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ABSTRACT
We present Bayesian active galactic nucleus (AGN) Decomposition Analysis for Sloan Digital Sky Survey (SDSS) Spectra, an
open source spectral analysis code designed for automatic detailed deconvolution of AGN and host galaxy spectra, implemented
in PYTHON, and designed for the next generation of large-scale surveys. The code simultaneously fits all spectral components,
including power-law continuum, stellar line-of-sight velocity distribution, Fe II emission, as well as forbidden (narrow), permitted
(broad), and outflow emission line features, all performed using Markov chain Monte Carlo to obtain robust uncertainties and
autocorrelation analysis to assess parameter convergence. Our code also utilizes multiprocessing for batch fitting large samples
of spectra while efficiently managing memory and computation resources and is currently being used in a cluster environment
to fit thousands of SDSS spectra. We use our code to perform a correlation analysis of 63 SDSS type 1 AGNs with evidence
of strong non-gravitational outflow kinematics in the [O III] λ5007 emission feature. We confirm findings from previous studies
that show the core of the [O III] profile is a suitable surrogate for stellar velocity dispersion σ ∗, however there is evidence that the
core experiences broadening that scales with outflow velocity. We find sufficient evidence that σ ∗, [O III] core dispersion, and
the non-gravitational outflow dispersion of the [O III] profile form a plane whose fit results in a scatter of ∼0.1 dex. Finally, we
discuss the implications, caveats, and recommendations when using the [O III] dispersion as a surrogate for σ ∗ for the MBH−σ ∗
relation.
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1 IN T RO D U C T I O N

Data analysis codes, recipes, and software distributions for spectro-
scopic data analysis have become commonplace in the astronomy
and astrophysics community, especially in the advent of large all-sky
surveys, such as the Sloan Digital Sky Survey (SDSS; York et al.
2000) and the highly anticipated Large Synoptic Survey Telescope
(Ivezić et al. 2019). Despite their widespread use, many of the
computational methods used to perform these analyses are either (1)
not shared by authors for various reasons or (2) not open source and
cannot be accessed without the purchasing of proprietary software.
In addition to this, many data analysis pipelines designed for large-
scale surveys are written with the intent of fitting as many objects as
possible in the shortest amount of time, while other analysis recipes
may be suited for more-detailed analyses. Finally, many software
packages are suited for fitting for specific types of objects, usually
either galaxies or active galactic nuclei (AGNs), with no general
means of fitting for both or other types of objects. As astronomy
advances through the 21st century, sacrificing quality for speed will
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no longer be necessary given the increasingly widespread use and
availability of supercomputing resources in astronomy. Likewise,
software designed for fitting specific astronomical objects will yield
to more general fitting algorithms which can fit a diverse set of objects
autonomously and in great detail.

Some notable existing software packages and codes have at-
tempted to address the aforementioned issues. The Gas AND Absorp-
tion Line Fitting (GANDALF; Sarzi et al. 2006) code was one of the first
large-scale algorithms to fully decompose gas emission from stellar
absorption features, using penalized pixel-fitting (PPXF; Cappellari
& Emsellem 2004; Cappellari 2017) to measure the stellar line-of-
sight velocity distribution (LOSVD) with stellar templates. In the
context of AGN studies, GANDALF was ill-suited for the complexities
of fitting type 1 AGNs, which contain additional features such
as broad lines, Fe II emission, power-law continuum, and possible
‘blue-wing’ components indicative of outflowing narrow-line gas.
The Quasar Spectral Fitting package (QSFIT; Calderone et al. 2017)
allowed for fitting of type 1 AGNs with a variety of optional features,
making it ideal for large-scale surveys of many thousands of objects.
More recently, the release of PYQSOFIT (Guo, Shen & Wang 2018)
includes many similar features of QSFIT with the added functionality
of Python. However, since QSFIT and PYQSOFIT use a library of galaxy
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templates to model the host galaxy component instead of attempting
to model the LOSVD using stellar templates, AGNs with a strong
stellar continuum component, such as type 2 AGNs, suffer from poor
continuum modelling. Furthermore, while both GANDALF and QSFIT

are technically open source, they are implemented using proprietary
software and language (namely IDL). While certain licensed software
may have once been prevalent in the astronomical community, there
is a growing push towards open source software that can be easily
shared, modified, and used among the research community. Among
these open source languages is PYTHON, which is one of the fastest
growing programming languages for data analysis today, and its
widespread use makes it ideal for research in the astronomical
community.

We address the limitations of current spectral fitting codes with a
comprehensive fitting package implemented in Python and utilizing
a Markov chain Monte Carlo (MCMC) fitting approach for accurate
estimation of parameters and uncertainties, which we call Bayesian
AGN Decomposition Analysis for SDSS Spectra. In its current
version, our code is written for the SDSS spectra data model in
the optical (specifically 3460–9463 Å, based on choice of stellar
template library), however, because it is written in PYTHON and
is open source,1 it can be easily modified to accommodate other
instruments, wavelength ranges, stellar libraries, templates, and has
already been used successfully to perform decomposition on 22 type
1 AGNs observed with the Keck-I LRIS instrument (Sexton et al.
2019).

Our software attempts to address some notable and relevant
problems with spectral fitting software available today. Because our
code was designed for detailed decomposition of type 1 AGNs, which
contain various components such as forbidden ‘narrow’ (typical
FWHM < 500 km s−1) and permitted ‘broad’ (typical FWHM >

500 km s−1) emission lines, broad and narrow Fe II emission, AGN
power-law continuum, ‘blue-wing’ outflow components, and the
host galaxy stellar continuum, these components can be optionally
turned on or off to fit less-complex objects such as type 2 AGNs
or non-AGN host galaxies altogether, with all of these options
easily configured through the Jupyter Notebook (Kluyver et al.
2016) interface. As a result, our code can be deployed for fitting
a diverse range of astronomical objects and customized to the user’s
needs. Additionally, the choice of PYTHON as the programming
language of our code follows suit with a number of other software
packages, such as ASTROPY (Astropy Collaboration 2013), which
aim to replace antiquated software such as IRAF (Valdes 1984) or
proprietary languages such as IDL, for astronomers now entering the
field and/or adopting the PYTHON programming language for their
analyses. If anything, the open source nature of our software will
serve as a template for developing various implementations of the
software for individual specific needs.

To our knowledge, our algorithm is the first of its kind to address a
number of issues specific to the fitting of AGN spectra that other
algorithms have yet to implement. First, our code was initially
designed to fit all spectral components simultaneously, as opposed
to masking regions of spectrum and fitting components separately.
This is specifically advantageous for the decomposition of the stellar
continuum and Fe II emission from other components for studies of
AGN and host galaxy relations such as the MBH−σ ∗ relation. As
noted in Sexton et al. (2019), stellar kinematics remain the single-
most difficult quantity to measure in type 1 AGN, and obtaining
reliable values and uncertainties for stellar quantities is a non-trivial

1https://github.com/remingtonsexton/BADASS3

effort that includes a number caveats and systematics which can be
difficult to account for (Greene & Ho 2006). Simultaneous fitting
with Fe II emission templates also allows for detailed study of Fe II

emission properties of type 1 AGN while taking into account the
underlying stellar continuum. Finally, our code is the first software
of its kind to use specific criteria for the automated detection and
decomposition of outflow components in forbidden emission lines,
which have recently become a topic of much study in the context
of AGN and host galaxy evolution (see Section 3.1 and references
therein).

The Bayesian MCMC approach used by our code for fitting
spectral parameters is unique in that it provides an easily extensible
framework for the user to modify the fitting model, free parameters,
and convergence criteria. Many fitting software packages typically
utilize a simpler least-squares minimization approach, however,
it is recommended (almost universally) to perform Monte Carlo
resampling of the data and re-fitting (also known as ‘bootstrapping’)
to ensure accurate estimation of uncertainties. While the least-squares
approach is typically faster, an MCMC approach allows the user to
estimate robust uncertainties, visualize possible degeneracies, and
assess how well individual parameters are constrained or if they
have properly converged on a solution. While fitting algorithms that
utilize random-sampling techniques admittedly suffer from slower
runtimes, modern personal computers capable of multiprocessing
to decrease runtimes are becoming commonplace. Since our code
utilizes the affine invariant MCMC sampler EMCEE (Foreman-
Mackey et al. 2013), multiprocessing is also an available option
for fitting large samples of objects. The use of powerful Bayesian
and computational techniques, open source framework, and diverse
fitting options together make help achieve the ultimate goal of our
code, which is to provide the most detailed and versatile fitting
software for optical spectra in future sky surveys.

We describe the model construction, fitting procedure, and au-
tocorrelation analysis used by our code to assess parameter con-
vergence in Section 2. In Section 3, we discuss the significant
correlations between stellar velocity dispersion σ ∗, the decomposed
[O III] core and outflow dispersions of the [O III] λ5007 emission line
found using our code.

Throughout this work, we assume a standard cosmology of �m =
0.27, �� = 0.73, and H0 = 71 km s−1 Mpc−1.

2 TH E A L G O R I T H M

In the following subsections, we discuss the algorithm model con-
struction, spectral components, fitting procedure, and autocorrelation
analysis used to assess parameter convergence. We also discuss the
results of benchmarking tests for the recovery of stellar velocity
dispersion using our code.

2.1 Model construction

Our algorithm constructs a model for each spectrum under the
assumption that all AGN components (i.e. the AGN power-law
continuum, emission lines, possible outflows, and Fe II emission)
reside atop a host galaxy component whose stellar contribution we
wish to measure. A general overview of the model construction is as
follows.

First, each spectral component is initialized using reasonable
assumptions from the data. For example, the stellar continuum and
power-law continuum are initialized at amplitudes that are each half
of the total galaxy continuum level, which is estimated using the
median flux of the fitting region. As another example, emission line
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amplitudes are initialized at the maximum flux value within fixed
wavelength regions centred at the expected rest-frame locations of
the emission line. These initial parameter values need not be exact,
as our algorithm will iteratively improve on their estimated values
with each fitting iteration.

Models of each spectral component are then sequentially sub-
tracted from the original data, and any remaining continuum is
assumed to be the stellar continuum contribution, which is then fit
with a predefined host galaxy template or empirical stellar templates
to estimate the LOSVD. Once all parameters have been estimated
and all model components have been constructed, their sum-total is
used to assess the quality of the fit to the original data. This process is
repeated for each iteration of the algorithm until a best fit is achieved.

We describe each of the spectral components used for constructing
the model below.

2.1.1 AGN power-law continuum

In the simplest construction, the non-stellar thermal continuum in
type 1 AGNs can be modelled as the sum of different temperature
blackbodies at various radii within the AGN accretion disc (Malkan
1983). This manifests itself in the UV and optical as a ‘big blue
bump’, which flattens out at longer wavelengths towards the near-
IR, resembling a power-law continuum. We adopt the QSFIT simple
power-law implementation from Calderone et al. (2017) given by

p(λ) = A

(
λ

λb

)αλ

, (1)

where A is the power-law amplitude, αλ is the power-law index (or
spectral slope), and λb that is a reference wavelength chosen to be
the central wavelength value of the fitting region and determines the
break in the power-law model. The power-law amplitude A and slope
index αλ are free parameters throughout the fitting process. The flat
priors we set on these parameters dictate that A must be non-negative
and no greater than the maximum flux density value of the data,
and αλ can vary in the range [−4, 2]. As in QSFIT, the reference
break wavelength λb is fixed by default to be the centre wavelength
value of the fitting region (i.e. (λmax − λmin)/2), since the power-
law slope is poorly constrained at optical wavelengths, however, this
constraint can be relaxed if there is sufficient wavelength coverage
in the near-UV. We show different values of the power-law slope in
Fig. 1.

We find that the simple power-law model adequately describes
the AGN continuum in the optical, especially if the object fitting
region is limited to rest-frame λrest > 3460 Å, which is the lower
limit of the wavelength range of the Indo-US Stellar Library (Valdes
et al. 2004) used for fitting the stellar LOSVD. To better model
the true shape of the power-law continuum, a large fitting region at
λrest < 3500 Å is necessary to better constrain the power-law index
αλ. For fitting regions λrest > 3500 Å, the AGN continuum can
become highly degenerate with the host galaxy stellar continuum,
especially if the shape of the power-law continuum is relatively flat.
We nevertheless include a power-law continuum in our fitting model
because its inclusion does not affect the overall fitting process.

2.1.2 Broad and narrow emission lines

All broad and narrow emission line features are, by default, modelled
as a simple Gaussian function given by

g(λ) = A exp

[
−1

2

(
(λ − v)2

σ 2

)]
, (2)

Figure 1. The AGN simple power-law model adopted from Calderone et al.
(2017). Colours represent different values of αλ in the range [−4, 2] for the
wavelength range [3500, 7000]. The reference wavelength for this wavelength
range, λb = 5250 Å, is the locus of different models for αλ and is held fixed
by default to be the centre of the fitting range.

where A is the line amplitude, σ is the Gaussian dispersion, and
v is the velocity offset of the Gaussian profile from the rest-frame
wavelength of the line. Some types of objects, such as NLS1s, exhibit
broad lines with extended wings (Moran, Halpern & Helfand 1996;
Leighly 1999; Véron-Cetty, Véron & Gonçalves 2001; Berton et al.
2020), for which our algorithm can optionally model the emission
line with a Lorentzian function given by

�(λ) = Aγ 2

γ 2 + (λ − v)2
, (3)

where γ = FWHM/2. A comparison of the two emission line models
is shown in Fig. 2.

Because SDSS spectra are logarithmically rebinned, each pixel
represents a constant velocity scale measured in km s−1. This
convenience allows us to initialize width and velocity parameters
in units of km s−1 and fitting performed in units of pixels without
the conversion from Å, which is wavelength dependent. All narrow
and broad line widths are corrected for the wavelength-dependent
instrumental dispersion of the SDSS spectrograph during the fitting
process so that final reported widths do not have to be corrected by
the user. However, we still place a minimum value for all measured
emission line widths to be the velocity scale of our spectra (in units
of km s−1 pixel−1), to ensure that emission line widths are at least
greater than a single pixel in width to avoid the fitting the noise
spikes.

Given the modest resolution (σ ∼ 69 km s−1) and signal to
noise (S/N) of SDSS spectra, we find that in most cases a simple
Gaussian function is sufficient to model the full shape emission
lines. Other fitting algorithms attempt to model emission lines
in higher detail, using Gauss–Hermite polynomials or additional
higher order moments, in order to account of line asymmetries,
which are especially obvious in broad line emission. Sexton et al.
(2019) however showed that some line asymmetries can be attributed
to strong absorption near Balmer features, and that emission line
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2874 R. O. Sexton et al.

