime. Except for branches induced
by ordinary conditional statements, the entry point of each method
(e.g., prior to Line 14 in S::main) is also treated as a branch so
that statement coverage can be inferred from covered branches in
a consistent way (e.g., if the entry point of S::main is covered,
we infer that all the statements in this method that are not guarded
by any predicates are covered).

In the second step, D2ABS runs the instrumented version of
D against a client input—the server does not use the user input.
During this execution, the events about message passing (e.g.,
the message including the string s is sent from the client to the
server at Line 28 after the call csock.writeLine(s)) and
the events about method invocation (e.g., the execution enters
C::shuffle, and then returns into C::computer) are moni-
tored. The message-receiving map here records the timestamp at
which the server process received the first message from the client
(e.g., 9) and the timestamp at which the client process received the
first message from the server (e.g., 13). At the end of the execution,
on the server and client machine separately, D2ABS serializes the
sequence of synchronized method events in the respective process
(e.g., the event of entering S::main at timestamp 0 followed by
the event of entering S::S at timestamp 1 in the server process)
into a trace file; it then computes and serializes into a disk file the
statement coverage in each process (e.g., statements 2 through 16
in the server process), and dumps the map to yet another disk file.

In the third step, D2ABS gathers the two method event trace
files to a machine where its dynamic dependence computation
is performed (e.g., the server machine). In the fourth step, the
two static dependence graphs (one for the server component and
the other for the client component), the two statement coverage
files, and the message-receiving map are also gathered to that
machine. Now, depending on which of the four dependence
inference rules is adopted, D2ABS computes, for a given query
(e.g., S::getMax), the dynamic dependence set accordingly
(e.g., {S::serve, S::main, C::compute, C::main} with
the basic dependence inference rule).

4.3 D2ABS Configuration

A main merit of our framework lies in its offering variable
and flexible cost-effectiveness tradeoffs in dependence analysis.
This merit enables D2ABS to accommodate varying developer
needs (e.g., due to their different precision expectations and cost
budgets). In essence, the flexibility of D2ABS is attributed to its
customizability, realized via varied configurations. As depicted in
Figure 3 (via notes in the parentheses), the framework allows users
to choose which data to be utilized by the dependence analysis al-
gorithm. For example, the user may choose not to utilize statement
coverage in the analysis. Then, accordingly, the instrumentation
and profiling (in Steps 1 and 2 , respectively) for statement
coverage would be skipped. Similarly, if the user does not want to

6

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

use static dependencies in the dynamic dependence analysis, the
static (dependence) analysis in Step 1 would be ignored.

Due to the flexible configuration, D2ABS can be instantiated
as different dynamic dependence analyzers each offering a poten-
tially distinct level of cost-effectiveness. Some instantiations have
been realized, as described in Section 6. Moreover, rather than a
tool itself, D2ABS as a framework focuses on computing depen-
dencies which enable a range of practical client/application tools
to address particular quality problems with distributed systems
(e.g., correctness and security as exemplified in Section 10).

4.4 Application Scope

D2ABS targets the most common type of distributed systems, as
opposed to specialized ones such as DEBS and others relying
on special inter-component interfaces (e.g., RMI—remote method
invocation [40]) or message-type specifications (e.g., CORBA–
common object request broker architecture [41]). As exemplified
by the running example program D of Figure 1, a common dis-
tributed system has three characteristics according to the definition
in [1]: (1) the system consists of multiple components located
at networked computers, (2) these components communicate and
coordinate their actions only by passing messages, and (3) the
components run concurrently in multiple processes without a
global clock. These systems represent the applicability scope of
D2ABS, although D2ABS only deals with the software part of such
systems (as opposed to system-level concerns such as distributed
computing infrastructure/platform and resource management), re-
ferred to as distributed software. More specifically, as we focus on
code analysis, the actual analysis scope of D2ABS is the program
(code) of distributed software, referred to as distributed program.

We further confine as a component the code entities that runs in
a separate process from the rest of the system, where each process
may host one or multiple threads. For example, the two compo-
nents in the example program D, server and client, each
runs in a separate process and they communicate only through
message passing (via a network socket). These components are
marked for illustration purposes—D2ABS does not recognize
functionality roles of components/processes; it identifies probing
points for inter-process communication (IPC) events based on the
given list of message-passing APIs.

5 THE D2ABS FRAMEWORK DESIGN

In this section, we elaborate the framework design of D2ABS,
as shown in Figure 2. The two major design elements that
constitute the framework are the analysis data utilized for dy-
namic dependence analysis of distributed programs, and the
dependence inference rationales (rules) according to which dy-
namic dependencies are derived from the analysis data.

5.1 Analysis Data

This section presents the various forms of program data utilized by
D2ABS for its dependence analysis of variable cost-effectiveness.
As noted earlier, D2ABS uses one form of static, and three forms
of dynamic, data in its analysis, justified by the different levels
of cost and benefit of each of these forms of data which can
contribute to the variable cost-effectiveness D2ABS aims at.

5.1.1 Static Data
To trade analysis cost for better precision (than purely dynamic
dependence analysis), D2ABS exploits the static dependencies
within each component of the distributed program under analysis
(noted as intra-component dependencies). Treating each compo-
nent as a single-process program, traditional dependence analysis
can be utilized for this purpose. However, immediately adopting
the traditional dependence model would compromise the scalabil-
ity of D2ABS, given the known heavyweight nature of computing
fine-grained (statement-level) dependencies [12], [22], [42]. Thus,
we employ the method-level dependence analysis algorithm de-
veloped for single-process Java software [17], [30] to compute the
static dependencies among methods. Here we summarize the key
ideas of this abstraction algorithm (for intra-thread dependencies)
and then discuss its extension for including threading-induced (i.e.,
interthread) dependencies.

Intra-thread dependencies. Specifically, for each component c,
the method dependence graph MDGc is constructed to represent
the static dependencies among methods, with intraprocedural
dependencies abstracted as summaries [30]. Each method of c is
represented as a node of MDGc, where each edge represents data
or control dependence between two methods. The intraprocedural
dependence summaries for each method are represented by a
mapping from incoming to outgoing flows, as a result of an
intraprocedural reachability analysis on the procedure dependence
graph [3] of the method. For the sake of scalability, interproce-
dural dependencies are computed in a flow-insensitive manner
(although at the cost of compromising precision). Further, since
we do not perform any analysis of static dependencies alone
but use them as contexts for dynamic dependence refinement,
the computation of interprocedural dependencies in MDGc is
also context-insensitive. Discarding context- and flow-sensitivity
largely enhances the scalability of the static intra-component
dependence analysis [17], hence potentially that of D2ABS when
incorporating the static dependence information in the dynamic
dependence analysis.

Threading-induced dependencies. Realistic distributed systems
typically run multiple threads in each component (process). There-
fore, D2ABS also includes threading-induced dependencies in
its static intra-component dependence computation. In particular,
two additional types of control dependencies, synchronization
dependencies and ready dependencies [43], and an additional
type of data dependence, interference dependencies [38], are
considered in our framework. For Java programs, synchronization
dependencies are induced by the use of synchronization blocks
while ready dependencies are due to the wait-notify syn-
chronization mechanism. Interference dependencies are generally
a result of data sharing between threads, caused by one thread
using a variable defined in another thread. Each of these three
types of dependencies lies between two different methods across
two different threads. For each component c, D2ABS adds these
interthread dependencies (each as an edge) to the MDGc com-
puted for c in the static dependence analysis step described above.

Given the prevalence of exception-handling constructs in mod-
ern languages (e.g., Java), D2ABS considers static dependen-
cies induced by exceptional control flows [39] (e.g., those via
try/catch and finally blocks in Java).

Illustration. For example, in the program D of Figure 1, the
server component is composed of one class S which includes
four methods (S::S, S::main, S::getMax, and S::serve).

7

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

TABLE 1: A full sequence of (i.e., instance-level) method execu-
tion (and message-passing) events of the program D

Server process Client process
Event Timestamp Event Timestamp
S::maine 0 C::maine 0
S::inite 1 C::inite 1
S::initi 2 C::initi 2
S::initr 3 C::initr 3
S::maini 4 C::maini 4
S::servee 5 C::computee 5
EC (C,S) - C::shufflee 6
S::getMaxe 10 C::shufflei 7
S::getMaxi 11 C::shuffler 8
S::getMaxr 12 C::computei 9
S::servei 13 EC (C,S) -
EC (S,C) - EC (S,C) -
S::server 14 C::computer 14
S::maini 15 C::maini 15
S::mainr 16 C::mainr 16

Thus, the MDG for this component has four nodes—library
functions (e.g., Socket::readLine) are not modeled on this
graph. This graph has, among others, an edge between the node
for S::main and the node for S::S representing the data
dependence between them as induced by the return variable s at
Line 14, and an edge between the node for S::main and the node
for S::serve representing the data dependence between them
via the instance field ssock. Other example edges are between
the node for S::serve and the node for S::getMax for
the dependence between them via the return variable r and the
dependence between them via the parameter s, both at Line 10.

5.1.2 Dynamic Data
Our framework utilizes only lightweight run-time (i.e., dynamic)
information, at method and statement levels. In particular, D2ABS

uses three forms of dynamic data as mentioned earlier: method-
execution events and message-passing events, which record the
occurrence and timing of method calls and IPCs, respectively, and
statement coverage, which records which statements are exercised
during the execution. In the general context of distributed systems,
an event is defined as any happening of interest observable from
within a computer [28]. More specifically, events in a DEBS
are often expressed as messages transferred among system com-
ponents and defined by a set of attributes [10], [33]. While it
also deals with message passing in distributed systems, currently
D2ABS neither makes any assumption nor reasons about the
structure or content of the messages (doing so would compromise
its applicability—it would be applicable to a narrower scope).

Method execution events. As the very basic form of dynamic
data for its dynamic dependence analysis at the method level,
D2ABS monitors and utilizes method execution events. We define
a method execution event EI (c) as an occurrence of method
execution within a component c, where E stands for “Event” and
I for “Internal”—such events are internal to the component [26].
We differentiate three subcategories of such events: entering a
method, returning from a method, and returning into a method,
denoted as me, mr , and mi, respectively, for the method m.

Note that D2ABS captures both the return (from) and returned-
into events for each method. For example, for a call to a method
g in a method f , a return from event, associated with g, indicates
the event that the program control gets out of the scope of g,
marking the end of one execution instance of g. Differently, the
corresponding return into event, associated with f , indicates the
event that the program control gets back into the scope of f ,
marking the continuation (after the callsite targeting g) of one

execution instance of f . However, we distinguish them during
instrumentation only and treat them equally in the analysis algo-
rithms of D2ABS. In sequential program executions, a method m
is potentially affected by any changes in the query q ifm, or part of
it, executes after q. Thus, monitoring method entry and returned-
into events suffices for retrieving such execute-after relations. In
the case of concurrent (single-process) programs, however, m is
potentially affected by the changes also ifm, or part of it, executes
in parallel with q. Therefore, method return events need to be
monitored as well to correctly identify dependence relations from
interleaving method executions in multiple threads [19].

Message-passing events. Besides method execution events,
D2ABS monitors message-passing events, used to reason about
the effects of IPCs in the distributed system on the dynamic
dependencies among methods across all the processes of the
system’s execution. We define a message-passing eventEC (c1,c2)
as the occurrence of a message transfer between two components
c1 and c2 where c1 initiates the event which is attempted to reach
c2. HereE stands for “Event” and C for “Communication”—such
events are communication events [26]. Further, according to the
direction of message flow, we distinguish two major subcategories
of such events: sending a message to a component and receiving
a message from a component. We refer to the process running
the component that sends and receives the message as the sender
process and receiver process, respectively.

Statement coverage. For containing analysis costs, most kinds
of program information D2ABS uses are at the method level.
To provide cost-effectiveness options with more emphasis on
precision, D2ABS also considers using statement coverage as a
form of statement-level data. More specifically, it records which
statements are covered during the system execution, separately
for each component of the system. This fine-grained form of
data is used to refine the per-component (method-level) static
dependencies so that they can contribute towards enabling an even
more precise dynamic dependence analysis.

Illustration. As an example, Table 1 shows the method execution
events along with their timestamps, captured during an execu-
tion of the program D of Figure 1. The method name init
denotes the constructor of a class. These events are recorded
separately for each process and are listed in the order of their
timestamps. For instance, in the server process, the event of (the
program execution) entering the method S::main at timestamp
0 was denoted as S::maine associated with that timestamp.
This is when the server process just started. Likewise, the event
C::initr with timestamp 3 indicates that the program execution
returned from the method C::init at that time, after it was
called by the method C::main. Immediately after this event, at
timestamp 4, the execution returned into the caller, C::main,
denoted as C::maini. Message-passing events are also captured.
For instance, EC (C,S) in the client process indicates the event
that the client sent a message (the string s after being shuffled)
to the server, triggered by the call csock.writeLine(s). In
this simple program, there are no branches. As a result, during the
system execution, in accordance with the events of Table 1, all
statements of D are covered.

5.2 Dependence Inference
In this section, we present the various dependence inference
rules underlying the diverse cost-effectiveness tradeoffs D2ABS

offers via its different instantiations. We first describe the basic

8

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

inference of dependence relations among executed methods (Sec-
tion 5.2.1). We then discuss three ways to refine the basic inference
so as to improve its precision at additional costs: (i) leverag-
ing message-passing semantics (Section 5.2.2), (ii) incorporating
intra-component static dependencies (Section 5.2.3), and (iii)
pruning spurious dynamic dependencies using statement coverage
(Section 5.2.4). Note that while conceptually dynamic analysis
does not produce spurious dependencies, such dependencies can
be resulting from the dependence approximations, as adopted in
our framework. For example, for high efficiency, we may conclude
(approximately) that a methodm2 depends on another methodm1
ifm2 executes afterm1. This dependence can be spurious because
the execution order used for the dependence approximation here
does not necessarily imply true dependence.

We use dynamic impact analysis as an illustrating application
(client analysis) of D2ABS, for which the dependence relation be-
tween two methods derived by D2ABS immediately corresponds
to the impact relation between the two methods: a method m2 is
considered to be impacted by a method m1 (i.e., m1 impacts m2)
if m2 is considered to depend on m1. Thus, for our dependence-
based dynamic impact analysis application, we may use “be
impacted by” and “depend on” exchangeably hereafter.

Note that while our dependence inference rules may seem
intuitive and straightforward, they appear to be so after we have
revealed them—these rules have not been presented before, espe-
cially in the context of dynamic analysis for common distributed
programs. In particular, the partial-ordering algorithm underlying
the basic inference was originally proposed for event synchroniza-
tion in distributed systems [28]. Yet it has not been exploited for
modeling code-based dynamic dependencies. Thus, as opposed
to computational challenges, exploring how to infer dependencies
between two code entities (e.g., methods) in distributed programs
comes more with methodological challenges—it was not known
(1) which information, among various possible kinds, to utilize,
(2) how to combine different kinds of information to derive
dependencies, and furthermore (3) how to infer the dependencies
in different yet cost-effective ways.

5.2.1 Basic Dependence Inference
One challenge to developing D2ABS is to infer dependence
relations based on execution order in the presence of asynchronous
events over concurrent multiprocess executions. Fortunately, main-
taining a logical notion of time per process to discover just
a partial ordering of method execution events suffices for that
inference. The dependence relation between any two methods can
be semantically over-approximated by the happens-before relation
between relevant execution events of corresponding methods; and
the partial ordering of the execution events reveals such happens-
before relations [28]. Formally, given two methods m1 and m2,
we have

m1e ≺ m2r ∨m1e ≺ m2i =⇒ m2 depends on m1 (1)
where ≺ denotes the happens-before relation. Without loss of
generality, either of m1e≺m2r and m1e≺m2i implies that
“m2 executes after2 or in parallel with m1, thus m2 may
be affected by (any changes in) m1”, hence the dependence
(impact) relation between m1 and m2. For example, with re-
spect to the example execution of program D shown in Ta-
ble 1, C::inite≺C::maini implies that C::main depends

2. Hereafter throughout the paper, execute before/after relations between
methods are referred to in accordance with the happens-before/after relations
between associated method execution events.

