DistFAX: A Toolkit for Measuring Interprocess Communications
and Quality of Distributed Systems

Xiaoqin Fu
xiaoqin.fu@wsu.edu
Washington State University
Pullman, WA, USA

ABSTRACT

In this paper, we present DisTFAX, a toolkit for measuring common
distributed systems, focusing on their interprocess communica-
tions (IPCs), a vital aspect of distributed system run-time behaviors.
DistFAx measures the coupling and cohesion of distributed sys-
tems via respective IPC metrics. It also characterizes the run-time
quality of distributed systems via a set of dynamic quality metrics.
DistFAx then computes statistical correlations between the IPC
metrics and quality metrics. It further exploits the correlations to
classify the system quality status with respect to various quality
metrics in a standard quality model. We empirically demonstrated
the practicality and usefulness of DisTFAX in measuring the IPCs
and quality of 11 real-world distributed systems against diverse
execution scenarios. The demo video of DisTFAx can be viewed at
https://youtu.be/VLmNiHvOuWQ online, and the artifact package
is publicly available at https://tinyurl.com/zaz27ec8.

CCS CONCEPTS

« Software and its engineering — Maintaining software.

KEYwORDS

Distributed system, IPC, software measurement, quality

ACM Reference Format:

Xiaoqin Fu, Boxiang Lin, and Haipeng Cai. 2022. DisTFax: A Toolkit for
Measuring Interprocess Communications and Quality of Distributed Sys-
tems. In 44th International Conference on Software Engineering Companion
(ICSE °22 Companion), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3510454.3516859

1 INTRODUCTION

Most real-world, industry-scale software systems are distributed
by design, in order to accommodate increasing demands for per-
formance and scalability. However, due to their typically great
sizes and complexities along with intrinsic concurrency and non-
determinism [6], distributed software systems are especially diffi-
cult to characterize (e.g., measure), understand, and analyze [10].
In this context, it is beneficial to have practical tooling support
that exercises well-informed and principled measurement mecha-
nisms for distributed software systems. In general, the components

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9223-5/22/05.

https://doi.org/10.1145/3510454.3516859

Boxiang Lin
boxiang.lin@wsu.edu
Washington State University
Pullman, WA, USA

Haipeng Cai
haipeng.cai@wsu.edu
Washington State University
Pullman, WA, USA

of a common distributed system (as defined in [6]) concurrently
run on different machines (at physically different locations) and
communicate with one another via message passing. Importantly,
there does not exist a global timing mechanism (clock) that en-
ables readily synchronizing the message passing and other execu-
tion events across the distributed processes of the running system.
Thus, an important, distinct aspect of the run-time behaviors of
distributed systems lies in those induced by interprocess communi-
cations (IPCs). A tool that characterizes IPCs would help distributed
software developers understand the IPC-induced behaviors and the
run-time quality of the systems related to those behaviors.

However, measuring the IPC-induced run-time behaviors of dis-
tributed systems is not trivial. For instance, based on the mecha-
nism of IPCs, it would be intuitively useful to measure the cohesion
of individual processes and coupling between different processes
in distributed system executions. Yet traditional coupling metrics
are based on explicit relations among program entities, and thus
they are not suitable for measuring IPCs in distributed systems.
Accordingly, existing tools that compute those metrics target single-
process programs and do not properly apply to distributed software.

Jin et al. proposed three cohesion metrics (CC—short for cohesion
metric at component level, CCW—cohesion metric at component
level considering edge weights, CHC—cohesion factor of compo-
nent) and one coupling metric CPC (coupling factor of component).
These metrics were used to measure the cohesion and coupling for
multi-process programs. And the authors used the Kieker monitor-
ing framework [21] to probe the systems, monitor their run-time
behaviors during system executions, and store execution traces.
However, both the Kieker tool and these metrics were designed
only for specialized distributed systems (e.g., RSS Reader applica-
tions, the distributed version of iBATIS JPetStore) [14, 15].

As it stands, current software metrics and measurement tools
do not sufficiently support measurements of common distributed
systems as described above, including the measurement of IPC-
induced behaviors. Especially, there is a lack of tools that not only
measure IPCs but also characterize how IPC-induced behaviors are
related to the run-time quality of distributed software.

