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Abstract

T /\/
Accurate estimation of phase transition tem- f
peratures has been a longstanding challenge for & W
molecular simulations. Recently, the general- = |
ized Replica Exchange technique for estimat- iy Enthalpy
ing phase transition temperatures has allowed Fluid Gel
for improved sampling of the phase transition;
however, it requires a significant number of si-
multaneous replicas both inside and outside of

the transition region leading to costly compu-
tational expense. In this work, the recently
developed machine learning-assisted lipid phase
analysis technique for learning the phase of in-
dividual lipids has been combined with gener-
alized Replica Exchange Molecular Dynamics
to reduce the overall computational expense of
evaluating transition temperatures. This tech-
nique is then applied to eight different Dry Mar-
tini lipids to demonstrate its ability to describe
transition temperatures as a function of chain
length and tail saturation.



Upon cooling, lipids undergo a first order
phase transition from the liquid-disordered fluid
phase (L,) to the liquid-ordered gel phase
(Lg)."™* Across this transition, there are signif-
icant effects on local membrane structure, in-
cluding straightening of the lipid tails, tighter
lipid packing (and thus a reduced area per
lipid), and increased bilayer thickness. As most
lipids in biological membranes are found in the
fluid phase, such transitions have recently been
of interest due to occurrence of gel-phase lipid
domains that may modulate the behavior of
membrane proteins. 10

As with any first order phase transition, the
lipid fluid-gel transition is typically character-
ized by its transition temperature (7,,) and la-
tent heat (L;_,).While these quantities have
been well-characterized experimentally for a
wide-range of lipids using Differential Scanning
Calorimetry (DSC),!2 results from molecular
dynamics (MD) simulations have been incon-
sistent. Aside from known discrepancies inher-
ent to the chosen description of the molecu-
lar interactions (e.g., lipid forcefield, atomistic
vs. coarse-grained), simulations using differ-
ent techniques find different values of T, while
using the same lipid and forcefield. For in-
stance, simulations with the Martini 2 coarse-
grained forcefield on one of the most commonly
simulated lipids, 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC), have reported phase
transition temperatures ranging from 286 K to
312 K. 1318

In part, these discrepancies originate from
hysteresis linked to sampling limitations inher-
ent in the techniques used to estimate the tran-
sition temperature. Indeed, the largest differ-
ences in transition temperature estimates tend
to come from simulations where the transition
temperature is estimated by simply heating or
cooling the system. These types of simula-
tions, which most closely mimic the experimen-
tal DSC measurements, unfortunately do not
allow for simulation timescales long enough to
overcome phase metastability leading to the for-
mation of supercooled (or superheated) config-
urations in the case of cooling (or heating).

The presence of hysteresis has led to the
design of enhanced sampling techniques that

can better sample the phase transition region,
one such method is generalized Replica Ex-
change Molecular Dynamics (gREMD).!619
Traditional temperature-based replica ex-
change methods are limited by the latent heat
which causes poor energetic overlap in adjacent
simulation windows in the transition region.
gREMD avoids this limitation by simulating
with H used as a control parameter, rather
than 7. In gREMD, simulation windows are
controlled by linear effective temperature func-
tions,

Ta<H) = Ao+ U(H - HO)v (1)

where « is a label for individual replicas, n is
a negative parameter that determines the slope
of the function, Hj is the reference enthalpy,
and A\, determines where this function inter-
sects the true statistical temperature Ts(H).
This intersection occurs at exactly one place,
thus avoids sampling multiple states like are
sampled in traditional replica exchange. Func-
tionally, the range and interval of \,s that are
included determine the number of simulation
windows required for a gREMD calculation.
The key output parameter from a gREMD
calculation is the statistical temperature,
Ts(H), which is calculated using the Statis-
tical Temperature Weighted Histogram Analy-
sis Method (ST-WHAM).?® From this profile,
hereafter referred to as the “S-Loop” due to
its shape, a Maxwell equal area construction
can be used to obtain the transition tempera-
ture as well as the latent heat of the gel-fluid
transition. In this construction, a horizontal
line is placed so it intersects 1/Ts(H) such that
the area bounded above and below the line are
equal. The vertical location of this line is 1/T,,,
and the latent heat is found by calculating the
enthalpy difference between the outer two in-
tersections of this line with the S-Loop. We
have shown this schematically in Figure 1b.
While gREMD has been shown to be success-
ful for estimating phase transition temperatures
for a variety of systems (including lipids), 1819
its implementation has been relatively restric-
tive. Many additional simultaneous simulation
windows outside of the phase transition region
are needed to meet the requirements of the
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Figure 1: a) Simulation snapshots of a DPPC bilayer in the fluid and gel phases (periodic images
of the x,y dimensions have been included for clarity). b) Upper Panel: Schematic diagram of the
S-Loop structure for DPPC, the transiton temperature, and the latent heat are included in black,
red, and blue, respectively. Lower Panel: 1/Tg profile used for the Maxwell construction is shown in
black, with the construction line shown in red. ¢) S-Loops for each lipid are presented on the same
scale. Transition temperatures are included as horizontal lines in the same color. CG lipids are
presented schematically, with NH3, PO,, glycerol, saturated tail, unsaturated tail beads represented
in red, blue, yellow, white, and green, respectively.