0 1 …... 20 …... 80 …...
m1 (last)

m2 (first)

Process P1

0 1 …... 10 …... 95 …...
m3 (first)

m4 (last)

Process P2 97
m5 (last)

Fig. 4: Inter-process impact constrained by message passing.

on C::init, and C::computee≺C::shuffler implies that
C::shuffle depends on C::compute.

Based on the above inference, for a given query q, computing
the dependence set DS(q) of q is reduced to retrieving methods,
from multiprocess method execution event sequences, that satisfy
the partial ordering (as defined in [28]) of the execution events of
candidate methods as follows:

DS(q) = {m | qe ≺ mi ∨ qe ≺ mr} (2)
Note that only method execution events are directly used for the
inference, whereas message-passing events are utilized to maintain
the partial ordering of method execution events across processes.
While this basic dependence inference leads to potentially exces-
sive imprecision due to its overly conservative nature, it only
requires highly lightweight dynamic analysis and computation,
which implies great efficiency. Therefore, this basic inference
still provides a useful cost-effectiveness option.

5.2.2 Leveraging Message-Passing Semantics
The above basic inference leads to a safe yet possibly overly
conservative approximation of dynamic dependencies (impacts),
because it is based purely on happens-before relations between
method execution events. Recall that message passing is the only
communication channel between processes in the systems we
address to propagate data flows or control decisions. Let Pi

m

denote a method m that is executed in a process Pi. Then, a
method P1

m in process P1 would not depend on a method P2
m

in process P2 if P1 never received a message from P2 before the
last execution event of P1

m. This is true even if P1
m is executed

after P2
m in the whole-system method execution event partial

ordering, since there would be no data or control flow between the
two processes that can possibly affect P1

m.
For example, Figure 4 illustrates how message passing could

constrain the dependence relation defined by Equation 1. Each
numbered cell represents the first or last execution event of a
method with the number indicating the time (stamp) when that
event occurs, and each empty cell represents a message receiving
or sending event—these events are considered separately from
method execution events (see Section 5.1.2). The arrowed line
on the left and right indicates the first message passing from P2 to
P1 and that from P1 to P2, respectively. As per the basic inference,
m1 in P1 would be inferred as dependent on m3 in P2, because
m1 was executed after m3. With the message-passing semantics
considered, however, this dependence is deemed as spurious hence
should be pruned. The reason is because P1 received the first
message from P2 after the last time m1 was executed. Similarly, a
spurious dependence of m5 on m2 (as produced per the basic
inference) should also be pruned. On the other hand, m4 is
still considered dependent on m2 even with the message-passing
semantics considered, because not only wasm4 executed afterm2

was first executed, but also P2 received a message from P1 prior
to the last execution event of m4.

Generally, considering the message-passing semantics, Pi
m

potentially depends on Pj
m′

only if (i) the first execution event

9

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

of Pj
m′

happens before the last execution event of Pi
m—

this essentially enforces the basic inference rule, (ii) Pj sends
at least one message (directly or transitively) to Pi—this is a
quick check against spurious dependencies, because if there is
no message passing between two processes, two methods across
the processes should not have dependence relationships, and (iii)
the last execution event of Pi

m happens after the first message
receiving event in Pi from Pj , and the message is sent after the
first execution event of Pj

m′
—this last condition ensures that the

message, which represents interprocess data flow, can possibly be
affected (written to or defined) by Pj

m′
and then possibly affect

(be read or used by) Pi
m. Formally, let TF (m) and TL(m) denote

the time (stamp) of the first and last execution event of a method
m, respectively, and let TS(Pi, Pj) denote the time (stamp) of the
event of Pi receiving the first message from process Pj , we define
a customized form of partial order relation between two methods
Pi

m and Pj
m′

as follows (TS is the message-receiving map):

Pj
m′
≺ Pi

m :=


TL(Pi

m) ≥ TF (Pj
m′

), if i = j

TS(Pi, Pj) 6= null ∧ TL(Pi
m) ≥

TS(Pi, Pj) ≥ TF (Pj
m′

), if i 6= j

(3)

With this constrained definition of ≺, a more precise depen-
dence inference is obtained from Equation 2 since the potential
method-level dependencies identified by the basic inference that
do not satisfy the additional constraints (ii) and (iii) will be pruned.
Given the scope of distributed systems we address, this pruning
does not compromise the safety of resulting dependence sets.

Note that while both exploit the happens-before relations
among method execution events that are synchronized through
message-passing events, the basic inference and the inference
leveraging message-passing semantics utilize different informa-
tion of those relations. The basic inference only uses these rela-
tions to partially order the method events, disregarding the data
flow implications of message passing. In comparison, the more
advanced inference additionally leverages the data-flow semantics
of the message-passing events (i.e., a message sending or receiving
event implies a data write/definition or read/use).

5.2.3 Incorporating Intra-Component Dependencies
With the static dependencies of a component c and method
execution events of the process Pc that executes c, the depen-
dence/impact relation between two methods Pc

m1 and Pc
m2 in

Pc is inferred from both the partial ordering of execution events
associated with these two methods and the static dependencies
between them. Formally, we define another constrained partial
order relation as follows:

Pc
m1 ≺ Pc

m2 :=
TL(Pc

m2) ≥ TF (Pc
m1) ∧

Pc
m1 MDGc−−−−−→ Pc

m2
(4)

where Pc
m1 MDGc−−−−−→ Pc

m2 denotes the dynamic dependence
of Pc

m2 on Pc
m1 with respect to the (static) dependence graph

MDGc and the method execution events in Pc. In order to avoid
imprecision induced by straightforward transitive dependence
computation, this dynamic dependence is not simply determined
through reachability on the graph. Instead, the dependence is
computed iteratively according to the semantics of method exe-
cution events (e.g., a method-entry event indicates that data flow
facts associated with the method’s parameters start propagating
forward) while traversing the graph (as described in Section 6.1.3).

Applying this constrained partial order relation to Equation 2 leads
to a more precise dependence inference through pruning false
positives within individual processes, as detailed below.

Given a query method q defined in component c and executed
in process Pc, methods that execute after q but are not statically
dependent on q will be pruned from the trace of Pc. For example,
in the client process of program D, C::shuffle executed
after C::compute. Yet, on the MDG for the client component
of D, C::shuffle does not depend on C::compute. Thus,
C::shuffle will be pruned from the (forward) dependence
set of C::compute that would be produced as per the basic
inference. To apply similar pruning based on static dependencies
for every other component c′ and corresponding process Pc′ , we
need to identify a method similar to q that serves as the starting
point of the dynamic dependence/impact propagation (noted as
spark method). 3 We safely choose the first method in Pc′ that
executed after Pc′ receives a message from Pc as the spark
method of c′ for query q. For example, if the query is in the
client component of program D, S::getMax would be the spark
method for the server component of D. Then, methods that are
partially ordered after but not statically dependent on the spark
method will be pruned from the trace of Pc′ .

5.2.4 Pruning with Statement Coverage
Conceptually, the intra-component dependencies in D2ABS aim
to directly model dependencies at the method level. However, in
terms of the concrete (graph) representation of these dependencies,
there may be multiple edges (i.e., interprocedural dependencies)
between two methods (e.g., data dependencies each due to the
passing of a different parameter from the caller to the callee).
These edges are not conflated into a single dependence edge.
The rationale is that, by doing so, D2ABS can avoid imprecision
accumulation during transitive dependence propagation across
methods, threads, and processes. Specifically, all the individual
interprocedural dependencies computed at statement level are kept
to represent method-level dependencies. Thus, for any two nodes
of an MDGc, there may be multiple edges. D2ABS further uses
edge annotations to denote the type of interprocedural dependence
for each edge (e.g., interference, synchronization, traditional con-
trol, etc.). These edge annotations are used later in the precise
transitive dynamic dependence analysis algorithm of D2ABS.

Given this underlying representation of the static dependen-
cies in D2ABS, our framework provides an additional option of
collecting statement coverage data and utilizing the data to further
prune possible spurious dynamic dependencies. A method m2 is
considered to (dynamically) depend on a method m1 if there is
at least one static interprocedural dependence of m2 on m1 on
the corresponding MDGc that has both statements associated
with the dependence covered during the execution analyzed by
our framework. Otherwise, the method-level dependence between
m1 and m2 should be pruned. This pruning rule can be formally
defined as another constrained partial order relation as follows:

Pc
m1 ≺ Pc

m2 :=
TL(Pc

m2) ≥ TF (Pc
m1) ∧

Pc
m1 MDGc−−−−−−−−−−−−−→

at lease one covered
Pc

m2 (5)

where the notations are the same as in Equation 4. The only
difference is that at least one of the interprocedural dependencies

3. Without loss of generality, given a dependence query q, we define a spark
method P sm

c specific to a process Pc as the first method sm executed in Pc

that is (transitively) dependent on q.

10

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

TABLE 2: The four D2ABS instantiations defined by analysis data
and dependence inference rules used Instantiation

Basic Msg+ Csd+ Scov+
dependence inference rule (Equation) 1 3 4 5

analysis
data

static static dependencies 7 7 3 3

dynamic
method execution events 3 3 3 3
message-passing events 7 3 7 7
statement coverage 7 7 7 3

between m1 and m2 on MDGc, in addition to their existence,
must be exercised (covered) during the execution. For exam-
ple, in the server process of the working example program D,
S::getMax executed after S::serve and the MDG of the
server component also indicates that S::getMax (statically)
depends on S::serve (because the former uses variable s
which is defined in the latter). Now suppose the statement char
r = getMax(s); is not covered (e.g., suppose there is an
unexercised predicate guarding this statement) during the analyzed
execution. In this case, S::getMax would be pruned from the
(forward) dynamic dependence set of S::serve that would be
produced as per the incorporating intra-component dependencies
inference rule (i.e., Equation 4). Note that like the pruning based
on static intra-component dependencies, the pruning rule here
based on statement coverage only applies within a single process
(albeit possibly across multiple threads). Also, similarly, applying
this constrained partial order relation to Equation 2 leads to yet
another level of precision of dynamic dependence analysis in
D2ABS due to the removal of possible false positives associated
with statements that are not covered in the analyzed execution.

6 FRAMEWORK INSTANTIATIONS

As we discussed in Section 2, users would need variable levels of
cost-effectiveness balances to accommodate different dependence-
based task scenarios. Now that D2ABS aims to provide a dy-
namic dependence analysis framework that empowers a range
of dynamic-dependence-based applications, it should have the
capabilities for offering dynamic dependencies at variable cost-
effectiveness levels so as to meet the diverse application needs. To
streamline this vision, D2ABS provides flexible options for users
to enable/disable certain parts of its analysis data and some steps
of its analysis algorithms, hence to accommodate different usage
scenarios that need varied cost-effectiveness tradeoffs (e.g., some
application tasks prioritize precision over efficiency, while some
others accept relatively rough/low-precision dependencies in ex-
change for high efficiency/scalability). The current D2ABS imple-
mentation provides different command-line options for choosing
the various tradeoff levels, as the tool’s user interface.

In particular, currently D2ABS unifies four instantiations, each
corresponding to a version of D2ABS that offers a distinct level of
cost-effectiveness. By presenting these instantiations, we do not
intent to investigate all possible levels of such tradeoffs; rather,
the goal here is to demonstrate the capabilities of our framework
design for enabling varying dynamic dependence analysis of
distributed programs to offer variable levels of cost-effectiveness.

Table 2 outlines the four instantiations (2nd row) of D2ABS,
defining each in terms of the analysis data (static and/or dynamic,
4th–7th rows) and dependence inference rule used (3rd row).
The rationale for having these four is two-fold. First, the Basic
version uses only one form of data: method execution events.
While message-passing events are used to partially order these
method execution events, they are not further utilized in the

analysis algorithm for this instantiation. Second, from the 5th
to 7th columns, each instantiation aims to enhance the Basic
version in a different way, by adding message-passing events
only, static dependencies only, or statement coverage along with
static dependencies. Statement coverage needs to go with static
dependencies, because it cannot be used along with other forms
of data in our framework—the static dependencies are the only
other form of data with statement-level details. There could be
more instantiations of D2ABS. We study these four as they have
intuitively more differentiable cost-benefit tradeoffs than other
possible instantiations, and because these four would suffice for
the purpose of demonstrating the capabilities of our framework in
offering diverse cost-effectiveness levels.
• Basic version. This is the simplest, most lightweight in-

stantiation of D2ABS, which computes dynamic depen-
dencies among methods simply using the basic inference
(Section 5.2.1). It only utilizes method execution events
and their global partial ordering, essentially a dependence
approximation purely based on interprocess control flows.

• Msg+ version. This instantiation exploits the message-
passing semantics to prune false-positive dynamic dependen-
cies across processes in the Basic version (Section 5.2.2). It
utilizes method execution events and per-process message-
receiving maps, essentially a dependence approximation
based on interprocess control and data flows.

• Csd+ version. This version enhances the Basic version by
incorporating intra-component static dependencies to prune
false-positive dynamic dependencies within individual pro-
cesses (Section 5.2.3). It utilizes method execution events
and per-component static dependence analysis, essentially
a dependence approximation based on interprocess control
flows and intra-component (data and control) dependencies.

• Scov+ version. This is a further refinement of the Ba-
sic version, incorporating statement coverage in Csd+ to
prune false-positive dynamic dependencies within individual
processes (Section 5.2.4). In essence, Scov+ utilizes both
method- (i.e., execution events and static dependencies) and
statement-level data for a method-level dynamic dependence
analysis that is supposedly more precise than Csd+.

TABLE 3: Cost-effectiveness tradeoffs of D2ABS instantiations
D2ABS

Instantiation
static analysis

time
runtime

overhead
querying

time
effectiveness
(precision)

Basic 3 3 7
Msg+ 7 3
Csd+ 7 7 3
Scov+ 7 7 7 3

To further justify our decision for having these different
instantiations of our framework, Table 3 shows what the cost-
effectiveness factors are that each instantiation attempts to trade
for and off: 7 indicates a factor that is traded off (i.e., compro-
mised) while 3indicates a factor that is traded for (i.e., prioritized).
For instance, the Basic version trades effectiveness (in terms
of precision) for efficiency in terms of both runtime overhead
and querying time, while Scov+ trades all the efficiency factors
for greater effectiveness. Note that in general which factor is
considered traded off versus which is considered traded for is
a relative notion: for example, relative to Basic, Msg+ trades
efficiency for effectiveness, but relative to Csd+, Msg+ trades
effectiveness for efficiency. Here in Table 3, the tradeoff made
by Basic is determined based on its nature (suffering very low

11

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

Cost

EffectivenessBasic
Msg+

Csd+
Scov+

baseline

Fig. 5: The cost-effectiveness space explored by D2ABS through
its four instantiations. The coordinates of these instantiations are
not based on empirical measurements but only provide estimated
contrasts among them in terms of their cost-effectiveness levels.

precision for achieving high efficiency), while the tradeoff made
by the other three instantiations is determined all relative to Basic.

To complement Table 3 which gives the factors involved in
the tradeoff made by each instantiation, Figure 5 further gives
estimated, relative comparisons of cost-effectiveness levels among
the four instantiations—the coordinate for each instantiation does
not correspond to its exact cost-effectiveness measure. The dashed
line (y = x) represents the baseline, indicating the level of cost-
effectiveness achieved by the Basic version. Accordingly, a point
below this line means the associated analysis is better than the
baseline, and the further the point is from the line the more
cost-effective the associated analysis. As depicted, through its
various instantiations each representing a distinct level of cost-
effectiveness, our framework provides variable cost-effectiveness
tradeoffs as a whole, meeting diverse application needs.

