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Abstract

We consider a classical scheduling problem on m identical machines. For an arbitrary constant q > 1, the
aim is to assign jobs to machines such that

∑m
i=1 C

q
i is minimized, where Ci is the total processing time of

jobs assigned to machine i. It is well known that this problem is strongly NP-hard.
Under mild assumptions, the running time of an (1 + ε)-approximation algorithm for a strongly NP-hard

problem cannot be polynomial on 1/ε, unless P = NP. For most problems in the literature, this translates

into algorithms with running time at least as large as 2Ω(1/ε) + nO(1). For the natural scheduling problem
above, we establish the existence of an algorithm which violates this threshold. More precisely, we design a

PTAS that runs in 2Õ(
√

1/ε) + nO(1) time. This result is in sharp contrast to the closely related minimum
makespan variant, where an exponential lower bound is known under the exponential time hypothesis (ETH).
We complement our result with an essentially matching lower bound on the running time, showing that our
algorithm is best-possible under ETH. The lower bound proof exploits new number-theoretical constructions
for variants of progression-free sets, which might be of independent interest.

Furthermore, we provide a fine-grained characterization on the running time of a PTAS for this problem
depending on the relation between ε and the number of machines m. More precisely, our lower bound only
holds when m = Θ(

√
1/ε). Better algorithms, that go beyond the lower bound, exist for other values of m.

In particular, there even exists an algorithm with running time polynomial in 1/ε if we restrict ourselves to
instances with m = Ω(1/ε log2 1/ε).

1 Introduction

We consider a classical scheduling problem on identical parallel machines. Suppose we are given m identical
machines and n jobs, each having a processing time pj . A feasible solution corresponds to an assignment of jobs
to machines. For a given assignment, let Ci be the total processing time of jobs assigned to machine i, that is,
Ci =

∑
j→i pj . Our objective is to minimize

∑m
i=1 C

q
i , where q > 1 is an arbitrary constant. For either exact

algorithms or approximation schemes, minimizing
∑m
i=1 C

q
i is equivalent to minimizing the `q-norm of machine

loads, i.e., (
∑m
i=1 C

q
i )1/q. In the standard 3-field scheduling notation by Graham et al. [13], this problem is

denoted as P ||
∑
i C

q
i .

Our problem is well-known to be strongly NP-hard by a simple reduction from 3-partition. On the other
hand, a classic result by Alon et al. [1] shows that it admits a polynomial time approximation scheme (PTAS)
with running time f(1/ε) + nO(1), where f(1/ε) is doubly exponential in 1/ε. Very recently, improved running
times have been obtained for P ||

∑
i C

q
i and other closely related load balancing problems. Particularly, for a

variety of objective functions, which include both
∑
i C

q
i and the makespan objective Cmax = maxi Ci, Jansen

et al. [20] show that the problem admits a PTAS with a running time of 2Õ(1/ε) + Õ(n). On the negative side,
for the makespan objective, Chen et al. [7] show that such a running time is essentially best possible under
the exponential time hypothesis (ETH). However, the lower bound does not hold for other objectives, including
P ||
∑
i C

q
i , leaving open the possibility for improved running times. In this paper, we study this question and

explore the surprisingly rich complexity landscape of P ||
∑
i C

q
i in the context of approximation schemes.

Contribution Overview. We study the complexity landscape of approximation schemes for P ||
∑
i C

q
i . Consider

some strongly NP-hard optimization problem whose optimal value OPT(I) is integral and upper bounded by
poly(|I|u) for any instance I, where |I|u is the input size written in unary. This implies that the problem does
not admit a fully polynomial-time approximation scheme (FPTAS) unless P=NP [11]. In the majority of cases,
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Figure 1: Complexity landscape of P ||
∑
i C

q
i . The time axis specifies the dependency of the running time with

respect to 1/ε. A term of nO(1) needs to be added in the running of each algorithm.

for such problems the literature presents PTASs with running time at least as large as 2Ω(1/ε) + nO(1), that is,
the dependency on 1/ε is exponential. We show that P ||

∑
i C

q
i does not fall into this case, and a running time

subexponential on 1/ε is achievable. More precisely, we give a PTAS with a running time of 2Õ(
√

1/ε) + nO(1).
On the other hand, we show that this running time is essentially tight, by providing an almost matching lower

bound under ETH. That is, we show that ETH rules out a PTAS of running time 2O((1/ε)1/2−δ) + nO(1) for any
δ > 0. We are not aware of any other PTAS for a strongly NP-hard problem with such a tight subexponential
behavior on 1/ε.

Besides the results above, we give a fine-grained study on the upper and lower bounds of the running time
of a PTAS for P ||

∑
i C

q
i . First of all, we notice that our lower bound only holds for a small range of values of

m, depending on ε. Moreover, for some other values, we can circumvent the lower bound and obtain improved
running times. More precisely, the lower bound only holds when m = Θ(

√
1/ε). Quite surprisingly, when m is

larger, namely m = Ω(1/ε log2(1/ε)), an algorithm that runs polynomially in 1/ε exists, despite the problem being
strongly NP-hard in general and our stronger lower bound. If m = O(

√
1/ε) we can use a PTAS with running

time (1/ε)O(m), which also breaks the lower bound for m = o(
√

1/ε). See Figure 1 for a depiction of our results.
It remains an open problem to obtain tight running times when m = Θ((1/ε)θ) for θ ∈ (1/2, 1].

Technical Contribution. Our main technical contribution lies in the lower bound proof. For this, we give a fine-
grained reduction from a variant of Max3SAT to P ||

∑
i C

q
i . To do so, we convert a set of clauses to a set of jobs.

We enforce that two jobs which represent variables in the same clause are scheduled together in some carefully
constructed gap (i.e., slot) of a given size. For such a construction, it is imperative to use pairs of numbers with
unique sums, to guarantee that only these two jobs fit this gap. Hence, our construction is tightly related to
Sidon sets and Salem–Spencer sets (also called progression-free sets), both of which have been studied extensively
in number theory (see, e.g., [10, 35, 33, 12]). A Sidon set S = {s1, s2, . . . , sn} is a subset of natural numbers
where all pairwise sums si + sj , for i ≤ j, are distinct. That is, si + sj = si′ + sj′ implies {i, j} = {i′, j′}. A
weaker notion is that of a Salem-Spencer set, that is, a set S = {s1, s2, · · · , sn} with no cardinality 3 progression,
i.e., no triplet (i, j, k) ∈ Zn := {1, 2, · · · , n} of pairwise different numbers satisfies si − sj = sk − si. In other
words, if sj + sk = 2si then i = j = k. Our lower bound could be proved by adapting known techniques if a
Sidon set S ⊆ ZN (where ZN := {1, 2, · · · , N}) with cardinality n exists for N = n1+o(1). Unfortunately, this is
impossible, as Erdös and Turán [10] show that the cardinality of a Sidon set with n elements requires N = Ω(n2).
We can circumvent this negative result by requiring only some pairs of numbers to have a unique sum, where
these pairs correspond to the clauses in the given Max3SAT instance. Towards this, we first transform the given
Max3SAT instance, with variables zj for j ∈ Zn, into a special structure such that all clauses can be divided
into two disjoint subsets C1 and C2: C1 consists of clauses cl2, cl5, · · · , cln−1 such that cl` = (w`−1 ∨ w` ∨ w`+1),
where wj ∈ {zj ,¬zj} for all j; and C2 consists of clauses cl′1, cl

′
2, · · · , cl′n such that cl′` = (z` ⊕ ¬zτ(`)), where

τ is a permutation of Zn and ⊕ is the XOR operation (see Section 3.1 for details). For C1, we construct a
set of numbers {σ(1), σ(2), · · · , σ(n)} such that every adjacent sum σ(i) + σ(i + 1) is unique, and this will be
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achieved through extending a known construction of Salem-Spencer sets (Lemma 3.3). For C2, we extend the
construction to additionally require that the σ(i)’s we construct admit a linked unique sum. That is, there exists
a subset of numbers Ei = {ei,1, ei,2, . . . , ei,ω} ⊆ Zn1+o(1) for every i ∈ Zn such that Ei ∩ Ei′ = ∅ for any i′ 6= i,
and the sum of each pair σ(i) + ei,1, ei,1 + ei,2, · · · , ei,ω−1 + ei,ω, ei,ω + σ(τ(i)) is unique in the sense that no
other pairs in S ∪ E sum up to the same value, where E =

⋃n
i=1Ei. Note that a linked unique sum is a weaker

notion than Sidon or Salem-Spencer, as for these there is no auxiliary set E. Nevertheless, the property of
linked unique sum is strong enough for our reduction. The construction of the auxiliary set E relies on further
extending our technique for constructing unique adjacent sums, together with a group theoretic lemma that allows
an “orthogonal” decomposition of the permutation τ (Lemma 3.5). Our results may be of separate interest for
constructing fine-grained lower bounds on approximation or parameterized algorithms for other problems.

Another crucial observation, which may also be of independent interest, is a structural result needed for our

PTAS with running time 2Õ(
√

1/ε) + nO(1) (see Section 2.1). For many objective functions (like Cmax) we can
round the processing times to powers of 1 + ε in order to bound the overall loss by a factor of 1 + O(ε). We
observe that for minimizing

∑
i C

q
i it is possible to consider a coarser grouping of jobs into sizes within a (1 +

√
ε)

factor. Broadly speaking, by imposing extra structure to a near-optimal solution, we can use a Taylor expansion
to bound the error, and notice that the linear term of the polynomial expansion cancels out. This leaves us only
with the quadratic (and lower order) terms. This observation might translate to other problems with `q-norm
objective, and even other min-sum cost functions.

Related Work. Load balancing problems are fundamental in computer science and have been studied extensively
in the literature. In particular, the first PTAS for P ||Cmax dates back to the 80’s [15] and there is a long history
of improvements on the running time for various identical machine scheduling problems, including P ||Cmax,
P ||
∑
i C

q
i , P ||

∑
j wjCj , etc.; see, e.g., [27, 2, 14, 37, 19, 20]. Recently, more general objective functions based

on arbitrary norms have been considered [16]. Parameterized algorithms for scheduling problems have also been
studied extensively (see, e.g. [22, 31, 32, 25, 8]).

The exponential time hypothesis (ETH) is a widely accepted complexity assumption introduced by
Impagliazzo et al. [18, 17], which can be used to obtain lower bounds on the running time of algorithms for
various problems (see, e.g., [28] for a survey). In 2014, Chen et al. [7] provide a concrete lower bound on
the running time of a PTAS for P ||Cmax under ETH. Later, Jansen et al. [20] give a PTAS with running time

2Õ(1/ε) + nO(1) for P ||Cmax, which almost matches the lower bound.
Despite PTASs having been established for a variety of optimization problems, much less is known regarding

lower bounds on their running time. In addition to P ||Cmax, mentioned above, other well-known examples
include multiple knapsack [21], planar vertex cover, planar dominating set, and planar traveling salesperson [29].
Interestingly, all of these lower bounds have an almost linear dependency on 1/ε in the exponent, which essentially
matches the best-known PTAS. Generally, Chen et al. [6] proved that if the problem, parameterized by 1/ε, is
W[1]-hard under a linear FPT reduction, then there is no PTAS with f(1/ε)|I|o(1/ε) running time for an arbitrary
computable function f , assuming all problems in SNP cannot be solved in sub-exponential time. We are not
aware of a PTAS whose running time is subexponential in 1/ε, either for scheduling or other strongly NP-hard
problems.

Unlike approximation algorithms, subexponential running times on a parameter have been observed in the
field of parameterized algorithms and have received significant attention. In particular, a variety of optimization
problems in planar graphs admit a fixed parameter tractable (FPT) algorithm that is subexponential in the
parameter, including, e.g., independent set [9], dominating set [9], and multiway cut [24, 30, 36]. Note that, on
the other hand, a subexponential PTAS was ruled out for the planar dominating set problem [29].

2 Approximation schemes

The goal of this section is to prove the following theorem.