Figure 2. A comparison of the Gaussian and Lorentzian emission line models
centred on the location rest-frame H β with an FWHM of 2000 km s−1.
Dashed lines indicate the location and width of the FWHM.

asymmetries are generally resolved with simple Gaussian models as
long as the underlying stellar population is modelled. Narrow lines
that exhibit a ‘blue wing’ outflow component, as typically seen in the
[O III] emission lines, can be fit as an additional Gaussian component
and is a standard feature of our code (see Section 2.2.2). Higher
resolution spectra of nearby objects with strong emission lines can
exhibit further complex non-Gaussian profiles even after outflow
components are accounted for. These non-Gaussian profiles are best
modelled iteratively using multiple Gaussian components until an
optimal fit is achieved, and adding additional components can be
easily achieved by modification of the code.

Many line fitting algorithms tie the widths of narrow lines to be
the same across the entire fitting region, however, we leave this as an
optional constraint in our code. The advantage of tying the widths
only decreases the number of free parameters, while the disadvantage
of tying all narrow line widths to each other can lead to a worse fit.
Instead, our algorithm ties widths of lines that are nearest to each
other in groups. For example, the narrow [N II]/H α/[S II] line group’s
widths are tied, and the narrow H β/[O III] line group’s widths are tied
and fit separately. The H α/[N II]/[S II] line widths can be biased due
to line blending, and/or the presence of outflows and broad lines, and
since these lines tend to have larger fluxes than most other lines, they
carry greater statistical weight in determining widths if they are tied
to other lines in the spectrum. A similar argument can be made for
the H β/[O III] line group. Ideally, one would model each individual
line separate from the rest, however, tying widths is still required
for narrow forbidden lines obscured by broad permitted lines. Thus,
tying widths of groups of lines both reduces fitting bias within each
group while also reducing the number of free fitting parameters.

2.1.3 Fe II templates

To account for Fe II emission typically present in the spectra type 1
AGNs, our algorithm uses the broad and narrow Fe II templates from
Véron-Cetty, Joly & Véron (2004), which are optimal for subtraction
since they include emission features that are commonly found in

many Seyfert 1 galaxies, as opposed to a single template based solely
on I Zw 1 (Barth et al. 2013). Fig. 3 shows the narrow the broad Fe II

emission features of the Véron-Cetty et al. (2004) template.
All Fe II lines from Véron-Cetty et al. (2004) are modelled as

Gaussian functions using equation (2) and are summed together into
two separate broad and narrow templates, each of which can be
scaled by a multiplicative free-parameter amplitude A during the fit.
Following QSFIT, the default full width at half-maximum (FWHM)
of broad and narrow Fe II lines are fixed at 3000 and 500 km s−1,
respectively, which are adequate given the resolution and typical
S/N of SDSS data. The velocity offset of each line is also fixed by
default. We justify holding the FWHM and velocity offsets fixed due
to the fact that broad and narrow emission are blended together and
superimposed atop one another, usually at varying amplitudes. This
leads to a strong degeneracy in both the FWHM and velocity offsets
in these features. However, the FWHM and velocity offset constraints
can be optionally turned off or adjusted to particular values for each
the broad and narrow templates for more-detailed fitting.

In addition to the template from Véron-Cetty et al. (2004), our
code can alternatively use the temperature-dependent Fe II model
from Kovačević, Popović & Dimitrijević (2010), shown in Fig.
4, which independently models each of the F, S, and G atomic
transitions of Fe II, as well as some strong lines from I Zw 1, in
the region between 4400 and 5500 Å, with amplitude, FWHM,
velocity offset, and temperature as free parameters. The template
from Kovačević et al. (2010), while slightly smaller in wavelength
coverage compared to the Véron-Cetty et al. (2004) template, can
more accurately model objects with particularly strong Fe II such as
NLS1s (Véron-Cetty et al. 2001; Xu et al. 2012; Rakshit et al. 2017).
Individual transition amplitudes, widths, and velocity offsets can be
optionally fixed during the fitting process as well.

2.1.4 Host galaxy and stellar absorption features

The original purpose of our code was to extract the host galaxy
contribution in type 1 AGN spectra, and in particular, estimate the
stellar LOSVD to obtain stellar velocity v∗ and stellar velocity
dispersion σ ∗. In this regard, our code serves as a wrapper for
the stellar-template fitting code PPXF (Cappellari & Emsellem 2004;
Cappellari 2017), allowing the user to optionally fit the underlying
stellar population to extract stellar kinematics. After subtracting
off all the aforementioned components from the original data, our
algorithm models the stellar population using 50 empirical stellar
templates from the Indo-US Library of Coudè Feed Stellar Spectra
(Valdes et al. 2004). The Indo-US Library was chosen for its high
resolution (FWHM resolution of 1.35 Å; Beifiori et al. 2011) as well
as its wide wavelength coverage from 3460 to 9464 Å. The 50 chosen
templates include the full range of spectral types from O to M, and
were specifically chosen for minimal gaps in coverage. We find that
using 40–50 stellar templates strikes an optimal balance between
reducing the chances of template mismatch and large computation
times, since the non-negative least-squares routine used by PPXF

for choosing templates and calculating weights carries the largest
computational overhead for our algorithm and scales with the number
of templates used in the fit.

By default, only v∗ and σ ∗ are fit for SDSS spectra, however,
if given higher resolution spectra, it is still possible for pPXF to
estimate the higher order Gauss–Hermite moments of the LOSVD.
One caveat to fitting the LOSVD via stellar template fitting is the
limited wavelength range of the stellar template library chosen
for fitting the LOSVD. In this regard, the Indo-US Library is
provides the largest optical range and highest resolution for currently
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Figure 3. Broad and narrow Fe II templates from Véron-Cetty et al. (2004), which (by default) have fixed zero velocity offset and fixed width in our code.
Broad Fe II is initialized with an FWHM of 3000 km s−1, and narrow Fe II with an FWHM of 500 km s−1, and held constant throughout the fitting process,
following the implementation of QSFIT (Calderone et al. 2017).

Figure 4. The temperature-dependent Fe II template from Kovačević et al. (2010) for a more-detailed analysis of optical Fe II emission. Our algorithm
independently models each of the F, S, and G atomic transitions of Fe II, as well as some strong lines from I Zw 1, in the region between 4400 and 5500 Å, with
amplitude, FWHM, velocity offset, and temperature as a free parameters.

available empirical stellar libraries. However, if one chooses to use a
different library of stellar templates, the LOSVD fitting range can be
extended.

In general, the quality of the fit to the LOSVD is S/N dependent.
We find that if the continuum S/N < 10, estimates of v∗ and σ ∗
can have uncertainties >50 per cent therefore we allow the user to
optionally disable fitting of the LOSVD and instead fit the stellar
continuum with a single stellar population (SSP) model generated
using the MILES Tune Stellar Libraries Webtool (Vazdekis et al.
2010), which is initialized with a metallicity [M/H] = 0.0, age
of 10.0 Gyr, and dispersion of 100 km s−1to match the depth of
stellar absorption features typically seen in SDSS galaxies. The SSP
template is normalized at 5500 Å and is scaled by a multiplicative
factor that is a free-parameter during the fitting process. We also
include alternative MILES SSP models with ages ranging from 0.1
to 14.0 Gyr which can be used as optional substitutes. We show a
range of MILES SSP models which can be used by our code in Fig. 5.

Due to the limited range of the MILES stellar library, if the fitting
range is outside (3525 Å ≤ λ ≤ 7500 Å), SSP models from Maraston
et al. (2009) are used instead, which have a coverage of (1150 Å ≤
λ ≤ 25 000 Å), however have much larger dispersions that do not
match strong stellar absorption features in SDSS spectra.

We note that dispersions measured with PPXF already take into
account the instrumental dispersion of the SDSS, since it first
convolves input templates to the resolution of the SDSS before the
fitting process. We none the less place a lower limit on the allowed

values for σ ∗ to be the velocity scale (in units of km s−1 pix−1) of
the input spectra.

2.2 Fitting procedure

2.2.1 Determination of initial parameter values

As is true for all fitting algorithms, the number of required MCMC
iterations required for convergence on a solution is sensitive to the
initial parameter values. Ideally, one should initialize parameters as
close as possible to their actual posterior values in order to minimize
the number of iterations used for searching parameter spaces and
maximize the number of posterior sampling iterations. To do this,
we employ maximum-likelihood estimation of all parameters using
the SCIPY (Virtanen et al. 2020) scipy.optimize.minimize
function to find the negative maximum (minimum) of the log-
likelihood function, which we derive as follows.

We assume that each datum of the spectrum can be approximated
as a normally distributed random variable of mean ydata,i and standard
deviation σ i. The likelihood of the data given the model ymodel is
given by

L =
N∏

i=1

1

(2πσ 2)1/2
exp

[
− (ydata,i − ymodel,i)2

σ 2
i

]
(4)

Since equation (4) can result in very large values, which often times
exceeds the numerical precision of most computing machines, it is
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2876 R. O. Sexton et al.

Figure 5. Single stellar population models from Vazdekis et al. (2010) generated using the MILES Tune Stellar Libraries webtool used for fitting the host
galaxy contribution if the LOSVD (stellar template) fitting is not performed.

easier to use the natural log of the likelihood, i.e. the log likelihood:

L = log(L) = −1

2

N∑
i=1

log
(
2πσ 2

i

) + (ydata,i − ymodel,i)2

σ 2
i

. (5)

The constant terms in this sum that do not change from one
iteration to the next, including log(2πσ 2

i ), can be dropped, as they do
not play a role in determination of the minimum. The log likelihood
is therefore given by

L =
N∑

i=1

(ydata,i − ymodel,i)2

σ 2
i

, (6)

where the sum is performed over each spectral channel i for each
datum ydata,i, ymodel,i is the value of the model at each i, and σ i is the
1σ uncertainty at each i determined from the SDSS inverse variance
of the spectrum.

The scipy.optimize.minimize function, which employs the built-in
Sequential Least SQuares Programming (SLSQP; Kraft 1988) method,
is used to include bounds and constraints on all parameters. Parameter
bounds, which are the minimum and maximum values for each
parameter, are determined from the data. For example, the emission
line amplitudes must be non-negative, and can have a maximum value
of the data in the fitting region. These simple boundary conditions,
which are later used by EMCEE, are effective in limiting the parameter
space for timely convergence. Constraints on parameters are used for
the testing for possible blueshifted wing components in [O III] (see
Section 2.2.2).

By default, our algorithm only performs one maximum-likelihood
fit to obtain initial parameter values in the interest of time and
a single fit is sufficient for initializing parameters for MCMC
fitting. However, if one chooses not to perform MCMC fitting, or
if one desires more robust initial parameter values, our code can
optionally perform multiple iterations of maximum-likelihood fitting
by resampling the spectra with random normally distributed noise
from the spectral variance and re-fitting the spectrum, i.e. Monte
Carlo ‘bootstrapping’.

2.2.2 Testing for presence of outflows in narrow emission lines

Additional ‘blue wing’ components in narrow emission lines, indica-
tive of possible outflowing gas from the central BH, are known to
be commonplace in AGN-host galaxies (Nelson & Whittle 1996;
Mullaney et al. 2013; Zakamska & Greene 2014; Woo et al.
2016; DiPompeo et al. 2018; Rakshit & Woo 2018; Davies et al.
2020). If present, failure to account for the blue excess in narrow

line emission can lead to significant difference in measured line
quantities, especially if one uses narrow line width as a proxy for σ ∗
(Woo et al. 2006; Komossa & Xu 2007; Bennert et al. 2018; Sexton
et al. 2019).

Blue wings are most visibly obvious in the narrow [O III] emission
line in type 1 AGNs because [O III] is not significantly contaminated
by nearby broad lines. To determine if blue wings are present,
our code can optionally perform preliminary single-Gaussian and
double-Gaussian fits to the H β/[O III] or H α/[N II]/[S II] narrow
line complexes to test if an additional Gaussian component in
the model is justified. The test for outflows is identical to the
process used for fitting initial parameter values using maximum-
likelihood estimation (i.e. Monte Carlo bootstrapping). The double-
Gaussian fit makes the assumption that outflows are present by
including a narrower ‘core’ and a broader ‘outflow’ component for
the narrow emission lines. Monte Carlo bootstrapping for a user-
defined set of iterations is then used to obtain uncertainties on core
and outflow components to assess the quality of the fit. During the
fitting process the FWHM of the outflow component is constrained
to be greater than the core component, and the amplitude of the
outflow component is constrained to be less than the core component,
following what is typically seen in the literature. However, since
outflows are not necessarily always blueshifted, but sometimes at
equal or redshifted velocities with respect to the core component
(albeit in rare occurrences), we do not constrain the velocity offset of
either component during the fitting process. This feature is useful for
detecting outflow components found in star-forming galaxies, which
are known to be less offset from the core component causing a more
symmetric [O III] line profile (Cicone, Maiolino & Marconi 2016;
Davies et al. 2019; Manzano-King, Canalizo & Sales 2019).

To quantify the presence of outflows in [O III], we visually identify
63 objects from a sample of 173 known type 1 AGN that both (1)
exhibit the characteristic line profile asymmetry commonly seen in
the literature, and (2) have a measurable non-gravitational component
in [O III] relative to the systemic (stellar) velocity dispersion (this is
discussed in detail in Section 3.2) and derive empirical relationships
between measurable parameters that recover these objects. After our
algorithm performs fits for both the single-Gaussian (no-outflow)
and double-Gaussian (outflow) models, the following empirical
diagnostics are used to determine if a secondary outflow component
is justified in the model:

Amplitude metric:
Aoutflow(

σ 2
noise + δA2

outflow

)1/2 > 3.0, (7)
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Width metric:
σoutflow − σcore(

δσ 2
outflow + δσ 2

core

)1/2 > 1.0, (8)

Velocity metric:
vcore − voutflow(

δv2
core + δv2

outflow

)1/2 > 1.0, (9)

Statistic:

(
RSSno outflow−RSSoutflow

k2−k1

)
(

RSSoutflow
N−k2

) , (10)

where A is the line amplitude (in units of 10−17 erg cm−2 s−1 Å−1),
σ is the Gaussian dispersion (FWHM/2.355; in units of km s−1),
and v is the velocity offset of the line relative to the rest frame of the
overall spectra (in units of km s−1). The quantity RSS is the sum-
of-squares of the residuals within ±3σ of the full (core + outflow)
[O III] line profile, k1 = 3 is the number of degrees of freedom
in the single-Gaussian model, k2 = 6 is the number of degrees of
freedom in the double-Gaussian model, and N is the size of the
sample used to calculate RSS. If parameters of the core or outflow
models do not adhere to their bounds or approach to the limits of
their constraints, which in turn violates the number of degrees of
freedom for each model, our code flags the relevant parameters and
defaults to a single-Gaussian (no-outflow) model.