6.1 Analysis Algorithms

In this section, we present the unified dependence analysis
(abstraction) algorithm in D2ABS. It is referred to as unified
because it generalizes all of the varying instantiations of the
framework, using different dependence inference rules according
to the different selections of analysis data. For obtaining each
form of static/dynamic data, D2ABS has a dedicated algorithm
as well. Among those algorithms, we present two in detail—one
for monitoring message-passing events and the other for partially
ordering method execution events; the others are straightforward.

6.1.1 Monitoring Message-Passing Events

Preserving the partial ordering of method execution events is at
the core of D2ABS, since the partially-ordered method execution
events are the default form of data used by any instantiation of the
framework. For that purpose, we adopt the Lamport time-stamping
(LTS) approach [28] based on a logical notion of time. The idea
is to maintain a synchronized logic clock across processes of the
system execution analyzed, through monitoring message-passing
events. From these events, the message-receiving map is also
derived, but only for the Msg+ version which uses the data to
prune spurious dependencies resulting from the basic inference.

Algorithm 1 summarizes our algorithm for monitoring
message-passing events while carrying and synchronizing the
logic clocks based on the original LTS algorithm. The logical
clock C of the current process is initialized to 0 upon process start,
as is the global variable remaining, which tracks the remaining
length of data most recently sent by the sender process. The role
of remaining is to avoid the message-passing event monitoring
causing interference with the original message-passing semantics

Algorithm 1: Monitoring message-passing events
let C be the logical clock of the current process
remaining = 0 // remained length of data to read
1: function SENDMESSAGE(msg)// on sending a message msg
2: sz = length of sz + length of C + length of msg
3: if using the Msg+ version then
4: sz += length of the sender process id sid
5: pack sz, C, sid, and msg, in order, to d
6: else
7: pack sz, C, and msg, in order, to d
8: end if
9: write d

10: end function
11: function RECVMESSAGE(msg)// on receiving a message msg
12: read data of length l into d from msg
13: if remaining > 0 then
14: remaining -= l
15: return d
16: end if
17: retrieve and remove data length k from d
18: retrieve and remove logical clock ts from d
19: remaining = k - length of k - length of ts - l
20: if ts > C then
21: C = ts
22: end if
23: increment C by 1
24: if using the Msg+ version then
25: retrieve and remove sender process id sid from d
26: add (sid, C) to message-receiving map if sid/∈its key set
27: remaining -= length of sid
28: end if
29: return d
30: end function

of the analyzed system execution, as further elaborated later in
our discussion of practical challenges. The rest of this algorithm
consists of two parts, triggered upon the occurrence of IPC (i.e.,
message-passing) events during system executions.

The first part is the run-time monitor SENDMESSAGE trig-
gered online upon each message-sending event. The monitor pig-
gybacks (prepends) two extra data items to the original message:
the total length sz of the data to send, and the present value of the
local logical clock C (of this sender process) (lines 2–7); then, it
sends out the packed data (line 8). The sender process id is also
packed in the Msg+ version (lines 3–5).

The second part is the other monitor RECVMESSAGE, which is
triggered online upon each message-receiving event. After reading
the incoming message into a local buffer d (line 10), the monitor
decides whether to simply update the size of remaining data and
return (lines 11–13), or to extract two more items of data first:
the new total data length to read, and the logical clock of the
peer sender process (lines 14–15). In the latter case, the two items
are retrieved, and then removed also, from the entire incoming
message. Next, the remaining data length is reduced by the length
of the data already read in this event (line 16), and the local logical
clock (of this receiver process) is compared to the received one,
updated to the greater, and incremented by 1 (lines 17–19). In the
Msg+ version, the sender process id is retrieved as well (line 21)
and a new entry is added to the message-receiving map if this
is the first message received from that sender process (line 22).
Lastly, the monitor returns the message as originally sent in the
system (i.e., with the prepended data taken away).

Note that D2ABS monitors message-passing events initiated
by any message-passing APIs exercised during the analyzed
system execution, regardless of the message passing happening

12

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

across processes or between threads within the same process—the
monitoring probes were inserted during the static instrumentation
(i.e., Step 1 shown in Figure 3) when the message passing targets
cannot be resolved. The purpose of monitoring these events is
to synchronize the timing of the method execution events across
processes. Thus, the monitoring of events of message passing
between threads in a process and the processing of the events (to
synchronize method execution events within that process) would
be of no avail, because such threads already have a synchronized
timing mechanism (logic clock). On the other hand, the unneces-
sary monitoring only incurs a small extra cost while not affecting
the correctness of our dependence analysis algorithms.

Illustration. For the example programD, Socket::readLine
and Socket::readChar are message-receiving APIs, while
Socket::writeLine and Socket::writeChar are con-
sidered message-sending APIs. During the static instrumentation,
D2ABS instruments for each callsite of any of these message-
passing APIs to probe for corresponding message-passing events.
For instance, during the execution of the instrumented version of
D, an invocation of the run-time monitor SENDMESSAGE will be
triggered immediately upon the call ssock.writeChar(r) at
Line 11. Through this monitor, the current logic clock of the server
process will be piggybacked to the message (i.e., character r)
hence passed to the client process. Similarly, during the execution,
an invocation of the run-time monitor RECVMESSAGE will be
triggered immediately upon the call csock.readChar(r) at
Line 29. Through this monitor, the client process retrieves the
logic clock of the server process from the received message. In
this way, D2ABS lets all the processes of the system execution get
each other’s current logic clock, so as to synchronize the timing
throughout the distributed execution.

Practical challenge. To avoid interfering with the message-
passing semantics of the original system, D2ABS keeps the
length of remaining data (with the variable remaining in the
algorithm) to determine the right timing for logical-clock (and
sender id) retrieval. In real-world distributed programs (e.g.,
Zookeeper [44]), it is common that a receiver process may obtain,
through several reads, the entire data sent in a single write by its
peer sender process. For example, a first read just retrieves the data
length so that an appropriate size of memory can be allocated to
take the actual data content retrieved in a second read. Therefore,
not only is it unnecessary to attempt retrieving the prepended data
items (data length and logical clock) in the second read since the
first one should have already done so, but also such attempts can
break the original network I/O protocols. D2ABS addresses this
issue by piggybacking the length of data to send and tracking the
remaining length of data to receive.

To illustrate our solution to this practical challenge, consider
the example program D of Figure 1 again. Suppose the server
process reads the string sent (at Line 28) by the client process
through a second read (also by calling the same message-receiving
API Socket::readLine) in addition to the one at Line 9.
Further suppose the length of the string sent is 16 and the
first read only retrieves 8 characters of the string. Then, as per
Algorithm 1 (lines 11–30), upon the first read, RECVMESSAGE

is invoked for the first time, where 8 bytes are retrieved from the
message and put in the buffer d. At this time, remaining==0,
thus the monitor proceeds to retrieve different parts of the first
message segment (e.g., logical clock) and update remaining.
Upon the second read, RECVMESSAGE is invoked again but it

just updates remaining and returns the buffer d after retrieving
the remaining characters of the original string.

6.1.2 Partial Ordering Method Execution Events

The Basic dependence inference in D2ABS relies on the execution
order of methods that is deduced from the timestamps attached
to all method execution events. These timestamps are calculated
based on each local logic clock, which is synchronized through
D2ABS’s monitoring message-passing events as described earlier.

As proved in [19], recording the first entry and last returned-
into (or return) events only is equivalent to tracing the full
sequence of those events for our dynamic dependence inference
that is purely based on the method execution order. Thus, instead
of keeping the timestamp for every method execution event oc-
currence (as shown in Table 1), for the Basic version, D2ABS

only records two key timestamps for each method m: the one
for the first instance of me, and the one for the last instance
of mi or mr , whichever occurs later. As per Equation 3, this
simplified tracing also suffices for the Msg+ version. For the Csd+
and Scov+ versions, however, the full sequence of (i.e., instance-
level) method execution events is required for effectively pruning
false positives with intra-component dependencies [17], [22]—
the hybrid dependence analysis algorithm needs to traverse each
instance of every method execution event to precisely recognize
false positives. Thus, the online monitor of method execution
events records either the two key timestamps for each method,
or the timestamp for every method execution event, depending on
which version is used.

For each process, we use an integer counter for time-stamping,
which is updated using the per-process logical clock. Meanwhile,
the logical clock Ci of each process Pi is maintained as follows:
• Initialize Ci to 0 upon the start of Pi.
• Increase Ci by 1 upon each method execution event in Pi.
• Update Ci upon each message-passing event occurred in Pi

via the two online monitors shown in Algorithm 1.
Finally, for the offline dependence computation in D2ABS, the
online algorithm here also dumps per-process method execution-
event sequences as traces upon the program termination (in
each distributed component). Additionally, in the Msg+ version,
the message-receiving maps are also serialized as part of the
per-process traces. The Scov+ version further carries statement-
coverage information in the per-process traces.

Illustration. For the example program D, every time when the
server process receives the current logic clock of the client process,
it tries to update its own current logic clock with that received
clock according to the algorithm described above. Suppose the
server and client components are deployed on two distributed
machines, and S′ (i.e., the instrumented server component) starts
before C ′ (i.e., the instrumented client component). When running
concurrently (e.g., against an example input set I={“hello”}),
S′ and C ′ generate two method-event sequences in two separate
processes, as listed in full in the first two and last two columns of
Table 1, respectively. After the last instance of event C::maini,
the client prints ’o’ (which is the maximum character in the
input string). As shown, logical clocks are updated upon message-
passing events. For instance, the logical clock of the server process
is first updated to 10 upon the event Ec(C,S) originated in the
client process, which is greater by 1 than the current logical clock
of the client process. Later, the client logical clock is updated to
14 upon Ec(S,C). The method execution events are time-stamped

13

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

Algorithm 2: Computing dynamic dependencies
let P1, P2, ..., Pn be the n concurrent processes of the system
let q be the query method
let MDG[Pi] be the MDG of the component executed in Pi

let AM [Pi] be the spark method of Pi with respect to q

1: locDS = ∅, extDS = ∅, comDS = ∅
2: for i=1 to n do
3: mdg = (using the Csd+ or Scov+ version)?MDG[Pi]:null
4: if using the Scov+ version then
5: covStmts = obtainCovStmts(tr(Pi), MDG[Pi])
6: updateMDG (mdg, covStmts)
7: end if
8: tsq = computeIntraDS(q, locDS, tr(Pi), mdg)
9: if tsq==null then continue

10: end if
11: for j=1 to n do
12: if i == j then continue
13: end if
14: if using the Csd+ or Scov+ version then
15: if using the Scov+ version then
16: covStmts = obtainCovStmts(tr(Pj), MDG[Pj])
17: updateMDG (MDG[Pj], covStmts)
18: end if
19: computeIntraDS(AM [Pj], extDS, tr(Pj), MDG[Pj])
20: continue
21: end if
22: if using the Msg+ version ∧ S(tr(Pj))[Pi]==null then
23: continue
24: end if
25: for each method m∈ keyset(R(tr(Pj))) do
26: if R(tr(Pj))[m] ≥ tsq then
27: if using the Msg+ version then
28: if R(tr(Pj))[m] ≥ S(tr(Pj))[Pi] then
29: extDS ∪= {m}
30: end if
31: else
32: extDS ∪= {m}
33: end if
34: end if
35: end for
36: end for
37: end for
38: comDS = locDS ∩ extDS
39: return locDS, extDS, comDS

by these logical clocks while message-passing events are not, as
marked by ‘-’ (i.e., not applicable). In this way, all the method
execution events are time-stamped with a synchronized timing
such that they are partially ordered in the whole system execution.

6.1.3 Dynamic dependence analysis

During system executions, the online method-execution-event
monitor generates event traces concurrently (and typically on
distributed machines). Since it computes dependencies offline,
D2ABS gathers these traces after their completion to one machine,
and computes dependence sets there as outlined in Algorithm 2.
For the Csd+ version, the MDGs of individual components are
also utilized; and statement coverage is further computed and
utilized on top of the MDGs for the Scov+ version.

For a detailed analysis, we refer to the process where the query
is first executed as local process versus all other processes as
remote process, and dependencies (represented by the dependent
methods) in local and remote processes as local dependencies and
remote dependencies, respectively. For a given query q, D2ABS

computes its dependence set as three subsets: local dependence
set, remote dependence set, and their intersection called common

dependence set (denoted as locDS, extDS, and comDS, respec-
tively, in Algorithm 2).

The algorithm takes the query q, n per-process traces, and
n per-component MDGs as inputs, and outputs the three subsets
(line 27) all initialized as empty sets (line 1). Per-process spark
methods can be readily derived from the message-receiving maps.
The algorithm traverses the n processes (loop 2–25) taking each
as the local process (line 2) against all others as remote processes
(lines 9–10) to first compute the local dependence set (line 4).
Then, the remote dependence set is computed (loop 11–25) based
on Equation 4 if Csd+ or Scov+ is used (lines 11–16), or on
Equation 3 if Msg+ is used (lines 17–25). In particular, if the
Scov+ is used, the static dependencies need to be pruned based on
statement coverage before they are used for local (lines 4–6) or
remote (lines 12–14) dependence analysis, as per Equation 5.

The subroutine computeIntraDS computes the dependence
set (to return via the second argument) of the given query (taken as
its first argument) within the given process (indicated by the third
argument). If the MDG of the component associated with this
process is given as null (as the last argument), it will be simply
ignored by the subroutine, which will identify as dependants the
methods whose last execution is not earlier than the first execution
of the query as in EAS [19]. Otherwise (i.e., in Csd+ or Scov+
version), the MDG will be utilized along with the trace for the pro-
cess (given as the third argument) to compute the dependence set
using DIVER [22]. The key ideas of DIVER’s hybrid dependence
analysis are summarized below for self-containing purposes.

Generally, the DIVER computation carefully checks whether
a method execution event e in the trace leads the dependence
(impact) originated in the query to propagate to the method
associated with e by referring to the MDG while using different
propagation rules. The rationales underlying these rules are (1)
through static dependencies induced by parameter or return-value
passing, impact can only propagate between two adjacently exe-
cuted methods, and (2) through other kinds of static dependencies
(those induced by definition-use relations between heap variables),
the dependence can propagate from a method a to any method that
executed after a. The subroutine computeIntraDS unionizes
the newly computed dependence set with the one passed in, and
returns the first execution event time tsq of q if q is found in the
input trace and null otherwise (line 8).

For the Scov+ version, subroutine obtainCovStmts is
needed to compute the covered statements (line 5) from the
coverage information contained in the trace of the given process
(passed in as the first argument). For the sake of efficiency, D2ABS

instruments for and monitors covered branches in previous phases.
Now in the dependence analysis, covered statements are derived
according to the branch coverage and control dependencies on
the MDG for the component corresponding to the given process
(passed in as the second argument). Then, the third subroutine
updateMDG is invoked, which prunes dependencies with at least
one statement not included in the covered statements (line 6).

For the Csd+ or Scov+ version, the external dependence set
is computed similarly (line 15), but using the spark method of a
remote process Pj as the query (the first argument) and always
taking the MDG of the component that Pj executes (the last
argument). Computation of statement coverage and MDG pruning
with the result for the remote process (lines 13–14) are both
similar to those for the computation of local dependencies.

Further, for the Msg+ version, tr(P) denotes the trace of
process P , R(t) denotes the hashmap from each executed method

14

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

to its last execution event time in trace t, S(t) denotes the hashmap
from the id of each sender process to the event time when the
remote process receives the first message from the sender, and
keyset(.) returns the key set of a hashmap. If the (remote) process
Pj never received any message from the (local) process Pi, no
remote impacts would be found in Pj (lines 17–18).

For a single test input, the dependence-computation algorithm
computes the dependence set of one method at a time; for multiple
methods in the query set, the result is the union of all the one-
method dependence sets computed separately (e.g., in parallel).
Similarly, the dependence set for multiple tests is the union of
all per-test dependence sets. These treatments are similar to those
adopted in union slicing [45].