Theorem 2.1. For any sufficiently small ε > 0, there exists an algorithm that outputs a (1 + ε)-approximate

solution for the scheduling problem P ||
∑
i C

q
i within 2Õ(

√
1/ε) + nO(1) time. More specifically, there exists a:

• (1 + ε)-approximation algorithm AL1 that runs in time (1/ε)O(m) + nO(1) for m = O(
√

1/ε);

• (1 + ε)-approximation algorithm AL2 that runs in time 2Õ(
√

1/ε) + nO(1) for m = (1/ε)O(1);
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• (1 + ε)-approximation algorithm AL3 that runs in time (1/ε)O(1) + nO(1) for m = Ω(1/ε log2(1/ε)).

In particular, for a sufficiently small ε, we may run AL1 for m ≤
√

1/ε, run AL2 for
√

1/ε < m ≤ 1/ε2, and

run AL3 for m ≥ 1/ε2. This guarantees a 2Õ(
√

1/ε) + nO(1) time algorithm for all values of m and 1/ε.
We remark that standard techniques round the processing time of a job to some multiple of 1 + ε, yielding

an instance with Õ(1/ε) different types of jobs. However, such rounded instance cannot be solved to optimality

in time 2(1/ε)1−δ
+ nO(1) for any constant δ > 0 [7]. Hence, we need a new approach for Theorem 2.1.

We now give a brief overview of the proof of Theorem 2.1. Algorithm AL1 is based on a standard dynamic
programming, given in Appendix A.1. Algorithm AL2 is based on an new observation (Lemma 2.3) which shows
that we can classify processing times on intervals of the form [ε(1 +

√
ε)h−1, ε(1 +

√
ε)h) for an integer h. After

preprocessing the instance (Lemma 2.1), we can focus on only Õ(1/
√
ε) such intervals. We show that there exists

a near-optimal solution where jobs are scheduled in an ordered way following the mentioned classification. This
algorithm is described in Section 2.1. Algorithm AL3 (see Appendix A.3) is based on modifying the famous
algorithm for the bin packing problem by Karmarkar and Karp [23].

All the three algorithms will operate on a scheduling instance that is well-structured, as implied by the
following lemma. The structure can be achieved through standard techniques, namely scaling and grouping of
small jobs, see, e.g., [2]. For an instance I, we denote by size(I) the total processing time of jobs in I, and by
m(I) the number of machines.

Lemma 2.1. (Alon et al. [2]) For any sufficiently small ε > 0, given an arbitrary instance I0 of P ||
∑
i C

q
i , we

can transform in linear time I0 into a well-structured rounded instance I with less or equal number of jobs and
less or equal number of machines, that satisfies:

• size(I) = m(I);

• the processing time of each job in I belongs to [ε, 1];

• there exists an optimal solution for I such that the load of each machine belongs to [1/2, 2].

Furthermore, any (1+ε)-approximation solution for I can be transformed into an (1+O(ε))-approximation solution
for I0 in linear time.

In the following, we focus exclusively on the instance after the preprocessing. It is worth mentioning that for
non-integral values of q, the objective function can be irrational even for rational processing times. For obtaining
a PTAS this is however not a problem, as computing the objective function up to an additive error of ε/poly(n)
suffices for our results. In what follows we omit this technicality, and assume that we can compute the objective
function without error.

2.1 Algorithm 2 In this subsection, we describe and analyze algorithm AL2.

Lemma 2.2. Consider an instance after the preprocessing of Lemma 2.1. For any ε > 0, there exists an algorithm

AL2 that outputs a (1 +O(ε))-approximation solution for P ||
∑
i C

q
i with mÕ(1/

√
ε) running time.

We know there exists an optimal solution x∗ where the load of each machine belongs to [1/2, 2]. Let L∗i
be the load of machine i in x∗ where 1/2 ≤ L∗i ≤ 2. Without loss of generality we further assume that
L∗1 ≤ L∗2 ≤ · · · ≤ L∗m. For some integer h ≥ 1, let Gh be the set of jobs whose processing time lies in
[ε(1 +

√
ε)h−1, ε(1 +

√
ε)h). Given that ε ≤ pj ≤ 1, every job belongs to some set Gh for h ∈ {1, . . . , τ},

where τ = Õ(1/
√
ε). For simplicity, we call a job in Gh a Gh-job. The following structural result contains the key

observation for the existence of a PTAS with subexponential time.

Lemma 2.3. There exists a feasible solution x̂ satisfying: i) its objective value is at most (1 + O(ε))OPT , and
ii) the machines can be ordered from 1 to m such that for any 1 ≤ i ≤ m− 1 and h, the processing time of every
Gh-job on machine i+ 1 is at most the processing time of any Gh-job on machine i.

Proof. Given an optimal solution x∗, we construct x̂ as follows. For machine m, we replace all Gh-jobs with the
same number of the smallest Gh-jobs. For machine m − 1, we replace all Gh-jobs with the same number of the
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remaining smallest Gh-jobs, etc. Eventually, every Gh-job on machine i + 1 is no greater than any Gh-job on
machine i. Let L̂i = L∗i + ∆i be the new load of machine i.

By the definition of Gh, we know that the largest Gh-job has a processing time at most 1 +
√
ε times the

smallest one. This implies that L∗i /(1 +
√
ε) ≤ L̂i ≤ (1 +

√
ε)L∗i , and hence |∆i| ≤

√
εL∗i ≤ 2

√
ε. In order to

bound the objective function, first write
∑m
i=1(L∗i + ∆i)

q =
∑m
i=1 L

∗
i
q(1 + ∆i/L

∗
i )
q. Using a Taylor expansion of

order 1 on the function (1 + x)q around x = 0, we obtain that for some 0 ≤ ξi ≤ ∆i/L
∗
i ≤ 1,

m∑
i=1

(L∗i + ∆i)
q =

m∑
i=1

L∗i
q

(
1 + q

∆i

L∗i
+
q(q − 1)

2
(1 + ξi)

q−2

(
∆i

L∗i

)2
)

≤ (1 +O(ε))
m∑
i=1

L∗i
q + q

m∑
i=1

∆iL
∗
i
q−1

= (1 +O(ε))OPT + qL∗1
q−1

m∑
k=1

∆k + q
m∑
i=2

[
(L∗i

q−1 − L∗i−1
q−1)

m∑
k=i

∆k

]
≤ (1 +O(ε))OPT.

The last equality uses Abel’s transformation (summation by parts). The last inequality follows since, for each
i, it holds that

∑m
k=i ∆k ≤ 0, as the last m− i machines received the smallest Gh-jobs for each h.

Exploiting the ordering of the jobs and machines given by Lemma 2.3, we are able to develop a dynamic
programming based algorithm to prove Lemma 2.2, see Appendix A.2.

3 Lower Bound

In this section, we will prove the following theorem.

Theorem 3.1. Let q > 1 be an arbitrary constant. Assuming ETH, there is no PTAS for P ||
∑
i C

q
i that runs in

2O((1/ε)1/2−δ) + nO(1) time for any constant δ > 0.

For the proof we give a fine-grained reduction from a variant of Max3SAT, called 3SAT′ (which we elaborate
in the following subsection), to P ||

∑
i C

q
i .

3.1 3SAT′ - Max3SAT with a Special Structure We study a variant of 3SAT, which we call 3SAT′, whose
instances have the following structure: There are n variables z1, . . . , zn, where n is a multiple of 3. There are
4n/3 clauses, such that the set of clauses can be divided into two disjoint sets C1 and C2 such that:

• In C1, every clause is a disjunction (OR operator) of three literals. For each variable zi, exactly one literal
in C1 belongs to {zi,¬zi}.

• In C2, every clause is of the form zi ⊕¬zk, where ⊕ denotes the XOR operator. Also, for every variable zi,
each literal zi and ¬zi appears exactly once within C2.

For example, C1 = {(z1 ∨ ¬z2 ∨ z3)} and C2 = {(z1 ⊕ ¬z2), (z2 ⊕ ¬z3), (z3 ⊕ ¬z1)} defines a 3SAT′ instance
for n = 3. Let cl2, cl3, · · · , cln−1 be the clauses in C1. By re-indexing we can assume that cl` is of the form
(w`−1 ∨ w` ∨ w`+1), where wj ∈ {zj ,¬zj} for all j. Also notice that |C1| = n/3 and |C2| = n. Since every literal
appears exactly once in C2, we define a permutation τ : Zn → Zn (i.e. a bijection) such that τ(i) = k for each
(zi ⊕ ¬zk) ∈ C2.

Similarly to 3SAT, it is also difficult to distinguish instances of 3SAT′ where almost all clauses are satisfiable
and instances where at most certain fraction of the clauses can be satisfied, as implied by the following lemma.
See Appendix B for its proof.

Lemma 3.1. Assuming ETH, there exists a constant β ∈ (0, 1) such that for any sufficiently small ε′, δ > 0 there

is no algorithm with running time 2O(n1−δ) that distinguishes between instances of 3SAT ′ with 4n/3 clauses where
at least (1− ε′) · 4n/3 clauses are satisfiable, from instances where at most (β + ε′) · 4n/3 clauses are satisfiable.
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3.2 Overview of the reduction We now briefly describe the structure of the constructed scheduling instance. The
detailed reduction will be presented in Appendix F. We remark that the high-level structure of the scheduling
instance resembles the classical reduction and that of [7]. New technical ingredients are in job processing times,
as we will elaborate in Section 3.3.

For an instance Isat of 3SAT′ with n variables, we construct the following 6 kinds of jobs:

• Variable jobs: For each positive (or negative, resp.) literal, say, zi (or ¬zi, resp.), two pairs of variable jobs
V ρi,+,1 and V ρi,+,2 (or V ρi,−,1 and V ρi,−,2, resp.) are constructed where ρ ∈ {T, F}. In total, we construct 4 jobs
for each (positive or negative) literal, i.e., 8 jobs for each variable.

• Clause jobs: For each clause cl` of C1, one clause job CLT` and two copies of clause job CLF` are constructed.
Recall that |C1| = n/3, we construct n clause jobs.

• Truth-assignment jobs, link jobs and dummy jobs: These three kinds of jobs will be created suitably so that
the conditions below (CO1 to CO4) are satisfied.

• Gap jobs: Let Q be a target makespan. We construct Õ(n) gap jobs and the same number of machines to
create gaps. Roughly speaking, every feasible schedule whose objective value is not too large will have one
gap job on each machine, leaving a gap that must be filled up such that the load of the machine is exactly
Q. We will create 4 kinds of gaps (incurred by gap jobs) satisfying the following conditions:

– CO1. Variable-Truth gaps. To fill up these gaps, for any i either V Fi,+,1, V Fi,+,2, V Ti,−,1, V Ti,−,2, or V Ti,+,1,

V Ti,+,2, V Fi,−,1, V Fi,−,2 are used. Truth-assignment jobs are created for this purpose.

– CO2. Variable-Clause-Dummy gaps. For each clause cl` ∈ C1, there are three variable-clause-dummy
gaps. If the positive (or negative, resp.) literal zi (or ¬zi, resp.) is in cl` ∈ C1, then a variable-

clause-dummy gap is created so that it could only be filled up by CLρ` and V ρ
′

i,+,1 (or CLρ` and V ρ
′

i,−,1,

resp.), where ρ, ρ′ ∈ {T, F}, together with a dummy job. Further, the gap ensures that CLT` has to be
scheduled with either V Ti,+,1 or V Ti,−,1.

– CO3. Variable-Link and Link-Link gaps. For each clause (zi ⊕ ¬zk) ∈ C2 we create a collection of
Variable-Link and Link-Link gaps. To fill up these gaps, either V Ti,+,2 and V Fk,−,2, or V Fi,+,2 and V Tk,−,2
are used. Link jobs are created for this purpose (see Section 3.3 for more details on this construction).

– CO4. Variable-Dummy gaps. Recall that 8 variable jobs are constructed for a variable and only 7
of them are used for the 4 kinds of gaps above (either V ρi,+,1 or V ρi,−,1 is left, where ρ ∈ {T, F}), the
remaining one together with a dummy job will be used to fill these gaps.