Therefore, we define a novel set of IPC metrics [9], as listed in Ta-
ble 1, aiming to measure the communication structure, complexity,
and reusability of common distributed systems at runtime. Based
on the definitions, we developed DisTFax (short for Distributed
software system’s facts (sounding Fax)), a toolkit for measuring the
IPCs of distributed systems in relation to their quality, with respect
to six IPC metrics about the coupling and cohesion of distributed
processes. This paper describes DisTFAX and demonstrates its use.
At its core, D1sTFAX computes these IPC metrics by reasoning about
interprocess dependencies [3] from the happens-before relations

https://youtu.be/VLmNiHvOuWQ
https://bitbucket.org/wsucailab/distfax/
https://doi.org/10.1145/3510454.3516859
https://doi.org/10.1145/3510454.3516859

ICSE ’22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

Xiaoqin Fu et al.

@ 0) 1 ©) Characterization Outputs @ C‘Iass_ificatiorA]A C\assi.ﬁcat?on Outputs
Distributed Instrumentation Tracing Characterization IPC metrics: (CCC)->execution tlme_classwfwer : _ > Execunon_ time status
Probing method Performing the execution(s) Computing IPC RMC, RCC, CCC, | |(RMC,CCC)->cyclomatic Corr!f?lexlty classifier é% Cyclomatic complexity status
A) execution events of instrumented system(s) metrics IPR, CCL, PLC (CCC)->attack surface classifier P Attack surface status
DisTFAX Inputs T (CCL,PLC)->attack surface classifier é% Attack surface status
i

! (Distributed system D1 & its input T2 [
! (_Distributed system D2 & its input 72 _{

Training
set

(Distributed system Dn & its input Tn (& length, attack surface

v Quality Metrics: execution
Computing) . .
. . time, cyclomatic complexity,
dynamic quality . .
. information flow path count
metrics

Training binary classifiers
Correlations

Model construction

Correlation
analysis

maybe invisible to users)

Figure 1: An overview of DisTFAx architecture.

among executing methods across processes, derived from a global
partial ordering of execution (i.e., entry/returned-into [2]) events of
the methods. Then, DisTFAX quantifies the statistical relationships
between these IPC metrics and several quality metrics, as listed in
Table 2. Finally, D1sTFAx leverages the discovered relationships to
classify the level/status (anomalous versus normal) of quality of
the system with respect to those dynamic quality metrics through
supervised or unsupervised learning based on the IPC metrics.
We have applied D1sTFAX to 11 distributed systems of various
architectures, domains, and sizes against diverse, large-scale execu-
tion scenarios (as reflected by different types of run-time inputs).
DisTFAx exhibited practical capabilities of measuring IPC-induced
behavioral characteristics of these systems and their executions in
terms of the six IPC metrics. Based on the measurement results,
DisTFax also enabled the discovery of several moderate/strong cor-
relations between IPC and run-time quality metrics. Our empirical
results further demonstrated that the IPC-metrics-based quality
classifiers offer practically useful effectiveness (about 74%~98% F1
accuracy, on average) for the quality (level/status) classifications.

Novelty/contributions. To the best of our knowledge, DisTFAX
offers the first toolkit for characterizing IPC-induced behaviors in
relation to various run-time quality metrics of distributed systems,
while further providing capabilities (grounded upon those relation-
ships) of helping users assess quality levels of the systems. The main
contributions are the design and implementation of DisTFAX and
the empirical evaluation of it on industry-scale distributed systems
against their executions driven by 16,880 run-time inputs.

Audience/usefulness. The envisioned users of DisTFax include
distributed software system developers, testers, maintainers, and
end users. They can use the IPC measurement results to obtain a
comprehensive understanding of relevant behaviors of the system
execution(s) of interest. Like defect prediction and anomaly detec-
tion tools, from the quality classification results, DisTFAx can tell
whether the system quality is abnormal hence needs attention or not.
Thus, these users can make decisions on various aspects of the sys-
tem quality and take actions accordingly, as how a defect/anomaly
predictor helps users improve software quality.

2 BACKGROUND

Interprocess communication (IPC) is the standard mechanism used
in common distributed systems [6] through which the distributed
processes communicate with each other and synchronize their
actions. A primary way of realizing IPC is message passing, by
which processes send and receive messages either synchronously
or asynchronously via blocking or non-blocking I/Os.