Equation (7) is a measure of the amplitude of outflow component
above the noise, while equations (8) and (9) are a measure of how
much we can significantly detect measurable differences between the
core and outflow FWHM and velocity offsets, respectively. Another
way of interpreting equations (7)–(9) is the uncertainty overlap
between parameter values, which signifies how well our algorithm
can separate core and outflow components in parameter space. For
example, a value of 2 for the width metric indicates that there is 2σ

separation between the best-fitting values of the core and outflow
FWHM.

Equation (10) is statistical F-test for model comparison between
the single- and double-Gaussian models. The F-statistic in this
context calculates unexplained variance between the outflow and
no-outflow models as a fraction of the unexplained variance in
the outflow model alone. The F-statistic is then used to calculate
a p-value, which if less than a critical value (by default, α =
0.05), indicates that we can reject the null hypothesis that there
is no significant difference between the single- and double-Gaussian
models, and that the difference is greater than that which could
be attributed to random chance. We express our confidence in the
outflow model by calculating 1 − α. For example, α = 0.05 indicates
a 95 per cent confidence that a double-Gaussian model explains the
variance in fitting the [O III] profile significantly better than a single-
Gaussian model.

All of these criteria can be toggled on or off, and the significance
and confidence thresholds for each can be changed to meet the user’s
specific needs. We find that the above criteria provides a satisfactory
method in finding objects with strong blueshifted excess in [O III]
with a success rate of >90 per cent compared to visual identification,
and recommend this method to determine if strong outflows are
present or if the [O III] core dispersion needed as a surrogate for
σ ∗ when it cannot be otherwise measured. We note that while these
empirical criteria are successful in describing the types of objects
in our sample, more sophisticated statistical modelling and cross-
validation techniques with a larger sample will be required to improve
the capability of our algorithm to identify objects with outflows.

If the above criteria are met, the final set of parameters that are
fit with EMCEE will include a second Gaussian component for all
narrow lines in the fitting region, otherwise, the final model will only
fit a single Gaussian component to each narrow line. It is important

to note that any emission line, whether it exhibits blue excess or not,
can be fit with more than one component and produce a better fit.
However, if one is using the core component of [O III] as a surrogate
for stellar velocity dispersion, using a two-component fit when only
one component is justified by the data can significantly underestimate
the stellar velocity dispersion. Likewise, not correcting for a strong
and clearly visible outflow component can significantly overestimate
the stellar velocity dispersion if the core component is used as a
surrogate.

While our code can perform tests for outflows on either the H β

or H α region, it is recommended that if one wants to fit outflows
in both the H β and H α regions that it be done simultaneously, in
which case our algorithm uses the [O III] λ5007 outflow component
to constrain the properties of the outflow components for H α, [N II],
and [S II]. This constraint is activated because even if a broad line
is not present in H α, narrow H α and [N II] can still be severely
blended due to the resolution of the SDSS. However, if one chooses
to fit outflows in H α independently from H β, it is still possible at
the user’s discretion.

As an aside, there is no single definition or quantification of what
constitutes an ‘outflow’ in regards to emission lines. Our algorithm,
admittedly, can only detect significantly broad and offset [O III] wings
that are commonly seen in the literature, but outflows can generally
produce a wide range of emission line profiles. For example, Bae &
Woo (2016) modelled biconical outflows in 3D and found that the
emission line profile of outflows is strongly dependent on orientation
and dust extinction, resulting in sometimes redshifted and non-
Gaussian profiles. Some models also indicate that a high-velocity
outflow can be present without exhibiting an broad blue excess due
simply to bicone orientation.

The criteria we present here constitute a preliminary means of
filtering out objects with strong outflows which may cause significant
residuals if not taken into account, and can make no claims as to
whether an outflow is present if the secondary outflow component is
close to the velocity offset or width of the primary core component
of the emission line. The best method of determining if a secondary
component is necessary is to perform a full fit with the double-
Gaussian model with EMCEE, as well as fitting the LOSVD to estimate
the gravitational influence of the narrow-line region (NLR), and
examining the individual parameter chains to ensure that they are not
degenerate and have converged on a stable solution.

2.2.3 Final parameter fitting

Final parameter fitting performed using MCMC begins by initializing
each parameter at its maximum-likelihood value obtained from the
initial fit. We use equation (6) as the likelihood probability and
initialize each parameter with a flat prior with lower and upper bounds
determined by the data. If the model contains outflow components,
constraints on outflow parameters (see Section 2.2.2) are included
in their respective flat priors. We place an additional constraint on
broad line components, whose widths must be greater than narrow
line widths, if broad lines are included in the fit. Fitting is then
performed iteratively via MCMC until each component’s parameters
have converged. Each parameter space is randomly sampled using
the affine invariant MCMC sampler EMCEE until a user-defined
number of iterations is reached or if autocorrelation analysis (rec-
ommended) has determined that parameter convergence has been
sufficiently reached (see Section 2.2.4). Fitting using the EMCEE

package is advantageous since the use of multiple simultaneous
‘walkers’ efficiently explores each parameter space in parallel, all
of which form MCMC parameter ‘chains’ from which the final
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2878 R. O. Sexton et al.

Figure 6. Left: The FWHM parameter MCMC chain for the H β FWHM from the above example performed using 100 walkers. The initial starting position,
estimated using maximum-likelihood fitting, overestimates the final width of the line by more than 500 km s−1. As other parameters are fit, the value H β

FWHM decreases and settles into a stable solution by ∼2000 iterations. Convergence is reached at ∼11 000 iterations (for this example, when 10 times the
autocorrelation time per parameter at 10 per cent tolerance per parameter is achieved), and the burn-in is chosen to be the final 2500 iterations after all other
parameters has been achieved. Right: A histogram of the last 2500 iterations of all 100 walkers.

posterior distribution is estimated for each parameter, as shown in
Fig. 6.

The values of parameters estimated using the initial maximum-
likelihood routine (scipy.optimize.minimize) can differ substantially
from parameters estimated using EMCEE, as shown in Fig. 6. This
large difference is attributed to the stellar continuum model used in
each fit. The initial fit uses only a single SSP template to estimate the
contribution to the stellar continuum. The scipy.optimize.minimize
algorithm, while relatively fast, is not sensitive enough to fit the
LOSVD with stellar templates in addition to many other component
parameters. Fitting the LOSVD requires many iterations due to the
fact that even moderate changes in stellar velocity or stellar velocity
dispersion need not drastically change the shape of the resulting stel-
lar continuum model, or drastically change the value of the calculated
likelihood, which is partly due to the number and diversity of template
stars used by our code. Instead, the scipy.optimize.minimize algorithm
prioritizes the fitting of components that have the greatest effect
on the calculated likelihood, such as emission lines and continuum
amplitudes. In short, the limitations of the scipy.optimize.minimize
routine are due to a combination of (1) degeneracies inherent to the
stellar template fitting process and (2) the likelihood threshold re-
quirements needed for scipy.optimize.minimize to achieve a solution.
As a result, the initial fitting routine in our algorithm only fits a single
SSP template for the stellar continuum.

The advantage of MCMC fitting with EMCEE allows for prolonged
simultaneous fitting of parameters even after a likelihood threshold
has been achieved. Components that are fit very easily (such as
emission lines and continuum amplitudes) converge on solutions very
quickly, while components that are less sensitive to even moderate
changes (such as stellar templates) can continue to converge on a
solution, even if the calculated maximum likelihood does not vary
considerably. The advantage of MCMC sampling in this context
allows our algorithm to explore the LOSVD parameter space even
after a maximum likelihood has been reached, which allows for
greater variation in template stars used for achieving a best fit.
In other words, parameter convergence is more heavily dependent
on parameter variation (autocorrelation; see Section 2.2.4) rather
than achieving some maximum-likelihood threshold. In the case of

the FWHMH β parameter chain shown in Fig. 6, the initial value
of FWHMH β is determined by a SSP of fixed LOSVD and fit
with scipy.optimize.minimize algorithm. The MCMC fit performed
by EMCEE then randomly samples the LOSVD around the initial
likelihood values, which in turn adjusts the number and weights of
stellar templates, varies the stellar H β absorption, and adjusts the
FWHMH β to obtain a better fit. Because MCMC randomly samples
about the maximum-likelihood value, the algorithm need not stop
until the LOSVD parameters have settled on a stable solution.

The MCMC fitting process uses the same likelihood function,
priors, and constraints used in the initial fitting procedure, but instead
produces parameter distributions from which best-fitting values and
uncertainties can be reliably estimated. The best-fitting values are
then used to construct a final model, an example of which is shown
in Fig. 7.

2.2.4 Autocorrelation analysis

Over a number of iterations, the values of a parameter can fluctuate
significantly as each parameter space is explored. Since some
parameters can be strongly correlated (for instance, the AGN power-
law continuum component and the stellar continuum component
amplitudes), there can exist parameter degeneracies that are not taken
into account when using conventional fitting techniques. Parameter
fluctuations and degeneracies can also vary as a function of S/N. The
nature and diversity of galaxy and AGN data makes determination of
parameter convergence a non-trivial issue, especially if the goal is to
fit a large number of objects that vary intrinsically or in data quality.
Fitting algorithms typically address this by setting the number of
fitting iterations to an arbitrarily high number or setting a minimum
tolerance in the change in the likelihood value. While these methods
of convergence are generally good, they only guarantee convergence
in the overall fit to the data, and not on the convergence of individual
parameters.

To address this, our code employs autocorrelation analysis to
assess parameter convergence. Autocorrelation analysis functions
are built into EMCEE (see Foreman-Mackey et al. 2013), however,
we tailor these functions for the purposes of spectral fitting. The
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Bayesian AGN Decomposition Analysis for SDSS spectra 2879

Figure 7. An example of the best-fitting final model output of a spectrum fit in the H β/[O III] region with individual fitting components designated by different
colours. This particular object exhibits the blueshifted [O III] outflow components (magenta) which our algorithm is designed to detect and fit.

integrated autocorrelation time, which is the number of iterations
required for a parameter chain to produce an independent sample,
is calculated for all parameters at incremental fitting iterations
(by default, every 100 fitting iterations), and then the convergence
criteria are checked to see if they are satisfied by the most current
fit parameters. There are two criteria that must be satisfied that
define convergence: (1) if calculated autocorrelation times, which
are multiplied by some multiplicative factor (by default, 10.0),
exceeds the number of performed fitting iterations, and (2) if the
difference between the current and previous calculated autocorre-
lation times is less than a specified percent change (by default,
10 per cent).

In practice, some parameters never reach adequate convergence,
usually due to strong degeneracies with other model components
(such as Fe II). To accommodate these instances, our code offers
the user four modes of convergence in terms of the integrated
autocorrelation time: (1) mean, (2) median, (3) user-specified pa-
rameters, and (4) all parameters. The first two options calculate
the mean or median autocorrelation time of all free parameters to
determine when an overall solution is reached, however it does not
guarantee that all parameters reach convergence. To guarantee the
convergence of specific parameters of interest, option (3) allows
the user to indicate which specific parameters are considered for
autocorrelation analysis, which is useful for ignoring components
which have high autocorrelation times (poorly constrained or highly
degenerate components) or parameters of low importance. Finally,
option (4) allows the user to specify that all parameters must converge
on a solution, for which our code runs until all parameters satisfy the
autocorrelation conditions or the algorithm reaches the user-defined
maximum number of iterations.

Fig. 8 shows an example of different autocorrelation modes and
the required number of iterations for a 17-parameter model. We rec-
ommend that the user either select the specific parameters of interest
for convergence or simply choose the ‘mean’ criteria. The ‘median’
criteria is less sensitive to outlier parameters (parameters with large
autocorrelation times) and will generally perform fewer iterations
for convergence. The ‘all’ convergence mode is the most strict type
of convergence, however, there is no guarantee that convergence can
be reached for all parameters within the set maximum number of
iterations, especially if the data has low S/N or there are degenerate
parameters.

Once the convergence criteria are met, our algorithm continues to
fit for a set number of iterations (by default, 2500), which is ultimately
used for the posterior distribution to determine the best-fitting pa-
rameter values and uncertainties. The iteration at which convergence
is achieved defines the ‘burn-in’ for the parameter chains, after which
all following iterations contribute to the final parameter estimation
(i.e. the iterations that contribute to the histogram in Fig. 6). Note
that this is only true if autocorrelation analysis is used to assess
convergence (auto stop=True), otherwise, the algorithm runs
for the maximum number of iterations using the burn-in defined
by the user. If for any reason convergence criteria are met and
then subsequently violated, our algorithm resets the burn-in and
continues to sample until convergence is met again. This ensures
that convergence is maintained at all times after the burn-in and that
a best fit is not achieved prematurely.

2.3 Performance tests

Since one of the primary goals of our code is the recovery of
the LOSVD, and specifically the stellar velocity dispersion σ ∗ in
AGN host galaxies, we perform a series of performance tests as a
function of different components and parameters which may affect
measurements of σ ∗ in the optical Mg IB/Fe II region from 4400 Å to
5500 Å. We note that the results of these tests are not strictly limited
to our algorithm, but also general fitting techniques concerned with
fitting σ ∗ in AGN host galaxies.

2.3.1 Recovery of σ ∗ as a function of S/N

To investigate the effects of S/N level on the recovery of σ ∗, we
generate a series SSP model using the MILES Tune SSP model
spectra webtool (Vazdekis et al. 2010). We limit the stellar population
ages to 0.1, 1, 5, and 10 Gyr and metallicities [M/H] = −0.35, 0.15,
and 0.40, and initialize the simulated spectrum at a stellar velocity
dispersion σ ∗ = 90 km s−1, taking into account the wavelength-
dependent dispersion of the SDSS. We then artificially add normally
distributed random noise at various S/N ratios to simulate real
observations, and 10 mock spectra are generated per S/N level. The
S/N is measured relative to the value of the data in each spectral
channel. No other spectral components are added to these SSP
models, and only v∗ and σ ∗ are fit.
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2880 R. O. Sexton et al.