With this construction, it is not difficult to verify that if every gap is filled exactly, Isat is satisfiable. To see
why, if V Fi,+,1, V Fi,+,2, V Ti,−,1, V Ti,−,2 are used in the variable-truth gaps, then we let variable zi be true, otherwise

we let it be false. For any clause of C1, say, cl`, there is one CLT` and it must be scheduled with a true variable
job, say, V Ti,+,1 if zi is a literal in cl` (or V Ti,−,1 if ¬zi is a literal in cl`). If V Ti,+,1 (or V Ti,−,1, resp.) is scheduled

with CLT` , then the positive (or negative, resp.) literal zi (or ¬zi, resp.) is in cl`. Meanwhile the variable zi is
true (or false, resp.) since otherwise V Ti,+,1 (or vTi,−,1,resp.) are used to fill variable-truth gaps. Thus clause cl`
is satisfied. For any clause of C2, say, (zi ⊕ ¬zk), if V Ti,+,2 and V Fk,−,2 (or V Fi,+,2 and V Tk,−,2, resp.) are used to fill
up the corresponding variable-link and link-link gaps, then variables zi and zk are both true (false, resp.) since
otherwise V Ti,+,2 and V Fk,−,2 (V Fi,+,2 and V Tk,−,2, resp.) would have been used to fill up the variable-truth gaps.
Hence, (zi ⊕ ¬zk) is satisfied. Similarly, if Isat is satisfiable, then every gap can be filled up.

Chen et al. [7] provided a reduction that meets the above requirement with job processing times, and hence
the target value Q, being O(n1+δ) for arbitrarily small constant δ > 0. Unfortunately, using this reduction we can

only deduce a weaker lower bound of 2O((1/ε)1/3−δ) (see Appendix C for a detailed discussion). For our purpose,
we need to design job processing times to achieve a stronger ratio-preserving property, as we elaborate below.

Recall that we are given an instance of 3SAT′ with n variables and 4n/3 clauses. For a given solution, we
say a machine is good if its load is exactly Q (in which case there is exactly one gap job on it and the gap is filled
up exactly), and is bad otherwise (in which case its load is at least Q+ 1/2 or at most Q− 1/2). Our scheduling
instance will additionally satisfy the following properties:
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i. There are m = Õ(n) machines and the target makespan is Q = Õ(n).

ii. Each processing time is a multiple of 1/2 and the total job processing time equals mQ.

iii. Conditions CO1 to CO4 are satisfied. Additionally, the following ratio-preserving properties are satisfied.
For any ϑ ∈ (0, 1) it holds that:

– If the 3SAT′ instance admits a truth assignment where at most ϑn clauses are not satisfied, then the
constructed scheduling instance admits a feasible solution with at most ϑ1n bad machines, for some
ϑ1 = Θ(ϑ). In particular, the load of these bad machines is Q+ 1 or Q− 1.

– If any truth assignment for the 3SAT′ instance has at least ϑn clauses that are not satisfied, then in
any feasible schedule of the constructed scheduling instance there are at least ϑ2n bad machines, for
some ϑ2 = Θ(ϑ).

Before giving more details of the construction, we briefly argue that an instance satisfying properties (i)-(iii)
implies Theorem 3.1.

Proof. [Proof Idea (Theorem 3.1)] Take q = 2 for simplicity. We assume by contradiction that there exist some
sufficiently small δ > 0, such that for any ε > 0 there is an (1 + ε)-approximation algorithm with running time

2O((1/ε)1/2−δ) +nO(1). Let β ∈ (0, 1) be a constant, and let ε′, δ > 0 be sufficiently small numbers, as in Lemma 3.1.

We show that, for an appropriately chosen ε, the PTAS can be used to distinguish, in time 2n
1−δ

, 3SAT′ instances
where at least (1 − ε′) · 4n/3 clauses are satisfiable, from 3SAT′ instances where at most (β + ε′) · 4n/3 clauses
are satisfiable, contradicting ETH by Lemma 3.1. Indeed, we first observe that every bad machine will cause the
objective value to increase by at least some fixed constant. A straightforward but crucial observation follows from
the fact that, for load balancing problems, the total difference from the average load is 0. That is, if Ci = Q+ ∆i,
then the cost is

m∑
i=1

C2
i =

m∑
i=1

(Q+ ∆i)
2 =

m∑
i=1

(Q2 + 2Q∆i + ∆2
i ) = mQ2 +

m∑
i=1

∆2
i ,(3.1)

where the last equality follows as
∑
i ∆i = 0 (for general q > 1, a similar statement follows from a Taylor expansion,

as in the proof of Lemma 2.3). Consequently, if at least (1− ε′) · 4n/3 clauses of Isat are satisfiable, then at most
Θ(ε′n) machines will have a load of either Q+1 or Q−1, and hence the optimal objective value of the constructed
scheduling instance is at most mQ2 + Θ(ε′n) by Eq (3.1). On the other hand, if at most (β + ε′) · 4n/3 clauses of
Isat are satisfiable for some constant β < 1, then ∆i ≥ 1/2 for at least Θ((1−β− ε′)n) machines. By Eq (3.1) the
optimal objective value of the constructed scheduling instance is at least mQ2+Θ((1−β−ε′)n) = mQ2+Θ(n) (see

Lemma G.20 for the detailed computation). Now we apply the efficient PTAS with ε = Θ(n
1−δ

mQ2 ) ≈ Θ(1/n2+δ).

Given the fact that mQ2ε = Θ(n1−δ), if at least (1−ε′) ·4n/3 clauses of Isat are satisfiable, then the PTAS should
return a schedule with objective value at most mQ2 + Θ(ε′n) + Θ(n1−δ) = mQ2 + Θ(ε′n). Otherwise, the PTAS
returns a schedule with objective value at least mQ2 + Θ(n). Theorem 3.1 follows as our PTAS has a running

time of 2O((1/ε)1/2−δ) + nO(1) ≤ 2O(n1−δ).

Remark. One can verify that if Q is larger, e.g., Q = Θ(n2), then the above argument only rules out a PTAS of

running time 2O((1/ε)1/4−δ). Hence, simultaneously enforcing the ratio-preserving property while having Q = Õ(n)
is the main technical challenge, which we overcome with our new number-theoretic constructions, as we elaborate
in the following.

The rest of the paper is organized as follows. In Section 3.3 we give an overview of the main technical
ingredients for the construction of the processing times in our reduction. We also motivate our number theoretical
constructions, which are specified in Section 3.4. In Appendix F we present the complete reduction. In Appendix G
we show its correctness and conclude Theorem 3.1.

3.3 Defining Processing times: Main Techniques To illustrate the main technical ingredient, in the following
part of this subsection we will focus on conditions CO2 and CO3 while ignoring the other conditions (which can
be handled using the techniques for CO2 and CO3). Recall that our goal is to create suitable gap jobs that can
only be filled up by specific jobs.
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We can view each job, say, V Ti,+,1, as a combination of three components – the type-component V·,+,1 (indexed
by i), the index-component i, and the T/F -component T . Ignoring dummy jobs for simplicity, conditions CO2
and CO3 involve 5 different type-components, including V·,+,1, V·,+,2 V·,−,1 V·,−,2 and CL·. Denote by s(·) the
processing time of a job. We can define the processing time of a job into a summation of three terms corresponding
to components, e.g., s(V Ti,+,1) = µ(V·,+,1)+σ(i)+η(T ), where the functions µ, σ, η map the type-component, index-
component and T/F-component of a job to some positive integers. Now the question becomes: how can we define
functions µ, σ, η such that from their sum, e.g., µ(V·,+,1) + µ(CL·) + σ(i) + σ(`) + η(T ) + η(F ), we can conclude

that it can only be added up by s(V ρi′,+,1) and s(CLρ
′

`′ ), where {i′, `′} = {i, `} and {ρ, ρ′} = {T, F}. Notice that
there are only a constant number of different type-components and T/F-components, it is thus easy to define µ
and η. For example, let σmax be a sufficiently large value that exceeds the maximal value of σ and η, and define
µ(V·,+,1), µ(V·,+,2), µ(V·,−,1), µ(V·,−,2), µ(CL·) to be 105σmax, 104σmax, 103σmax, 102σmax, 10σmax, then from the
sum µ(V·,+,1) + µ(CL·) it is very easy to identify the type-components of two jobs.

The main difficulty lies in the function σ as we require job processing times to be Õ(n), whereas σ must map
[n] to [Õ(n)] such that

σ(i) + σ(`) = σ(i′) + σ(`′) =⇒ {i, `} = {i′, `′}.(3.2)

In other words, we require the sum σ(i) + σ(`) to be unique among the sums of all possible pairs (i, `).
Recall the special structure of 3SAT′, where each clause cl` ∈ C1 is of the form (w`−1 ∨ w` ∨ w`+1) such that
wj ∈ {zj ,¬zj} for all j. Hence, for condition CO2, it suffices to guarantee Eq (3.2) for i ∈ {`− 1, `, `+ 1}. Recall
that a Salem-Spencer set is a set of numbers where no three of which form an arithmetic progression, hence if
we let σ map [n] to a Salem-Spencer set of size n, Eq (3.2) always holds for ` = i. For our purpose, we need to
generalize the construction of a Salem-Spencer set such that in addition to 2σ(`), the sum of any two adjacent
numbers σ(`) + σ(`+ 1) is also unique, as we show in Lemma 3.3.

Condition CO3 is more complicated, as each clause of C2 is of the form (zi ⊕ ¬zk) with k = τ(i), where

the permutation τ is arbitrary. If we consider the index-components of the two variable jobs V ρi,+,2 and V ρ
′

k,−,2,
we cannot guarantee that σ(i) + σ(k) = σ(i′) + σ(k′) implies {i, k} = {i′, k′}. Consider the following indirect
approach. Suppose for each (zi ⊕ ¬zk) we can construct a pair of jobs LNT

(i,k) and LNF
(i,k) (called link jobs), and

meanwhile create two gaps such that they must be filled up by V ρ1

i,+,2 together with LN
ρ′1
(i,k), and V ρ2

k,−,2 together

with LN
ρ′2
(i,k) respectively, and furthermore, {ρ1, ρ

′
1} = {ρ2, ρ

′
2} = {T, F}, then we know that if both gaps are filled

up, then either V Ti,+,2 and V Fk,−,2, or V Fi,+,2 and V Tk,−,2 are used, which is sufficient for condition CO3. Using this
idea, instead of designing σ such that the sum σ(i) + σ(k) is unique, we seek to design σ such the pair (i, k) is
“uniquely -linked” in the sense that there exists some number ei = Õ(n) such that the sums σ(i)+ei and σ(k)+ei
are both unique among the sums of all pairs. Unfortunately, requiring the uniqueness of σ(i) + ei and σ(k) + ei
is still too strong. We will show in Lemma 3.4 that for every k = τ(i) there exists a sequence of ω = O( logn

log log n )

numbers ei,1, ei,2, . . ., ei,ω such that the sums σ(i) + ei,1, ei,1 + ei,2, . . ., ei,ω−1 + ei,ω, ei,ω + σ(k) are all unique.
Consequently, instead of creating one pair of link jobs, we will create ω pairs of link jobs for each (zi ⊕ ¬zk),
ensuring condition CO3.

3.4 Set of Integers with Unique Adjacent Sum and Linked Sum In this section, we present our main technical
contribution regarding the number-theoretic constructions needed in our reduction.
Some notation. Recall that we let Zn = {1, 2, · · · , n}. All the logarithms are taken with base e unless stated
otherwise. We will use · in the subscript to denote an arbitrary index, e.g., x· refers to xi for some i. We write
vectors in boldface, e.g. x,y. Vectors start with its 0-th coordinate. For any υ-dimensional vector c, c[h] denotes

its h-th coordinate for 0 ≤ h ≤ υ − 1, and cx =
∑υ−1
h=0 c[h]xh.

Lemma 3.2. Let N ∈ Z+. There exists a subset S ⊆ ZN such that |S| ≥ N
1−c0

√
1

logN for some sufficiently large
c0 (in particular, c0 ≥ 7 suffices), and for any y ∈ S and 1 ≤ h ≤ 5, the linear equation h · y = y1 + y2 + · · ·+ yh
with yi ∈ S for all i has a unique solution y1 = y2 = · · · = yh = y.