Illustrations. To illustrate the unified dynamic dependence anal-
ysis in D2ABS, we now give a running example for each of its
four instantiations, Still consider the program D of Figure 1 as the
program under analysis. Suppose the message-passing and method
execution events have been captured as described in the previous
two illustrations (i.e., at the end of Sections 6.1.1 and 6.1.2).
Further, suppose the MDGs for S and C have been constructed
also, and suppose the query set M={S::serve}.

By inferring dynamic dependencies from the happens-before
relationships among method execution events according to their
timestamps (i.e., according to Equation 2), the Basic version
produces {S::getMax, S::serve, S::main, C::shuffle,
C::compute, C::main} as the dependence set of M . The
reason is because, as shown in Table 1, S::serve first executed
at timestamp 5, which is no greater than the timestamp at which
any of the method in this dependence set executed the last time
(e.g., 8 for C::shuffle and 12 for S::getMax).

By exploiting message-passing semantics, the Msg+ version
prunes C::shuffle from this dependence set according to
Equation 3. In this case, the client process is Pi, the server process
is Pj , S::serve is Pj

m′
, and C::shuffle is Pi

m. Thus,
here TS(Pi, Pj)=13, TL(Pi

m)=8, TF (Pj
m′

)=5 (see Table 1),
hence the TL(Pi

m) ≥ TS(Pi, Pj) ≥ TF (Pj
m′

) is not satisfied.
The intuitive explanation is this: the impact of the computation
in S::serve in the server process can propagate to the client
process via the message sent by the server at timestamp 13,
because S::serve executed before the message was sent; yet
C::shuffle never executed in the client process after the
message was received, thus it was too late for C::shuffle
to be impacted by the computation in S::serve. As a result,
C::shuffle has no dynamic dependence on S::serve.

By utilizing the static dependencies of both components, the
Csd+ version prunes S::main from the dependence set produced
by the Basic version according to Equation 4. The reason is be-
cause there is no static dependence of S::main on S::serve,
thus the static dependence graph of the server component does not
have the edge between these two methods that is required by the
incorporating intra-component dependencies rule.

In this simple example, since none of the methods contain
branches, the fact that a method executed means that every
statement in that method is covered. Thus, statement coverage
data did not lead to further reduction of the dependence set. As
a result, the Scov+ version produces the same dependence set as
Csd+ does for the given query set.

Now let us respond to the challenge to the developer in the
use scenario that motivated D2ABS. As demonstrated, D2ABS

can compute dynamic dependencies (hence predict impacts) across

distributed components (processes). For an example application of
these dependencies in impact analysis, if the developer plans for
a change to method serve in the server, the methods compute
and main in the client, in addition to the other server method
(S::getMax), are potentially affected and thus need impact
inspection by the developer before applying that change.

6.1.4 Analysis Soundness and Result Safety
The soundness of D2ABS relies on that of its static and dynamic
analysis. Our discussion and characterization on the analysis
soundness and results safety of D2ABS refer to relevant definitions
and discussions in [29]: a sound static analysis produces informa-
tion that holds for all possible program executions, while a sound
dynamic analysis produces information that holds for the analyzed
execution alone. As per these definitions, our static analysis is
not sound, because of its inability to deal with dynamic language
constructs in Java (e.g., reflection, native code invocation via JNI,
etc.)—the analysis does not see the relevant code at compile time
thus its results may not hold for the executions involving such
code. In fact, sound static analysis for a language that allows for
dynamic code constructs is generally rare [46].

Also per the definition in [29], our dynamic analysis that only
uses dynamic data is sound as it captures all the dynamic de-
pendencies (at method level) exercised in the analyzed executions
and does so always in a conservative manner: for instance, the
Basic version over-approximates dynamic dependencies between
two methods just according to their happens-before relationships.
However, in two instantiations of D2ABS, Csd+ and Scov+,
the dynamic analysis utilizes static dependencies also, which are
produced by the static analysis that is unsound; thus, the resulting
dynamic dependencies may not hold for some executions (i.e.,
those involving dynamic code constructs). Therefore, considering
all of its instantiations, D2ABS is unsound as a whole.

Traditionally, the result of a sound analysis is considered
safe and that of a unsound analysis unsafe. Thus, we regard
the resulting dependence sets of D2ABS as unsafe in light of
the overall unsoundness of our (hybrid) dynamic (dependence)
analysis. Note that here we use “soundness/unsoundness” as a
property of an analysis while using “safety/unsafety” to charac-
terize the results of the analysis. Leveraging additional analyses
(e.g., statically resolving the targets of reflective calls) to mitigate
the unsoundness and unsafety issues is part of our future work.

7 IMPLEMENTATION
D2ABS consists of three main modules: a static analyzer, two sets
of run-time monitors, and a post-processor. Careful treatments are
crucial for a non-interfering implementation as recapped below.
We released the source code of D2ABS along with our empirical
study results at https://bitbucket.org/wsucailab/d2abs.

Static analyzer. The static analyzer first instruments the input
program such that all relevant events are monitored accurately,
which is crucial to the accuracy of D2ABS. We used Soot [47] for
the instrumentation in two main steps. First, D2ABS inserts probes
for the three types of method execution events in each method, for
which we reused relevant modules of DIVER [22], a hybrid impact
analysis that is built on Soot and uses method execution event
traces also. The second step is to insert probes for message-passing
events, for which D2ABS uses the list L of specified message-
passing APIs to identify probe points: L includes the prototype of
each API used in the input system for network I/Os.

15

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

https://bitbucket.org/wsucailab/d2abs/src/master/

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

If L is not specified, a list of basic Java network I/O APIs is
used covering two common means of blocking and non-blocking
communication: Java Socket I/O [48] and Java NIO [49] (both are
socket-based). While not immediately addressing implicit depen-
dencies in distributed programs by itself, this API list is critical
for the effectiveness of dependence analysis in our framework: it
immediately affects whether D2ABS can completely and precisely
capture message-passing events hence how accurately it can model
interprocess control and data flow. Fortunately, it seemed to suffice
that our implementation handles the most commonly used network
I/O mechanisms for message passing, at least in Java distributed
software—for the diverse systems in our evaluation study, we did
not need to specify the list but just used the built-in support of our
framework implementation.

For the Csd+ version, the static analyzer proceeds with con-
structing the MDG for each component of the input program, by
reusing the algorithms for abstracting method-level dependencies
in single-process programs [17], [30]. The MDG includes three
classes of threading-induced dependencies: ready, synchroniza-
tion, and interfere dependencies, computed partly in reference
to the implementation of the Indus project [43]. The MDGs are
serialized to disk, to be used by the post-processor.

Run-time monitors. The two sets of run-time monitors implement
the two online algorithms: the first focuses on monitoring method
execution events and the second is dedicated to preserving the
partial ordering of them. The first set again reuses relevant parts
of DIVER [22]. For the second set, instead of invoking additional
network I/O API calls to transfer logical clocks, the monitors take
over the original message passing so that they can piggyback
the three extra data items (i.e., the data length, logical clock,
and sender id) to the original message. In the message-passing
event monitors, we carefully manage these extra data items with
sophistication in order to support non-blocking I/Os (e.g., Java
NIO) and account for complications and variety in communication
implementations of real-world distributed systems (e.g., those that
would cause interference with original communication semantics
as discussed in Section 6.1.1).

Post-processor. The post-processer is the module that actually
answers dependence analysis queries. It starts by gathering dis-
tributed traces with a helper script which passes per-process traces
to the offline dependence-computation algorithm. To compute the
dependence set following Algorithm 2, the post-processor re-
trieves the partial ordering of method execution events by compar-
ing the associated timestamps. For the Csd+ and Scov+ versions,
the MDG is deserialized from the disk file dumped by the static
analyzer. Additionally for the Scov+ version, branches covered
are retrieved from the traces as well and covered statements are
identified using control dependencies in the MDG: if a branch is
covered, all statements that are control dependent on that branch
are all considered covered. Since our MDG construction addresses
exception-driven control flows as well, coverage of exception-
handling constructs is handled by our statement coverage com-
putation as well.

8 EVALUATION

We evaluate D2ABS in the context of its application for dynamic
impact analysis, with which an impact query corresponds to a
dependence query (a dependence of m2 on m1 implies m1
impacts m2). We seek to answer the following research questions:

TABLE 4: Statistics of experimental subjects

Subject (version) #SLOC #Methods Test type #Cov.M.
MultiChat (r5) 470 37 integration 25
NIOEcho (r69) 412 27 integration 26
xSocket (v2.8.15) 15,890 2,204 integration 391
Thrift (v0.11.0) 12,366 1,459 integration 266
Open Chord (v1.0.5) 38,084 736 integration 354

ZooKeeper (v3.4.11) 62,450 4,813
integration 749
system 817
load 798

Voldemort (v1.9.6) 163,601 17,843
integration 2,048
system 1,242
load 1,323

Freenet (v0.7.0) 196,281 16,673 integration 2,477

• RQ1: Are Msg+ and the two new levels of abstraction in
D2ABS more effective than the basic DISTIA [26]?

• RQ2: Which kind of program information used by D2ABS

contributes the most to its effectiveness?
• RQ3: How efficient and scalable are the different versions of

D2ABS in terms of various analysis overheads?
• RQ4: Does D2ABS as a whole offer variable cost-effectiveness

tradeoffs hence accommodate diverse use scenarios?

8.1 Experiment Setup
We evaluated D2ABS on eight distributed Java programs, as
summarized in Table 4. The size of each subject is measured
by the number of non-comment non-blank Java source lines of
code (#SLOC) and number of methods defined in the subject
(#Methods) that we actually analyzed. The last two columns list
the type of test input used in our study (one test case per type) and
the number of methods executed at least once in the respective test
(#Cov.M.). We used each of these methods as a dependence query.
For each subject and input type, the ratio of the fifth column to
the third column gives the method-level coverage of the test input
(e.g., the method-level coverage of the integration test input for
Thrift is 266/1,459).

8.1.1 Subject Systems
We chose these subjects such that varied system scales and
architectures, application domains, and uses of either and both
of blocking and non-blocking I/Os are all considered.
• MultiChat [50] is a chat application where multiple clients

exchange messages via a server broadcasting the message
sent by one client to all others.

• NioEcho [51] is an echo service via which the client just gets
back the same message as it sends to the server.

• xSocket [52] is an NIO-based library for building high-
performance network applications.

• Thrift [53] is a framework for scalable cross-language ser-
vices development.

• Open Chord is a peer-to-peer lookup service based on dis-
tributed hash table [54].

• ZooKeeper [44], [55] is a coordination service for distributed
systems to achieve consistency and synchronization.

• Voldemort [56] is a distributed key-value storage system used
at LinkedIn.

• Freenet [57] is a peer-to-peer data-sharing platform offering
anonymous communication.

Some of these systems use Socket I/O or Java NIO only, while
others use both mechanisms, for message passing among their
components. For all subjects, we checked out from their official
repositories the latest stable versions or revisions as shown in (the
parentheses of) Table 4.

16

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

8.1.2 System Executions

We chose test inputs to cover different types of inputs when pos-
sible, including system test, integration test, and load test, which
we assume exercise typical, overall system behaviour instead of
a small specific area of the system. The integration tests were
created manually as elaborated below, while the other types of
inputs come with the subjects from their respective repositories.

In each integration test, we started two to five server and client
nodes on different machines and performed client operations that
cover main system services—specially for peer-to-peer systems,
we operated on all nodes, and for ZooKeeper we started a
container node in addition.
• For MultiChat and NioEcho, the client requests were sending

random text messages.
• For ZooKeeper, the ordered client operations were: create

two nodes, look up for them, check their attributes, change
their data association, and delete them.

• For Open Chord, the operations were in order: create an
overlay network on machine (node) A, join the network on
machines B and C, insert a new data entry to the network on
C, look up and then delete the data entry on A, and list all
data entries on B.

• For Voldemort, the operations were: add a key-value pair,
query the key for its value, delete the key, and retrieve the
pair again.

• For Freenet, we first uploaded a file to the network with a
note on node A, shared it to nodes B and C, then on B and
C accepted the sharing request and the note, followed by
downloading the file and replying with a note.

• The remaining two subjects, xSocket and Thrift, are frame-
works/libraries, thus we needed to develop user applications
for exercising these subjects. Each of the two applications
consists of two components, a server and a client. For
xSocket, one client sends a text message to the server,
followed by the second client sending a different message
to the server. The Thrift application implements a calculator,
for which the operations were addition, subtraction, multipli-
cation, and division of two numbers.

Our D2ABS implementation handled the varied system archi-
tectures and network I/O mechanisms represented by the chosen
subject systems, including blocking and non-blocking message
passing among the distributed components of these systems. Thus,
no user-specified list of message-passing APIs was needed for our
evaluation experiments. Given the diversity of our study subjects,
this implies that users of D2ABS would commonly not need to
specify the optional API list L (Figure 3).

8.2 Experimental Methodology

To answer our research questions, we evaluate D2ABS as a
holistic framework through assessing the cost and effectiveness
of its four instantiations (Section 6). In particular, we compare
the Msg+ version and the two newly added versions, together
noted as advanced versions, against the Basic version (i.e., basic
DISTIA [26]) as the baseline, so as to understand the contribution
of message-passing semantics, static dependencies, and coverage
data to effectiveness improvements and overhead increases in
D2ABS. We considered every method of each subject as a query,
yet we report results only for queries executed at least once in
one process—only such queries have a non-empty impact set. For

a method executed in more than one processes, we took it as
executed in each process as a separate query.

For each query, we measure the effectiveness of D2ABS by
comparing it to the baseline in terms of of impact-set (dependence-
set) size ratios, and examine the composition of the impact set
concerning its two subsets: local impact set (i.e., local dependence
set) and remote impact set (i.e., remote dependence set). For
average-case analyses, we added the set of common impacts
(i.e., common dependence set) into both of the two subsets.
Accordingly, we measure the effectiveness of D2ABS with respect
to two subsets (local and remote impact sets) relative to the corre-
sponding baseline results as well. In essence, we assess precision
improvement through impact-set reduction as a relative measure.
We use the relative effectiveness measures for two reasons. First,
computing the (precision and/or recall) measures in absolute terms
requires ground-truth dependence sets of all possible queries,
which are neither available for our subject systems and executions
nor automatically computable (due to the lack of capable tools
available to us). Second, given that the baseline has been evaluated
with respect to its effectiveness before [26], the main goal of this
evaluation is to assess the relative improvements of the advanced
versions over the baseline, for which the relative measures are
sufficient. Besides the impact-querying time, we report the static-
analysis and run-time costs of D2ABS, and storage costs, all as
efficiency metrics.

For a fair comparison, all versions used the same test input
for computing the impact set of each query. This was realized by
first recording our manual inputs per subject and test type and
then replaying accordingly across different D2ABS versions. The
machines used were all Linux workstations with an Intel i5-2400
3.10GHz CPU and 8GB DDR2 RAM.

8.3 Results and Analysis

In this section, we report and discuss the empirical results of our
evaluation on D2ABS, focusing on the effectiveness and efficiency
of D2ABS separately and both together as a cost-effectiveness
measure, in order to answer the four research questions.

8.3.1 RQ1: Effectiveness
Figure 6 illustrates the effectiveness results of D2ABS, with every
single plot depicting the result (i.e., relative precision) distribution
for each subject and input type together shown as the plot title
(hereafter, the input type is omitted for subjects for which only
an integration test is available and utilized). Each chart includes
at most nine boxplots showing that data distribution for one of
three categories (on x axis): the holistic impact set (A for all)
and its two subsets (L for local and R for remote), each produced
by one of the three advanced versions of D2ABS if applicable.
Two exceptions were Voldemort and Freenet, for which the Csd+
results are missing because computing the static intra-component
dependencies did not finish after ten hours (thus we terminated
the analysis). The same was applied to Scov+ since it subsumes
Csd+ in terms of the inclusion of the static dependence analysis.