Figure 8. An example of different modes of autocorrelation convergence using a model spectrum with 17 free parameters. The ‘median’ mode of convergence
typically converges the fastest because it tends to omit outlier τ values, which are typically values for which there are too few iterations to determine an accurate
integrated autocorrelation time. By specifying the LOSVD parameters (v∗ and σ ∗), convergence is reached in 6400 iterations, however many other parameters
have not yet converged. The ‘mean’ convergence, is a more strict convergence criteria because all τ estimates are weighted equally. Requiring ‘all’ parameters
to converge requires the highest number of iterations and does not guarantee convergence if some parameters cannot converge within the maximum number of
iterations.

Fig. 9 shows the results of S/N tests of various SSP models, where
we calculate the percent error (deviation of the best-fitting value from
the actual value) and the percent uncertainty in σ ∗. The results of
these tests provide a lower limit to the S/N of SDSS spectra for which
σ ∗ can be reliably measured. Below a S/N of ∼15, the best-fitting
measurement of σ ∗ begins to exceed the actual value by more than
10 per cent, and becomes increasingly unreliable at lower S/N. We
find a similar result for the average uncertainties of σ ∗. We therefore
do not recommend measuring the LOSVD at S/N < 20 if the scientific
goal is to report accurate stellar kinematics.

There is also a clear offset for the youngest (0.1 Gyr) SSP models,
which can be explained by the lack of younger stellar templates
included with our code, since these stellar types are considerably
more rare. In cases where our code is used for fitting active star-
forming galaxies, we recommend one include more O- and B-type
templates for fitting the LOSVD and/or disabling the power-law
component.

2.3.2 Recovery of σ ∗ as a function of Fe II emission

To test the effects of Fe II emission on the measurement of σ ∗,
we hold the amplitude of the 10 Gyr, [M/H] = 0.15 MILES SPP
model constant and incrementally add broad and narrow Fe II at an
increasing amplitudes, and fit σ ∗ at S/N levels of 10, 25, 50, 75, and
100. We generate and fit 10 mock spectra per Fe II amplitude and S/N
level. We define the Fe II fraction as a function of stellar continuum
amplitude, such that when Fe II amplitude is equal to the stellar
continuum amplitude, the Fe II fraction is 100 per cent. We assume

that stellar absorption features are at the same velocity (redshift) as
Fe II features, and note that subtle differences in velocity may make
recovery of σ ∗ more difficult, however, since narrow and broad Fe II

features are typically blended due to the resolution of SDSS, we can
only reliably measure the relative amplitude of Fe II emission. At
the very least, recovery of σ ∗ as a function of Fe II fraction gives
insight as to how stellar template fitting can recover the underlying
stellar continuum when broad and narrow emission line features are
superimposed on them.

The results of our tests in the recovery of σ ∗ as a function of Fe II

fraction are shown in Fig. 10. There is a weak dependence of the
best-fitting value of σ ∗ as Fe II fraction increases, and the variance in
σ ∗ increases with decreasing S/N. Even in the most extreme cases,
where Fe II fraction exceeds 50 per cent, σ ∗ can be reliably recovered.
Similarly for the uncertainty in σ ∗, we find that Fe II fraction has
no discernible effect on the measured uncertainties, and are more
dependent on S/N. While the effects of differing velocities between
stellar absorption and Fe II features are not taken into consideration,
these tests indicate that even extreme fractions of Fe II will not
significantly affect stellar template matching of the underlying stellar
continuum, as long as absorption features are not significantly diluted
by the AGN continuum.

2.3.3 Recovery of σ ∗ as a function of AGN continuum dilution

To simulate the effects of AGN continuum dilution, we construct
a model spectrum using the MILES SSP 10 Gyr [M/H] = 0.15
template held at a constant amplitude, followed by a flat (αλ = 0.0)
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Figure 9. Recovery of σ ∗ as a function of S/N for different fitted MILES SSP models. The figure on the left shows the percent error relative to the actual value
of σ ∗, which exceeds 10 per cent (green dotted line) below S/N ∼ 15. The figure on the right shows the percent uncertainty, which increases with decreasing
S/N. This provides a minimum S/N for which LOSVD measurements can be recovered.

Figure 10. Recovery of σ ∗ as a function of Fe II fraction. There is a weak dependence on the value of σ ∗ due to Fe II fraction, and a stronger dependence on
S/N. Even in the most extreme cases in which the Fe II fraction exceeds 50 per cent, Fe II emission does not significantly affect stellar template fitting.

continuum of increasing amplitude before re-normalizing the model.
Because young stellar types have a similar continuum shape as an
AGN power-law continuum, we do not want the effects of template
mismatch to skew measurements of σ ∗ as a function of dilution of
stellar absorption features, therefore we initialize the continuum to
be flat.

We define the percent continuum dilution as the ratio of the
amplitude of the AGN continuum to the constant amplitude of the
stellar continuum, and generate model spectra of percent continuum
dilution ranging from 0 per cent to 140 per cent. We then fit σ ∗
at S/N levels of 5, 10, 25, 50, 75, and 100. For each S/N level and
continuum dilution level, 10 mock spectra are generated to determine

a mean percent error from the true value of σ ∗ and mean uncertainty.
For the fit, we only fit the LOSVD and do not include a power-law
continuum model component, as we wish to determine the effect of
dilution on the measurement of σ ∗.

Fig. 11 shows the effects of AGN continuum dilution on the
recovery of σ ∗. We find that continuum dilution can have significant
effects at both low levels of dilution and is independent of S/N.
Because absorption features are nearly Gaussian (best approximated
using Gauss–Hermite polynomials for high-resolution spectra), the
correlation between amplitude and width causes the fitting algorithm
to fit broader widths to absorption features with shallower depths,
caused by the inclusion of the AGN continuum. The effect of this
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Figure 11. The effects of AGN continuum dilution on the recovery of σ ∗ when a power-law continuum model component is not included in the fit. At all S/N
levels, the measured σ ∗ can be biased to larger values at even low levels of continuum dilution. Inclusion of a power-law component in the fit to the LOSVD
completely resolves the percent error attributed to continuum dilution, and reduces the error to that attributed to S/N alone.

dilution can be seen as the positive trend in per cent error with
increasing per cent dilution in Fig. 11. The error in measured σ ∗
will exceed 10 per cent with only 40 per cent continuum dilution, and
exceeds 50 per cent at 100 per cent dilution (when AGN continuum
and stellar continuum amplitudes are equal). We find similar trend
for the uncertainties in σ ∗, although the rate of increase is not as
dramatic.

Fortunately, the inclusion of a power-law continuum model to the
fit completely solves the problem of continuum dilution, assuming
that the power-law model accurately represents the observed con-
tinuum of observed type 1 AGNs. The power-law spectrum allows
PPXF to accurately recover the true value of σ ∗, at even the highest
levels of continuum dilution, and reduces the error to that attributed
to S/N alone. Therefore, we highly recommend including the power-
law model if fitting the LOSVD, for both type 1 and type 2 AGNs,
since dilution need not be accompanied by a strong power-law slope
typically observed in type 1 AGNs.

At extremely high levels of continuum dilution, the amplitude
of absorption features becomes consistent with the amplitude of
noise and other variations in the stellar continuum, and recovery
of σ ∗ becomes impossible. This is observed in type 1 AGNs with
strong power-law continuum component, whose absorption features
are typically significantly diluted or not observable.

Additionally, we tested the recovery of σ ∗ as a function of the
power-law continuum slope to investigate the effects of possible
stellar template mismatch, for example, a steep AGN power-law
slope resembling the steep stellar continuum of an O- or B-type star,
however, we did not find any significant difficulties in the recovery
of σ ∗.

For objects that exhibit strong Fe II, such as NLS1 (Véron-Cetty
et al. 2001; Xu et al. 2012) or broad absorption line (BAL) objects
(Boroson & Meyers 1992; Zhang et al. 2010), we find that strong Fe II

is usually accompanied by a steep power-law continuum, indicating
very strong AGN continuum fraction and thus dilution. Our tests
indicate that it isn’t necessarily the presence of Fe II or a steep power-
law slope, but the presence of strong continuum dilution that makes
it nearly impossible to recover the LOSVD in NLS1 or BAL objects,

and extra caution should be used when interpreting LOSVD fitting
results from these types of objects.

3 A PPLI CATI ON: CORRELATI ON A NA LY S IS
O F [ O I I I] O U TFLOW S

3.1 Motivation

The emergence of scaling relations between supermassive black
holes (henceforth, BHs) and their respective host galaxies implies that
there is a fundamental mechanism that regulates their co-evolution
(Kormendy & Ho 2013; DeGraf et al. 2015), however the source of
this mechanism remains poorly understood. Large statistical studies
of galaxies have since established that galactic-scale outflows are
commonplace in galaxies that harbour AGNs, hinting that AGN-
driven outflows are strong candidates as the feedback messengers
between BHs and their host galaxies (Woo et al. 2016; DiPompeo
et al. 2018; Rakshit & Woo 2018; Wang, Xu & Wei 2018). There
is some observational evidence and theoretical arguments that point
to the AGN as the central engine powering galactic-scale outflows
(Fabian 2012; King & Pounds 2015). Additionally, some numerical
simulations indicate that AGN feedback can act to disrupt gas cooling
and subsequent star formation on galactic scales (Croton et al. 2006;
Dubois et al. 2013; Costa, Pakmor & Springel 2020), which could
give rise to the scaling relations we observe today.

Evidence of such feedback is believed to manifest itself at optical
wavelengths as a broad flux-excess in the base or wings of ionized
gas emission lines. The flux-excess, which is most easily identified
as extended emission in [O III] λ5007, is typically found to be
blueshifted with respect the core component of the line, resulting
in a significantly asymmetric line profile (Woo et al. 2016; Komossa,
Xu & Wagner 2018). These so-called blue wing outflow components,
which have widths ranging from a few hundred to a few thousand
kilometers per second (Harrison et al. 2014; Zakamska et al. 2016;
Manzano-King et al. 2019), can be interpreted as outflowing ionized
gas that is no longer gravitationally bound to the NLR of the galaxy.
The absence of a ‘red wing’ in the profile could also indicate
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significant dust attenuation of outflowing gas moving radially along
the line of sight, possibly due to the presence of a galactic disc or
AGN torus structure (Bae & Woo 2016).

Ionized outflows in narrow forbidden emission lines were first
identified in early studies of individual radio sources (Grandi 1977;
Afanasev et al. 1980) and it was soon found that signatures of
blueshifted outflows were common in larger samples of Seyfert and
radio galaxies (Heckman et al. 1980; De Robertis & Osterbrock 1984;
Whittle 1985). It was Heckman et al. (1980) that first suggested that
because the source of radio emission is due to a compact non-thermal
central radio source, the outflow emission must originate along the
line of sight between the observer and nuclear region of the galaxy.
Later, Heckman, Miley & Green (1984) confirmed a relatively strong
correlation between radio emission and the presence of outflows
which holds true to this day (Jackson & Browne 1991; Veilleux
1991; Brotherton 1996; Mullaney et al. 2013; Zakamska & Greene
2014). The interest in ionized gas outflows has accelerated within
recent years to include extensive IFU observations (Müller-Sánchez
et al. 2011; Bae et al. 2017; Freitas et al. 2018; Wylezalek et al.
2020) and hydrodynamical simulations (Melioli & de Gouveia Dal
Pino 2015; Costa et al. 2020).

The kinematic properties of ionized gas outflows in relation to
other galaxy and AGN properties have also been explored in detail
since their discovery. Nelson & Whittle (1996) first studied the
relationship between the bulge and NLR stellar and gas kinematics,
showing that the stellar velocity dispersion is relatively correlated
with the [O III] gas dispersion, largely due to the gravitational poten-
tial of the bulge. However, they noted that [O III] lines with blue wings
do not correlate as well with stellar velocity dispersion, indicating
the presence of a strong non-gravitational component (Nelson &
Whittle 1996; Mullaney et al. 2013; Woo et al. 2016; DiPompeo
et al. 2018; Rakshit & Woo 2018; Wang et al. 2018). When the
blue wing outflow component is properly removed from [O III] line
profile, and if any possible Fe II contamination is accounted for, there
is better agreement with stellar velocity dispersion (Boroson 2003;
Greene & Ho 2005). Although the correlation cannot be used on an
object-to-object basis, correcting [O III] for outflow components Fe II

emission provides a means to estimate stellar velocity dispersion for
scaling relations such as the MBH−σ ∗ relation for larger, higher
redshift statistical samples for which stellar absorption features
cannot easily be measured (Wang & Lu 2001; Boroson 2003; Woo
et al. 2006; Komossa & Xu 2007; Bennert et al. 2018; Sexton et al.
2019).

Correlations between the kinematics of the [O III] profile and
properties of the AGN also exist. For instance, by studying the
combined (core + outflow) [O III] profile of large samples of type
2 and type 1 SDSS AGNs, Woo et al. (2016) and Rakshit & Woo
(2018) found that the launching velocity of outflows increases with
AGN luminosity. Although these studies examined the combined
flux-weighted kinematics of the [O III] profile, the results of Bennert
et al. (2018) imply that the core component of the [O III] profile can
be independently used to estimate stellar velocity dispersion once
the outflow component has been removed. This invites inquiry as to
whether or not the core or outflow components independently may
exhibit other relationships with each other or host galaxy properties.

Since detection and fitting of outflow components in [O III] is a
feature specifically implemented in our code, it presents an oppor-
tunity to examine both the core and outflow component kinematics
of the [O III] line to investigate all correlations related to ionized
gas outflows and the host galaxy to further understand the physical
interpretation of the emission line profile. Furthermore, while the
use of powerful techniques such as integral field spectroscopy are

becoming mainstream for studying the spatially resolved kinematics
of AGN host galaxies, these studies are limited to nearby objects. Our
objective here is to study the emission line profile of [O III] in local
AGNs with outflows to better understand the relationships between
outflows, AGNs, and their host galaxies, and apply our knowledge in
future studies to objects in the non-local universe for which spatially
resolved observations are not possible.

Throughout the following sections, we refer to individual objects
in our sample using their truncated object ID, for example, J001335.
We commonly refer to different components of the double-Gaussian
‘outflow’ model of the [O III] profile as ‘core’ and ‘outflow’ when
referring to specific quantities of each, such as σ core for the core
component velocity dispersion.