Maxwell construction. Alternatively, peaks in and can become complicated in systems with
explicit derivative of 1/Ts(H) with respect to ~ multiple transitions.?!

E have been used to identify the transition lo- In this letter, we demonstrate that gREMD
cation, but these require significant sampling can be combined with the recently developed



Machine Learning-assisted Lipid Phase Analy-
sis (ML-LPA) technique,?* and that this com-
bination allows for accurate determination of
the phase transition temperature with fewer si-
multaneous simulations. We have selected nine
lipids with phosphatidylcholine headgroups and
modeled them with the solvent-free coarse-
grained Dry Martini model. These lipids cover
a wide range of lipid chain lengths (DHPC,
DLPC, DPPC, DBPC, and DXPC), and ex-
tent of tail saturation (POPC, DOPC, DIPC,
DFPC).? The implicit solvent model for the
lipids was selected for the following reasons: i)
the phase behavior of this model (outside of
DPPC) has not been well characterized pre-
viously, ii) the lack of explicit solvent avoids
overlaying of solvent transitions and lipid tran-
sitions that complicates estimation of 7},, and
iii) computational efficiency.

To begin, we built small model systems con-
taining 32 lipids for each considered lipid type.
We have chosen the present system size as
the goal of this work is primarily to demon-
strate the combination of the gREMD and ML-
LPA methods. Furthermore, Stelter and Keyes
demonstrated!® that increasing the number of
DPPC lipids to 390 only decreased the transi-
tion temperature by 5 K, thus while the present
results may not be quantitatively exact we ex-
pect no significant modification of the qualita-
tive trends.

We then set up and ran gREMD calculations
for the transition temperature for each lipid.
For these simulations, we ran simulations over
a range of values for A\, to identify the approx-
imate phase transition region. Based on this,
we chose a reasonable bounds for A\, and equi-
librated each independently in the order from
low enthalpy to high enthalpy, using the re-
sults of the previous calculation as the initial
point for the new equilibration. Following this,
a full gREMD calculation was run until reach-
ing equilibrium, after which production simu-
lations of 600 ns were run. Full details of this
calculation, as well as the selected values of \,,
Hy, and 7 chosen for each lipid are included in
the SI.

We have calculated the S-Loop for each of
the PC lipids in the present study and eval-

uated both the phase transition temperature
and latent heat for each of the Dry Mar-
tini lipids and have reported their values, as
well as experimental measured values, in Ta-
ble 1. Of the studied lipids, all but POPC and
DHPC demonstrated a fluid/gel transition in
the gREMD simulations. DHPC, which has by
far the shortest chain length of any of the lipids
studied (2 CG beads in each tail), likely is too
small to observe a transition in the region acces-
sible with gREMD, as simulations become un-
stable at very low effective temperatures. The
lack of transition for POPC is more surprising
as the corresponding wet model has been pre-
viously shown to undergo the fluid/gel transi-
tion. To correct this, we incorporated the an-
gle modifications suggested by Daily and co-
workers for POPC which have been shown to
improve the wet model and gain closer agree-
ment with the experimentally measured transi-
tion temperature.?* Thus, we will include the
results from the angle corrected model for com-
pleteness.