Accordingly, IPC metrics [9] have been proposed as a kind of
dynamic software metrics dedicated to measuring IPC related char-
acteristics of distributed software. Intuitively, these metrics quantify
IPC-induced behaviors of distributed systems—the run-time system
behaviors due to the use of IPCs. Measuring IPCs is essential as
they constitute a unique aspect of the overall run-time behaviors
of distributed systems (e.g., concerning whole-system code depen-
dencies [3] and the security of information flow across process
boundaries [11]), as opposed to those of single-process software.

Yet different from quality metrics, IPC metrics do not immedi-
ately measure the quality of distributed systems. On the other hand,
since it is aimed to help users understand distributed system’s qual-
ity through IPC metrics (which are dynamic), DisTFAx considers
dynamic quality metrics that are related to IPC-induced system
behaviors. Moreover, we select such quality metrics from those
defined in ISO/IEC 25010 [13], a standardized system and software
quality model. DisTFAX is built on the statistical relationships be-
tween the IPC metrics and those selected quality metrics to help
users understand and classify distributed systems’ quality status.

3 DistFAX ARCHITECTURE

Figure 1 shows an overview of DisTFAX’s architecture. In a typical
usage scenario, D1sTFAX Inputs consist of a distributed system D
and its run-time input set T, which is a set of program inputs fed to
D during its operation (execution). With these inputs, DISTFAX first
instruments D in the Instrumentation phase and then executes
the instrumented system to trace method execution events during
the Tracing phase. From the execution traces, DIsTFAX computes
the IPC metrics of D in the third phase Characterization, result-
ing in the metric values as the Characterization Outputs. Lastly,
in the Classification phase, DisTFAX uses the IPC metric values
as features to classify the quality of D against T with respect to
several statistically relevant quality metrics (e.g., execution time as
a performance efficiency metric). Underlying these classifications
are the pre-trained per-quality-metric classifiers. Each classifier is
named in a form of X—Y where X is the set of IPC metrics used as
features while Y is the quality metric whose status is classified as
anomalous or normal. All such classification results constitute the
Classification Outputs of DisTFax.

These pre-trained classifiers were built via a model construc-
tion workflow which may be invisible to users unless they need
to re-train the classifiers (by following a similar workflow). In this
workflow, D1sTFAX takes n distributed systems Dy, Dg, ..., Dy and
their respective input sets T, T, ..., T, as the training set. By reusing
relevant phases in the typical usage scenario, it computes IPC met-
rics and several dynamic quality metrics for each training sample,

DistFAx: A Toolkit for Measuring Interprocess Communications and Quality of Distributed Systems

Table 1: Summary of IPC Metrics

ICSE 22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

Type |Metric

Definition / computation

Rationale

RMC

interprocess message coupling; computed as #messages sent from one process to another

the extent of run-time interac-
tions among processes

RCC

class coupling across processes; computed as the ratio of #methods in the second class
that are dependent on any method in the first class, to #methods in total which are
dependent on any method in the second class in all processes but the first one

how methods from a class in
one process access methods in

other processes

Coupling cce

the aggregate coupling as regards an individual class executed in a local process with
respect to classes in all remote processes; computed as the aggregate RCC metrics
between the class and other classes in all remote processes

the importance of a class

in terms of its influence on
classes in remote processes

IPR

interprocess coupling via common methods; computed as the size ratio of intersection
between the local and remote dependence sets to the union set of methods executed

code overlapping and reuse
across processes

CCL

the communication load of an individual class communicating with others in all remote
processes; computed as the sum of the sizes of remote dependence sets of the class’s
methods divided by the size of the set of all executed methods in the class

how much a class contributes
to the communication loa
among processes

Cohesion[PLC

internal connections within an individual process; computed as the sum of the sizes of]|
local dependence sets of all methods in the process, divided by the size of the set of all

executed methods in the process

the degree to which all of the
methods executed in a process
belong together

Table 2: Summary of Quality Metrics

Metric Description

Justification (w.r.t ISO/IEC 25010 [13])

Execution time [time duration of system execution

measure the quality characteristic performance efficiency
and its sub-characteristic time behavior