Particularly in Figure 6, for each query, the common depen-
dencies were removed from the two (i.e., local and remote) subsets
of the impact set. This is done for a sanity check of the pruning
strategy of each advanced version: Msg+ only prunes remote
dependencies while the other two only prune local dependencies.
Each underlying data item of the chart indicates the effectiveness
metric (i.e., impact-set size ratio to the baseline, as shown on y

17

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

0

0.5

1

L L L R R R A A A

MultiChat (25)

Msg+ Csd+ Scov+

0

0.5

1

L L L R R R A A A

NioEcho (27)

0

0.5

1

L L L R R R A A A

xSocket (767)

0

0.5

1

L L L R R R A A A

Thrift (354)

0

0.5

1

L L L R R R A A A

Open Chord (638)

0

0.5

1

L L L R R R A A A

ZooKeeper−integration (820)

0

0.5

1

L L L R R R A A A

ZooKeeper−system (744)

0

0.5

1

L L L R R R A A A

ZooKeeper−load (750)

0

0.5

1

L R A

Voldemort−integration (1741)

0

0.5

1

L R A

Voldemort−system (1550)

0

0.5

1

L R A

Voldemort−load (2689)

0

0.5

1

L R A

Freenet (4887)

Fig. 6: Distribution of D2ABS effectiveness as the ratios (y axes, the lower the better) of its per-query impact-set sizes (A), including
those of the local (L) and remote (R) subsets (x axes), to the baseline, per subject and input type (with #queries in parentheses).

axis) for one query. The total numbers of queries involved are
shown in the parentheses. In each boxplot, the circled dot within
the bar represents the median. To facilitate the comparison of
effectiveness differences among the three D2ABS versions, we
also showed in each boxplot a pair of triangular marks, which
indicate the comparison interval of the median. The statistical
meaning of these intervals is: the medians of any two groups are
significantly different at the 5% significance level if their intervals
do not overlap.

The results indicate that all the three advanced versions are
noticeably more effective than the baseline (basic DISTIA). In-
corporating the message-passing semantics reduced the baseline
impact sets by 5% up to over 20% in most cases (according
to the 75% quartiles). Compared to the two smallest subjects,
the large, real-world systems saw generally higher effectiveness
improvements by the Msg+ version. Examining the two subsets of
each impact set confirms that Msg+ only reduced remote impact
sets only while not changing the local impact sets relative to the
baseline, consistent with the rationale of this technique. Note that
the ratios with respect to all (rightmost three boxplots of each
chart) impact sets are mostly higher than those with respect to
the remote subsets. This is because each all impact set includes
the corresponding common impact set as well, while sizes of the
common impact sets of Msg+ are consistently smaller than those
of the baseline (due to smaller remote impact sets).

The Csd+ and Scov+ versions of D2ABS further enhanced the
baseline effectiveness by pruning only local impact sets, according
to the analysis algorithm (Algorithm 2). Just as Msg+ version
did not change the local impact sets, the results confirmed that
neither Csd+ nor Scov+ changed the remote impact sets. Since the
static dependencies incorporated in Csd+, and statement coverage
in Scov+ additionally, are both limited to individual components
(Equations 4 and 5), the reduction of overall impact sets by Csd+
and Scov+ was ascribed to the decreases in local impact-set sizes.

Again, here we are looking at the two subsets with common
dependencies removed; if we look at the the complete local and
remote impact sets, any of the three advanced versions would have
reduced both local and remote impact sets in most cases, because
reducing one of the two subsets led to the reduction of the common
set hence the reduction of the other subset.

The impact-set size ratio distribution of Csd+ and Scov+
(i.e., the two framework instantiations newly introduced in this
paper) shows their substantial advantage over both the baseline
and the Msg+ version. In all of the subjects to which these two
new versions were applied, utilizing local static dependencies
largely cut off the baseline local impact sets, leading to drastic
reduction of the overall baseline impact sets by 20% to over
50% for the majority of the queries (per the 75% quartiles). For
instance, for Open Chord (first row, first column of Figure 6), the
impact-set size ratio (over the baseline) by Msg+ centered around
90% for virtually any query, while the ratio by Csd+ was below
50% for 75% of the queries. As expected, leveraging statement
coverage data moved further along in pruning the local impact sets.
The results demonstrated substantial improvements of Scov+ over
Csd+ for most queries in most subjects, which is particularly true
of larger subjects (e.g., Open Chord and ZooKeeper) compared to
smaller ones (e.g., xSocket and Thrift).

Complementary to Figure 6, Table 5 gives the mean effec-
tiveness results (computed from the same individual data points
which the figure depicts the distribution for). Results of the two
new D2ABS versions against Voldemort and Freenet were missing
because of the reason mentioned above. On average, Msg+ was
not always effective, with a worse case of reporting 99% of the
baseline impact set for Open Chord. Although it attained the
highest reduction of over 50% (for Voldemort-load), the reduction
was less than 20% in all other cases. In comparison, Csd+ pruned
baseline impact sets mostly by 40% or more, and 30% in the
worse case. The highest effectiveness was achieved by Scov+

18

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

TABLE 5: Mean effectiveness improvement (in terms of impact-set size ratios) of the three new instances of D2ABS over the baseline

Subject & test input
Average baseline

effectiveness (impact-set sizes)
Mean effectiveness improvement versus baseline

Msg+ version Csd+ version Scov+ version
Local Remote All Local Remote All Local Remote All Local Remote All

MultiChat 14.0 4.5 18.5 100% 96.28% 97.12% 36.85% 100% 49.27% 19.21% 100% 34.77%
NioEcho 11.4 11.3 21.7 100% 93.35% 96.59% 38.69% 100% 66.20% 38.07% 100% 65.85%
xSocket 203.2 281.1 356.3 100% 38.62% 84.30% 12.45% 100% 49.40% 11.46% 100% 49.08%
Thrift 80.7 102.1 128.0 100% 60.60% 80.80% 33.59% 100% 56.76% 31.17% 100% 55.50%
Open Chord 248.0 245.9 276.0 100% 93.36% 98.95% 48.32% 100% 54.76% 0.61% 100% 14.60%
ZooKeeper-integration 284.1 265.5 492.1 100% 94.46% 96.96% 29.77% 100% 70.03% 0.51% 100% 62.96%
ZooKeeper-system 687.1 641.3 929.5 100% 95.12% 97.23% 55.31% 100% 70.64% 18.13% 100% 44.49%
ZooKeeper-load 577.1 560.7 837.8 100% 66.65% 82.73% 15.50% 100% 48.58% 7.25% 100% 47.79%
Voldemort-integration 654.6 578.1 1052.7 100% 89.13% 95.69% - - - - - -
Voldemort-system 522.1 478.6 842.9 100% 86.97% 94.01% - - - - - -
Voldemort-load 286.9 709.9 967.6 100% 4.42% 47.91% - - - - - -
Freenet 2787.8 2780.0 2956.6 100% 3.11% 93.24% - - - - - -
weighted average 1191.6 1251.8 1494.7 100% 41.06% 84.85% 31.86% 100% 58.75% 9.95% 100% 46.02%

on Open Chord, with an over 85% reduction of baseline results
on average. Our manual inspection of the code of this subject
in comparison to other subjects revealed that it contains much
more extensive control structures exercised during the analyzed
executions, which justifies the best effectiveness of statement-
coverage-based pruning for this subject.

The last row of the table shows the weighted (by the number
of queries) averages of per-subject effectiveness measures. Given
the differences in the subjects’ code and executions, these overall
averages may not well represent an average-case situation across
the subjects. Nevertheless, these numbers provide a summary
metric to facilitate comparisons. In all, Msg+, Csd+, and Scov+
pruned 15%, 41%, and 54% of baseline results, respectively, on
average across all applicable cases. Given the safety of all resulting
impact sets produced by any of the four compared techniques
(Section 5.2), these reduction ratios are translated to precision
improvements by 17.6%, 69.5%, 117.4% (in terms of ratios rather
than absolute precision values)4, respectively.

In practical application scenarios, these effectiveness improve-
ments imply that developers can save the time that would be
spent on inspecting up to half of the impacts/dependencies given
by the baseline approach. The first four columns of Table 5 list
the baseline impact set sizes, which inform the implications and
significance of these inspection-effort savings. For instance, for
ZooKeeper-load, Csd+ would save developers effort on examining
430 (false-positive) methods. On overall average, Msg+, Csd+,
and Scov+ would save such efforts for inspecting 226, 617, and
807 methods that are false positives, respectively. The numbers for
the local and remote impact sets further validated our expectations
on where (local/remote) each advanced version would prune the
baseline results the most. The Msg+ local impact sets are always
the same (100%) as the baseline’s, so are the remote impact sets
from Csd+ and Scov+. This consistency further validated the
analysis algorithms underlying these three advanced versions.

RQ1: The three advanced instances of D2ABS achieved sub-
stantial effectiveness (precision) improvements over DISTIA,
with an impact-set size reduction of 15% (with Msg+), 41%
(with Csd+), and 54% (with Scov+). The implication of these
improvements is to save developers’ effort of examining 226 to
807 false-positive methods in the baseline impact sets.

8.3.2 RQ2: Contributing Factors
To understand the contributing factors in the effectiveness im-
provements of D2ABS over the baseline, we examined the effec-

4. An impact-set size ratio r corresponds to a precision increase by (1-r)/r.

tiveness results again but with a focus on the contrast among the
three advanced D2ABS versions evaluated against the baseline:
Msg+, Csd+, and Scov+. The motivation for understanding these
contributing factors is to gain knowledge on the pros and cons
of varied design decisions (in terms of data use) in dynamic
dependence analysis of distributed programs.

As shown in Table 5, the two versions that utilize static
dependencies (Csd+ and Scov+) are both considerably more
effective than Msg+ (achieving 37% and 26% smaller impact
sets on overall weighted average, respectively, as shown in the
bottom row of the table). In comparison, Msg+ is more effective
than the baseline, with much smaller magnitude of improvements
though (14% smaller impact sets on average). Thus, in terms of
average-case precision, it appeared that message-passing seman-
tics contributed less than static dependencies. This is intuitively
because message-passing semantics itself is a very coarse form of
(component/process-level) information. Also, normally message
passing occurs among distributed processes fairly often and bidi-
rectionally, as we observed in our subjects’ executions. As a result,
the constraint (Equation 3) is generally easy to satisfy. Comparing
between Csd+ and Scov+ indicates that adding more program
information (i.e., statement coverage) led to further precision im-
provements. On the other hand, the gain of 11% is only half of that
(26%) achieved by Csd+ over Msg+. Thus, static dependencies
seem to contribute more than statement coverage too. Not only
were such contrasts among the three advanced versions observed
in an average case, Figure 6 revealed similar contrasts for the
majority of individual queries in all relevant subjects individually.

Figure 6 also enables statistical comparisons of the contri-
butions made by varied forms of program information used in
D2ABS. Comparing the medians (circled dots) across the three
advanced versions for each subject and test type further corrob-
orates the considerable effectiveness advantage of Scov+ over
Csd+, and the even greater improvements of Csd+ over Msg+.
These comparison intervals indicate that, in a median case, (1)
Csd+ was significantly more effective than Msg+ in 7 out of the 8
applicable cases (with the only exception of ZooKeeper-system),
and (2) Scov+ was significantly more effective than Csd+ for 3 of
the 8 cases (MultiChat, ZooKeeper-system, and ZooKeeper-load).

Beyond the average- and median-case comparisons, we further
conducted two statistical analyses: (1) paired Wilcoxon signed-
rank tests [58] to assess the statistical significance (at the 0.95
confidence level) of effectiveness differences among the four
D2ABS versions, and (2) effect sizes in terms of Cliff’s Delta [59]
(in a paired setting with α = .05) to assess the magnitude of
the effectiveness differences. In both analyses, the two groups

19

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

TABLE 6: p-values and effect sizes (in parentheses) with respect to impact-set sizes between all pairs among the four D2ABS instances
Subject & test input baseline:Msg+ baseline:Csd+ baseline:Scov+ Msg+:Csd+ Msg+:Scov+ Csd+:Scov+
MultiChat 5.62E-01 (.08) 6.20E-05 (.68) 2.62E-06 (.68) 1.17E-04 (.60) 4.55E-06 (.68) 6.30E-04 (.80)
NioEcho 2.92E-01 (.33) 2.31E-09 (.93) 7.97E-10 (.96) 2.48E-09 (.93) 7.37E-10 (.96) 9.58E-01 (.04)
xSocket 5.29E-38 (.71) 1.12E-181 (.86) 1.08E-181 (.86) 1.11E-133 (.70) 1.08E-133 (.70) 1.00E+00 (.00)
Thrift 3.58E-18 (.56) 1.22E-63 (.77) 1.67E-67 (.80) 2.17E-24 (.50) 6.35E-27 (.53) 6.34E-01 (.10)
Open Chord 6.33E-02 (.25) 3.47E-158 (.81) 3.25E-243 (.99) 2.93E-157 (.80) 3.52E-243 (.99) 6.62E-87 (.79)
ZooKeeper-integration 5.34E-03 (.28) 1.01E-40 (.40) 4.68E-35 (.36) 5.35E-50 (.42) 3.88E-48 (.42) 2.01E-12 (.55)
ZooKeeper-system 1.49E-13 (.64) 7.97E-88 (.63) 2.31E-221 (.94) 5.15E-57 (.47) 9.35E-221 (.94) 5.26E-48 (.63)
ZooKeeper-load 9.83E-106 (.56) 5.50E-163 (.80) 7.31E-154 (.78) 1.05E-69 (.47) 1.01E-64 (.45) 1.20E-01 (.47)
Voldemort-integration 4.95E-12 (.18) - - - - -
Voldemort-system 8.34E-15 (.20) - - - - -
Voldemort-load 0.00E+00 (.58) - - - - -
Freenet 5.96E-168 (.49) - - - - -

were the impact-set sizes given by each pair of techniques
compared. Both analyses are nonparametric, allowing us to lift
the assumption about the normality of the distribution of un-
derlying data points. Table 6 lists the Wilcoxon p values along
with corresponding effect sizes (in parentheses) for all relevant
comparison groups for all applicable subjects and test input types.
Statistically significant results are highlighted in boldface. We
differentiate four levels of effect strength as per Cliff’s Delta
(d) values [60]: negligible (|d|≤0.147), small (0.147<|d|≤0.33),
medium (0.33<|d|≤0.474), and large (|d|>0.474).

The results (3rd to 6th columns of Table 6) indicate that
the two new D2ABS versions (Csd+ and Scov+) were strongly
significantly more effective, with mostly very strong (large) effect
sizes, than both the baseline and Msg+. Meanwhile, Msg+ impact
set sizes were significantly different from (smaller than) those
of the baseline for all cases but the two smallest subjects and
Open Chord. Also, the majority of these significant cases came
with a large effect size. These observations with Msg+ and the
baseline were similar to those between Csd+ and Scov+. In all,
results of the statistical analyses corroborated what we observed
from the earlier comparisons on medians and averages about
the strengths of the effects of various program information on
D2ABS’s effectiveness. On the other hand, the numbers of Table 6
indicate significant (in terms of p values) and large (in terms
of effect sizes) improvements of the three advanced versions of
D2ABS over the basic DISTIA.

RQ2: Among the various forms of program information used by
D2ABS, static dependencies combined with statement coverage
contributed the most to its effectiveness, followed by static
dependencies alone and then by message-passing semantics. The
intra-component dependencies are the most contributing, single
form of data, implying that incorporating static dependence anal-
ysis may benefit greatly to the precision of dynamic dependence
analysis of distributed programs.

8.3.3 RQ3: Efficiency
Tables 7 and 8 list all relevant costs of the baseline and the
three advanced versions of D2ABS, respectively. The costs re-
ported include the time cost of static analysis, run-time overhead
measured as ratios of the execution time of the original program
(Original run) over the execution time of the instrumented one
(Instr. run), and impact querying time. The time costs are reported
in milliseconds (ms), and storage costs in KB which include the
disk space taken by serialized MDGs (only for Csd+ and Scov+)
and execution traces (for all of the four instantiations).