3.2 Sample selection

Since we wish to investigate the relationships between emission line
outflow properties of [O III] and both the AGN and host galaxy, we se-
lect previously studied nearby type 1 AGNs with SDSS spectroscopy
for which BH mass can be measured from the broad H β emission and
fit these objects using our code. For this we included 81 type 1 AGNs
studied by Bennert et al. (2018) (henceforth B18) originally selected
from SDSS Data Release 6 (DR6), which selected BH masses (6.6 ≤
log10(MBH/M�) ≤ 8.7) at redshifts (0.02 ≤ z ≤ 0.10). The study from
B18 performed detailed follow-up observations with Keck/LRIS and
performed a detailed decomposition of the [O III] profile to study how
different line decompositions affect the MBH−σ ∗ relation, however
we fit only the SDSS spectra from B18 here for the purposes of
benchmarking the capabilities of our algorithm.

To extend the sample to lower mass BHs we include NLS1 objects
from Woo et al. (2015) (henceforth W15), which have a BH mass
range of (5.6 ≤ log10(MBH/M�) ≤ 7.4) and redshift range (0.01 ≤ z ≤
0.10). The W15 sample was selected from SDSS DR7 by sequentially
selecting objects with (500 km s−1 < FWHMBr·H β ≤ 2000 km s−1),
(800 km s−1 < FWHMBr·H α ≤ 2200 km s−1), and a line flux ratio of
[O III]/H β < 3, resulting in a final sample of 93 NLS1s.

Finally, we include five objects from Sexton et al. (2019) (hence-
forth S19) for which there is sufficient S/N to adequately measure
σ ∗ in the SDSS spectra and have previously determined outflow
signatures in the [O III] profile. The S19 sample consists of 22 type
1 AGNs observed with Keck-I LRIS comprised of both BLS1s
and NLS1s. The S19 sample has a BH mass range of (6.3 ≤
log10(MBH/M�) ≤ 8.3) and is comprised of objects in a broad range of
redshifts (0.03 ≤ z ≤ 0.57) used to study evolution in the MBH−σ ∗
relation in the non-local universe. The 5 objects we include here
consists of 4 BLS1 objects and one NLS1 object, which have a BH
mass range of (6.9 ≤ log10(MBH/M�) ≤ 8.2) and range in redshift
from (0.09 ≤ z ≤ 0.43) as reported by S19.

We removed 16 objects (8 from B18, 8 from W15) for which
we could not fit a broad H β line, i.e. are type 2 AGNs or have
significant host galaxy absorption that makes fitting the broad line
highly uncertain. We also removed one object (J112229) listed twice
in table 1 of W15 after confirming there were no nearby neighbours.

The final sample of 162 objects span a BH mass range of (5.6 ≤
log10(MBH/M�) ≤ 8.7) and a average redshift of z = 0.06. Of these
162 objects, 76 contain measurable outflows in the [O III] line profile
as determined using the outflow criteria given in Section 2.2.2. We
also included an additional six objects which have some visually
identifiable asymmetry in the [O III] line profile, which may be
attributable to outflows, bringing the total number of objects with
outflows to 82. We plot the distribution of BH mass for all 162
objects in Fig. 12.
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Figure 12. Histogram of BH mass for the individual samples from B18, W15,
and S19 used for our sample of 162 type 1 AGN. The shaded regions indicate
the 63 objects for which we have detected significant non-gravitational
outflow signatures in the [O III] profile.

3.3 Methods

3.3.1 Spectral fitting

All 162 objects are re-fit with our code in two different ways. The
first fit is forced to include outflow components in [O III] even if
they do not satisfy the outflow criteria used by our algorithm. The
second fit is forced to not include outflow components in [O III].
Because we wish to investigate how the non-gravitational component
of the [O III] profile correlates with other galaxy properties, both
single- and double-Gaussian profiles must be fit to determine which
decomposition produces better agreement with σ ∗. In both fits, we
include all other model components, i.e. broad line H β, narrow
and broad Fe II, power-law continuum, and the LOSVD, in the
wavelength range (4400 ≤ λ ≤ 5800) following the methods from
S19. This fitting region is ideal, not only because it contains the
emission lines we want to study, but is also large enough to
adequately constrain the amplitude of Fe II emission such that it
can be distinguished from the stellar absorption features near Mg IB

used to estimate the LOSVD.
We allow our algorithm to fit for a minimum of 2500 iterations

with 100 walkers until the LOSVD parameters (stellar velocity and
velocity dispersion), and emission line parameters (amplitude,width,
and velocity offset) for the broad H β, [O III] core, and [O III] outflow
components have achieved convergence at a minimum of 10 times
the autocorrelation time and within a 10 per cent autocorrelation
tolerance, with a post-convergence burn-in of 2500 iterations. We set
a maximum iteration ceiling of 50 000 iterations, however, objects
with high S/N and clearly visible outflow profiles in [O III] typically
converge by ∼12 000 iterations, which is actually ∼5–10 times the
autocorrelation time for the parameters we consider for convergence.

Using both the outflow criteria given in Section 2.2.2 and by
visually inspecting the fits of both the outflow and no-outflow
models, we determine that 82 of the 162 objects have outflow

components with significant width and offset differences from their
core components.

Finally, since we wish to examine the effects of the non-
gravitational outflow component of the [O III] profile and compare
them to the stronger gravitational component σ ∗, we remove 19
objects for which we do not see an improvement in agreement
between the σ core and σ ∗, which is necessary to remove objects
for which our algorithm potentially overfit with a double-Gaussian
profile and thus no strong non-gravitational outflow component is
present.

The final sample includes 63 objects with strong non-gravitational
kinematics in the [O III] λ5007 emission line, of which 55 outflow
components are blueshifted and 8 outflow components are redshifted
relative to their core components. The 63 objects with strong outflows
are shown in the shaded regions of 12 and listed in Table 1 with their
relevant measurements.

To visualize the diversity of the 63 strong [O III] outflows in our
sample, we align their full profiles by shifting them to the rest-frame
velocity of the core component and normalize them by the amplitude
of the full profile, as shown in Fig. 13, with the luminosity-weighted
average shown by the red profile.

3.3.2 Correcting σ ∗ for disc inclination

The relatively large 3 arcsec diameter SDSS fibre can cover a
significant fraction of the host galaxy, introducing contamination
from non-bulge components. This is of particular concern for σ ∗
measurements on the MBH−σ ∗ relation since BH mass does not
correlate with the stellar velocity dispersion of discs (see Kormendy
& Ho 2013 for a review of all BH mass correlations).

As such, a significant number of objects in our sample contain
discs, which at high inclinations, can artificially increase the mea-
sured stellar velocity dispersion, and overestimate values by as much
as 25 per cent (Hartmann et al. 2014). Using N-body simulations,
Bellovary et al. (2014) derived a prescription to correct measured σ ∗
to face-on (i = 0) values using common observables, which depend
significantly on the inclination i and rotational velocity vrot of the
disc.

To correct the measured velocity dispersions in our sample, we
first obtain disc inclinations and disc scale lengths from (Simard
et al. 2011), who performed bulge + disc decompositions of over 1.1
million SDSS galaxies, from which we obtain measurements for 57
objects from our sample of 63. We then estimate the disc rotational
velocities from scale lengths using the SDSS RV Relation from Hall
et al. (2012). The prescription from Bellovary et al. (2014) depends
on the ratio (v/σ )spec), for which we assume a value of 0.6 for a fast-
rotating late-type galaxy (Falcón-Barroso et al. 2017) following the
same procedure from S19. We note that varying values of (v/σ )spec)
do not significantly change the correction factor as much as values for
i and vrot. We propagate all uncertainties in quadrature and assume
an additional 10 per cent uncertainty in correction prescription. The
average change in σ ∗ due to this correction for all of our objects is
only 12 km s−1, but can be as high as 39 km s−1 for the highest of
inclinations. We determine that despite this correction, the overall
scatter for σ ∗ in our sample does not change, and that this correction
will have a negligible effect on our results.

3.4 Results

The relevant measurements obtained from spectral fitting with
our algorithm for the 63 objects in our sample are presented in
Table 1. Calculated AGN luminosities at 5100 Å are obtained via the
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Table 1. Measurements of relevant quantities for outflow, host galaxy, and AGN properties. Column 1: SDSS object designation. Column 2: Reference; (1) B18,
(2) W15, (3) S19. Column 3: Systemic redshift determined using stellar kinematics. Column 4: Stellar velocity dispersion. Column 5: [O III] core component
systemic velocity. Column 6: [O III] core component velocity dispersion. Column 7: [O III] core component luminosity. Column 8: [O III] outflow component
systemic velocity. Column 9: [O III] outflow component velocity dispersion. Column 10: [O III] outflow component luminosity. Column 11: Maximal outflow
velocity measured using W80. Column 12: FWHM of the broad H β emission line. Column 13: AGN luminosity at 5100 Å measured using the relation from
Greene & Ho (2005). Column 14: BH mass estimated using relation from S19.

Object Ref. z σ ∗ vcore σ core Lcore voutflow σ outflow Loutflow vmax FWHMH β λL5100 Å log (MBH)
(SDSS) (km s−1) (km s−1) (km s−1) (erg s−1) (km s−1) (km s−1) (erg s−1) (km s−1) (km s−1) (erg s−1) (M�)