Run-time cyclo-cyclomatic complexity measured at runtime, computed as|measure the quality characteristic maintainability and its

matic complexity |#independent paths covered at runtime + 1 [17]

sub-characteristics modifiability and testability

Information flow|#information flow paths between all sources and sinks, com{measure the quality characteristic security and its sub-

path count puted by our dynamic taint analyzer [8]

characteristic confidentiality

Information flow|the average length of all the information flow paths, com{measure the quality characteristic security and its sub-

path length puted by our dynamic taint analyzer [8]

characteristic confidentiality

Attack surface

ports used, #files read/written> [16]

computed as the Euclidean distance between <0,0,0> and|measure the quality characteristic security and its sub-
the vector <#methods that enclose a source/sink, #network|characteristics confidentiality, integrity, non-repudiation,

accountability, and authenticity

and calculates the correlations between them. Finally, DisTFax
trains both supervised classifiers using the two types of metrics
and unsupervised classifiers using the IPC metrics only.

The supervised classifiers apply to situations in which users can
afford to compute all these dynamic quality metrics hence have
labeled training dataset to enable potentially more accurate classifi-
cations. In contrast, the unsupervised classifiers may offer lower
accuracy but accommodate scenarios where the users do not have
enough labeled data for training. DisTFAX provides both options
to meet diverse user needs. The key rationale is that computing
most (if not all) of dynamic quality metrics (e.g., those based on
attack surfaces) can be very expensive, which is also why we use
IPC metrics to indirectly classify quality status rather than using
the quality metrics directly in model training and inference.

4 TypricAL WORKFLOW

We now elaborate on each of the key working phases of DisTFAx
in its typical usage scenario (i.e., with classifiers trained already) to
produce characterization and classification results as outputs.

Phase 1: Instrumentation. DisTFAX computes the IPC and qual-
ity metrics mainly based on dynamic dependencies at method
level using our dependence analysis framework for distributed
programs [3], for which method execution events need to be traced.
To that end, it inserts probes for monitoring covered statements and
the entry (i.e., program control entering a method) and returned-into
(i.e., program control returning from a callee into a caller) events [4]

of each executed method. This results in the instrumented version of
D, reusing our Java dynamic analyzers [5, 7]. In addition, DisTFAX
refers to the list of the most widely used APIs in the JDK for probing
and then monitoring the message-passing (i.e., sending/receiving
messages) events during the execution(s).

Phase 2: Tracing. DisTFAx executes the instrumented version of
the distributed system D with its inputs T to generate method-
execution/message-passing event and statement coverage traces,
which will be used to compute the IPC metrics of the system.

Phase 3: Characterization. From the execution traces obtained in
the previous phase, DisTFAX computes five IPC coupling metrics—
RMC (short for run-time message coupling), RCC (run-time class
coupling), CCC (class central coupling), IPR (interprocess reuse),
and CCL (class communication load), and one IPC cohesion metric—
PLC (process-level cohesion). The detailed definitions can be found
in [9]. For this demo to be self-contained, we summarize them in
Table 1. For a method m, the set of methods that depend on m and
are in the same (resp., any different) process as m is referred to as
the local (resp., remote) dependence set of m.

Phase 4: Classification. In this phase, DisTFax feeds the trained
per-quality-metric classifiers with the IPC metrics, which results
in the quality status classified as anomalous or normal concerning
the respective quality metrics. Each quality metric corresponds to
a quality sub-characteristic that the metric measures. Thus, the
classification results indicate the status of the distributed system
quality with respect to the associated quality sub-characteristic.

ICSE ’22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

5 MobDEL CONSTRUCTION

While the IPC metric values as immediate characterization results
help capture IPC-induced behaviors of distributed systems, Dr1s-
TFAx goes further to inform the implications of those metrics to
the run-time quality of the systems. To that end, DisTFAX first dis-
covers with respect to which quality metrics can the IPC measures
inform about the quality. After extensive investigation, we found
five (dynamic) quality metrics significantly correlated to IPC met-
rics. Table 2 summarizes these quality metrics, of which some had
moderate/strong correlations with some of the IPC metrics in terms
of Spearman’s coefficients [19]. The IPC metrics and correlated
quality metrics are shown in the classifier names in Figure 1.