The proof of Lemma 3.2 mainly utilizes the idea for constructing Salem–Spencer sets [3] and can be found

in Appendix D. In particular, we can show that |S| ≥ N
1−7

√
1

logN . For any integer d ∈ Z+, we denote by Sd
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the subset of Zd that satisfies Lemma 3.2. Now we are ready to prove Lemma 3.3, which is one of our two main
number-theoretical results.

Lemma 3.3. Let N ∈ Z+, d = de(
√

log logN+c)2e = eO(
√

log logN) · logN for some sufficiently large c (c ≥ 7 suffices)
and x = 5d+ 1. There exists an injection σ : ZN → ZN ′ satisfying the following 4 properties:

1. N ′ = N
1+O( 1√

log logN
)
;

2. For any i ∈ ZN , σ(i) =
∑γ
j=0 ai[j]x

j for some ai[j] ∈ Sd, 0 ≤ j ≤ γ, where γ = d logN
log logN e+O( logN

(log logN)3/2 );

3. For any 1 ≤ h ≤ 5 and i ∈ ZN , the equation h · σ(i) = σ(i1) + σ(i2) + · · · + σ(ih), ij ∈ ZN has a unique
solution i1 = i2 = · · · = ih = i. Further, the equation h · σ(i) = σ(i1) + σ(i2) + · · ·+ σ(ik), ij ∈ ZN has no
feasible solution when 1 ≤ k < h or h < k ≤ 5;

4. For any i ≤ N − 1, the linear equation σ(i) + σ(i+ 1) = σ(i1) + σ(i2), i1 ≤ i2 has a unique solution i1 = i,
i2 = i + 1. Furthermore, the linear equation σ(i) + σ(i + 1) = σ(i1) + σ(i2) + · · · + σ(ik) has no feasible
solution when k = 1 or 2 < k ≤ 5.

Proof. By Lemma 3.2 we know |Sd| ≥ d
1−c0

√
1

log d for some constant c0 (in particular, we can choose c0 = 7). Let
Ŝ ⊆ Sd be an arbitrary subset such that |Ŝ| = 2ω for some integer ω such that |Ŝ| ≥ 1/2 · |Sd|, then it is easy to

see that |Ŝ| = d
1−Θ(

√
1

log d )
. Consider all the integers that can be written as

∑β
i=0 a[i]xi = a · x for some integer

β, a = (a[0], a[1], · · · ,a[β]) ∈ Ŝβ+1, and x = (1, x, · · · , xβ), for x = 5d+ 1. It is easy to see that we obtain |Ŝ|β+1

different integers constructed this way.
Simple calculations show that |Ŝ|β+1 ≥ N if

β ≥ logN

log d

(
1 + Θ

(√
1

log d

))
.

Hence, by picking β = d logN
log logN e + O( logN

(log logN)3/2 ), we can guarantee that |Ŝ|β+1 ≥ N . For d ≥ e(
√

log logN+7)2

,

we notice that
√

log d ≥
√

log logN + 7, hence

|Sd| ≥ d
1−7

√
1

log d = elog d−7
√

log d > elog logN = logN > β + 1.

Hence, we can define an arbitrary injection g that maps j ∈ {0, 1, · · · , β} to a distinct number in Sd.
Consider all the vector a’s. For any two vectors aj and ak, we say they are close if aj and ak differ by exactly

one coordinate, i.e., there exists some 0 ≤ j∗ ≤ β such that ai[j] = ak[j] for all j 6= j∗ and ai[j
∗] 6= ak[j∗]. We

claim the following.

Claim 1. Vectors in Ŝβ+1 can be ordered such that any two consecutive vectors are close.

Proof. Recall that |Ŝ| = 2ω, hence we can map each aj ∈ Ŝ to a distinct ω-bit binary number (or more

specifically, a binary string) within {0, 1}ω. Let ξ : Ŝ → {0, 1}ω be an arbitrary one-to-one mapping, then
we can define an extended mapping ξ′ : Ŝβ+1 → {0, 1}(β+1)ω such that a is mapped to a (β+1)ω-bit binary string
ξ(a[0])ξ(a[1]) · · · ξ(a[β])2. If we can order all (β + 1)ω-bit binary string such that every adjacent numbers differ
by exactly one bit, then the inverse of these binary strings gives a sequence of a’s such that adjacent vectors are
close.

Now we prove the following statement: for any n ∈ Z, n ≥ 2 and an arbitrary string b ∈ {0, 1}n, all binary
strings of {0, 1}n can be ordered in a sequence starting with b such that any two adjacent strings differ by exactly
one bit. We show this by induction. The statement is clearly true for n = 2. Suppose it is true for all n ≤ n′, we
prove it also holds for n = n′ + 1. Consider the first bit of b, which can be 0 or 1. Assume it is 1 (the case of 0
can be proved in a similar way), then b = 1b1 for some b1 ∈ {0, 1}n

′
. According to the induction hypothesis, all

binary strings of {0, 1}n′ can be ordered in a sequence starting with b1 such that any two adjacent binary strings
only differ by one bit. Let such a sequence be b1, b2, · · · , b2n′ , then all binary strings of {0, 1}n′+1 can be ordered
as 1b1, 1b2, · · · , 1b2n′ , 0b2n′ , 0b2n′−1, · · · , 0b1. Hence, the statement is true, and Claim 1 follows.
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Now consider an arbitrary ordering of vectors of Ŝβ+1 that satisfies Claim 1. Let the sequence be a1,a2, ...
where ai = (ai[0], ai[1], · · · ,ai[β]) denote the i-th vector in the sequence. Recall that each ai is a (β + 1)-
dimensional vector. Let prec(i) be the unique coordinate where ai and ai−1 differ. Similarly, let succ(i) be the
coordinate where ai and ai+1 differ. By definition it holds that prec(i+1) = succ(i). For the first and last vectors
in the sequence, we define additionally that a1[prec(1)] = a|Ŝβ+1|[succ(|Ŝβ+1|)] = 0. Let γ = β + 8 and recall the

injection g : {0, 1, · · · , β} → Sd. We define σ such that

σ(i) = ai · x + ai[prec(i)]x
β+1 + ai[succ(i)]x

β+2 + g (prec(i)) xβ+5 + g (succ(i))xβ+6, if i is odd;

σ(i) = ai · x + ai[prec(i)]x
β+3 + ai[succ(i)]x

β+4 + g (prec(i)) xβ+7 + g (succ(i))xβ+8, if i is even.

where x = (1, x, x2, · · · , xβ), while noting that prec(i), succ(i) ≤ β < x. Also, remark that all coeficients in the

polynomial expression belong to Sd. Given that x = 5d+ 1 and β = logN
log d

(
1 + Θ

(√
1

log d

))
, one can verify that

σ(i) ≤ (5d+ 1)β+9 = e(β+9) log(5d+1) ≤ e

(
logN
log d +O

(
logN

(log d)3/2

))
(log d+O(1))

≤ N ′ = N
1+O( 1√

log logN
)
,

for any i ≤ N , hence properties 1,2 of Lemma 3.3 hold.
Consider the equation h · σ(i) = σ(i1) + σ(i2) + · · ·+ σ(ik) for k, h ≤ 5. The right-hand side of this equation

can be expressed as σ(i1) + σ(i2) + · · · + σ(ik) =
∑γ
j=1 bjx

j , for some coefficients bj . Notice as each coefficient

ai[j] belongs to Ŝ ⊆ Sd, which is at most ai[j] ≤ d < x/5, then each bh is a sum of at most k ≤ 5 such coefficients,
and thus 0 ≤ bh < x. We obtain a similar statement for the left-hand side. Hence the coefficients of terms of the
same degree must coincide, and we have h · ai[j] =

∑k
h=1 aih [j] for all 0 ≤ j ≤ β. According to Lemma 3.2, we

know the only solution for the above is k = h and i1 = i2 = · · · = ik = i, hence property 3 is true.
It remains to prove property 4. We suppose i is odd in the following; the case of i being even can be proved

analogously. Consider σ(i) + σ(i+ 1) which is equal to

β∑
j=0

bjx
j + ai[prec(i)]x

β+1 + ai[succ(i)]x
β+2 + ai+1[prec(i+ 1)]xβ+3 + ai+1[succ(i+ 1)]xβ+4

+ g (prec(i)) xβ+5 + g (succ(i))xβ+6 + g (prec(i+ 1))xβ+7 + g (succ(i+ 1))xβ+8.

As before, the coefficients of terms of the same degree must coincide. We know that ai and ai+1 only differs
at coordinate succ(i) = prec(i+ 1), hence bj = 2ai[j] for j 6= succ(i). If σ(i1) + σ(i2) = σ(i) + σ(i+ 1), we know
ai1 [j] + ai2 [j] = 2ai[j] for j 6= succ(i), and by the fact that ak[j] ∈ Sd we know it must hold that

ai1 [j] = ai2 [j] = ai[j] for all j 6= succ(i).(3.3)

Now consider the succ(i)-th coordinate. We know that among i1 and i2 one is even and one is odd, for
otherwise in σ(i1) + σ(i2) either the coefficients of xβ+1 and xβ+2 are 0, or the coefficients of xβ+3 and xβ+4

are 0. In either case, this means that ai or ai+1 has a 0 coefficient, which is a contradiction as Sd ⊆ Zd. Let
{io, ie} = {i1, i2} where io is odd and ie is even. Then from σ(i1) + σ(i2) = σ(i) + σ(i+ 1), we have

aio [prec(io)]x
β+1 + aio [succ(io)]x

β+2 + aie [prec(ie)]x
β+3 + aie [succ(ie)]x

β+4 +

+ g (prec(io))x
β+5 + g (succ(io))x

β+6 + g (prec(ie))x
β+7 + g (succ(ie))x

β+8

= ai[prec(i)]x
β+1 + ai[succ(i)]x

β+2 + ai+1[prec(i+ 1)]xβ+3 + ai+1[succ(i+ 1)]xβ+4 +

+ g (prec(i)) xβ+5 + g (succ(i))xβ+6 + g (prec(i+ 1))xβ+7 + g (succ(i+ 1))xβ+8.

Now we can deduce that aio [succ(io)] = ai[succ(i)] and succ(io) = succ(i) (since g is an injection). Using
Equation (3.3) we conclude that aio = ai. Similarly, ai+1[prec(i + 1)] = aie [prec(ie)], prec(i + 1) = prec(ie). As
succ(i) = prec(i+ 1), Equation (3.3) yields that aie = ai+1.

Each vector in the sequence is unique, so we know io = i and ie = i + 1. Using that i1 ≤ i2 we obtain that
i1 = i and i2 = i+ 1. Hence, property 4 is proved. Lemma 3.3 follows.

With Lemma 3.3, we are ready for the main result of this section.
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Lemma 3.4. Let τ be an arbitrary permutation of Zn. Then there exists a set S = {s1, s2, · · · , sn} of positive
integers together with an auxiliary set E =

⋃n
i=1Ei of positive integers such that:

• All integers in S ∪ E are bounded by n
1+O( 1√

log log n
)
;

• Ei = {ei,1, ei,2, · · · , ei,ω} for all i, where ω = O( logn
log log n );

• Ei ∩ Ei′ = ∅ for any i′ 6= i;

• For every i ∈ Zn and k = τ(i), each sum si + ei,1, ei,1 + ei,2, · · · , ei,ω−1 + ei,ω, ei,ω + sk is unique, that is,
there is no other pair in S ∪ E that adds up to the same value.

In particular, all these properties are satisfied by setting si = σ(i) where σ : ZN → ZN ′ is the function specified
in Lemma 3.3 by taking N = n.