While gREMD is capable of calculating T,,,
a significant number of simulation replicas were
required outside of the transition region to meet
the minimum criteria for the Maxwell construc-
tion. For the small model system described
presently, this is not such an issue as the largest
number of replicas used was 76 (for DBPC and
DXPC). However, as simulation size increases
the width of the transition region, AH, in-
creases, meaning that for larger systems (or
systems containing explicit solvent) additional
replicas would be needed. For instance, in our
DPPC simulations, of the 43 total replicas only
6 were located in the transition region. While
the remaining 37 could be cut down slightly by
exactly tuning the overlaps between adjacent
replicas, such tuning would not lead to a sig-
nificant reduction in the total number of repli-
cas. Furthermore, it has been shown previously
that adding another component that undergoes
a phase transition (e.g., water) can disrupt the
shape of the S-Loop, making it harder (or po-
tentially impossible) to identify the phase tran-
sition temperature through a Maxwell construc-
tion.

In the remainder of this Letter, we will



Half Fraction

D050 === === e e e e e e e N - s s s e e e e e
0.25} ST-WHAM Explicit Simulations -
Propagation
1 1 | 1 1 1 1 1
0.00 -48 -46 -44 -42 -40 -38 -36 -34
(b) Hllipid (kcal/mol)
1 0 1 1 I I I 1 1
\ DLPC DPPC \DBPC \[\)XPC
0.5 \ \\
Q 00 1 1 L ] ] \\7* ] 1 ]
—~ =40 -32 -50 -42 -34 -60 -52 -44 -70 -62 -54
|\U) 10n T T T T
\\POPC | DOPC DIPC DFPC
0.5 k /\L
ool ] L'— — !
"=50 -42 -50 -42 -50 -42 -50 -42

Hllipid (kcal/mol)

Figure 2: a) Schematic diagram of ML-LPA approach, mapping from gel half fraction (bottom) to
S-Loop (top) (example shown: DPPC). b) Gel fraction plots with half fraction marked for each of

the eight considered lipids.

demonstrate an alternative technique to calcu-
lating the phase transition temperature from a
gREMD simulation that does not require the
use of an equal area construction. Instead, we
will use the ML-LPA model recently developed
by Walter and co-workers to identify individual
lipid phases and then use this information in
tandem with the S-Loop to evaluate the transi-
tion temperature.??

In this work, we have adapted the pub-
licly available ML-LPA code??? for use with
LAMMPS.?6 This code uses a combination
of Naive-Bayes (NB), K-Nearest Neighbors
(KNN), and Support Vector Machines (SVM)
to learn (and classify) the features that go into
individual lipids as either gel or fluid phase.?"
These classification algorithms are applied to a
combination of both coordinates and distance



Table 1: Tabulated transition temperatures and latent heats from Expt., gREMD,
and ML-LPA. Uncertainties in the final digit(s) are reported as subscripts. For the
transition region calculations, DPPC-Tr42 has 42 replicas in the transition region, and

DPPC-Tr12 has 12 replicas.

CG Beads Expt. gREMD ML-LPA
Lipid Ntail  Nansat L /Lipid®e TP L/Lipid T, T,
(kcal/mol)  (K)  (kcal/mol) (K) (K)
DLPC 6 0 2.111 271.15 4.69, 297.6g 287.7g
DPPC 8 0 8.214 314.15 6.855 332.1,8  335.0 o3
DPPC-Tr42 8 0 8.21.4 314.15 - - 334.0g
DPPC-Tr12 8 0 8.214 314.15 - - 337435
DBPC 10 0 13.325 339.15 9.075 354.815  353.014
DXPC 12 0 15416 353.45 9.881¢ 365.8¢ 365.41 4
POPC! 8 1 ; 97115  3.764 2622,  254.9;,
DOPC 8 9 ; 956.15  5.66s 20145 29155
DIPC 8 4 - 216.15 4.72, 257.54  258.1;,
DFPC 8 6 - 213.15 4.614 244.0, 264.5¢

T POPC includes angle corrections not included in any of the other studied models.
a Experimental latent heats taken from Table 1 of Koynova et al.*

vectors between pairs of beads separated by at
least four bonds. We then trained individual
ML-LPA models for each lipid on 3- microsec-
ond NPT simulations of two gel temperatures
and two fluid temperatures, selected based on
prior knowledge of the transition region for a
total of 4,000 configurations. Full training de-
tails, as well as model validation accuracy, are
included in the SI.

These learned models were then applied to ev-
ery gREMD configuration and used to evaluate
the gel fraction,

- e

where Nge is the number of gel lipids identi-
fied, and Njpigs is the total number of lipids.
We then propagated x4 through ST-WHAM
to obtain the profile of xg(H). This profile
is similar for each lipid, it is close to one at
low enthalpies (gel phase) and decreases sharply
across the phase transition, until it becomes
near zero at high enthalpies (fluid phase). By
combining zg(H) and T,(H) we access the
overarching profile Ty(xz) which provides in-
formation about the statistical temperature as
a function of gel fraction. In practice, we access

the overarching profile by using a cubic spline
interpolation on both profiles individually in or-
der to map both more precisely to enthalpy.