These quality metrics were chosen according to the standard
quality model ISO/IEC 25010 [13]. Each quality metric directly mea-
sures quality sub-characteristics under a quality characteristic de-
fined in the quality model. We normalized all these quality metrics
by the system size in terms of logical source line of code (SLOC) us-
ing the LocMetrics tool [1] rather than its physical SLOC to reduce
the biases caused by variations in programming formats/styles.

For supervised training a classifier named X—Y, each sample is
the X vector value computed from a system execution (D; against
T; of Figure 1). The sample is labeled normal if the Y value for
this sample is lower than the mean Y over all training samples,
and anomalous otherwise. The rationale is that the quality metrics
considered are all reversed measures: lower metric values indicate
better quality in that metric (e.g., greater attack surface signifies
lower security). DisTFAX uses the bagging algorithm by default,
which was found to be more accurate than any other supervised
learning algorithms in the latest Scikit-learn library [18].

When unsupervised learning the classifier X—Y, Y values are
not available in the training set where samples are not labeled. We
used a k-means clustering algorithm (also implemented in Scikit-
learn) with k=2 to cluster the training samples based on their X
values. The mean of each resulting cluster is computed as the mean
of the Euclidean lengths of all X vectors in the cluster. Then, a
cluster with a higher (lower) mean is labeled as anomalous if each
IPC metric in X was found positively (negatively) correlated with
Y. Otherwise, the label normal is determined accordingly.

For each (supervised or unsupervised) classifier, X includes IPC
metrics that are either all positively or negatively correlated with
Y. When Y is found correlated with IPC metrics of which some
are positively correlated and others negatively correlated, we split
these IPC metrics into two groups and train two separate classifiers.
This is why we had two classifiers for some of the quality metrics
(e.g., for attack surface as shown in Figure 1).

Through these classifiers, DisTFAx enables assessing distributed
system quality through IPC measurement. For example, when a sys-
tem execution has a large (relative to the average case) IPC metric
CCC value, its quality metric attack surface [16] would be relatively
large (than normal), according to the positive correlation between
these two metrics. Thus, Di1sTFAx alarms that the system would
have relatively low quality (security) in terms of attack surface.

6 APPLYING Di1sTFAX

We have implemented DisTFAx using Java 8 and Python 3, target-
ing distributed systems written in Java. For supporting distributed

Xiaoqin Fu et al.

: I II
02
0 L L -I | L]
L "« L -t [
- ¢ «
0.2 N <« d & o

¢

0.4 W Execution Time B Cyclomatic Complexity
-0.6 Information Flow Path Count W Information Flow Path Length
-0.8 Attack Surface

Figure 2: Spearman’s correlation coefficients between IPC
and quality metrics for 11 systems and 16,880 executions.

systems in other programming languages, only the first phase in-
strumentation needs to be modified. We have successfully applied
DisTFAx to 11 real-world distributed systems of various architec-
tures, application domains, and sizes against a total of 16,880 exe-
cution scenarios. All subjects are industry-scale systems, including
ZooKeeper used by Yahoo [12] and Voldemort by LinkedIn [20].
The run-time inputs included integration, system, and load tests.
From these diverse and large-scale system executions, DIsTFAX
computed the IPC and quality metrics as described earlier. Then it
computed correlations between the two kinds of metrics for all the
16,880 data points, and trained the per-quality-metric classifiers on
70% of the samples randomly selected while using the remaining
30% for testing for a hold-out validation. For evaluation purposes,
we further performed a 10-fold cross-validation for each classifier.
All experiments were performed on Ubuntu Linux 18.04.1 worksta-
tions, each with one 2.4GHz CPU, 512GB DRAM, and 2TB HDD.
For the experiment for one subject, the average time cost was 17
minutes and the peak memory cost was 53GB in the worst case.

6.1 RESULTS

Statistical correlations. Figure 2 depicts the Spearman’s corre-
lation coefficients between the six IPC metrics (each marking a
bar group) and five dynamic quality metrics considered (each rep-
resented by a color bar). On the particular datasets DisTFax was
applied to, four of the IPC metrics (RMC, CCC, CCL, and PLC) were
found significantly and moderately/strongly correlated to three of
the quality metrics (execution time, dynamic cyclomatic complexity,
and attack surface) with varying strengths.