We start with a natural proof idea. Recall Lemma 3.3, where σ(i) = (ai[0], ai[1], · · · ,ai[γ]) · (1, x, · · · , xγ) =
ai ·x such that ai[j] < x/5, whereas when we add two values, say, σ(i)+σ(k), we can directly add each coordinate
ai[j]+ak[j]. Given i and k, how can we guarantee that the equation ai+ak = (ai[0]+ak[0], ai[1]+ak[1], · · · ,ai[γ]+
ak[γ]) = a`+ar has a unique solution {`, r} = {i, k}? A simple observation is that, since ai[j] ∈ Sd (by property 3
of Lemma 3.3), we know that 2ai[j] can only be expressed as ai[j]+ai[j], and ai[j] can only be expressed as ai[j]+0.
Consequently, we may lift up the dimension by writing σ(i) = (ai[0], ai[1], · · · ,ai[γ], 0) · (1, x, · · · , xγ , xγ+1), and
consider the following sequence of numbers:

(ai[0], ai[1], · · · , ai[γ − 1], ai[γ], 0)

→ (0, ai[1], · · · , ai[γ − 1], ai[γ], ak[0])

→ (ak[0], ai[1], · · · , ai[γ − 1], ai[γ], 0)

→ (ak[0], 0, · · · , ai[γ − 1], ai[γ], ak[1])

→ (ak[0], ak[1], · · · , ai[γ − 1], ai[γ], 0)

→ · · ·
→ (ak[0], ak[1], · · · , ak[γ − 1], 0, ak[γ])

→ (ak[0], ak[1], · · · , ak[γ − 1], ak[γ], 0)

It is easy to verify that the sum of any two adjacent vectors in the above sequence is unique, which
gives possible values for ei,j ’s. Unfortunately, numbers constructed in this way do not necessarily satisfy that
Ei ∩ Ei′ = ∅. In particular, there might exist some pair i′, k′ with k′ = τ(i′) where ai[j] = ai′ [j] for j ≤ γ − 2,
and ak[j] = ak′ [j] for j ≥ γ − 1. In this case, we have

(ai′ [0], ai′ [1], · · · ,ak′ [γ − 1], ak′ [γ], 0) = (ai[0], ai[1], · · · ,ak[γ − 1], ak[γ], 0),

violating Ei ∩ Ei′ = ∅.
How can we construct unique ei,j ’s? Towards this, we consider all the one-to-one mappings g : Sγ+1

d → Sγ+1
d .

Under composition of functions, all such mappings form a group Aut(Sγ+1
d ). We are interested in the special

mapping that maps each ai to ak (which corresponds to the permutation τ), which belongs to Aut(Sγ+1
d ). We

show that any mapping in Aut(Sγ+1
d ), and hence this special mapping, can be decomposed into a sequence of

simple mappings. More precisely, we consider any finite set M and the group Aut(Mυ) of one-to-one mappings
fromMυ to itself. We call a mapping in Aut(Mυ) an h-shuffler if this mapping only changes the h-th coordinate
of the input vector, i.e., an h-shuffler f satisfies that for any y ∈Mυ,

f(y) = f(y[0],y[1], · · · ,y[υ − 1]) = (y[0], · · · ,y[h− 1], z,y[h+ 1], · · · ,y[υ − 1])),

for some z ∈ M. We show the following group theoretic lemma which states that any mapping of Aut(Mυ) can
be decomposed into 2υ h-shufflers; see Appendix E for the proof. Our ei,j ’s can be obtained from these h-shufflers.
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Lemma 3.5. Let M be a finite set, υ ∈ Z+ and Aut(Mυ) be the group of all one-to-one mappings from Mυ to
itself. The group operation is function composition and denoted as ◦. For any π ∈ Aut(Mυ), there exist h-shufflers

fh, f̂h ∈ Aut(Mυ) for every 1 ≤ h ≤ υ such that F (y) = F̂ (π(y)) for any y ∈Mυ, where F = fυ−1◦fυ−2◦· · ·◦f0

and F̂ = f̂υ−1 ◦ f̂υ−2 ◦ · · · ◦ f̂0. Furthermore, fh’s and f̂h’s can be constructed in time that is polynomial in |Mυ|.

Lemma 3.5 implies a decomposition of π into h-shufflers, i.e., π = f̂−1
0 ◦ f̂−1

1 ◦ · · · ◦ f̂−1
υ−1 ◦ fυ−1 ◦ · · · ◦ f0.

With Lemma 3.5, we are ready to prove Lemma 3.4. We first set the value of all parameters. Towards this,
we will apply Lemma 3.3 twice.

At first, we apply Lemma 3.3 by taking N = n. Then we obtain σ : Zn → Zn′ where n′ = n1+O(1/
√

log log n),
σ(i) =

∑γ
j=0 ai[j]x

j for ai[j] ∈ Sd where γ = d logn
log log ne+O( logn

(log log n)3/2 ), d = de(
√

log log n+7)2e = eO(
√

log log n) ·log n

and x = 5d + 1. Except N , all the other parameters, including n′, σ, x, d, γ and ai’s are fixed throughout the
following part of this section.

Next, we apply Lemma 3.3 again by setting N = 4γ + 4 where γ takes the value we determined above. By
doing so we obtain another injection σ′. We have the following simple observation.

Observation 1. If ` ≤ 4γ + 4, then σ′(`) = o(log2 n) < x2.

Proof. Note that γ = O( logn
log log n ). By Lemma 3.3, σ′(`) ≤ (4γ + 4)

1+O( 1√
log log(4γ+4)

)
= o(γ2) = o(log2 n).

Next, We will apply Lemma 3.5. In the following part of this paper, any υ-dimensional vector c represents
the number given by the polynomial expression

∑υ−1
i=1 c[i]xi; vectors and polynomial expressions are used

interchangeably. Given our permutation τ , we define τ̂ as a one-to-one mapping that maps each vector ai to
ak, or equivalently, maps σ(i) to σ(k) if k = τ(i). Notice that ai’s form a subset of Sγ+1

d , so currently τ̂ is only

defined on this subset. We can extend τ̂ to Sγ+1
d such that for c ∈ Sγ+1

d and c 6= ai, then τ̂(c) = c. Hence,

τ̂ ∈ Aut(Sγ+1
d ). According to Lemma 3.5, we can obtain h-shufflers fh and f̂h for all 0 ≤ h ≤ γ such that

fγ ◦ fγ−1 ◦ · · · ◦ f0 = f̂γ ◦ f̂γ−1 ◦ · · · ◦ f̂0 ◦ τ̂ .

For ease of notation, define Fh = fh ◦ fh−1 ◦ · · · ◦ f0 and F̂h = f̂h ◦ f̂h−1 ◦ · · · ◦ f̂0. As h-shufflers only changes
the h-th coordinate, we have the following observation.

Observation 2. The following statements are true:

• For any 0 ≤ h ≤ γ
(Fγ(ai))[h] = (Fγ−1(ai))[h] = · · · = (Fh(ai))[h],

(F̂γ(ai))[h] = (F̂γ−1(ai))[h] = · · · = (F̂h(ai))[h];

• For any 0 ≤ h ≤ γ,
(Fh−1(ai))[h] = (Fh−2(ai))[h] = · · · = (F0(ai))[h] = ai[h],

(F̂h−1(ai))[h] = (F̂h−2(ai))[h] = · · · = (F̂0(ai))[h] = ai[h].

Now we are ready to construct a unique linking sequence for every i. Intuitively, note that since σ′(h) < x2,
then σ′(h) occupies two “bits”in the polynomial (that is, two coordinates). With this in mind, we let
σ̂′(i) = (0, σ′(i)). Moreover, we define σ̂′(0) = (0, 0). Now consider the following two sequences, starting from ai
and ak, respectively, and end up at the same vector:

(ai[0], ai[1], · · · , ai[γ − 1], ai[γ], 0, σ̂′(0)) := b0
i

→ (0, ai[1], · · · , ai[γ − 1], ai[γ], (F0(ai))[0], σ̂′(1)) := b1
i

→ ((F0(ai))[0], ai[1], · · · , ai[γ − 1], ai[γ], 0, σ̂′(2)) := b2
i

→ ((F1(ai))[0], 0, · · · , ai[γ − 1], ai[γ], (F1(ai))[1], σ̂′(3)) := b3
i

→ ((F1(ai))[0], (F1(ai))[1], · · · , ai[γ − 1], ai[γ], 0, σ̂′(4)) := b4
i

→ · · ·

→ ((Fγ(ai))[0], (Fγ(ai))[1], · · · , (Fγ(ai))[γ − 1], 0, (Fγ(ai))[γ], σ̂′(2γ + 1)) := b2γ+1
i

→ ((Fγ(ai))[0], (Fγ(ai))[1], · · · , (Fγ(ai))[γ − 1], (Fγ(ai))[γ], 0, σ̂′(2γ + 2)) := b2γ+2
i
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and

(ak[0], ak[1], · · · , ak[γ − 1], ak[γ], 0, σ̂′(4γ + 4)) := b̂
0

k

→ (0, ak[1], · · · , ak[γ − 1], ak[γ], (F̂0(ak))[0], σ̂′(4γ + 3)) := b̂
1

k

→ ((F̂0(ak))[0], ak[1], · · · , ak[γ − 1], ak[γ], 0, σ̂′(4γ + 2)) := b̂
2

k

→ ((F̂1(ak))[0], 0, · · · , ak[γ − 1], ak[γ], F̂1(ak))[1]), σ̂′(4γ + 1)) := b̂
3

k

→ ((F̂1(ak))[0], F̂1(ak))[1], · · · , ak[γ − 1], ak[γ], 0, σ̂′(4γ)) := b̂
4

k

→ · · ·

→ ((F̂γ(ak))[0], (F̂γ(ak))[1], · · · , (F̂γ(ak))[γ − 1], 0, (F̂γ(ak))[γ]), σ̂′(2γ + 3)) := b̂
2γ+1

k

→ ((F̂γ(ak))[0], (F̂γ(ak))[1], · · · , (F̂γ(ak))[γ − 1]), (F̂γ(ak))[γ], 0, σ̂′(2γ + 2)) := b̂
2γ+2

k

Consider each vector in the above sequence, say, b2
i . According to Observation 2, we know

((F0(ai))[0], ai[1], · · · , ai[γ − 1], ai[γ], 0, σ̂′(2))

= ((F0(ai))[0], (F0(ai))[1], · · · , (F0(ai))[γ − 1], (F0(ai))[γ], 0, σ̂′(2))

More generally, it is easy to verify that every b2j
i is the concatenation of the vector (Fj−1(ai), 0) and σ̂′(2j), and

each b2j+1
i is a combination SWj ((Fj−1(ai), 0)) and σ̂′(2j + 1), where SWj is a one-to-one mapping that swaps

two coordinates of a vector. A similar statement holds for b̂
2j

k ’s and b̂
2j+1

k ’s. Since SWj ’s, Fj ’s and F̂j ’s are all
one-to-one mappings, and σ′ is an injection, each of the vectors in the sequence above is unique. More precisely,
we have the following.

Lemma 3.6. For any 0 ≤ h ≤ 2γ + 1 and 1 ≤ i ≤ n,

• If bhi = bh
′

i′ , then h = h′ and i = i′;

• If b̂
h

i = b̂
h′

i′ , then h = h′ and i = i′.

Furthermore, by the fact that Fγ = F̂γ ◦ τ̂ and ak = τ̂(ai), we have the following observation:

Observation 3.
b2γ+2
i = b̂

2γ+2

k .

Next, we consider any two adjacent vectors in the above sequence. We observe that they differ at exactly
three positions – the last coordinate (i.e., σ̂′(j)’s), and other two coordinates such that one of the two vectors
has 0 coordinate. Other coordinates, e.g., (F0(ai))[0] in b2

i and (F1(ai))[0] in b3
i are identical according to

Observation 2. This leads to the following Lemma.

Lemma 3.7. For any 0 ≤ h ≤ 2γ + 1 and 1 ≤ i ≤ n,

• If bhi + bh+1
i = bh

′

i′ + bh
′′

i′′ where h′ ≤ h′′, then h′ = h, h′′ = h+ 1, i′ = i′′ = i;

• If b̂
h

i + b̂
h+1

i = b̂
h′

i′ + b̂
h′′

i′′ where h′ ≤ h′′, then h′ = h, h′′ = h+ 1, i′ = i′′ = i.