With the Basic version (baseline), the static analysis generally
took longer for larger subjects, as expected, yet still below 3 min-
utes even on the largest system Freenet. Run-time and querying

TABLE 7: Efficiency results of the baseline analysis

Subject & input
Original
run (ms)

time costs in milliseconds (ms) space
(KB)Static

analysis
Instr.
run

Runtime
overhead

Querying
(stdev)

MultiChat 5,461 12,817 5,735 5.02% 4 (2) 7
NioEcho 3,213 13,365 3,619 12.64% 4 (2) 5
xSocket 7,753 24,842 8,470 9.25% 6 (2) 85
Thrift 9,751 23,143 10,241 5.03% 7 (1) 18
Open Chord 4,856 14,533 4,931 1.54% 8 (5) 73
ZooKeeper-integration 37,239

39,124
38,396 3.11% 10 (2) 94

ZooKeeper-system 15,385 18,565 20.67% 24 (6) 132
ZooKeeper-load 94,187 98,891 4.99% 22 (5) 142
Voldemort-integration 17,755

132,536
18,662 5.11% 22 (7) 315

Voldemort-system 11,136 12,232 9.84% 19 (4) 197
Voldemort-load 21,066 21,198 0.63% 29 (5) 782
Freenet 54,794 165,174 61,876 12.92% 114 (17) 527
Overall average 33,213.7 73,854.9 36,273.6 8.07% 49.3 (44.9) 395.7

costs are consistently correlated to subject sizes as well as the type
of inputs and the size of execution traces (the seventh column),
with the worst case seen by ZooKeeper and Freenet, respectively.
Nevertheless, the run-time overhead was at worst 21% and the
longest querying time was just a tenth of one second. The last
row (of Tables 7) gives the average costs weighted by the number
of queries studied in each subject and input type. Overall, the
baseline needed only 74 seconds for static analysis and incurred
only 8% runtime overhead. Both the querying and storage costs
were negligible.

The Msg+ version shares the same instrumentation as the Ba-
sic version (second column of Table 8). The additional per-process
message-receiving maps incurred negligible overheads. Thus, we
did not show the cost breakdown but only the querying time for
this framework instantiation. Our results show the additional data
utilized only caused very small increase in the querying costs,
which remained well below one second per query. The efficiency
results of both the Basic and Msg+ versions were highly consistent
with those obtained in our preliminary studies [26].

The Csd+ version incurred much higher costs in any of the
three phrases of D2ABS than the baseline and Msg+. Since static
dependencies are not just affected by the size of a program
but more by the its logic complexity, the static-analysis costs
were not linearly correlated to subject sizes. Moreover, very-large
systems (Voldemort and Freenet) were not successfully analyzed
by this version as mentioned earlier, thus we missed the results
accordingly. Among the six remaining subjects, the largest took
the longest time of about 53 minutes. This should be readily
acceptable for systems at such a scale. Also, this is a one-time
cost (for the single program version analyzed by D2ABS) as the
instrumented code and the constructed MDG can be reused for
any inputs and for computing any queries afterwards. The runtime
overheads were considerably larger too, almost 5x with Open
Chord, since Csd+ requires full sequences of method execution
events. Further, traversing the MDG and longer traces led to

20

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

TABLE 8: Time cost breakdown (in milliseconds) and storage cost (in KB) of the three advanced versions of D2ABS

Subject & input
Msg+

querying
(stdev)

Csd+ time costs in milliseconds Csd+
Storage

costs (KB)

Scov+ time costs in milliseconds Scov+
Storage

costs (KB)
Static

analysis
Instr.
run

Runtime
overhead

Querying
(stdev)

Static
analysis

Instr.
run

Runtime
overhead

Querying
(stdev)

MultiChat 4 (2) 175,474 25,298 363.25% 46 (21) 84 221,839 26,246 380.61% 19 (7) 85
NioEcho 5 (2) 277,903 8,147 153.56% 52 (19) 133 367,268 9,716 202.40% 34 (12) 136
xSocket 8 (2) 781,925 19,156 147.08% 394 (114) 6,332 859,158 21,683 179.67% 256 (39) 6,540
Thrift 9 (7) 401,621 21,397 119.43% 775 (48) 4,407 462,480 23,924 145.35% 337 (17) 4,438
Open Chord 10 (6) 196,958 29,078 498.81% 21,643 (16,291) 4,109 264,532 37,319 668.51% 100 (256) 4,173
ZooKeeper-integration 12 (2)

3,188,103
84,063 125.74% 8,855 (15) 15,689

3,374,107
95,520 156.51% 8,850 (15) 15,708

ZooKeeper-system 28 (5) 37,704 145.07% 21,737 (7,208) 28,402 48,119 212.77% 23,233 (216) 36,804
ZooKeeper-load 28 (8) 303,009 221.71% 16,313 (939) 28,412 412,846 338.33% 13,988 (1,773) 35,058
Voldemort-integration 25 (7)

-
- - - -

-
- - - -

Voldemort-system 22 (5) - - - - - - - -
Voldemort-load 42 (13) - - - - - - - -
Freenet 141 (24) - - - - - - - - - -
Overall average 61.3 (56.1)846,958.688,705.8 209.42%12,411.8 (11,619.7) 15,599.8914,834.8114,809.6 283.91%4,897.6 (5,444.4) 18,378.6

much higher querying costs. Nevertheless, even as the worse
case, querying the impact set of a method in ZooKeeper against
the system test took 22 seconds, which is reasonably affordable.
On overall (weighted) average, Csd+ took 14 minutes for static
analysis and 12 seconds for answering an impact-set query with
2x run-time overhead, over the 8 cases it was applied to.

The Scov+ version adds the collection and use of statement
coverage data to Csd+, thus it is supposedly the most heavyweight
instance of our framework. Our results, however, show that this
additional data did not incur much additional static analysis costs
or run-time slowdown (68 seconds and 0.7x, respectively). Notice-
ably, not only did the statement coverage contribute significantly
to the effectiveness of our framework (see RQ2), the additional
static analysis and run-time overheads are also paid off by the
savings of querying costs. The statement coverage data helped
prune the static dependencies before they were used for dynamic
dependence analysis (see Lines 6 and 14 of Algorithm 2). As a
result, the querying costs incurred by Scov+ were only 40% of
those by Csd+ on overall average. As for Csd+, storage costs of
Scov+ were also negligible (37MB in the worse case, and 18.4MB
on overall average).

In sum, the Basic and Msg+ versions were highly efficient
in both time and space dimensions, thus they are readily scalable
to large distributed systems. The Csd+ and Scov+ versions were
considerably more expensive, mainly because of the substantial
cost of static dependence analysis. Nevertheless, for systems of
small to medium levels of size and complexity, they still provide
compelling options, offering much higher effectiveness at reason-
able costs. To very large and complex systems, more efficient static
dependence analysis would be necessary to scale up these more
precise D2ABS versions.

RQ3: The Basic and Msg+ versions of D2ABS were highly
efficient and scalable to large distributed systems, taking less
than 1.5 minutes for static analysis and less than 1 second for
querying, with 8% run-time overhead. The Csd+ and Scov+ ver-
sions were significantly more expensive, yet their costs remain
reasonable and practically acceptable for systems of small to
medium levels of size and complexity, with 15 minutes for static
analysis, 12 seconds for answering a query, and 2.8x overhead on
average. Storage costs were negligible for the entire framework.

8.3.4 RQ4: Cost-Effectiveness Tradeoffs
In practice, developers need to consider both the cost and ef-
fectiveness of an analysis tool (i.e., the balance between these
two factors) to make their decisions on tool selection [13], [37],

[61], [62], [63]. To investigate the capabilities of our framework
in offering variable cost-effectiveness, we put together the ef-
fectiveness improvements and overhead increases of the three
advanced versions over the baseline. Specifically, we compute
the cost-effectiveness as the ratio of improvement percentage of
mean precision (from Table 5) to the increase factor of average
costs (from Tables 7 and 8), relative to the baseline. We consider
two different classes of cost separately: (1) the per-query cost for
answering each impact-set query, which is different from query to
query, and (2) the one-time cost for static analysis and profiling,
which is incurred once for all queries. Storage costs are not
considered here since they were all quite trivial in all cases with
any of the four D2ABS versions.

Figure 7 shows the cost-effectiveness (y axis) comparisons
among the three advanced versions for all the cases each version
was applied to (as listed on the x axis), for the querying cost (top)
and one-time costs combined (bottom). To better differentiate the
results of the three techniques compared, the cost-effectiveness is
shown in a logarithmic scale (with a base 10) after the effective-
ness improvement percentage was enlarged by 1,000 times. As
shown, in terms of querying costs, Msg+ appeared to be the most
cost-effective version for all cases but the two smallest subjects
and Open Chord (for which Scov+ was the most cost-effective).
This is mainly because of the highly lightweight nature of Msg+.
As a result, while the costs of the two new D2ABS versions were
not very high in an absolute term, the ratios of these costs to those
of Msg+ were large, outweighing their precision improvement
percentages over Msg+. Among the two new versions, however,
Scov+ was consistently most cost-effective than Csd+, due to the
substantially higher precision yet relatively small cost increases of
Scov+ over Csd+.

Concerning the costs of the first two phases combined, the
general contrasts among the three advanced versions were similar
to what we observed in the cases in which only querying costs
are considered in the cost-effectiveness measure. Except for Open
Chord, Msg+ always outperformed the other two versions. The
reason mainly lies in the costs of static dependence analysis
incurred by Csd+ and Scov+ being substantially larger than even
the total cost of Msg+. On the other hand, the advantage of Scov+
over Csd+ was of a lesser extent (albeit still noticeable) in contrast
to their comparisons when only querying costs were concerned.
This is because Scov+ was always more expensive than Csd+ for
the first two phases.

Overall, Msg+ achieved the highest cost-effectiveness among
the three advanced versions due to its high efficiency and scalabil-
ity, along with significant precision advantage over the baseline.

21

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

1

10

100

1000

10000
Ef
fe
ct
iv
en

es
s

ga
in
/c
os
t i
nc

re
as
e Msg+

Csd+

Scov+

1

10

100

1000

10000

Ef
fe
ct
iv
en

es
s

ga
in
/c
os

t i
nc

re
as
e Msg+

Csd+

Scov+

Fig. 7: Cost-effectiveness of the three advanced versions of D2ABS expressed as the ratios of their mean effectiveness gain to the factor
of increase in the average querying cost (top) and total cost of the first two phases (bottom), both against the baseline DISTIA. The
higher the ratio, the better (more cost-effective).

The two new versions, Csd+ and Scov+, remain practically cost-
effective options, especially for software systems of medium or
smaller sizes and complexity or for users who need much higher
precision even at the cost of considerably higher overheads. In
particular, Scov+ was consistently more cost-effective than Csd+.
Thus, where having less false negatives are of a higher priority,
Scov+ would generally be a better option.

RQ4: D2ABS provides variable and flexible cost-effectiveness
balance options to accommodate diverse needs. The Basic and
Msg+ versions provide a relatively rough but rapid solution, be-
tween which Msg+ offers the best cost-effectiveness when high
precision is not a priority; otherwise, Scov+ is the most cost-
effective technique, especially for systems to which it scales.
These tradeoffs provide guidance for developers to choose which
D2ABS version to use in varied situations.

8.4 Threats to Validity

The main threat to internal validity lies in possible errors in our
D2ABS implementation and experiment scripts. To reduce this
threat, we did a careful code review for our tools and manually
validated the correctness of their functionalities and analysis
results against the two smallest subjects. An additional such threat
concerns possible missing (remote) impacts due to network I/Os
that were not monitored at runtime. However, we checked the code
of all subjects and confirmed that they only used the most common
message-passing APIs monitored by our tool when executing the
program inputs we utilized. In general, for arbitrary distributed
systems, the accuracy of D2ABS relies on the identification of
all such API calls used in the system. Yet another threat is that
there might be hidden dependencies between methods induced by
external storage I/Os: for example, a method reading a disk file is
hidden-dependent on a method that writes the same file. Similar
hidden dependencies can also induced by database accesses.
Currently, D2ABS does not consider such hidden dependencies;
instead, it focuses on dependencies among code entities due to
memory accesses and network communications.

The main threat to external validity is that our study results
may not generalize to all other distributed programs and input
sets. Dynamic analysis is commonly subject to the limited cov-
erage of the run-time inputs that drove the analyzed execution.
Nevertheless, the limited size and representativeness of the input

set available to us and used for each subject in our evaluation
study constituted a validity threat. To reduce this threat, we have
chosen subject programs of various sizes and application domains,
including the six industry-scale systems in different domains.
In addition, we considered different types of inputs, including
integration, system, and load tests whenever they were available.
Many of these tests came as part of the subjects, except for the
integration tests which we created according to the official online
documentation (quick-start guide) of these systems.

The main threat to construct validity concerns the metrics used
for the evaluation. Without directly comparable peer techniques in
the literature, we used the Basic version of our framework as
the baseline approach to assess the improvements made by the
advanced versions of the same framework. While it is intuitive to
compare D2ABS with a technique that it extends, this choice of
baseline might cause potential biases. Also, we did not have the
ground-truth impact sets to compute precision and recall metrics in
absolute terms. A precise statement-level forward dynamic slicer
would be able to generate the ground-truth needed, yet such a
slicer is not currently available to us. Thus, we used the impact-
set size ratio as a relative effectiveness measure. Yet, referring to
the same baseline enabled our comparison of the three advanced
versions of D2ABS. While not ideal, such relative comparisons
and measures suffice for our goal of understanding how the varied
design factors in the dynamic dependence analysis of distributed
programs affect the cost-effectiveness tradeoffs.

Finally, a conclusion threat concerns the data points analyzed:
We applied the statistical analyses only to methods for which
impact sets could be queried (i.e., methods executed at least once).
Also, the present study only considered potential changes in single
methods for each query, while in practice developers may plan for
changes in multiple methods at a time, which may lead to different
results. To minimize this threat, we adopted the strategy for all
experiments and calculated the metrics for every possible query.
To reduce possible biases in our statistical analyses, we chose non-
parametric hypothesis testing and effect size measures that do not
rely on the normality of underlying data’s distribution.

9 DISCUSSION

In this section, we discuss two additional pertinent issues with our
technical approach: validation of D2ABS’s analysis results and
selection of D2ABS instantiations for practical use.

22

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

9.1 Result Validation
As discussed in Section 6.1.4, the analysis results of D2ABS are
in general unsafe because its analyses are unsound overall. In
principle, this unsafety implies imperfect recall. Yet in practice,
perfect recall can still be obtained, at least for queries that do
not involve dependencies induced by dynamic language constructs
(i.e., reflection and JNI in our case of Java). Also, as discussed
in Sections 8.4, due to the lack of ground truth, we could not
compute recall and precision in absolute terms. Instead, we gained
confidence about recall of each advanced version of D2ABS as per
the conservative nature of its dependence pruning relative to the
baseline, and used the impact-set size ratios, also relative to the
baseline, to measure precision indirectly. These strategies suffice
for the purpose of studying the improvements of these advanced
versions and their underlying techniques over the baseline, which
is indeed our main goal with this work.

Nevertheless, it is still important to understand the actual
analysis accuracy of the dependence sets produced by (any in-
stantiation of) our framework. Unfortunately, we are not aware
of any existing automated tool that can compute the ground-
truth dependence set of any given query against the distributed
programs and their executions used in our evaluation; neither
is it possible to produce all such ground truth manually. Thus,
we extended the manual inspection adopted for the preliminary
version of this work [27], following a prior methodology aiming
at a similar purpose [12] as summarized as follows.

For each of our studied subjects and executions, we randomly
chose ten queries for which none of the D2ABS instantiations
produced a dependence set that includes more than 50 methods—
we had to limit the scale of this manual study because of its
tedious and heavyweight nature. Then, for each chosen query,
we manually produced the ground-truth dynamic dependence
set by in-depth code review and step-through tracking of the
executions (like step-over debugging) while leveraging available
documentation of respective subject systems. Using these ground-
truth dependencies, we computed the precision and recall for each
of the chosen queries.