In particular, the positive correlations between CCC and these
three quality metrics indicate that a higher degree of class central
coupling implies longer execution time, higher run-time complexity,
and greater attack surface. We also observed that higher interpro-
cess message coupling (RMC) was significantly associated with
higher cyclomatic complexity. Also, CCL and PLC are significantly
and negatively correlated to attack surface. Thus, if a distributed
system has a larger internal class-level communication load (CCL)
measure and/or a higher process-level cohesion (PLC) measure than
others, the communications throughout the system executions tend
to be within individual processes, hence the attack surface that
outer attackers can reach may be smaller.

In sum, there are three significantly positive correlations (i.e.,
CCC with execution time, RMC/CCC with dynamic cyclomatic
complexity, and CCC with attack surface) and one significantly
negative correlation (i.e., CCL/PLC with attack surface) computed
by DisTFax. These IPC metrics and quality metrics are used as
the features and classification outcomes, respectively, of the binary
classifiers in the last phase of DisTFAX.

DistFAx: A Toolkit for Measuring Interprocess Communications and Quality of Distributed Systems

Quality classification. Figure 3 shows the effectiveness (precision,
recall, and F1 accuracy) of our unsupervised learning (k-means
clustering) and supervised learning (bagging) classifiers built based
on the statistical correlations.

10-fold cross-validation

98%
El
94%
92%
F1 F1

Precision Recall Precision Recall
W CCC_Execution Time M RMC,CCC_Cyclomatic Complexity M CCC_Attack Surface = CCL,PLC_Attack Surface M Average

Hold-out validation

100%
80%

60%

40%

20% I
0%

100%

5]

3
x®

Figure 3: The precision, recall, and F1 accuracy of k-means
clustering (y axis, top) and bagging (y axis, bottom) of Dist-
Fax per classifier (x axis), for both validation schemes.

DisTFAx achieved generally high effectiveness for classifying
the three quality metrics (execution time, dynamic cyclomatic com-
plexity, and attack surface) based on the IPC metrics (RMC/CCC/C-
CL/PLC) that are significantly correlated to those quality metrics
(see Figure 2). As expected, the supervised classifiers were generally
more effective than unsupervised ones according to our results of
both the hold-out validations and 10-fold cross-validations.

In particular, with the unsupervised classifiers, the least effective
result (55% F1) was for classifying execution time from CCC, while
the most effective was for classifying attach surface from CCC (87%
F1). In contrast, the supervised classifiers are commonly highly
performant, offering promising (95+% F1) accuracy for any of the
quality metrics considered. Finally, it is noteworthy that for both
supervised and unsupervised classifiers, the results from the two
validation schemes were quite consistent, consolidating the validity
of the quality classifications in DisTFAx.

6.2 USE SCENARIO

In our demo, we use Apache Thrift to illustrate how DisTFAX works.
First, we instrument Thrift and execute the instrumented system
against given inputs. Second, we compute the six IPC metrics and
the five dynamic quality metrics from the executions. Third, we
compute Spearman’s rank correlation coefficients [19] between
these IPC and quality metrics. Then, we train the unsupervised
and supervised classifiers for each of the quality metrics that are
significantly correlated with some IPC metrics. Lastly, we apply the
classifiers to predict the quality status for two quality metrics.

6.3 LIMITATIONS

DisTFAX is subject to several limitations. First, DisTFAX inserts
probes into the system’s bytecode in its first phase. If the bytecode
is not allowed to be modified, the first phase instrumentation can-
not run (hence the toolkit cannot work). Second, DisTFAX does not
address all of the quality metrics that may be related to IPC-induced
system behaviors. It also only focuses on dynamic quality metrics at
this point, with static quality metrics (e.g., bugs and vulnerabilities
reported) not considered. Third, quality metrics in Di1sTFAx do not
cover all of the quality characteristics (e.g., compatibility, porta-
bility) and sub-characteristics (e.g., interoperability, adaptability)

ICSE 22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

defined in the underlying quality model ISO/IEC 25010 [13]. Finally,
through its binary classifiers, DisTFAX currently only supports
quality classifications at a relatively coarse and high level.

7 CONCLUSION

We presented DisTFAX, a toolkit that systematically measures a
given distributed system for its IPC-induced behaviors in (statistical)
relation to various aspects of its quality at runtime. It further lever-
ages such relations to enable users to assess those quality aspects
with respect to a range of quality metrics that would otherwise be
very expensive to measure directly.