Proof. We prove the first statement, that is, bhi + bh+1
i = bh

′

i′ + bh
′′

i′′ implies h′ = h, h′′ = h+ 1, i′ = i′′ = i. The
second statement can be proved in the same way.

We first consider the last coordinate of the summation bhi + bh+1
i = bh

′

i′ + bh
′′

i′′ , which is σ′(h) + σ′(h+ 1) =
σ′(h′) + σ′(h′′). If h = 0, according to property 3 of Lemma 3.3, 1 × σ′(1) can only be expressed as 0 + σ′(1),
hence we have h′ = 0 and h′′ = 1. If h ≥ 1, according to property 4 of Lemma 3.3, we have h′ = h and h′′ = h+1.

Consider other coordinates of the equation bhi +bh+1
i = bhi′ +bh+1

i′′ . On the left-side it is either a or 2a where
a ∈ Sd. Consider the equation a = b+ c where b, c ∈ {0} ∪ Sd. By Lemma 3.2, there do not exist two numbers in
S that add up to a, hence we know b, c ∈ {0, a}. Similarly if 2a = b+ c for a ∈ Sd and b, c ∈ {0} ∪ Sd, then b and
c are both nonzero, for otherwise the linear equation 2y = y1 admits a solution, which is a contradiction to that
Sd satisfies Lemma 3.2. Hence, 2a = b+ c for a, b, c ∈ Sd, and again by Lemma 3.2 we have b = c = a. Hence, we
conclude that each coordinate of bhi′ and bh+1

i′′ must be the same as bhi and bh+1
i , respectively. By Lemma 3.6, it

follows that i′ = i′′ = i.
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Using the same argument, we know if 2b2γ+2
i = bh

′

i′ + b̂
h′′

i′′ , then b2γ+2
i = bh

′

i′ = b̂
h′′

i′′ . Thus the following is
also true.

Lemma 3.8. 2b2γ+2
i = bh

′

i′ + b̂
h′′

i′′ , then h′ = h′′ = 2γ + 2, (i′, i′′) = (i, τ(i)).

We are now ready to prove Lemma 3.4.

Proof. [Proof of Lemma 3.4]The sequence of Ei that links σ(i) and σ(k) for k = τ(i) is exactly b0
i =

ai,b
1
i ,b

2
i , · · · ,b

2γ+2
i = b̂

2γ+2

k , b̂
2γ+1

k , · · · , b̂
1

k, b̂
0

k = ak (recall that by a vector b we mean the integer b · x
with x = 5d+ 1 = O(log n)). The uniqueness of each linking sequence is ensured by Lemma 3.6 and Lemma 3.7.

The largest number is bounded by xγ+5 = n
1+O( 1√

log log n
)
. Furthermore, ω = O(γ) = O( logn

log log n ). Thus, all
properties of Lemma 3.4 are satisfied.

4 Conclusion

In this article we consider the problem P ||
∑
i C

q
i , that is, identical machine scheduling with the objective of

minimizing the `q-norm of machine loads. We establish a PTAS with running time 2Õ(
√

1/ε) + nO(1) and prove
that it is essentially best-possible under the exponential time hypothesis. To the best of our knowledge, this
is the first PTAS that runs in sub-exponential time in 1/ε for a strongly NP-hard scheduling problem. It is
interesting to explore this sub-exponential phenomenon in other settings. In particular, it is a meaningful open
problem to consider the classical scheduling problem of minimizing the weighted sum of completion times on
parallel machines scheduling, P ||

∑
j wjCj , and determine if it admits a PTAS with subexponential dependency

on 1/ε. We also leave as an open problem open problem to show a subexponential lower bound or to develop an
FPTAS for P ||

∑
i C

q
i where m = Θ((1/ε)θ) for θ ∈ (1/2, 1].
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A Omitted Proofs in Section 2 - Algorithms AL1, AL2, AL3

A.1 Algorithm 1

Lemma A.1. Consider an instance after the preprocessing of Lemma 2.1. For any ε > 0, there exists an algorithm
AL1 that returns an (1 +O(ε))-approximate solution for P ||

∑
i C

q
i and runs in time (m/ε)O(m).

The algorithm can be formulated as a dynamic program. For each h ∈ Zn, we create a set of states Fh. A
state (h, L1, . . . , Lm) belongs to Fh if it is possible to assign jobs 1, . . . , h on machines such that the total load
on machine i equals Li for all i ∈ Zm. Starting from (0, . . . , 0) ∈ F0, every state in Fi−1 can give rise to some
states in Fi by trying all the possible assignment of job h. And the solution is given by the state in Fn with the
minimum objective i.e.,

∑m
i=1 L

q
i . Due to Lemma 2.1, we know that one of the optimal solutions has a load vector

(L∗1, . . . , L
∗
m) ∈ Fn satisfying L∗i ≤ 2 for all i. Clearly, the running time of Algorithm 1 is O(m

∑
i |Fi|). However,

the total number of states stored during the dynamic programming can be pseudo-polynomial. Fortunately, using
the framework by Woeginger [41], we are able to trim the state space to make it polynomial. More precisely, for
any δ > 0 construct F̂1, . . . , F̂n satisfying the following properties:

• the size of each F̂i is bounded by (1/δ)O(m);

• for each (i, L1, . . . , Lm) ∈ Fi, there exists (i, L̂1, . . . , L̂m) ∈ F̂i such that Lj ≤ L̂j ≤ Lj(1 + δ)i.

In Algorithm 1, we set the parameter δ = ε/n. Due to Lemma 2.1, n ∈ O(m/ε), the total running time is
bounded by (m/ε)O(m). Let (n, L̂1, . . . , L̂m) be the state with the minimum objective in F̂n, and (n,L∗1, . . . , L

∗
m)

be the state with the minimum objective in Fn. Hence, (n, L̂1, . . . , L̂m) is an (1 +O(ε))-approximate solution, as,∑
i

L̂qi ≤ (1 + δ)nq
∑
i

L∗i
q ≤ (1 + 2qε)OPT,

where q is a fixed constant.

Algorithm 1 Pseudo Code Description of AL1

Input: I, ε
Output: min{

∑m
i=1 L̂

q
i : (L̂1, . . . , L̂m) ∈ F̂n}

1: δ = ε/n
2: Γ = {[0], [ε, ε(1 + δ)), [ε(1 + δ), ε(1 + δ)2), . . . }
3: F̂0 = {(0, . . . , 0)}
4: for j = 1 to n do
5: F ′j = ∅
6: for all (L1, . . . , Lm) ∈ Fi−1 do
7: for all i ∈ [1,m] and Li + pj ≤ 2 do
8: F ′j = F ′j ∪ (L1, . . . , Li−1, Li + pj , Li+1, . . . , Lm)
9: end for

10: end for
11: F̂j = ∅
12: for all S ∈ Γm do
13: for i = 1 to m do
14: L̂i = max{Li : (. . . , Li, . . . ) ∈ F ′ ∩ S}
15: end for
16: F̂j = F̂j ∪ (L̂1, . . . , L̂m)
17: end for
18: end for

A.2 Algorithm 2 We first recall Lemma 2.2 and then present its proof.

Lemma 2.2 1. Consider an instance after the preprocessing of Lemma 2.1. For any ε > 0, there exists an

algorithm AL2 that outputs an (1 +O(ε))-approximation solution for P ||
∑
i C

q
i within mÕ(1/

√
ε) time.
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Proof. Based on Lemma 2.3, we design AL2 as a dynamic program as follows.
We say that a vector (i, v, u1, u2, . . . , uτ ) is a valid state if it is possible to assign the uh largest jobs in Gh,

for each h, on the first i machines with the objective equal to v. In our algorithm, for each i ∈ {0, . . . ,m}, we
construct a set Fi of valid states. Start from (0, . . . , 0) ∈ F0. To construct the valid states in Fi, we consider
a state in Fi−1 and try all possible assignments of jobs to machine i that respect the ordering of jobs given by
Lemma 2.3 and the load bound for each machine implied by Lemma 2.1. Given the sets F0, . . . ,Fm, the answer
can be found by searching the state with the minimum objective in Fm. In order to limit the number of states, we
can eliminate dominated states. Namely, if two states (i, v, u1, . . . , uτ ) and (i, v′, u1, . . . , uτ ) in Fi satisfy v′ < v,
then we say that (i, v′, u1, . . . , uτ ) is dominated and delete it from Fi.

The overall running time of AL2 can be bounded as follows. Recall that by Lemma 2.1, pj ≥ ε and that
the load of each machine is at most 2. Hence, each state in Fi−1 can give rise to at most (2/ε + 1)τ (dominated
or undominated) states in Fi. As also the number of jobs in each set Gh is bounded by 2m/ε, the number

of undominated states in Fi is at most (2m/ε + 1)τ = mÕ(
√

1/ε). Hence, each set Fi can be constructed in

time (2/ε + 1)τmÕ(
√

1/ε) = mÕ(
√

1/ε), which implies the same bound for the overall running of our dynamic
programming algorithm. The lemma follows.

A.3 Algorithm 3 The goal of this subsection is to prove the following lemma.

Lemma A.2. Consider an instance after the preprocessing of Lemma 2.1. For any ε > 0, there exists an
algorithm that outputs a feasible schedule for well structured instance of P ||

∑
i C

q
i whose objective value is at

most OPT +O(log2m) within (1/ε)O(1) + nO(1) time.

Recall Lemma 2.1, and that an approximation scheme for well structured instances also implies an
approximation scheme for general instances. Given Lemma A.2 and the fact that OPT ≥ m for well structured
instances, we know that the additive error O(log2m) ≤ εOPT if m = Ω(1/ε log2(1/ε)). Hence, Theorem 2.1 is
proved.

In the following, we present Algorithm 3, which is the algorithm claimed in Lemma A.2. Algorithm 3 modifies
upon the famous algorithm for bin packing by Karmarkar and Karp [23]. Given an instance I, m(I) denotes the
number of machines, and size(I) denotes the total processing time of jobs. To exclude the trivial cases, if I
consists of less than m(I) jobs, then it is obvious that the optimal solution assigns each job to a separate machine.
Hence, in the following parts, we can assume without of loss generality there are more than m(I) jobs.

We give a very high-level description. The scheduling problem can be interpreted as a bin packing problem
where the bin number is a constraint, and the objective is to minimize the cost of bins instead of minimizing the
number of bins (where the cost of a bin is its load to the power of q). Under such an interpretation, we are able
to iteratively apply the harmonic grouping scheme to round job processing times and establish a configuration LP
for the rounded instance. Based on the extreme point solution of the configuration LP, we assign jobs to roughly
m(I)/2 machines and continue with the remaining jobs and machines.

Algorithm 3 Pseudo Code Description of AL3

1: ID = ∅
2: while m(I) > 10 do
3: apply harmonic grouping scheme to create instance I ′ and Id
4: ID = ID ∪ Id
5: let x̂(I ′) be the (ε/ logm)-balanced solution for Conf-IP(I ′)
6: schedule I ′ \ I ′res(x̂) according to bx̂(I ′)c
7: I = I ′res(x̂)
8: end while
9: schedule I using Algorithm 1

10: while ∃i, j s.t. Li − Lj > 1 do
11: move the job with the largest processing time in machine i to machine j
12: end while
13: schedule ID on arbitrarily O(log2m) machines with max increasing load 2
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As discussed in Lemma 2.1, here we assume the processing time of all jobs in I are within [ε, 1]. Suppose
there are χ distinct job processing times with b1 jobs of processing time p1, b2 jobs of processing time b2, ... ,
bχ jobs of processing time pχ. Consider the the subset of jobs that can be scheduled on a single machine, which
can be characterized by a χ-tuple tj = (t1j , t2j , · · · , tχj) where tij indicates the number of jobs of processing time
pi on this machine. We call any tj with tij ≤ bi for every i as a configuration. Let N denote the number of
configurations, let t1, t2, · · · , tN be a complete enumeration of them.