If we define the phase transition as the loca-
tion where there is an equal proportion of lipids
in the fluid and gel phase, we can identify the
transition temperature from the statistical tem-
perature profile as T}, = Ts(xge = 0.5). Thus,
the ML-LPA approach provides an alternative
to the Maxwell Construction by providing oth-
erwise unavailable access to Zgel.

In summary, the typical procedure the com-
bined calculation works as follows:

e Run two simulations, one at low temper-
ature and one at high temperature to es-
timate the enthalpies. Use the procedure
described by Kim et al. to extract values
of Hy and n.'"

e Run consecutive simulations one after an-
other from low-\, to high-\, using the
previous final configuration as the start-
ing point for the simulation. From each
simulation calculate the temperature and
use this information to obtain the range
of A\, needed to encompass the transition
region.



e Run a gREMD calculation using these
values of \,.

e Train the ML-LPA code on two tempera-
tures for each phase using at least a few
hundred configurations for each.

e Sort the gREMD configurations by value
of A\, and apply the ML-LPA model to
each configuration to evaluate 4. Use
ST-WHAM to stitch these, as well as
the statistical temperature, together into
Tga(H) and T, (H), respectively. Evalu-
ate the transition temperature by locating
the point on T(H) where xzq(H) = 0.5.

We have applied this approach, which is
shown schematically in Figure 2, to each of the
lipids and used it to evaluate the transition tem-
perature. These transition temperatures are
listed in the eighth column of Table 1.

In Figure 3, we have plotted values of all
the transition temperatures calculated by both
methods. In general, we find that the ML-
LPA approach successfully reproduces the val-
ues of the transition temperature calculated by
gREMD. For instance, for DPPC, the value of
T,, extracted using the Maxwell construction
approach is 332.0 K + 0.8 K, whereas the ML-
LPA approach gives a value of 335.0 K + 2.3
K, which is in agreement within uncertainty.
Similarly good agreement is seen for the vast
majority of the lipids.

One exception to this good agreement is in the
case of the DFPC bilayer, which contains three
unsaturated tail beads. From the Maxwell con-
struction, we obtained a value of 244.0 K +
0.1 K, whereas we obtained using the present
ML-LPA approach a value of 264.5 K 4+ 0.6 K,
which are significantly different. Importantly,
by looking at the x4 (H) profile for this lipid
in Figure 2B, it becomes clear that the highest
gel fraction it finds for this lipid is about 60%,
or about 20 lipids in the gel phase. Attempts at
further training to improve this gel fraction in
the low enthalpy regime were not fruitful, and
did not provide meaningful modifications to the
ML-LPA predicted transition temperature.

We believe that the highly kinked conforma-
tion of the DFPC lipid tails leads to the ML al-

gorithm to incorrectly identify gel phase lipids
as fluid, leading to the failure to obtain the cor-
rect transition temperature. In the Supporting
Information, we include calculations of the area
per lipid and tail order parameter calculated
for the training data. These parameters are
most similar between the fluid and gel phases
for DFPC, which suggests that the phases may
not be distinct enough for classification through
ML-LPA. This could potentially be resolved in
the future by improving the features used for
training and classification.

There are a few important advantages to the
presently developed approach. Firstly, the cal-
culation of the full S-Loop is not required to
extract the transition temperature. To demon-
strate this we re-ran DPPC using 12 windows
located primarily in the transition region. Us-
ing ML-LPA, we find the transition tempera-
ture from this calculation to be 337.4 K £ 3.5
K, in good agreement with the above results
calculated from the entire S-Loop. Likewise, we
also ran a calculation with 42 replicas in over
the same region, which provided a value of 334.0
+ 0.8 K for the transition temperature. While
having many replicas in the transition region
(as in the 42 replica calculation) improves the
accuracy of the estimated transition region, it
is clear from the 12 replica calculation that few
replicas are needed to estimate the transition
temperature with reasonable accuracy.