J000338.94+160220.6 3 0.11668 91+13
−13 −129+11

−11 107+4
−4 41.01+0.02

−0.02 −331+24
−26 397+21

−21 40.90+0.03
−0.03 −712+35

−36 3513+116
−114 43.38+0.01

−0.01 7.63+0.19
−0.13

J001335.38−095120.9 1 0.06196 55+18
−18 −38+14

−13 127+11
−11 40.25+0.05

−0.05 −284+45
−59 392+40

−36 40.28+0.05
−0.06 −749+64

−75 3587+53
−50 43.34+0.01

−0.01 7.62+0.19
−0.13

J010939.01+005950.4 1 0.09376 105+15
−14 −198+11

−11 119+3
−3 41.26+0.01

−0.01 −398+16
−16 393+13

−12 41.17+0.01
−0.01 −705+20

−20 3279+102
−96 43.23+0.02

−0.02 7.47+0.19
−0.12

J012159.81−010224.4 1 0.05484 116+12
−12 −130+12

−12 117+3
−3 41.38+0.02

−0.02 −303+12
−13 272+3

−3 41.50+0.01
−0.01 −521+7

−7 4210+51
−47 43.53+0.00

−0.00 7.86+0.20
−0.13

J021257.59+140610.0 1 0.06228 120+10
−9 −88+5

−5 138+3
−3 40.83+0.01

−0.02 −290+25
−27 413+35

−30 40.51+0.03
−0.03 −732+46

−46 4221+90
−89 43.14+0.01

−0.01 7.65+0.18
−0.13

J024912.86−081525.7 2 0.02983 20+11
−11 −72+5

−5 62+4
−4 39.60+0.02

−0.02 −212+22
−24 303+23

−20 39.42+0.03
−0.03 −529+34

−35 891+38
−38 41.76+0.02

−0.03 5.56+0.22
−0.13

J030124.26+011022.8 1 0.07216 94+11
−11 −172+10

−10 120+6
−6 40.50+0.02

−0.02 −560+37
−41 487+32

−30 40.51+0.03
−0.03 −1013+53

−56 3263+65
−66 43.22+0.02

−0.02 7.47+0.19
−0.13

J030144.19+011530.8 1 0.07558 98+10
−10 −208+8

−8 131+5
−5 40.89+0.02

−0.02 −517+16
−18 345+8

−8 41.00+0.02
−0.02 −752+19

−21 3622+47
−45 43.42+0.01

−0.01 7.68+0.21
−0.14

J030417.78+002827.2 2 0.04488 55+8
−8 −81+5

−5 63+4
−4 40.27+0.03

−0.03 −172+10
−11 166+6

−6 40.26+0.03
−0.03 −304+12

−13 1505+27
−27 42.80+0.01

−0.01 6.58+0.22
−0.14

J073106.86+392644.5 2 0.04894 32+10
−10 −134+6

−6 107+3
−3 40.17+0.01

−0.01 −363+10
−10 318+5

−5 40.28+0.01
−0.01 −637+11

−11 1492+35
−34 42.38+0.01

−0.01 6.36+0.22
−0.14

J073505.65+423545.7 3 0.08644 45+12
−13 −55+7

−7 76+6
−6 40.59+0.05

−0.05 −156+11
−12 174+7

−6 40.70+0.04
−0.04 −324+13

−14 1712+61
−60 42.85+0.02

−0.02 6.72+0.19
−0.13

J073703.28+424414.6 1 0.08861 102+10
−10 −46+8

−9 135+3
−3 41.27+0.01

−0.02 −249+23
−27 318+24

−22 40.83+0.04
−0.04 −610+36

−38 4004+63
−65 43.33+0.01

−0.01 7.71+0.21
−0.14

J073714.28+292634.1 2 0.08029 83+9
−10 −160+10

−10 108+9
−12 40.41+0.06

−0.07 −353+69
−103 231+41

−42 40.07+0.17
−0.15 −488+88

−117 2395+218
−189 42.62+0.05

−0.04 6.89+0.21
−0.15

J080243.40+310403.3 1 0.04130 99+8
−8 −26+6

−6 104+3
−3 40.69+0.01

−0.02 −199+36
−44 301+48

−41 40.07+0.06
−0.06 −559+64

−69 5511+81
−80 43.22+0.01

−0.01 7.93+0.22
−0.14

J081718.55+520147.7 2 0.03911 42+12
−13 −156+7

−7 59+3
−4 40.20+0.02

−0.02 −101+25
−20 205+28

−24 39.63+0.09
−0.07 318+39

−36 1941+58
−55 42.39+0.01

−0.01 6.59+0.19
−0.14

J082912.68+500652.3 2 0.04373 75+8
−7 −56+6

−6 77+1
−1 40.79+0.00

−0.00 −225+10
−10 358+10

−9 40.38+0.01
−0.01 −627+14

−14 1017+23
−22 42.54+0.01

−0.01 6.10+0.22
−0.14

J085504.16+525248.3 2 0.08994 76+9
−9 −171+15

−13 206+18
−22 40.60+0.07

−0.09 −309+32
−42 522+80

−68 40.60+0.08
−0.07 −808+94

−98 2092+104
−93 42.96+0.02

−0.02 6.95+0.22
−0.14

J090902.35+133019.4 1 0.05005 88+10
−10 −69+10

−10 92+15
−13 39.72+0.10

−0.07 4+24
−19 249+27

−19 39.89+0.05
−0.07 392+34

−31 3524+147
−134 42.49+0.02

−0.02 7.15+0.20
−0.13

J092343.00+225432.7 1 0.03357 137+7
−6 −157+8

−8 146+3
−3 41.16+0.01

−0.01 −233+8
−8 417+7

−6 41.37+0.01
−0.01 −612+9

−9 3598+26
−26 43.69+0.00

−0.00 7.81+0.21
−0.14

J093259.60+040506.0 1 0.05990 103+4
−5 −133+5

−5 89+4
−4 40.43+0.03

−0.03 −282+20
−25 235+22

−20 40.20+0.05
−0.05 −450+33

−36 4829+214
−194 42.74+0.02

−0.02 7.56+0.22
−0.14

J094057.19+032401.2 2 0.06122 63+12
−12 −134+9

−9 90+9
−9 40.39+0.04

−0.04 −291+32
−38 335+32

−28 40.34+0.05
−0.05 −587+48

−52 1577+101
−99 42.69+0.02

−0.02 6.56+0.22
−0.14

J094529.36+093610.4 2 0.01394 80+6
−6 −167+4

−4 114+2
−2 40.15+0.01

−0.01 −247+6
−6 300+7

−7 39.95+0.02
−0.02 −465+10

−10 2084+51
−50 41.95+0.01

−0.02 6.41+0.22
−0.15

J094838.43+403043.5 1 0.04771 92+11
−11 −176+7

−7 103+2
−3 40.78+0.01

−0.01 −304+40
−49 457+63

−56 40.12+0.05
−0.05 −714+82

−86 3374+66
−64 43.07+0.01

−0.01 7.43+0.18
−0.14

J104925.39+245123.7 1 0.05543 105+11
−11 −81+8

−8 98+2
−2 41.15+0.01

−0.01 −166+13
−13 281+15

−13 40.72+0.03
−0.03 −445+19

−20 5072+47
−45 43.48+0.00

−0.00 8.00+0.20
−0.14

J110016.03+461615.2 2 0.03257 63+5
−5 −156+4

−4 79+3
−3 40.30+0.02

−0.02 −256+7
−8 213+6

−5 40.23+0.02
−0.02 −374+9

−10 1433+53
−52 42.17+0.02

−0.02 6.20+0.21
−0.14

J110101.78+110248.8 1 0.03596 104+9
−9 −69+6

−6 115+3
−3 40.93+0.01

−0.01 −24+7
−8 320+9

−9 40.80+0.02
−0.02 455+12

−12 6092+80
−82 43.13+0.01

−0.01 7.97+0.20
−0.14

J110456.03+433409.1 1 0.04952 70+7
−7 −40+5

−5 71+4
−4 40.57+0.02

−0.02 44+12
−10 218+13

−12 40.34+0.04
−0.04 363+19

−19 4031+253
−237 42.46+0.04

−0.03 7.25+0.23
−0.14

J112526.51+022039.0 2 0.04897 76+11
−11 −57+7

−7 75+5
−5 40.31+0.03

−0.04 −99+18
−22 229+29

−24 39.97+0.07
−0.07 −336+35

−38 1618+121
−116 42.31+0.03

−0.03 6.38+0.23
−0.15

J114545.18+554759.6 1 0.05419 96+12
−12 −159+8

−9 79+11
−11 40.18+0.08

−0.07 −122+13
−12 248+28

−22 40.30+0.05
−0.05 356+30

−30 3765+168
−160 42.67+0.03

−0.03 7.31+0.19
−0.14

J115333.22+095408.4 2 0.06965 99+9
−9 −134+7

−7 123+2
−3 41.19+0.01

−0.01 −260+16
−18 345+19

−18 40.74+0.03
−0.03 −569+27

−29 1937+69
−66 42.90+0.02

−0.02 6.86+0.19
−0.13

J120556.01+495956.4 1 0.06376 120+8
−7 −170+6

−6 148+2
−2 41.67+0.01

−0.01 −208+9
−9 390+18

−17 41.05+0.03
−0.03 −539+22

−22 7451+177
−166 43.28+0.01

−0.01 8.24+0.19
−0.13

J120626.29+424426.1 1 0.05234 119+8
−8 −100+7

−7 110+4
−4 40.47+0.01

−0.01 −290+42
−45 544+65

−57 40.14+0.03
−0.04 −889+84

−86 3819+62
−58 43.12+0.01

−0.01 7.57+0.17
−0.14

J121044.27+382010.3 1 0.02319 97+7
−6 −75+6

−6 103+4
−4 40.70+0.02

−0.02 −63+8
−8 266+13

−12 40.52+0.03
−0.03 354+17

−17 6302+108
−98 43.03+0.01

−0.01 7.96+0.18
−0.14

J123152.04+450442.9 1 0.06276 140+11
−11 −195+12

−11 208+8
−9 40.71+0.03

−0.04 −749+118
−117 442+72

−76 40.29+0.11
−0.09 −1121+153

−152 2708+90
−83 42.89+0.02

−0.02 7.14+0.18
−0.14

J123228.08+141558.7 3 0.42747 90+39
−38 −183+28

−27 154+7
−7 41.97+0.03

−0.03 −225+32
−31 484+34

−30 41.95+0.03
−0.03 −663+42

−42 5760+301
−281 44.01+0.02

−0.02 8.39+0.18
−0.13

J123455.90+153356.2 3 0.04625 98+7
−7 −47+6

−6 90+2
−2 40.83+0.01

−0.01 −240+14
−15 235+9

−9 40.51+0.03
−0.02 −494+17

−18 2514+55
−53 42.88+0.02

−0.02 7.07+0.19
−0.14

J123651.17+453904.1 2 0.03079 98+6
−6 −130+5

−6 65+3
−3 40.12+0.02

−0.01 −186+6
−6 339+5

−5 40.55+0.01
−0.01 −491+7

−7 1964+47
−46 42.50+0.01

−0.01 6.66+0.17
−0.14

J123932.59+342221.3 2 0.08516 78+8
−8 −184+7

−7 70+7
−6 40.27+0.03

−0.03 −450+16
−19 321+12

−12 40.68+0.02
−0.02 −678+22

−24 2198+120
−114 42.85+0.04

−0.04 6.94+0.18
−0.14

J124035.82−002919.4 2 0.08154 94+19
−18 −133+15

−15 76+2
−2 41.28+0.01

−0.01 −171+16
−16 251+8

−8 41.03+0.02
−0.02 −360+11

−11 1553+69
−66 42.81+0.02

−0.02 6.62+0.20
−0.13

J124129.42+372201.9 1 0.06363 119+12
−12 −41+7

−7 116+3
−3 41.13+0.01

−0.01 −169+23
−25 390+30

−28 40.66+0.03
−0.03 −629+42

−43 4412+94
−90 43.22+0.01

−0.01 7.74+0.19
−0.13

J132310.39+270140.4 1 0.05618 70+10
−10 −13+6

−6 91+6
−6 40.40+0.04

−0.04 −54+8
−8 251+11

−10 40.54+0.03
−0.03 −362+15

−15 4176+217
−198 42.59+0.02

−0.02 7.34+0.21
−0.13

J135345.93+395101.6 1 0.06330 134+6
−6 −117+6

−6 126+5
−6 40.57+0.02

−0.03 −240+27
−33 466+73

−64 40.30+0.04
−0.04 −721+86

−88 6036+334
−318 42.78+0.03

−0.03 7.78+0.20
−0.13

J140514.86−025901.2 1 0.05460 107+12
−12 −67+8

−8 116+9
−9 40.31+0.04

−0.05 −175+26
−34 320+28

−25 40.20+0.06
−0.06 −519+41

−47 3689+100
−98 42.95+0.01

−0.01 7.44+0.18
−0.13

J141630.82+013707.9 1 0.05436 115+9
−9 −137+7

−7 145+8
−8 40.45+0.04

−0.04 −231+15
−17 411+24

−21 40.55+0.03
−0.03 −620+31

−32 3667+173
−156 42.66+0.03

−0.03 7.28+0.19
−0.14

J141908.30+075449.6 1 0.05634 168+10
−10 −6+7

−7 195+3
−4 41.18+0.01

−0.01 −329+27
−34 449+16

−16 40.80+0.03
−0.03 −898+33

−39 6065+299
−294 42.92+0.02

−0.02 7.86+0.19
−0.14

J143452.45+483942.8 1 0.03669 110+9
−9 −54+7

−7 108+2
−2 40.99+0.01

−0.01 53+20
−18 336+26

−23 40.40+0.04
−0.04 538+35

−34 4855+44
−47 43.40+0.00

−0.00 7.93+0.16
−0.14

J152209.56+451124.0 2 0.06593 95+11
−11 −58+10

−11 167+18
−22 40.42+0.09

−0.11 −92+29
−56 418+99

−71 40.27+0.14
−0.11 −570+96

−107 2083+102
−90 42.66+0.03

−0.03 6.79+0.19
−0.13

J152324.42+551855.3 2 0.03987 86+11
−10 −217+6

−6 86+5
−5 40.12+0.03

−0.03 −435+43
−63 234+23

−31 39.66+0.08
−0.10 −519+59

−75 2459+158
−143 42.15+0.03

−0.03 6.66+0.21
−0.13

J152940.58+302909.3 2 0.03641 93+5
−5 −98+6

−6 97+4
−5 40.48+0.03

−0.03 −231+23
−31 228+22

−20 40.15+0.07
−0.06 −426+35

−40 2412+40
−40 42.98+0.01

−0.01 7.08+0.18
−0.13

J153552.40+575409.3 1 0.03077 128+13
−12 −93+10

−10 130+2
−2 41.44+0.01

−0.01 −171+12
−13 273+10

−9 41.01+0.04
−0.04 −429+14

−14 4447+38
−39 43.57+0.00

−0.00 7.93+0.18
−0.13

J154351.49+363136.7 1 0.06794 78+9
−9 −163+6

−7 108+3
−3 41.27+0.02

−0.02 −323+10
−10 267+6

−6 41.18+0.02
−0.02 −502+12

−12 2898+44
−44 43.39+0.01

−0.01 7.46+0.19
−0.13

J154507.53+170951.1 1 0.04837 119+10
−9 8+6

−6 103+1
−1 41.12+0.01

−0.01 −119+9
−9 311+8

−8 40.72+0.01
−0.01 −527+12

−12 5501+112
−115 42.99+0.01

−0.01 7.80+0.18
−0.13
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Table 1 – continued

Object Ref. z σ ∗ vcore σ core Lcore voutflow σ outflow Loutflow vmax FWHMH β λL5100 Å log (MBH)
(SDSS) (km s−1) (km s−1) (km s−1) (erg s−1) (km s−1) (km s−1) (erg s−1) (km s−1) (km s−1) (erg s−1) (M�)

J160746.00+345048.9 2 0.05478 86+8
−8 −200+7

−8 108+4
−4 40.61+0.02

−0.02 −411+11
−11 424+9

−8 40.84+0.01
−0.01 −755+14

−14 1651+47
−44 42.75+0.01

−0.01 6.63+0.18
−0.13

J161156.30+521116.8 1 0.04149 108+7
−7 −44+6

−6 131+4
−4 40.50+0.02

−0.02 −368+29
−31 426+21

−21 40.33+0.03
−0.03 −870+39

−41 3727+141
−135 42.72+0.02

−0.02 7.33+0.19
−0.13

J163159.59+243740.2 2 0.04384 72+6
−6 −58+6

−6 94+2
−2 40.65+0.01

−0.01 −207+21
−24 278+16

−16 39.97+0.04
−0.04 −506+28

−31 1065+48
−44 42.37+0.02

−0.02 6.07+0.18
−0.14

J163501.46+305412.1 2 0.05460 95+15
−14 −108+9

−9 122+6
−6 40.79+0.03

−0.02 −223+11
−12 393+13

−11 40.97+0.01
−0.02 −620+17

−17 2333+120
−110 42.73+0.02

−0.02 6.94+0.18
−0.14

J170859.15+215308.1 1 0.07277 123+12
−12 −85+9

−9 164+4
−4 40.94+0.01

−0.01 2+15
−15 551+24

−22 40.86+0.02
−0.02 795+31

−31 6325+122
−115 43.37+0.01

−0.01 8.13+0.18
−0.13

J172759.14+542147.0 2 0.09989 40+19
−16 −89+12

−13 73+3
−3 40.80+0.02

−0.02 −185+29
−34 241+36

−31 40.26+0.07
−0.06 −406+47

−51 1295+78
−78 42.66+0.02

−0.02 6.38+0.20
−0.13

J205822.14−065004.3 2 0.07413 35+13
−13 −59+8

−8 96+2
−2 41.05+0.01

−0.01 −225+12
−13 287+8

−8 40.78+0.02
−0.02 −533+14

−14 1302+32
−32 42.87+0.01

−0.01 6.48+0.19
−0.13

J210226.54+000702.3 2 0.05222 73+9
−8 −92+8

−9 77+7
−8 39.93+0.05

−0.05 −275+39
−49 199+31

−28 39.73+0.09
−0.09 −438+53

−60 1984+129
−116 42.19+0.03

−0.03 6.50+0.20
−0.14

J222246.61−081943.9 1 0.08312 111+8
−8 −222+7

−7 172+4
−4 41.16+0.01

−0.01 −599+13
−13 570+8

−8 41.35+0.01
−0.01 −1109+15

−16 3933+110
−105 43.27+0.01

−0.01 7.67+0.18
−0.13

J223338.42+131243.5 1 0.09438 123+16
−15 −203+10

−9 150+4
−4 41.40+0.02

−0.02 −258+12
−13 483+20

−20 41.29+0.02
−0.02 −675+28

−28 4326+55
−51 43.66+0.00

−0.00 7.96+0.19
−0.13

J235128.75+155259.1 1 0.09675 136+12
−11 −23+8

−9 98+4
−4 41.21+0.01

−0.01 −135+8
−8 249+2

−2 41.55+0.00
−0.00 −431+4

−4 7236+180
−175 43.43+0.01

−0.01 8.28+0.19
−0.13

Figure 13. Superimposed [O III] profiles of all 63 outflow objects in our
sample shown in black. Individual [O III] profiles are aligned at the rest-frame
velocity of the core component and normalized by the maximum amplitude
of the full [O III] profile. The luminosity-weighted average is show by the red
profile.

empirical relation between the luminosity of the broad H β emission
line and λL5100 Å from Greene & Ho (2005), and MBH is calculated
using the relation from S19 based on the mass recalibration from
reverberation mapping measurements from Woo et al. (2015). Black
hole masses for the 63 outflow objects span nearly three orders
of magnitude from (5.6 ≤ log10(MBH/M�) ≤ 8.4). To quantify the
maximal velocity of the outflows, we adopt the relation from Harrison
et al. (2014) given by

vmax = �v0 + W80

2
, (11)

where v0 is the velocity offset of the outflow component measured
with respect to the velocity offset of the core component, and W80 =
1.09 FWHM, which represents the width containing 80 per cent of
the Gaussian flux of the outflow component. Values of vmax listed
in Table 1 are negative if the outflow is blueshifted with respect to
the core component, and positive if redshifted with respect to the

core component. Velocities for the core and outflow components,
vcore and voutflow, are reported as velocities with respect to the
systemic (stellar) velocity. All reported dispersion are corrected
for the SDSS redshift-dependent instrumental dispersion during the
fitting process by our code. The vast majority of our objects (N =
55) have blueshifted outflow components with respect to their core
component.