We establish a configuration integer program for instance I as follows. We introduce a variable xj for each
configuration tj which indicates the number of machines which is scheduled according to tj . Consequently, all
machines of configuration tj accommodate tijxj jobs of processing time pi. We define the load, or total processing
time of configuration tj as L(tj) =

∑χ
i=1 tijpi. We define the cost of configuration tj as vj = (

∑χ
i=1 tijpi)

q.

Conf-IP(I) : min
N∑
j=1

vjxj

s.t.
N∑
j=1

xj = m(I)(A.1a)

N∑
j=1

tijxj ≥ bi, i = 1, 2, · · · , χ(A.1b)

xj ∈ N, j = 1, 2, · · · , N

Let OPT IP (I) be the optimal objective value of Conf-IP(I). Relaxing the integral constraint xj ∈ N to
xj ≥ 0 in Conf-LP(I), we obtain a configuration linear programming Conf-LP(I). Let OPTLP (I) be its optimal
objective value, it is obvious that OPTLP (I) ≤ OPTIP (I). We have the following lemma.

Lemma A.3. There exists an algorithm of running time polynomial in χ, log(m/ε) and 1/ς, and returns a feasible
extreme point solution of objective value at most OPTLP (I) + ς for Conf-LP(I).

Proof. We consider the dual of Conf-LP(I):

Dual-LP(I) : max

χ∑
i=1

biyi −m(I)z

s.t.

χ∑
i=1

tijyi − z ≤ vj , j = 1, 2, · · · , N(A.2a)

yi ≥ 0, j = 1, 2, · · · , N

We use a similar algorithm as that for the classical bin packing problem. We employ the ellipsoid method to
solve Dual-LP(Ī). We give a brief description. The ellipsoid method iteratively computes a sequence of ellipsoids
E0, E1, · · · ,. In each iteration, it implements a separation oracle to check whether the center of the current ellipsoid
Ek, say, (yk, zk) = (yk1 , · · · , ykχ, zk), is feasible. If it is, then it outputs a cut b ·y−m(I)z ≥ b ·yk−m(I)zk where

b = (b1, · · · , bχ); Otherwise, it finds out a violating constraint, say, tj ·y−z ≤ v̄j , and outputs tj ·y−z ≤ tj ·yk−zk.
Incorporating the cut output by the separation oracle, the ellipsoid method computes a new ellipsoid Ek+1 and

guarantees that the volume of the new ellipsoid is smaller than Ek by a factor of e−
1

5(χ+1) . After a polynomial
number of iterations (specifically, which is polynomial in log 1/ς), the ellipsoid method finds a near-optimal feasible
solution with an additive error of ς.

In their seminal work, Karmarkar and Karp [23] further prove that to compute an approximate solution to
Conf-LP(I) up to an additive precision of ς, it suffices to construct an approximate separation oracle such that
in each iteration, instead of checking whether the center (yk, zk) is feasible and returns a violating constraint if
it is infeasible, the approximate separation oracle checks a point (ỹk, z̃k) and does the following:

• If (ỹk, z̃k) violates a constraint, say, tj · ỹk − z̃k > vj , then outputs cut tj · y − z ≤ tj · yk − z̃k;
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• If (ỹk, z̃k) does not violate any constraint, then outputs b · y −m(I)z ≥ b · ỹk −m(I)z̃k.

Karmarkar and Karp showed that ellipsoid method equipped with the approximate separation oracle can
return a near-optimal solution within an additive error of O(ς) as long as the point (ỹk, z̃k) in each iteration
satisfies that

• For any constraint, if tj · ỹk − z̃k > vj , then tj · yk − zk > vj ;

• For the objective function, b · yk −m(I)zk ≤ b · ỹk −m(I)z̃k + ς.

Here the first property ensures that if (ỹk, z̃k) is infeasible, then (yk, zk) is also infeasible by violating the same
constraint, and therefore the approximate separation oracle proceeds exactly the same as an (accurate) separation
oracle. The second property ensures that the approximate separation oracle will never cut off a feasible point
whose objective value is significantly better than (ỹk, z̃k) by ς, and hence ensures the near-optimality.

Now we describe our approximate separation oracle as follows. We first round vj up to be the nearest value
of the form (1 + ε)k and let it be v̄j . Notice that there are a polynomial number of distinct rounded values. Given
an arbitrary point (yk, zk), we consider all inequalities of the form

tjy
k ≤ v̄j + zk.

Our goal is to find out a violating constraint or determine there is none. Since there are only a polynomial
number of different values for v̄j ’s, we can sequentially check for every value (1 + ε)h, whether (yk, zk) violates
the constraint tjy

k ≤ (1 + ε)h + zk for all configurations tj such that (1 + ε)h−1 < (tjp)q ≤ (1 + ε)h where
p = (p1, · · · , pχ). We argue that we can drop the lower bound by sequentially checking for every value (1 + ε)h,
whether (yk, zk) violates the constraint tjy

k ≤ (1 + ε)h + zk for all configurations tj such that (tjp)q ≤ (1 + ε)h.
This is because that if (yk, zk) violates tjy

k ≤ (1 + ε)h + zk but (tjp)q ≤ (1 + ε)h−1, say, (tjp)q rounded up to

(1 + ε)h
′

for h′ < h, then (yk, zk) also violates tjy
k ≤ (1 + ε)h

′
+ zk, which will be found out already. Hence,

finding a violating constraint is equivalent as finding a vector t ≤ b such that (t · p)q ≤ (1 + ε)h and t · yk is
maximized, and comparing this maximal value with zk + (1 + ε)k. This is a knapsack problem which admits a
fully polynomial time approximation scheme (FPTAS). More precisely, using the same method as Karmarkar and
Karp [23], we can round yk to some value ỹk close enough such that

• For any χ-dimensional vector d whose coordinates are non-negative and ‖d‖1 ≤ n, 0 ≤ d · yk − d · ỹk ≤ ς;

• In polynomial time (specifically, polynomial in 1/ς), we are able to find t∗ such that by taking t = t∗, t · ỹk
is maximized subject to (t · p)q ≤ (1 + ε)h.

Overall, our above argument ensures that in polynomial time we either determine some configuration tj such

that tj ỹ
k > v̄j + zk for some j, and hence

tjy
k + zk ≥ tj ỹ

kv̄j + zk > v̄j + zk ≥ vj + zk;

or we conclude there is no such configuration and guarantee that b · yk −m(I)zk ≤ b · ỹk −m(I)z̃k + ς.
Hence, there exists an approximate separation oracle for Dual-LP(I), indicating that Dual-LP(I) can be

solved using the ellipsoid method in polynomial time (up to arbitrary precision). Notice that the derived solution
may not necessarily be an extreme point, however, by using exactly the same argument as that of Karmarkar and
Karp [23], we can make it into an extreme point solution.

Consider the near-optimal extreme point solution x(I) given by Lemma A.3. We denote by bx(I)c =
(bx1(I)c, · · · , bxN (I)c) the rounded solution. Similar as the algorithm for bin packing, we assign jobs to machine
according to bx(I)c and then proceed with the residue instance Ires(x). Denote by Ires(x) the residue instance
where we take away jobs scheduled according to bx(I)c from the original instance I, i.e., Ires consists jobs in
x(I)− bx(I)c. It is easy to see Ires(x) consists of m(Ires(x)) = m(I)−

∑
jbxj(I)c machines.

Lemma A.4. OPTLP (Ires(x)) +OPTLP (I \ Ires(x)) ≤ OPTLP (I)

Proof. We know each configuration of instance I is also a configuration of instance Ires and I \ Ires(x). Hence,
for any solution x(I) of instance I, bx(I)c is an feasible solution of I \ Ires(x) and x(I) − bx(I)c is an feasible
solution of Ires(x).
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Similar to the bin packing algorithm by Karmarkar and Karp [23], we will employ the harmonic grouping
scheme to round the instance and apply Lemma A.3 on the rounded instance. It has to be noticed that the
processing time of every job in the instance is no more than 1 which is guaranteed by Lemma 2.1. The harmonic
grouping works as follows: We deal with the job one by one in non-decreasing order of its processing time and
pack the job into the current group. At any time, only one group is open. When the total processing time of jobs
in the current group is at least 2, we close it and start a new group. By doing this, all jobs in I are packed into
r groups i.e., G1, . . . , Gr. We discard all jobs in G1 along with |Gi−1| − |Gi| jobs with smallest processing time
in Gi for each i ∈ [2, r] and let it be Id. For those remaining jobs, we lift the processing time to the largest one
among their group and let it be I ′. The harmonic grouping scheme has the following properties [40]:

• the number of distinct job processing times in I ′ is at most size(I)/2;

• size(Id) ∈ O(log size(I)).

Lemma A.5. OPTLP (I ′) ≤ OPTLP (I)

Proof. Given any solution x(I) of instance I, for each configuration we can replace each job j in group Gi with a
job j′ in group Gi+1. In such a modified solution, all jobs of I ′ are scheduled. Since pj′ ≤ pj holds, the objective
does not increase.

Now we formally present Algorithm 3. Given an instance I of the scheduling problem, we first apply the
harmonic grouping scheme to obtain the rounded instance I ′ along with another instance Id composed by the
discarded jobs. Then we apply Lemma A.3 to derive a feasible solution x(I ′) for I ′ and assign jobs to machines
according to bx(I ′)c and close these machines. The remaining jobs x(I ′) − bx(I ′)c and the remaining empty
machines m(I ′)−‖bx(I ′j)c‖1 (here ‖ · ‖1 is the 1-norm, which counts the number of integral configurations) forms
a new instance I ′res. In the next iteration, I ′res servers as the input and we repeat this process until there are
only constant machines left. For the instance with constant machines, we call Algorithm 1. Then we do the
balancing operation to make sure that for every two machines their load difference is at most 1. At last, we group
all the discarded jobs into O(log2m) groups where the total processing time of each group is at most 2. This can
be easily done, since the processing time of each job is at most 1. We pick arbitrarily O(log2m) machines and
schedule each group of jobs on one machine.

Finally, we estimate the overall loss incurred. In each iteration, only m(I)/2 + 1 variables take non-zero value
in solution I ′res(x̂). Hence, m(I ′res(x̂)) ≤ m(I)/2 + 1 and after at most O(logm) rounds Algorithm 3 terminates.
Each iteration introduces an additional cost of ς, together with discarded jobs of total processing time O(log2m),
which need to be handled at last. Set ς = O(logm) and observing that OPT ≥ OPTLP (I) and OPT ≥ m,
we know the overall additional cost is bounded by O(log2m). Now consider all the discarded jobs. Through
Lemma 2.1 and the balancing operation, we know the load of machines in the solution is at most 3. Meanwhile,
due to the convexity of the objective, the balancing operation does not increase the objective value. Given that
q is a constant, hence, the overall objective value increases by at most O(log2m), and Lemma A.2 is proved.

B Omitted Proofs in Section 3.1 - Proof of Lemma 3.1

The goal of this section is to prove the following lemma.

Lemma 3.1 1. Assuming ETH, there exists a constant β ∈ (0, 1) such that for any sufficiently small ε′, δ > 0, it
is not possible to distinguish between instances of 3SAT ′ with (1 − ε′) · 4n/3 clauses where at least 4n/3 clauses

are satisfiable, from instances where at most (β + ε′) · 4n/3 clauses are satisfiable, in time 2O(n1−δ).

Towards the proof, we start with the following result (see, e.g., Corollary 1 of [5]).

Lemma B.1. [34, 5] Under ETH, for sufficiently small ε′ > 0, and δ > 0, it is impossible to distinguish between
instances of 3SAT with Λ clauses where at least (1− ε′)Λ are satisfiable from instances where at most (7/8 + ε′)Λ

are satisfiable, in time O(2Λ1−δ
).

Applying the classical technique of constructing enforcer via expander for 3SAT (see, e.g., Theorem 5 of [39]),
we have the following,
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Lemma B.2. [39] There exists a constant d0 such that given a 3SAT formula φ with Λ clauses, another 3SAT
formula φ′ with Λ′ = Λ + 3d0Λ = O(Λ) clauses can be constructed in polynomial time such that:

• Every variable occurs in at most 2d+ 1 clauses in φ′;

• There is an assignment for φ where at most k clauses are not satisfied if and only if there is an assignment
for φ′ such that at most k clauses are not satisfied.