With these cases, the average (over all the subject executions
and the ten queries per execution) precision of Basic, Msg+, Csd+,
and Scov+ was 55.1%, 64.8%, 93.4%, and 98.6%, respectively.
Importantly, for all these cases, the recall of any instantiation was
100%—indeed, the dependence set of each of these sample queries
did not include any dependencies induced by reflective or JNI
calls. This confirmed that the pruning carried out by the three
advanced versions only removed false-positive dependencies.

Beyond these quantitative results, our manual study revealed
that even in system executions where there were extensive mes-
sage exchanges among the distributed processes, message passing
that constrained interprocess data flow (see Figure 4) was not
prevalent. This helped explain the observation that pruning spu-
rious dependencies computed by Basic based on message-passing
semantics was limited, hence the moderate precision improvement
of Msg+ over Basic. On the other hand, we frequently observed
that there was not any (static) control or data dependence between
methods that were partially ordered (via method-level control
flow). This was why incorporating static dependencies in Csd+
helped gain a leap in precision over Basic and Msg+. Finally, we
found it was not very common in our studied cases that method
invocations are guarded by predicates, which justifies pruning
the static dependencies through statement coverage only led to
a relatively lesser advantage of Scov+ over Csd+.

9.2 Instantiation Selection
As shown, our framework offers flexible options of cost-
effectiveness tradeoffs through the four instantiations each provid-
ing a distinct level of such tradeoffs. For a user with a particular
task that relies on the dynamic dependencies computed by D2ABS,
a practical problem is to how to choose the right instantiation (tool)
out of the varied alternatives. Thus, we make recommendations in
this regard as guidelines as follows.

Figure 7 suggests that the most cost-effective option varied
both with different subject systems (of varying code size and
complexity) and with different executions (of varying execution
complexity) of the same systems. Yet the order of the four D2ABS

instances in terms of effectiveness (precision) and (time/space)
cost as earlier presented in Figure 5 and justified in Section 6
still holds as corroborated by our empirical results (e.g., those for
RQ1 and RQ3). Overall, for systems and executions of a small to
medium size and complexity, the user might want to choose Scov+
given that it tended to offer the highest cost-effectiveness in most
cases in our evaluation study. For large-scale and highly-complex
distributed systems and executions, though, the user would be
most likely recommended to opt for Msg+ given the highest level
of cost-effectiveness it offered.

However, there are also situations in which the user’s best
option may not be the most cost-effective one. For instance, the
user would choose the instantiation that offers higher precision for
the system and execution on hand as long as the added costs are
still affordable, even though the extra costs are not best paid off.
For another example, the fastest instantiation might be the best
choice to the user when the small efficiency advantages (over the
second fastest) matter, although this fastest tool is not as cost-
effective as other options. In these situations, the user should
choose the instantiation that satisfies the cost or effectiveness
priority with respect to the particular task. Note that the presence
of these situations justifies not only offering the most cost-effective
analysis techniques but also providing those of other levels of cost-
effectiveness, just as D2ABS did.

10 RELATED WORK
In preliminary work [26], we developed an early prototype of
D2ABS that includes the the Basic and Msg+ versions. This paper
extends that prior work both technically by adding Csd+ and
Scov+, and empirically through a larger-scale and more extensive
evaluation. Beyond dynamic impact analysis exemplified as one
of its applications, we also have applied D2ABS to the run-time
behavior characterization [64], dynamic slicing [65], and dynamic
information flow analysis [66] of distributed systems. A recent
work on automatic, on-the-fly tuning of the cost-effectiveness
trade-offs in dynamic dependence analysis of distributed pro-
grams [67] was also built on top of D2ABS. In comparison, this
paper provides an official formulation of dynamic dependence
analysis of distributed software as a much needed foundation that
underlies all of those (dependence-based) applications.

Other prior works most related to ours fall in four categories:
dependence analysis of distributed programs, impact analysis (as
an application of dependence analysis), logging for distributed
systems, and dynamic partial order reduction.

10.1 Dependence Analysis of Distributed Programs
Historically, dependence analysis has underlaid a wide range
of code-based software engineering tasks and associated tech-

23

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

niques [4], [5]. In particular, a large body and variety of
dependence-based approaches have been proposed over the past
few decades to support development and maintenance in general
[3], [68], [69], [70], [71], [72], and fault diagnosis [73], [74], [75]
and security defense in particular [76], [77], [78]. For instance,
for maintaining and evolving a software system, it is essential to
assess the influence of given program entries of interest on the rest
of the program [70], [79] for change planning (deciding whether
to realize changes at candidate change locations) and fulfillment
(deciding where to realize the changes) [20], [36], [79].

Using fine-grained dependency analysis, a large body of work
attempted to extend traditional slicing algorithms to concurrent
programs [38], [43], [80], [81], [82] yet mostly focused on cen-
tralized, and primarily multithreaded, ones. For those programs,
traditional dependence analysis was extended to handle additional
dependencies due to shared variable accesses, synchronization,
and communication between threads and/or processes (e.g., [38],
[80]). While D2ABS also handles multithreaded programs, it
targets multiprocess ones running on distributed machines, and
aims at method-level dependence analysis instead of fine-grained
slicing. For systems running in multiple processes where interpro-
cess communication is realized via socket-based message passing,
an approximation for static slicing was discussed in [80]. Various
dynamic slicing algorithms have been proposed too, earlier for
procedural programs only [32], [83], [84], [85], [86] and recently
for object-oriented software also [14], [15], [16]. And a more com-
plete and detailed summary of slicing techniques for distributed
programs can be found in [82] and [15].

A few other static analysis algorithms for distributed systems
exist as well but focus on other (special) types of systems, such as
RMI-based Java programs [87], different from the common type
of distributed systems [1] D2ABS addresses. At coarser levels,
researchers resolve dependencies in distributed systems too but for
different purposes such as enhancing parallelization [88], system
configuration [89], and high-level system modeling [11], [90],
or limited to static analysis [6], [7], [10]. In contrast, D2ABS

performs code-based analysis while providing more focused de-
pendencies (impacts) relative to concrete program executions than
static-analysis approaches.

Existing static [23] and dynamic [24], [91] dependence anal-
yses (e.g., static/dynamic slicing) for single-threaded programs
are related to the computation of intra-thread dependencies in
D2ABS. While it might be appealing to extend these analyses for
distributed programs (e.g., via the happens-before relations among
methods executed across processes), that may not be expected to
work practically against real-world distributed systems. Among
the presented D2ABS instances, Scov+ is the closest to those
analyses in terms of granularity and program data use. Neverthe-
less, Scov+ does a much more lightweight approximation of the
dependencies those analyses would compute. Yet even Scov+ did
not scale to large systems like Voldemort and Freenet. Thus, the
extensions of those analyses will give cost-effectiveness options
where the cost may be too high to be practically adoptable.
This was why we did not incorporate such analyses and provide
corresponding cost-effectiveness options in our framework.

10.2 Impact Analysis

The EAS approach [19] which partially inspired D2ABS is a
performance optimization of its predecessor PATHIMPACT [18].
Many other dynamic impact analysis techniques also exist [70],

aiming at improving precision [22], recall [92], efficiency [93], and
cost-effectiveness [13], [25] over PATHIMPACT and EAS. How-
ever, these techniques did not address distributed or multiprocess
programs that we focus on in this work. Two recent advances in
dynamic impact analysis, DIVER [22] and the unified framework
in [13], [25], utilize hybrid program analysis to achieve higher
precision and more flexible cost-effectiveness options over EAS-
based approaches, but still target single-process programs only. On
the other hand, the Csd+ version of D2ABS was initially motivated
by these prior works to incorporate the static intra-component
dependencies for effectiveness improvement.

An impact analysis for distributed systems, Helios [7] can
predict impacts of potential changes to support evolution tasks
for DEBS. However, it relies on particular message-type filtering
and manual annotations in addition to a few other constraints. Al-
though these limitations are largely lifted by its successor Eos [10],
both approaches are static and limited to DEBS only, as is another
technique [8] which identifies impacts based on change-type
classification yet ignores intra-component dependencies hence
provides incomplete results. While sharing similar goals, D2ABS

targets a broader range of distributed systems than DEBS using
dynamic analysis and without relying on special source-code in-
formation (e.g., interface patterns) as those techniques do. Unlike
our dependence-based approach, a traceability-based solution [79]
is presented in [94] which relies on a well-curated repository
of various software models. The dynamic impact analysis for
component-based software in [95] works at architecture level,
different from ours working for distributed programs at code level.

10.3 Logging for Distributed Systems
Targeting high-level understanding of distributed systems, tech-
niques like logging and mining run-time logs [11], [35] infer
inter-component interactions using textual analysis of system logs,
relying on the availability of particular data such as informative
logs and/or patterns in them. D2ABS utilizes similar information
(i.e., the Lamport timestamps) but infers the happens-before
relation between method execution events mainly for code-level
dependence analysis. Also, D2ABS automatically generates such
information it requires rather than relying on existing information
in the original programs.

The Lamport timestamp used is related to vector clocks [96],
[97] used by other tools, such as ShiVector [90] for ordering
distributed logs and Poet [98] for visualizing distributed systems
executions. While we could utilize vector clocks also, we chose the
Lamport timestamp as it is lighter-weight yet suffices for D2ABS.
In addition, unlike ShiVector, which requires accesses to source
code and recompilation using the AspectJ compiler, D2ABS does
not have such constraints as it works on bytecode.

Tracing message passing was explored before but for different
purposes, such as overcoming non-determinacy/race detection [99]
and reproducing buggy executions [100]. Tools like RoadRun-
ner [101] and ThreadSanitizer [102] targeted multithreaded, cen-
tralized programs. None of these solutions work for large, diverse
distributed systems without perturbations as D2ABS did.

10.4 Dynamic Partial Order Reduction (DPOR)
DPOR has been used to improve the performance of model
checking concurrent software by avoiding the examination of
independent transitions [103]. Sharing the spirit of DPOR, es-
pecially distributed DPOR [104], D2ABS synchronizes method

24

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

execution events for efficient computation of partial ordering of
methods within processes, and exploits message-passing semantics
to avoid partially ordering independent methods across processes.
However, unlike existing DPOR techniques which target multi-
threaded programs, D2ABS focuses on multi-process, distributed
programs. On the other hand, DPOR may be adopted for dy-
namic dependence analysis of distributed programs with exten-
sions/adaptations. First, the execution conditions (e.g., entered,
returned) of methods can be modeled as method-level states (as
opposed to statement-level states in the original DPOR). Second,
to represent state transitions across processes, the identifiers of
parent processes may prefix thread identifiers. Finally, partial
ordering algorithms like LTS may be used to determine transition
dependence at the process level. Accordingly, independent transi-
tions can be identified to help further identify methods that have
no dependence between them, so as to speed up the dependence
computation overall.

11 CONCLUSION
Modeling and reasoning about program dependencies has long
been a fundamental approach to many advanced techniques and
tools for various software engineering tasks, ranging from testing
and debugging to performance optimizations and security defense.
However, traditional dependence models and analysis algorithms,
which assume explicit references among code entities, cannot be
readily applied to distributed systems with full potential, because
the architectural design of these systems encourages implicit
references among decoupled components via networking facilities
such as socket.

To unleash the power of dependence analysis for distributed
software, we presented D2ABS, a framework for dynamic depen-
dence analysis that safely approximates run-time code dependen-
cies at the method level both within and across process boundaries.
D2ABS offers cost-effective dependence analysis by partially
ordering method execution events, exploiting message-passing
semantics, incorporating static intra-component dependencies, and
leveraging whole-system statement coverage data. Blending mul-
tiple forms of program information, D2ABS offers flexible cost-
effectiveness balances via four instantiations, to accommodate
varying time and other resource budgets in diverse task scenarios
in distributed software development and maintenance.

We motivated and described the design of this framework
in its application for dynamic impact analysis, and evaluated its
effectiveness and efficiency also in the context of impact predic-
tion. Our empirical results with large real-world distributed pro-
grams have shown the superior effectiveness of advanced D2ABS

versions over its basic, purely control-flow based version as a
baseline by safely reducing false positives of the baseline by 15%
to 54% at the cost of varied but reasonable analysis overheads.
There are many applications of D2ABS beyond impact analysis.
As immediately next steps, we plan to apply the framework for
performance diagnosis and security defense of distributed systems.

REFERENCES

[1] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed
Systems: Concepts and Design, 5th ed. Addison-Wesley Publishing
Company, 2011.

[2] J. Dean, “Designs, lessons and advice from building large distributed
systems,” Keynote from LADIS, pp. 1–73, 2009.

[3] J. Ferrante, K. Ottenstein, and J. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. on Prog. Lang. and
Systems, 9(3):319-349, Jul. 1987.

[4] A. Podgurski and L. Clarke, “A formal model of program dependences
and its implications for software testing, debugging, and maintenance,”
IEEE Transactions on Software Engineering, vol. 16, no. 9, pp. 965–
979, 1990.

[5] S. Horwitz and T. Reps, “The use of program dependence graphs
in software engineering,” in Proceedings of IEEE/ACM International
Conference on Software Engineering, 1992, pp. 392–411.

[6] G. C. Murphy and D. Notkin, “Lightweight lexical source model extrac-
tion,” ACM Transactions on Software Engineering and Methodology,
vol. 5, no. 3, pp. 262–292, 1996.

[7] D. Popescu, J. Garcia, K. Bierhoff, and N. Medvidovic, “Impact analysis
for distributed event-based systems,” in Proceedings of International
Conference on Distributed Event-Based Systems, 2012, pp. 241–251.

[8] S. Tragatschnig, H. Tran, and U. Zdun, “Impact analysis for event-based
systems using change patterns,” in Proceedings of ACM Symposium on
Applied Computing, 2014, pp. 763–768.

[9] K. Jayaram and P. Eugster, “Program analysis for event-based dis-
tributed systems,” in Proceedings of International Conference on Dis-
tributed Event-Based System, 2011, pp. 113–124.

[10] J. Garcia, D. Popescu, G. Safi, W. G. Halfond, and N. Medvidovic,
“Identifying message flow in distributed event-based systems,” in
Proceedings of ACM International Symposium on the Foundations of
Software Engineering, 2013, pp. 367–377.

[11] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with CSight,”
in Proceedings of IEEE/ACM International Conference on Software
Engineering, 2014, pp. 468–479.

[12] H. Cai, “Hybrid program dependence approximation for effective dy-
namic impact prediction,” IEEE Transactions on Software Engineering,
vol. 44, no. 4, pp. 334–364, 2018.

[13] H. Cai, R. Santelices, and D. Thain, “Diapro: Unifying dynamic
impact analyses for improved and variable cost-effectiveness,” ACM
Transactions on Software Engineering and Methodology, vol. 25, no. 2,
p. 18, 2016.

[14] D. P. Mohapatra, R. Kumar, R. Mall, D. Kumar, and M. Bhasin,
“Distributed dynamic slicing of Java programs,” Journal of Systems
and Software, vol. 79, no. 12, pp. 1661–1678, 2006.

[15] S. S. Barpanda and D. P. Mohapatra, “Dynamic slicing of distributed
object-oriented programs,” IET software, vol. 5, no. 5, pp. 425–433,
2011.

[16] S. Pani, S. M. Satapathy, and G. Mund, “Slicing of programs dynam-
ically under distributed environment,” in Proceedings of International
Conference on Advances in Computing. Springer, 2012, pp. 601–609.

[17] H. Cai and R. Santelices, “Method-level program dependence abstrac-
tion and its application to impact analysis,” Journal of Systems and
Software, vol. 122, pp. 311–326, 2016.

[18] J. Law and G. Rothermel, “Whole program path-based dynamic impact
analysis,” in Proceedings of IEEE/ACM International Conference on
Software Engineering, 2003, pp. 308–318.