We use these measurements to further investigate correlations
of outflows with their host galaxy and AGN to understand their
relationship, if any. For reference, we plot a heatmap of the
Spearman’s rank correlation coefficient rs for all relevant and
possibly interesting quantities measured with our algorithm in
Fig. 14. We discuss the most notable correlations in detail in the
following subsections. In the following figures, we adopt a consistent
colourscale shown in Fig. 15, which represents the absolute value of
vmax.

3.4.1 Correlations with velocity

We first investigate correlations with the velocities of the [O III]
core and outflow components. Following Woo et al. (2016), we plot
velocity–velocity dispersion (VVD) diagrams of the core and outflow
components in Fig. 15. The Spearman correlation coefficient for the
[O III] core VVD diagram is rs = −0.19, indicating no significant
correlation, while the [O III] outflow VVD diagram shows stronger
correlation of rs = −0.36. The [O III] outflow VVD diagram also
exhibits the same ‘fan’ shape characterized by Woo et al. (2016),
which according to 3D biconical outflow models (Bae & Woo 2016),
is caused by an increasing extinction due to the presence of an
obscuring dust plane. In theory, if there exists a dust plane that
bisects a biconical outflow for which one of the cones points towards
the observer along the LOS (the blueshifted cone), the dust plane
will obscure the cone on the far side (the redshifted cone) causing
an observed blueshifted flux excess. The fan-shaped VVD diagram
for outflows does not appear to extend to the core component. We
also confirm the result from Rakshit & Woo (2018) that blueshifted
outflows are significantly more common than redshifted outflows for
type 1 AGN.

There does appear to be strong correlation (rs = 0.56) between vcore

and voutflow measured with respect to the systemic (stellar) velocity,
as shown in Fig. 16, which shows vcore scales linearly with voutflow.
Our data suggest that for blueshifted outflows (right of the dashed
line in Fig. 16) there is an average offset of 120 km s−1 between the
core and outflow components, and there appears to be an increasing
offset from vcore with vmax. A larger sample with vmax > 900 km
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Bayesian AGN Decomposition Analysis for SDSS spectra 2887

Figure 14. Correlation matrix of relevant quantities. The colourscale represents the absolute Spearman’s rank correlation coefficient rs. The average uncertainty
for all calculated values of rs is 0.04.

s−1 and objects with redshifted outflows is needed to conclusively
determine whether this trend holds, or if there is a value of vmax for
which this trend no longer holds true.

3.4.2 Correlations with dispersion

In Fig. 17, we plot the single-Gaussian ‘no-outflow’ model [O III]
dispersion σ single alongside the double-Gaussian ‘outflow’ model
core dispersion σ core, both as a function of σ ∗. We confirm the results
from Bennert et al. (2018) that σ core correlates more strongly with σ ∗
once the secondary outflow component is accounted for. Values of
σ core are scattered about the perfect correlation with σ ∗, with a root-
mean-square error of 27 ± 2 km s−1. The mean of this distribution
of σ core values is 18 ± 2 km s−1, caused primarily by objects with
vmax > 700 km s−1.

In Fig. 18, we plot the difference (σ core − σ ∗) as a function of
σ outflow and find that there is some dependence on how well σ core can
recover the gravitational component σ ∗ as a function of σ outflow and
vmax, however a larger sample will also be needed to confirm this
trend.

There also exists a strong correlation between the [O III] core
component dispersion σ core and the outflow component dispersion

σ outflow as first reported by Zhang & Feng (2017), which we plot
in Fig. 19 for our sample. This correlation has so far been largely
overlooked, mostly due to the parametrization other studies have
used to quantify outflows. For instance, Woo et al. (2016) performed
double-Gaussian decomposition of the [O III], but did not study
individual dispersions and instead adopted a flux-weighted integrated
dispersion for the full line (core + outflow) profile. The Spearman
rank correlation coefficient for this relation is rs = 0.74, implying a
very strong correlation, and stronger than the σ core−σ ∗ correlation
(rs = 0.59). We perform linear regression using EMCEE following the
same methods used in S19, and determine a best-fitting slope of m =
0.26 ± 0.03, intercept of b = 25.00+9.05

−8.89 km s−1, and intrinsic scatter
of f = 19.11+2.16

−2.08, which we plot in Fig. 19.
It is important to emphasize that the σ core−σ outflow correlation is

not a result of our definition of an ‘outflow’ or our selection criteria
for outflows given in Section 2.2.2. Although we define an outflow
to have σ outflow > σ core, which excludes objects above the dashed
line (σ core = σ outflow) in Fig. 19 by design, this does not explain
the tightness in the correlation below the dashed line. The outflow
criterion for dispersion given in Section 2.2.2 also does not select
objects based on the ratio of σ outflow and σ core, but by the ratio of
the difference of σ outflow and σ core and their relative uncertainties.
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2888 R. O. Sexton et al.

Figure 15. VVD diagrams for the [O III] core and outflow components. The black dashed line indicates zero velocity offset with respect to the systemic (stellar)
velocity. Left: There is no correlation between σ core and vcore, however the majority of velocities are blueshifted with respect to the systemic velocity. Right:
There is a significant correlation between σ outflow and voutflow, characterized by the distinct ‘fan’ shape described by Woo et al. (2016), caused by increasing
extinction with increasing outflow velocity.

Figure 16. The strong correlation between vcore and voutflow measured with
respect to the systemic (stellar) velocity. The black dashed line indicates
the perfect correlation vcore = voutflow, and the red dashed line indicates
an average −120 km s−1 offset from the perfect correlation for blueshifted
outflows. Objects with larger vmax appear to deviate from this correlation,
however a larger sample of objects with vmax > 900 km s−1 is needed to con-
clusively determine if the correlation holes true, and likewise for redshifted
outflows.

Recall that 90 per cent of the objects with outflows were first
identified visually from their strong asymmetric profile, implying
that we are not overfitting [O III] profiles which do not require
double-Gaussian decomposition. We therefore are confident that the
σ core−σ outflow correlation is real and not an artefact of the fitting
process.

3.4.3 Correlations with luminosity

There is strong correlation between the AGN luminosity at 5100 Å
(L5100 Å) and Lcore (rs = 0.77), and a slightly weaker correlation for
Loutflow (rs = 0.71), although the weaker correlation with Loutflow is
likely due to larger uncertainties. Because we are estimating L5100 Å

using the luminosity of the broad H β emission line (Greene & Ho
2005), correlations with L5100 Å presented here are comparable to
correlations with MBH, which is estimated using both the luminosity
and width of the broad H β emission line. However, the correlation
between L5100 Å and outflow kinematics are comparatively weaker.

To investigate correlations with the radio luminosity at 1.4 GHz,
we obtain L1.4 GHz measurements from the VLA First Survey Catalog
(White et al. 1997), which covers 10 575 deg2 of sky for a total of
946 432 radio sources, from which 18 of our 63 outflow objects
have measurements. Referring to Fig. 14, the correlations between
L1.4 GHz and σ core and σ outflow are comparable to their correlations
with L5100 Å. However, when compared to systemic velocities, there
is much stronger correlation between L1.4 GHz and voutflow (rs =−0.67)
than for vcore (rs = −0.36). In Fig. 20, we plot L1.4 GHz as a function
of vcore and voutflow.

The only other notable correlations found between luminosities are
those with the luminosity of the broad Fe II. Both L5100 Å and L1.4 GHz

correlate strongly with LBr·Fe II, and with nearly identical degrees of
correlation of rs ∼ 0.67.

3.4.4 The MBH−σ ∗ relation

The ultimate goal of our analysis is to determine the effect – if any
– of outflow kinematics on the MBH−σ ∗ relation. In Fig. 21, we
plot the MBH−σ relation using both σ ∗ and σ core, and plot the local
relation derived from S19 (black dashed line) and the 0.43 dex scatter
(orange dotted line) for comparison.

There is considerable scatter in the MBH−σ ∗ relation (left of
Fig. 21) for our objects, however the majority of our sample falls
within or close to the expected scatter of the relation, with the
exception of some outliers above the relation by as much as ∼1
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Figure 17. Left: The single Gaussian no-outflow model [O III] dispersion σ single as a function of stellar velocity dispersion σ ∗. There is a clear offset in objects
which exhibit strong outflows with large vmax. Right: The double-Gaussian outflow model [O III] dispersion as a function of σ ∗. The grey dotted lines in both
plots give the scatter of the σ core−σ ∗ relation for comparison. The colourscale is the same as in Fig. 15. The black dashed line represents perfect correlation,
i.e. σ core = σ ∗.

Figure 18. The difference between the decomposed σ core and σ ∗ as a
function of σ outflow. There is a clear dependence on how well σ core traces
the gravitational component σ ∗, which appears to scale with σ outflow.

dex. The total scatter about the relation for our objects is 0.6 dex.
There are considerable uncertainties we cannot account for given the
nature of SDSS data that may affect our measurements of σ ∗. Despite
our efforts to correct for the effects of inclination, it is possible that
the bulge + disc decomposition performed by Simard et al. (2011)
resulted in a poor match to the image point spread function (PSF),
since the decompositions do not take into account the PSF of the
AGN, which would in turn affect measured disc quantities such as

Figure 19. The correlation between σ core and σ outflow. The best-fitting
regression line is given by the red dashed line, and the shaded red region
corresponds to 95 per cent confidence interval. The grey dotted lines
correspond to the scatter in the relation. The identity correlation (σ core =
σ outflow) is shown by the black dashed line, and the σ core = 2σ outflow relation
is shown by the blue dash–dotted line for comparison.

ellipticity (b/a) and inclination. As mentioned in Section 3.3.2, the
3 arcsec diameter SDSS fibre can cover a significant fraction of the
host galaxy to include contamination from non-bulge components,
which can bias measurements of σ ∗, but also decrease the fraction of
light from the AGN. If the fraction of light from the AGN decreased
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2890 R. O. Sexton et al.

Figure 20. Correlations of L1.4 GHz versus vcore (left) and voutflow (right) for 18 objects with available measurements. The correlation with σ outflow (rs = −0.67)
is nearly twice that of the correlation with vcore.

Figure 21. The MBH−σ relation as a function of σ ∗ (left) and σ core (right). We plot the local relation calculated from S19 (black dashed line) as well as the
local scatter (orange dotted lines) for comparison. The majority of objects on the MBH−σ ∗ relation agree with the local relation with some scatter (f = 0.54
dex), but the mean of the distribution is 0.57 dex above the local relation, caused by significant outliers likely due to poorly understood systematics and data
quality. The MBH−σ core relation also agrees with the local relation, with a comparable amount of scatter (f = 0.58 dex), mostly caused by stratification in σ core,
and a mean of only 0.17 dex above the local relation.

due to significant host galaxy absorption, we would underestimate the
amplitude and therefore overestimate the FWHM of the broad H β

emission line, leading to an overestimation of MBH. Dependencies
on AGN continuum dilution also play a role in how well σ ∗ can
be recovered from absorption features, as we showed in Fig. 11.
It remains that measurements σ ∗ are one of the most uncertain

measurements in BH scaling relations, due to both data limitations
and poorly understood systematics.

Since we are interested in using σ core as a surrogate for σ ∗ on the
MBH−σ ∗ relation, we plot MBH−σ core on the right in Fig. 21. We find
that the scatter of the MBH−σ ∗ relation is 0.54 dex, slightly less than
that of the MBH−σ core relation with a scatter of 0.57 dex. However,
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the mean of MBH−σ ∗ relation is 0.57 dex above the local relation,
driven by clear outliers between 1 and 2 dex above the local relation.
The mean of the MBH−σ core is 0.17 and more-evenly distributed
about the local relation.

It is clear from Fig. 21 that the scatter in MBH−σ core is due
primarily to stratification in σ core, with σ core < 600 kms−1 primarily
above the relation, and σ core > 900 kms−1 below the relation. It is
possible that this separation in dispersion across the local relation
could be attributed to the core broadening as a function of vmax we
see in Fig. 18. It is also worthy to note that this stratification in σ ∗
is not as obvious in the MBH−σ ∗ relation, although there is similar
trend for σ ∗ < 600 kms−1.

3.5 Discussion

In the following sections, we discuss the different correlations and
their possible interpretation. We emphasize that although we can
only speculate on the physical interpretation of these correlations,
these observations represent observational constraints that should
be considered when developing models that describe AGN-driven
outflows.

3.5.1 Correlations with velocity

The differences in the VVD diagrams shown in Fig. 15 indicate
that the core and outflow components of the NLR are kinematically
distinct. According 3D biconical outflow modelling from Bae & Woo
(2016), the fan-shaped distribution of the σ outflow−voutflow relation
is due to a number of factors, the most important of which are
bicone inclination, ejection velocity, and dust extinction along the
line of sight. For a symmetric biconical outflow in the absence of
any dust extinction, we would expect to measure zero velocity offset
along line of sight due to the cancelling of velocities in opposite
directions. With the addition of extinction effects, the obscuration
of one side of the bicone would lead to a shift in observed velocity
offset. The large number of blueshifted outflows in our sample can be
explained as varying obscuration of the receding (redshifted) cone.
One interpretation of the strong correlation in the outflow VVD
diagram is evidence of collimation, that is, we expect to see an
increase in σ outflow with an increase in voutlfow along the line of sight
if the flow subtends relatively small solid angle (such as a cone)
and has a preferred inclination. For example, we expect to see larger
velocities as well as a larger velocity dispersion for a flow that is
directed along the LOS, as opposed to a flow directed at some angle
with respect to the LOS, which would produce a smaller observed
velocity and thus smaller dispersion. This interpretation is consistent
with the model grids for 3D biconical outflow models from Bae &
Woo (2016).