As more windows are required by gREMD
as the system size increases, reducing the si-
multaneous effort to only the transition region
empowers scaling to larger systems than would
otherwise be possible. Secondly, in general both
considered methods give comparatively better
agreement with one another than other re-
ported approaches have in the past. Even slight
variations between gREMD and ML-LPA (e.g.,
the 10 K difference for DLPC) are smaller than
the range of reported simulation results from
other approaches. Lastly, because this method
effectively maps the statistical temperature to
the gel fraction directly, it allows for estimation
of transition temperatures in scenarios where
the S-Loop takes on a complicated structure.
Even a binary system (e.g., wet Martini DPPC
with water beads) has a significantly more com-



w

[e2]

o
T

w

LN

o
T

N
N
1

15 20
Nchain

(b)

3407 ' ; -
b4
320} .
[ ]
300} .
. v
X og0} .
£ ]
(o i ° ML Y
260 ° . -
240} gREM -
220} a Bt
0 1 2 3

Nsat

Figure 3: Phase transition temperatures are presented as a function of a) chain length and b) tail
unsaturation. Maxwell construction and ML transition temperatures are shown as blue circles and
red triangles, respectively. Experimental data is included as filled black squares. Fits to Cevc’s Eq.
1 are included in the same color as dashed lines to guide the eye.?®

plicated S-Loop'? that can present a challenge
to the Maxwell Construction approach.

Both methods of calculating the transition
temperature demonstrate that the Dry Mar-
tini model is able to qualitatively describe lipid
phase behavior as a function of both chain
length and tail saturation, with the exception
of POPC, for which the unmodified Dry model
did not demonstrate a phase transition and the
angle-corrected model matches better with ex-
periment that the other Dry lipids.

In summary, combining ML-LPA and
gREMD greatly reduces the expense of es-
timating the phase transition temperature.
Instead of requiring simulation windows far
outside of the transition region in order to
create a Maxwell Construction, the combined
method requires only simulations in the S-Loop
transition region, greatly reducing the cost of
gREMD calculations. This decrease is signifi-
cant enough that it will make gREMD calcula-
tions accessible for larger system sizes.

Our results demonstrate that for a wide range
of Dry Martini lipids the combined method is
able to determine the fluid/gel phase transi-

tion temperature within a reasonable accuracy
for most lipids. The addition of another train-
ing feature, such as area per lipid (calculated
through a Voronoi diagram), could potentially
be used to further improve this agreement in
the future. Additionally, the combined method
provides a promising alternative to the Maxwell
construction for systems that may not have an
ideal S-Loop. For instance, lipids with explicit
water have multiple phase transitions that have
been shown previously to modify the shape of
the S-Loop significantly, complicating the cal-
culation of a transition temperature for these
systems. It is likely that such methodology
could also prove useful for systems with lipid
mixtures. Lastly, the present work demon-
strates that Dry Martini lipids are generally
able to reproduce qualitative trends in the tran-
sition temperature as a function of chain length
and tail saturation when compared with exper-
iment.



Methods

For all simulations, a test set of phosphatidyl-
choline lipids were considered such that trends
with respect to chain length (DLPC, DPPC,
DBPC, DXPC) and chain saturation (POPC,
DOPC, DIPC, DFPC) could be considered.
A corrected Dry Martini force field file was
generated from the publicly available Martini
ITP files for use with the Moltemplate soft-
ware, 229 which was then used to generate sys-
tems of 32 lipids. This system size was se-
lected to match the size used by Stelter and
co-workers on DPPC bilayers.'® In that work,
it was demonstrated that while finite size ef-
fects are present for such system sizes these ef-
fects are smaller than the uncertainty caused
due to thermal hysteresis. After energy mini-
mization, systems were equilibrated for 300 ns,
while gradually increasing the timestep from 1.0
fs to the production value of 30 fs (the thermo-
stat and barostat damping parameters were set
to be 100 and 1000 times the timestep as it was
scaled).

For gREMD simulations, a walkdown proce-
dure from lowest to highest enthalpy replica
was applied for 15 ns on each replica. gREMD
simulations were run until block averaging of
the S-Loops no longer showed a block depen-
dence, anywhere between 1.5 us to 3 us, after
which production runs of 600 ns were run from
which reported values were calculated. ML-
LPA training simulations were initialized from
equilibrated gel configurations and allowed to
relax for 300 ns in the NpT ensemble, these sim-
ulations were run for a further 3 us from which
configurations were output every 300 ps. Mod-
els were trained on every fifth configuration to
balance training expense and accuracy. For all
calculated values, statistical uncertainties are
estimated using block averaging over 5 blocks
and are reported as a 95-% confidence interval
according to Student’s t-distribution.3°
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