[19] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise
dynamic impact analysis using execute-after sequences,” in Proceedings
of IEEE/ACM International Conference on Software Engineering, 2005,
pp. 432–441.

[20] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: an exploratory study in industry,”
in Proceedings of ACM International Symposium on the Foundations of
Software Engineering, 2012, pp. 51:1–51:11.

[21] H. Cai and R. Santelices, “A comprehensive study of the predictive
accuracy of dynamic change-impact analysis,” Journal of Systems and
Software, vol. 103, pp. 248–265, 2015.

[22] ——, “Diver: Precise dynamic impact analysis using dependence-
based trace pruning,” in Proceedings of International Conference on
Automated Software Engineering, 2014, pp. 343–348.

[23] M. Acharya and B. Robinson, “Practical Change Impact Analysis
Based on Static Program Slicing for Industrial Software Systems,”
in Proceedings of IEEE/ACM International Conference on Software
Engineering, Software Engineering in Practice Track, May 2011, pp.
746–765.

[24] X. Zhang, R. Gupta, and Y. Zhang, “Precise dynamic slicing algo-
rithms,” in Proc. of Int’l Conf. on Softw. Eng., May 2003, pp. 319–329.

[25] H. Cai and R. Santelices, “A framework for cost-effective dependence-
based dynamic impact analysis,” in International Conference on Soft-
ware Analysis, Evolution, and Reengineering, 2015, pp. 231–240.

[26] H. Cai and D. Thain, “DistIA: A cost-effective dynamic impact analysis
for distributed programs,” in Proceedings of the 31st IEEE/ACM In-
ternational Conference on Automated Software Engineering, 2016, pp.
344–355.

[27] ——, “Distea: Efficient dynamic impact analysis for distributed sys-
tems,” arXiv preprint arXiv:1604.04638, 2016.

25

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

[28] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978.

[29] D. Jackson and M. Rinard, “Software analysis: A roadmap,” in Proceed-
ings of the Conference on the Future of Software Engineering, 2000, pp.
133–145.

[30] H. Cai and R. Santelices, “Abstracting program dependencies using the
method dependence graph,” in International Conference on Software
Quality, Reliability and Security (QRS), 2015, pp. 49–58.

[31] C. Artho, M. Hagiya, R. Potter, Y. Tanabe, F. Weitl, and M. Yamamoto,
“Software model checking for distributed systems with selector-based,
non-blocking communication,” in Proceedings of IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2013, pp. 169–
179.

[32] D. Goswami and R. Mall, “Dynamic slicing of concurrent programs,” in
IEEE International Conference on High Performance Computing, 2000,
pp. 15–26.

[33] G. Mühl, L. Fiege, and P. Pietzuch, Distributed event-based systems.
Springer, 2006, vol. 1.

[34] P. Eugster and K. Jayaram, “EventJava: An extension of Java for
event correlation,” in Proceedings of European Conference on Object-
Oriented Programming. Springer, 2009, pp. 570–594.

[35] J.-G. Lou, Q. Fu, Y. Wang, and J. Li, “Mining dependency in distributed
systems through unstructured logs analysis,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 1, pp. 91–96, 2010.

[36] P. Rovegard, L. Angelis, and C. Wohlin, “An empirical study on views
of importance of change impact analysis issues,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 516–530, 2008.

[37] C. R. de Souza and D. F. Redmiles, “An empirical study of software
developers’ management of dependencies and changes,” in Proceedings
of the 30th international conference on Software engineering. ACM,
2008, pp. 241–250.

[38] M. G. Nanda and S. Ramesh, “Interprocedural slicing of multithreaded
programs with applications to Java,” ACM Transactions on Program-
ming Languages and Systems, vol. 28, no. 6, pp. 1088–1144, 2006.

[39] S. Sinha, M. J. Harrold, and G. Rothermel, “Interprocedural control
dependence,” ACM Trans. Softw. Eng. Method., vol. 10, no. 2, pp. 209–
254, 2001.

[40] E. Pitt and K. McNiff, Java. RMI: The Remote Method Invocation
Guide. Addison-Wesley Longman Publishing Co., Inc., 2001.

[41] J. Siegel and D. Frantz, CORBA 3 fundamentals and programming.
John Wiley & Sons New York, NY, USA:, 2000, vol. 2.

[42] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Trans. on Prog. Lang. and Systems, vol. 12,
no. 1, pp. 26–60, 1990.

[43] D. Giffhorn and C. Hammer, “Precise slicing of concurrent programs,”
Automated Software Engineering, vol. 16, no. 2, pp. 197–234, 2009.

[44] Apache, “ZooKeeper,” https://zookeeper.apache.org/, 2015.
[45] A. Beszedes, C. Farago, Z. Mihaly Szabo, J. Csirik, and T. Gyimothy,

“Union slices for program maintenance,” in Proceedings of IEEE
International Conference on Software Maintenance, Oct. 2002, pp. 12–
21.

[46] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-
Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,
“In defense of soundiness: a manifesto.” Communications of the ACM,
vol. 58, no. 2, pp. 44–46, 2015.

[47] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “Soot - a Java bytecode
optimization framework,” in Cetus Users and Compiler Infrastructure
Workshop, 2011.

[48] Oracle, “Java Socket I/O,” http://docs.oracle.com/javase/7/docs/api/
java/net/Socket.html, 2015.

[49] ——, “Java NIO,” http://docs.oracle.com/javase/7/docs/api/java/nio/
package-summary.html, 2015.

[50] GoogleCode, “MultiChat,” https://code.google.com/p/
multithread-chat-server/, 2015.

[51] SourceForge, “NioEcho,” http://rox-xmlrpc.sourceforge.net/niotut/
index.html#Thecode, 2015.

[52] Vice, “xSocket,” http://xsocket.org/, 2018.
[53] Apache, “Thrift,” https://thrift.apache.org/, 2018.
[54] Bamberg University, “Open Chord,” http://sourceforge.net/projects/

open-chord/, 2015.
[55] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-

free coordination for internet-scale systems.” in Proceedings of USENIX
Annual Technical Conference, vol. 8, 2010, p. 9.

[56] Apache, “Voldemort,” https://github.com/voldemort, 2015.
[57] The Freenet team, “The Free Network,” https://freenetproject.org/,

2015.
[58] R. E. Walpole, R. H. Myers, S. L. Myers, and K. E. Ye, Probability and

Statistics for Engineers and Scientists. Prentice Hall, Jan. 2011.
[59] N. Cliff, Ordinal methods for behavioral data analysis. Psychology

Press, 1996.

[60] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine,
“Exploring methods for evaluating group differences on the nsse and
other surveys: Are the t-test and cohen’sd indices the most appropriate
choices,” in annual meeting of the Southern Association for Institutional
Research. Citeseer, 2006, pp. 1–51.

[61] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits,” in Proceedings of the 28th interna-
tional conference on Software engineering. ACM, 2006, pp. 492–501.

[62] M. Lindvall and K. Sandahl, “How well do experienced software
developers predict software change?” Journal of Systems and Software,
vol. 43, no. 1, pp. 19–27, 1998.

[63] L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. Murphy-
Hill, “Just-in-time static analysis,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2017, pp. 307–317.

[64] X. Fu and H. Cai, “Measuring interprocess communications in dis-
tributed systems,” in IEEE/ACM International Conference on Program
Comprehension (ICPC), 2019, pp. 323–334.

[65] X. Fu, H. Cai, and L. LI, “Dads: Dynamic slicing continuously-running
distributed programs with budget constraints,” in ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), Tool, 2020, pp.
1566–1570.

[66] X. Fu and H. Cai, “A dynamic taint analyzer for distributed systems,” in
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), Tool, 2019,
pp. 1115–1119.

[67] X. Fu, H. Cai, W. Li, and L. LI, “Seads: Scalable and cost-effective
dynamic dependence analysis of distributed systems via reinforcement
learning,” ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), vol. 30, no. 1, 2020, (impact factor 2.5; journal-first
paper).

[68] K. B. Gallagher and J. R. Lyle, “Using program slicing in software
maintenance,” Software Engineering, IEEE Transactions on, vol. 17,
no. 8, pp. 751–761, 1991.

[69] J. P. Loyall and S. A. Mathisen, “Using dependence analysis to support
the software maintenance process,” in Software Maintenance, 1993.
CSM-93, Proceedings., Conference on. IEEE, 1993, pp. 282–291.

[70] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and
Reliability, vol. 23, pp. 613–646, 2013.

[71] A. Orso, S. Sinha, and M. J. Harrold, “Classifying Data Dependences
in the Presence of Pointers for Program Comprehension, Testing, and
Debugging,” ACM Transactions on Software Engineering and Method-
ology, vol. 13, no. 2, pp. 199–239, 2004.

[72] M. Petrenko and V. Rajlich, “Variable granularity for improving preci-
sion of impact analysis,” in Program Comprehension, 2009. ICPC’09.
IEEE 17th International Conference on. IEEE, 2009, pp. 10–19.

[73] G. K. Baah, A. Podgurski, and M. J. Harrold, “The Probabilistic
Program Dependence Graph and Its Application to Fault Diagnosis,”
IEEE Transactions on Software Engineering, vol. 36, no. 4, pp. 528–
545, 2010.

[74] S. Bates and S. Horwitz, “Incremental program testing using program
dependence graphs,” in Proc. of Symp. on Principles of Program Lang.,
Jan. 1993, pp. 384–396.

[75] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineer-
ing, vol. 42, no. 8, pp. 707–740, Aug 2016.

[76] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible infor-
mation flow architecture for software security,” in ACM SIGARCH
Computer Architecture News, vol. 35, no. 2. ACM, 2007, pp. 482–
493.

[77] M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis.” in OSDI, vol. 10, 2010, pp.
1–14.

[78] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
Practical dynamic data flow tracking for commodity systems,” in Acm
Sigplan Notices, vol. 47, no. 7. ACM, 2012, pp. 121–132.

[79] S. A. Bohner and R. S. Arnold, An introduction to software change
impact analysis. Software Change Impact Analysis, IEEE Comp. Soc.
Press, pp. 1–26, Jun. 1996.

[80] J. Krinke, “Context-sensitive slicing of concurrent programs,” in Pro-
ceedings of ACM International Symposium on the Foundations of
Software Engineering, vol. 28, no. 5, 2003, pp. 178–187.

[81] J. Xiao, D. Zhang, H. Chen, and H. Dong, “Improved program depen-
dence graph and algorithm for static slicing concurrent programs,” in
Advanced Parallel Processing Technologies. Springer, 2005, pp. 121–
130.

[82] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey of
program slicing,” ACM SIGSOFT Software Engineering Notes, vol. 30,
no. 2, pp. 1–36, 2005.

26

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

https://zookeeper.apache.org/
http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
https://code.google.com/p/multithread-chat-server/
https://code.google.com/p/multithread-chat-server/
http://rox-xmlrpc.sourceforge.net/niotut/index.html#The code
http://rox-xmlrpc.sourceforge.net/niotut/index.html#The code
http://xsocket.org/
https://thrift.apache.org/
http://sourceforge.net/projects/open-chord/
http://sourceforge.net/projects/open-chord/
https://github.com/voldemort
https://freenetproject.org/

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3124795, IEEE
Transactions on Software Engineering

[83] B. Korel and R. Ferguson, “Dynamic slicing of distributed programs,”
Applied Mathematics and Computer Science, vol. 2, no. 2, pp. 199–215,
1992.

[84] J. Cheng, “Dependence analysis of parallel and distributed programs
and its applications,” in Proceedings of Advances in Parallel and
Distributed Computing, 1997, pp. 370–377.

[85] E. Duesterwald, R. Gupta, and M. Soffa, “Distributed slicing and partial
re-execution for distributed programs,” in Languages and Compilers for
Parallel Computing. Springer, 1993, pp. 497–511.

[86] M. Kamkar and P. Krajina, “Dynamic slicing of distributed programs,”
in Proceedings of IEEE International Conference on Software Mainte-
nance, 1995, pp. 222–229.

[87] M. Sharp and A. Rountev, “Static analysis of object references in RMI-
based Java software,” IEEE Transactions on Software Engineering,
vol. 32, no. 9, pp. 664–681, 2006.

[88] K. Psarris and K. Kyriakopoulos, “An experimental evaluation of data
dependence analysis techniques,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 3, pp. 196–213, 2004.

[89] F. Kon and R. H. Campbell, “Dependence management in component-
based distributed systems,” IEEE concurrency, vol. 8, no. 1, pp. 26–36,
2000.

[90] J. Abrahamson, I. Beschastnikh, Y. Brun, and M. D. Ernst, “Shedding
light on distributed system executions,” in Companion Proceedings of
the 36th International Conference on Software Engineering, 2014, pp.
598–599.

[91] W. Masri, N. Nahas, and A. Podgurski, “Memoized forward compu-
tation of dynamic slices,” in Software Reliability Engineering, 2006.
ISSRE’06. 17th International Symposium on. IEEE, 2006, pp. 23–32.

[92] M. C. O. Maia, R. A. Bittencourt, J. C. A. de Figueiredo, and D. D. S.
Guerrero, “The hybrid technique for object-oriented software change
impact analysis,” in Proceedings of European Conference on Software
Maintainance and Reengineering, 2010, pp. 252–255.

[93] B. Breech, M. Tegtmeyer, and L. Pollock, “A comparison of online
and dynamic impact analysis algorithms,” in Proceedings of European
Conference on Software Maintainance and Reengineering, 2005, pp.
143–152.

[94] H. M. Sneed, “Impact analysis of maintenance tasks for a distributed
object-oriented system,” in Proceedings of the IEEE International
Conference on Software Maintenance, 2001, p. 180.

[95] T. Feng and J. I. Maletic, “Applying dynamic change impact analysis
in component-based architecture design,” in ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2006, pp. 43–48.

[96] C. J. Fidge, “Timestamps in message-passing systems that preserve
the partial ordering,” in Proceedings of the 11th Australian Computer
Science Conference, vol. 10, no. 1, 1988, pp. 56–66.

[97] F. Mattern, “Virtual time and global states of distributed systems,”
Parallel and Distributed Algorithms, vol. 1, no. 23, pp. 215–226, 1989.

[98] T. Kunz, J. P. Black, D. J. Taylor, and T. Basten, “Poet: Target-
system independent visualizations of complex distributed-application
executions,” The Computer Journal, vol. 40, no. 8, pp. 499–512, 1997.

[99] R. H. Netzer and B. P. Miller, “Optimal tracing and replay for debugging
message-passing parallel programs,” The Journal of Supercomputing,
vol. 8, no. 4, pp. 371–388, 1995.

[100] R. Konuru, H. Srinivasan, and J.-D. Choi, “Deterministic replay of
distributed java applications,” in International Parallel and Distributed
Processing Symposium, 2000, pp. 219–227.

[101] C. Flanagan and S. N. Freund, “The roadrunner dynamic analysis
framework for concurrent programs,” in Proceedings of the 9th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, 2010, pp. 1–8.

[102] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detec-
tion in practice,” in Proceedings of the Workshop on Binary Instrumen-
tation and Applications, 2009, pp. 62–71.

[103] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in Proceedings of the 32Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2005,
pp. 110–121.

[104] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, “Distributed
dynamic partial order reduction based verification of threaded software,”
in Model Checking Software. Springer, 2007, pp. 58–75.

Haipeng Cai is an assistant professor of com-
puter science at Washington State University,
Pullman. He obtained his PhD in computer sci-
ence from University of Notre Dame in 2015.
His current research interests are software en-
gineering and software systems with a focus on
program analysis and its applications to software
reliability and security.

Xiaoqin Fu is currently pursuing his PhD in com-
puter science at Washington State University,
Pullman. His research is focused on developing
program analysis techniques to support software
maintenance and evolution of distributed sys-
tems.

27

Authorized licensed use limited to: Washington State University. Downloaded on August 01,2022 at 23:22:34 UTC from IEEE Xplore. Restrictions apply.