We do not observe the same strong correlation for the σ core−vcore

VVD relation. There is an overall blueshift of vcore which correlates
with voutflow, as shown in Fig. 16, however there is a larger spread
in vcore for a given value of σ core. Given our above argument
for the outflow component, the lack of correlation for the core
component would imply that the source of the core gas emission
is less collimated and more spherically symmetric. This would agree
with the interpretation that the core component represents the original
NLR gas that is still strongly coupled to the gravitational potential.
The core VVD diagram clearly does not exhibit the same kinematic
properties of outflows, and should be treated as separate kinematic
component when trying to model outflows in AGN.

The linear increase between vcore and voutflow and constant 120 km
s−1 offset in velocity shown in Fig. 16 could indicate that the two

components are locked in velocity, at least up to a certain value
of vmax. We can only speculate the physical interpretation of this
trend, but it could mean that the core NLR gas can be coupled to
the outflowing gas below a certain velocity threshold, causing it
to become entrained and expand with the outflow. At the highest
velocities, the core gas may decouple from the outflowing gas,
causing this trend to plateau as shown in Fig. 16. We would require
a larger sample of objects with outflows with vmax > 900 kms−1 to
determine if this occurs.

3.5.2 Correlations with dispersion

In an idealized gravitationally bound system, such as in an undis-
turbed NLR, we should expect the gas and stellar components to have
similar velocity distributions. If a secondary component in the same
region as the source of NLR emission is present, and exhibits some
collimation (increase in velocity and velocity dispersion), we would
expect a distribution similar to that shown on the left of Fig. 17.
We do recover the core NLR gas within some scatter about the
perfect correlation with σ ∗ after correction, as shown on the right in
Fig. 17. Objects with vmax < 600 kms−1 are more evenly distributed
about the perfect correlation with σ ∗ after correcting for σ outflow. The
majority of objects with vmax > 600 kms−1 tend to fall above with
the relation even after correcting for σ outflow, which may indicate that
the presence of outflows may introduce additional non-gravitational
broadening which may only be detected for the strongest cases.
Some scatter is expected, as we cannot fully account for all non-
gravitational interactions nor fully account for systematics involving
the measurements of σ ∗ given the nature of SDSS data, such as
inclination, aperture effects, or merger history. This correlation is
enough to suggest that the core component of the [O III] profile traces
the original NLR gas that is dominated by the gravitational potential
of the stellar component.

It is not unreasonable to suggest that if a secondary outflowing
component arises from within the NLR, it must start out with
the same velocity distribution as the core components. If that
velocity distribution then undergoes some interaction, we expect the
original distribution to broaden. We can interpret the σ core−σ outflow

correlation shown in Fig. 19 to be the broadening of the original NLR
core gas due to the outflowing gas. What is still puzzling is the linear
rate at which the outflow dispersion grows with the core dispersion
and its small scatter. We can interpret this as the outflow component
having a strong dependence on the original NLR gas from which
it is believe to have originated, and the strong linear dependence
describes the manner by which the flow propagates through the
ambient medium. Another possible interpretation is that the strength
of the outflow component (parametrized by vmax) causes a broadening
of the core component, such that σ core approaches its respective value
of σ ∗. There is some correlation shown in Fig. 18 that suggests that
the core component broadens as a function of σ outflow (and therefore
vmax), however a larger sample of objects with vmax > 900 is needed
to determine if this trend is real or simply increased scatter.

The σ core−σ ∗ and σ core−σ outflow imply that there is some con-
nection between σ ∗ and σ outflow. Ideally, if there is a constant linear
relationship between σ core and σ outflow, and if σ core traces σ ∗, then
σ outflow should also scale with σ ∗ but positively offset by some
constant. We can fit the interdependence of the three dispersions
as a plane of the form

a log10(σ∗) + b log10(σcore) + c log10(σoutflow) + d = 0. (12)

We perform orthogonal regression using EMCEE following the meth-
ods of S19 and obtain best-fitting coefficients of a = −2.39+0.54

−0.51,
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2892 R. O. Sexton et al.

Figure 22. The three projections of the σ outflow−σ core−σ ∗ relation, and the best-fitting relation projected parallel to the best-fitting plane. The identity
correlations are given by the black dashed line in each plot. The scatter about the best-fitting plane relation is f = 0.10, which is considerably smaller than the
scatter in the σ core−σ ∗ (f = 0.17 dex) and σ outflow−σ ∗ (f = 0.19 dex) relations, and comparable to the σ core−σ outflow relation (f = 0.09 dex).

b = 10.26+1.00
−1.19 and c = −7.91+1.12

−0.96, d = 3.63+1.46
−1.60, and a scatter

about the best-fitting plane of f = 0.10 dex. We plot the projections
of the three dispersions, and the projection along the parallel axis of
the plane in Fig. 22. Despite the decreased scatter, there is still a large
uncertainty in a, i.e. the slope of the σ outflow−σ ∗ relation, which is
caused by large scatter. Further study with a larger sample is needed
to better constrain this slope before the functional form of 12 can be
used to calculate σ ∗ using both σ core and σ outflow.

The physical interpretation of the plane relationship between
the three dispersions does not necessarily imply that σ outflow can
somehow influence σ ∗ or vice versa, neither does it answer the

proverbial ‘chicken or egg’ problem, that is, we do not know if
outflows are the causal explanation for the broadening of σ core or if
σ outflow correlates with σ core because it originated from an already-
broad gas velocity distribution. A larger sample, along with integral
field spectroscopy, to determine if these relationships hold true.

3.5.3 Correlations with luminosity

It has been known for some time that the incidence of [O III] outflows
correlates with radio emission in both type 1 and type 2 AGNs
(Wilson & Willis 1980; Whittle 1985; Whittle et al. 1988; Nelson
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& Whittle 1996). More recent studies suggest that the strongest
correlation with luminosity is between the [O III] width and the radio
luminosity at 1.4 GHz (L1.4 GHz), especially in objects with high-
velocity outflows and at much higher redshifts. (Mullaney et al. 2013;
Zakamska & Greene 2014; Zakamska et al. 2016; Hwang et al. 2018;
Perrotta et al. 2019).

As mentioned in Section 3.4.3, the strong correlation between
the core and outflow components, Lcore and Loutflow, and the optical
AGN luminosity L5100 Å is not surprising if the core and outflow
components originate in close proximity to the ionizing source. There
is still some correlation with core and outflow dispersion, but even
lesser so for the core and outflow velocities. We see similar lack of
correlation when we compare σ core and vcore to L1.4 GHz. By far, the
strongest correlation we find between any measured luminosities and
kinematics is with L1.4 GHz and voutflow.

Previous studies by Woo et al. (2016) and Rakshit & Woo
(2018) used a total (core + outflow) integrated [O III] velocity
dispersion parametrization and normalized it by the stellar velocity
dispersion to quantify non-gravitational kinematics to compare to
radio luminosity, finding no strong correlations with radio activity.
In this study, the outflow component is designated as the only non-
gravitational component, for which we do find strong correlation
with radio luminosity, although with a much smaller sample size.
Our findings agree with Mullaney et al. (2013), who similarly found
strong correlation between objects with high L1.4 GHz and objects with
the broadest [O III] profiles.

3.5.4 The MBH−σ ∗ relation

Fig. 21 shows that when corrected for the outflow component, σ core

can be used as a surrogate for σ ∗ on the MBH−σ ∗ relation with
comparable scatter, and agree with the results found by Bennert et al.
(2018). However, if we are to use σ core for studies on the non-local
MBH−σ ∗, we do not have the luxury of comparing it σ ∗ to ensure we
have evidence of non-gravitational kinematics as we have done in our
sample. Performing a double-Gaussian decomposition of the [O III]
profile when there is no evidence of an additional non-gravitational
component, while always producing a better fit, can cause one to
measure a smaller σ core than what σ ∗ suggests, which can give the
impression that one is measuring BHs that are overmassive relative
to the local MBH−σ ∗ relation.

We advise that if σ core is used as a surrogate for σ ∗, that one
always fit a double-Gaussian component and check that the object
falls within the acceptable scatter of the σ core−σ outflow relation. Fur-
thermore, for σ outflow < 200 kms−1, the scatter of the σ core−σ outflow

relation begins to intersect with that of the σ outflow−σ ∗ relation, and it
becomes increasingly unclear if there are additional non-gravitational
kinematics present in the [O III] profile with respect to σ ∗. Therefore,
we recommend that for σ outflow < 200 kms−1 one does not use a
double-Gaussian decomposition for the risk of severely overfitting
the [O III] profile and significantly underestimating σ ∗. Likewise, if
a single-Gaussian fit to the [O III] profile exceeds ∼200 km s−1, it
is recommended to perform a double-Gaussian decomposition and
assess the quality of the fit. In this regard, the outflow confidence
calculated by our algorithm by performing an F-statistic model
comparison makes it clear when a double-Gaussian fit is warranted
by the data.

4 C O N C L U S I O N

To summarize, a new, thoroughly tested, and powerful fitting soft-
ware for optical SDSS spectra that is open source and specialized

for fitting AGN spectra. Since our algorithm can fit numerous
components simultaneously, it can be generalized to fit not just AGN
spectra, but non-AGN host galaxies as well. The use of MCMC
allows the user to fit objects with unprecedented detail, obtain robust
uncertainties, and determine the quality of fits using a broad range
of metrics and outputs. Our code also utilizes multiprocessing to
efficiently fit large samples of objects without excessive memory
overhead.

Currently, our code is being used for a variety of research projects
and number of collaborations. For instance, our code is being run in
a cluster environment to fit over 19 000 SDSS galaxies to determine
the significance of outflows as a function of separation distance and
as a function of environment. Our code will also be used to fit a larger
sample of type 1 AGN to follow-up on results presented here.

Performance tests with our algorithm we have presented here in
the recovery of σ ∗ can also be applied to other fitting routines which
attempt to measure the LOSVD. We summarize the results of these
tests below:

(i) In non-AGN host galaxies and type 2 AGN, where significant
Fe II and AGN continuum dilution is absent, the LOSVD can be
recovered in the Mg IB/Fe II region (4400–5800 Å) with less than
10 per cent error and uncertainty for S/N > 20. For objects which
exhibit active star formation, the steep continuum from young stellar
populations complicates measurements of σ ∗, and we recommend
to include more O- and B-type template stars and disable the AGN
power-law component from the fit.

(ii) Measurements of σ ∗ are not significantly affected by the
inclusion of Fe II, and are more affected by S/N level.

(iii) Dilution of stellar absorption features by strong AGN con-
tinuum contributes to the largest error and uncertainty in measuring
σ ∗. We find that while that strong Fe II and steep AGN power-law
slope can be indicative of strong continuum dilution, they are not
the root cause. Continuum dilution caused to a large fraction of
continuum flux being dominated by the AGN is the root cause of
large uncertainties in the estimation of σ ∗, and extra caution should
be given in the estimate of the LOSVD to objects which exhibit
strong Fe II or steep power-law slope, such as NLS1 or BAL objects.

As an application of our algorithm, we fit a sample of 63 SDSS type 1
AGN with strong evidence of outflows in the [O III] λ5007 emission
line and performed a correlation analysis of kinematics to determine
the relationships between outflows, the AGN, and the host galaxy,
expanding upon previous similar studies. We summarize our most
important results below:

(i) By performing a double-Gaussian decomposition of the [O III]
λ5007 emission line profile into separate core and outflow compo-
nents, we find that the core dispersion of the [O III] profile (σ core) is
a suitable surrogate for stellar velocity dispersion (σ ∗) in a statistical
context but should not be used on an object-to-object basis. There is
some evidence that the measured difference σ core – σ ∗ scales with
increasing outflow component dispersion (σ outflow), which may imply
that there is some broadening of the NLR gas due to the presence of
outflows, causing the scatter we see in the σ core−σ ∗ relation.

(ii) VVD diagrams of the outflow component resemble the ‘fan-
shaped’ VVD profiles exhibited by 3D biconical outflow models from
Bae & Woo (2016), indicating possible orientation-dependent or
collimated flow. The core component does not exhibit the same VVD
shape as the outflow component, indicating that it is a kinematically
distinct component of the [O III] gas, more strongly coupled to the
gravitational potential.

MNRAS 500, 2871–2895 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/3/2871/5941534 by U
niversity of C

alifornia, R
iverside Library Tech. Services/Serials user on 09 August 2021



2894 R. O. Sexton et al.

(iii) There is a systematic broadening of the σ core component
which scales with σ outflow, resulting a tight correlation between σ core

and σ outflow. This tight correlation implies a very specific relationship
between outflow kinematics and the kinematics of the NLR, which
could be used to constrain theoretical models of AGN outflows.

(iv) We present a new planar relationship between σ ∗, σ core,
and σ outflow with a scatter about the best-fitting plane of 0.10 dex.
However, a larger sample is still needed to constrain the relationship
between σ outflow and σ ∗ before it can be used to obtain values for σ ∗.

(v) We recover the strong correlation between L1.4 GHz and prop-
erties of outflows found in previous studies. We do not observe
strong correlations between outflow kinematics and the optical AGN
luminosity L5100 Å.

(vi) We find that σ core is a suitable surrogate for σ ∗ on the
MBH−σ ∗ relation with comparable scatter in a statistical context
in agreement with Bennert et al. (2018). Additionally, we present
recommendations and caveats for using σ core for studies of the
MBH−σ ∗ relation in the non-local universe for which σ ∗ cannot
be measured.

The correlations we have presented here showcase a number of
observational constraints that theoretical models of AGN outflows
should satisfy. Further investigation into these correlations and their
causes will be necessary with larger samples, and we have shown here
that our algorithm is capable of such detailed analyses. As newer and
larger surveys begin to come online, tools such as our code, which
underscore the need for a generalized open-source framework for
fitting a variety of objects with advanced statistical techniques, will
be needed for increasingly detailed analysis of astronomical spectra
in the coming decade.
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