We have applied DisTFAx to 11 real-world distributed systems
against 16,880 execution scenarios in total. DisTFAX exhibited prac-
tical capabilities in measuring IPCs, run-time quality, and their
correlations in these systems. Our evaluation also demonstrated
that DisTFAx achieved high effectiveness with its unsupervised
and supervised classifiers. In sum, Di1sTFAX offers the first toolkit
for measuring IPCs and their quality implications in common dis-
tributed systems, hence for understanding IPC-relevant run-time
behaviors of these systems, with promising merits.

ACKNOWLEDGMENTS
This work was supported by NSF through grant CCF-1936522.

REFERENCES

[1] S Aswini and M Yazhini. 2017. An Assessment Framework of Routing Complexi-
ties Using LOC Metrics. In 2017 Innovations in Power and Advanced Computing
Technologies. 1-6.

[2] Haipeng Cai. 2017. Hybrid Program Dependence Approximation for Effective
Dynamic Impact Prediction. TSE (2017).

[3] Haipeng Cai and Xiaoqin Fu. 2021. D?ABS: A Framework for Dynamic Depen-
dence Analysis of Distributed Programs. TSE (2021).

[4] Haipeng Cai and Raul Santelices. 2014. DIVER: Precise Dynamic Impact Analysis
Using Dependence-based Trace Pruning. In ASE. 343-348.

[5] Haipeng Cai and Douglas Thain. 2016. DistIA: A Cost-Effective Dynamic Impact
Analysis for Distributed Programs. In ASE. 344-355.

[6] George Coulouris et al. 2011. Distributed Systems: Concepts and Design (5th ed.).
Addison-Wesley Publishing Company.

[7] Xiaoqin Fu et al. 2020. Dads: Dynamic Slicing Continuously-Running Distributed
Programs With Budget Constraints. In ESEC/FSE. 1566—-1570.

[8] Xiaoqin Fu and Haipeng Cai. 2019. A Dynamic Taint Analyzer for Distributed
Systems. In ESEC/FSE. 1115-1119.

[9] Xiaogin Fu and Haipeng Cai. 2019. Measuring Interprocess Communications in
Distributed Systems. In ICPC. 323-334.

[10] Xiaoqin Fu and Haipeng Cai. 2020. Scaling Application-Level Dynamic Taint
Analysis to Enterprise-Scale Distributed Systems. In ICSE-Companion. 270-271.

[11] Xiaoqin Fu and Haipeng Cai. 2021. FlowDist: Multi-Staged Refinement-Based
Dynamic Information Flow Analysis for Distributed Software Systems. In USENIX
Security. 2093-2110.

[12] Patrick Hunt et al. 2010. ZooKeeper: Wait-free Coordination for Internet-scale

Systems. In USENIX ATC.

ISO/IEC. 2011. ISO/IEC 25010:2011 Systems and software engineering — Systems

and software Quality Requirements and Evaluation (SQuaRE) — System and

software quality models.

[14] Wuxia Jin et al. 2016. Dynamic Cohesion Measurement for Distributed System.
In SCDTCP. 20-26.

[15] Wuxia Jin et al. 2018. Dynamic Structure Measurement for Distributed Software.
Software Quality Journal (2018).

[16] Pratyusa K Manadhata et al. 2010. An Attack Surface Metric. TSE (2010).

[17] Thomas J McCabe. 1976. A Complexity Measure. TSE (1976).

[18] Fabian Pedregosa et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of Machine Learning research (2011).

[19] Philip Sedgwick. 2014. Spearman’s rank correlation coefficient. Bmj (2014).

[20] Roshan Sumbaly et al. 2012. Serving Large-scale Batch Computed Data with
Project Voldemort. In FAST, Vol. 12. 18-18.

[21] André Van Hoorn et al. 2012. Kieker: A Framework for Application Performance
Monitoring and Dynamic Software Analysis. In ICPE. 247-248.

=
&

	Abstract
	1 Introduction
	2 Background
	3 DistFax Architecture
	4 Typical Workflow
	5 Model Construction
	6 Applying DistFax
	6.1 Results
	6.2 Use Scenario
	6.3 Limitations

	7 Conclusion
	Acknowledgments
	References