Denote by 3SAT-d the 3SAT problem where every variable occurs at most d times. Combining Lemma B.1
and Lemma B.2, we have the following lemma.

Lemma B.3. Under ETH, there exists some constants d ∈ N and α ∈ (0, 1) such that for sufficiently small ε′ > 0,
and δ > 0, it is impossible to distinguish between instances of 3SAT-d with Λ clauses where at least (1− ε′)Λ are

satisfiable from instances where at most (α+ ε′)Λ are satisfiable, in time O(2Λ1−δ
).

It is worth mentioning that the reduction in [39] involves constructing 2-clauses, that is, 3SAT-d in Lemma B.3
refers to a 3SAT instance where clauses may contain 2 or 3 variables. For ease of presentation, we want to enforce
every clause to contain exactly 3 variables1. This can be done by introducing dummy variables together with
3-clauses that enforce a dummy variable to be true or false (called enforcers). In particular, Berman et al. [4]
provide a general enforcer that allows them to deduce the APX-hardness of MAX3SAT (where every clause
contains 3 variables and every variable appears 4 times) through the APX-hardness of MAX2SAT. We can apply
their technique directly to get a strengthened version of Lemma B.3 where in 3SAT-d every clause contains exactly
3 variables.

The following proof is a slight variation of that from Tovey [38].

Lemma B.4. Given a 3SAT-d formula φ with Λ clauses, a 3SAT ′ formula φ′ with |C1| = Λ and |C2| ≤ 3Λ clauses
can be constructed in polynomial time such that:

• If there is an assignment for φ where at most k clauses are not satisfied, then there is an assignment for φ′

where at most k clauses are not satisfied.

• If there is an assignment for φ′ where there are at most k clauses not satisfied, then there is an assignment
for φ where at most kd clauses are not satisfied.

Proof. Let z be any variable in φ and suppose it appears ` ≤ d times in clauses. If ` = 1 then we add a dummy
clause (z ⊕ ¬z). Otherwise ` ≥ 2 and we introduce ` new variables z1, z2, · · · , z` and ` new clauses (z1 ⊕ ¬z2),
(z2 ⊕ ¬z3), · · · , (z` ⊕ ¬z1) which enforce z1, z2, · · · , z` to take the same truth value. Meanwhile we replace the `
occurrences of z in the original clauses by z1, z2, · · · , z` in turn and remove z. By doing so we transform φ into
a new formula φ′ by introducing at most 3Λ new variables and 3Λ new clauses.

Notice that each new clause we add in φ′ is of the form (zi ⊕ ¬zi′). We let C2 be the set of them and let C1

be the set of other clauses. It is easy to verify that φ′ is an instance of 3SAT′. Notice that every clause in C1 has
a corresponding clause in φ by replacing zi’s with z.

Suppose there is an assignment for φ where at most k clauses are not satisfied. Then for any variable z in φ
that occurs ` times, we let z1, z2, · · · , z` all take the same value as z. It is easy to see that at most k clauses in
C1 of φ′ are not satisfied.

Suppose there is an assignment for φ′ where at most k clauses in C1 are not satisfied. For any variable z in φ
that correspond to z1, z2, · · · , z` in φ′, we let zi take the same value of z1 for all i. Now we check the number of
additional unsatisfied clauses in C1 we introduce by doing so. If all zi’s take the same value, then no additional
unsatisfied clauses are introduced. Otherwise, it is possible that some of the clauses in C1, which is satisfied by
z2, z3, · · · or z`, becomes unsatisfied. But there are at most d − 1 such kind of clauses. Hence, at most d − 1
unsatisfied clauses are introduced, if there is at least one unsatisfied clause among (z1 ⊕ ¬z2), (z2 ⊕ ¬z3), · · · ,
(z` ⊕ ¬z1). This implies that we have introduced at most k(d − 1) unsatisfied clauses by setting zi = z1 for all
variables, i.e., there are at most k(d − 1) + k = kd unsatisfied clauses in C1 now. Hence, there is an assignment
for φ where at most kd clauses are not satisfied.

1We remark, however, that our reduction also works if C1 contains 2-causes and 3-clauses. It suffices to create two CL`, one true
copy and one false copy instead of three, and meanwhile adjust the number of dummy jobs.
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Given Lemma B.4, we know that if there is an assignment for φ with are at most αΛ unsatisfied clauses, then
there is an assignment for φ′ with every clause in C2 satisfied and at most αΛ clauses in C1 unsatisfied; if every
assignment has at least βΛ unsatisfied clauses in φ, then there are at least βΛ/d unsatisfied clauses in φ′. Hence,
according to Lemma B.3, Lemma 3.1 is proved.

C Omitted Contents in Section 3.2 - Why Old Reduction does not Work

Chen et al. [7] provided a reduction that meets the conditions CO1 to CO4 with job processing times, and hence
the target value T , being O(n1+δ) for any arbitrary small constant δ > 0. This reduction provides a strong lower
bound for P ||Cmax, but does not work well for our problem P ||

∑
i C

q
i . To see this, we take q = 2 as an example

and compare the two objective values for the constructed scheduling problem when Isat is satisfiable and when it
is not. If Isat is satisfiable, then there exists a schedule such that every machine has a load of exactly T , implying
that the optimal objective value is mT 2. Otherwise, at least one machine has load T +1 or more and machine has
load T−1 or less, and then the optimal objective is at least (m−2)T 2 +(T+1)2 +(T−1)2 = mT 2 +2. For the sake
of contradiction, let us assume that there exists a PTAS with running time 2O((1/ε)κ) for some κ ∈ (0, 1). If we take
ε to be sufficiently small such that mT 2ε ≤ 1, then the PTAS can be used to determine whether the constructed
scheduling instance admits a feasible schedule of objective value at most mT 2 + 1 < mT 2 + 2, and hence whether
Isat is satisfiable. The running time of the PTAS becomes 2O((1/ε)κ) = 2O((mT 2)κ). Plug in m = O(n) and
T = O(n1+δ) in the reduction, we have mT 2 = O(n3+2δ). Hence, if κ = 1/3 − δ, we have (mT 2)κ ≤ O(n1−δ),

and an efficient PTAS of running time 2O((1/ε)1/3−δ) can thus determine the satisfiability of Isat in 2O(n1−δ) time,

contradicting ETH. To summarize, the above argument implies a lower bound of 2O((1/ε)1/3−δ) on the running
time of PTAS for arbitrary constant δ > 0, which is not strong enough to match our algorithms in Theorem 2.1.

To overcome the obstacle, a natural idea is to decrease the value of m or T in the reduction. However, if,
say, m = n0.9 and T = nO(1), then we know the standard dynamic programming for scheduling returns the
optimal solution in TO(m) = 2O(n0.9) time; similarly, if T = n0.9 and m = nO(1), then we know there are at
most n0.9 different kinds of jobs, and the scheduling problem can also be solved in time 2O(n0.9) through dynamic
programming. Hence, we cannot expect to reduce Isat to such scheduling instances, assuming ETH.

As a consequence, in this paper, we will not try to decrease m or T . Instead, we increase the gap between
the two optimal objective values for the constructed scheduling problem when Isat is satisfiable and when Isat is
not satisfiable by exploiting the hardness gap in Lemma 3.1.

D Omitted Proofs in Section 3.4 - Proof of Lemma 3.2

Lemma 3.2 1. Let N ∈ Z+. There exists a subset S ⊆ ZN such that |S| ≥ N1−c0
√

1
logN for some sufficiently large

c0 (in particular, c0 = 7 suffices), and for any y ∈ S and 1 ≤ h ≤ 5, the linear equation h · y = y1 + y2 + · · ·+ yh
with yi ∈ S for all i has a unique solution y1 = y2 = · · · = yh = y.

Proof. For any d ≥ 2, M ≥ 2 and k ≤ (M + 1)(d − 1)2, we let x = 5d − 1 and x = (1, x, x2, · · · , xM ),
c = (c[0], c[1], · · · , c[M ]). We define the set Sk(M,d) as:

Sk(M,d) = {y : y = cx + xM+1 = c[0] + c[1]x1 + · · ·+ c[M ]xM + xM+1,

c[i] ∈ N, 0 ≤ c[i] < d,

M∑
i=0

(c[i])2 = k}.

That is, Sk(M,d) is the set of all integers which can be expressed in the form of c ·x+xM+1 such that c[i] ∈ [0, d)
and ‖c‖22 = k, where ‖ · ‖2 is the `2-norm of a vector.

We claim that for any y ∈ Sk(M,d) and 1 ≤ h, h′ ≤ 5, if hy = y1 + y2 + · · ·+ yh′ , yi ∈ Sk(M,d), then we have
h′ = h, y1 = y2 = · · · = yh = y. Let y = cx + xM+1 and yj = cjx + xM+1, where cj = (cj [0], cj [2], · · · , cj [M ]).

Using the fact that x = 5d− 1 and cj [i] < d, we know for h′ ≤ 5 we have
∑h′

j=1 cj [i] < x. Hence by checking the

coefficient of xM+1 on both sides of the equation hy =
∑h′

j=1 yj , we have h = h′. Moreover, we can conclude that

the coefficient of xi in the sum y1 + y2 + · · ·+ yh′ equals
∑h′

j=1 cj [i], hence by comparing the coefficient of xi on
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both sides, we have
h∑
j=1

cj = hc.

By the definition of Sk(M,d), the followings are true:

M∑
i=0

(cj [i])
2 = k, ∀j,

and
M∑
i=0

(

∑h
j=1 cj [i]

h
)2 =

M∑
i=0

(c[i])2 = k

Hence,

k =
M∑
i=0

(

∑h
j=1 cj [i]

h
)2 =

∑h
j=1

∑M
i=0(cj [i])

2

h
=

M∑
i=0

∑h
j=1(cj [i])

2

h
.(D.3)

According to the inequality between the quadratic mean and arithmetic mean, we know(∑h
j=1 cj [i]

h

)2

≤
∑h
j=1(cj [i])

2

h
, ∀i

and the equality only holds when cj [i]’s are identical for all j. Hence by Eq (D.3) we know c = cj , and consequently
yj = y for 1 ≤ j ≤ h. Hence, the claim is true.

It remains to select an appropriate Sk(M,d) such that Sk ⊆ ZN and has a large cardinality. Towards this,
we first observe that the largest number of Sk(M,d) is bounded by (5d − 1)M+2. We shall select d and M
such that (5d − 1)M+2 ≤ N . Notice that there are dM+1 − 1 different positive integer numbers which can be
expressed as c · x + xM+1 where c[i] ∈ [0, d). Furthermore k = ‖c‖22 ≤ (M + 1)(d − 1)2, hence there exists some
1 ≤ k∗ ≤ (M + 1)(d− 1)2 such that

|Sk∗(M,d)| ≥ dM+1 − 1

(M + 1)(d− 1)2
>

dM−1

M + 1
.

It remains to select d and M subject to (5d − 1)M+2 ≤ N such that dM−1

M+1 is large. Below all logarithms

are taken with the base e. We pick M = b
√

logN
log 5 c − 2 and d = b e

√
log 5·logN

5 c. It is easy to see that

(M + 2) log(5d − 1) ≤
√

logN
log 5 · log e

√
log 5·logN = logN , hence (5d − 1)M+2 ≤ N . Furthermore, for sufficiently

large N (e.g., N > e10), we know d ≥ e
√

log 5·logN

10 , hence

dM−1

M + 1
= e(M−1) log d−log(M+1) ≥ e

(
√

logN ·log 5−log 10)(
√

logN
log 5 −4)− 1

2 (log logN−log log 5)

≥ elogN ·(1+
−4
√

logN log 5− log 10√
log 5

√
logN−Ω(log logN)

logN )

= N
1−Ω( 1√

logN
)

Hence, Lemma 3.2 is proved. In particular, it is easy to verify that 4
√

log 5 + log 10√
log 5

≤ 7, hence the

dM−1

M+1 ≥ N
1− 7√

logN .

E Omitted proofs in Section 3.4 - Proof of Lemma 3.4

The goal of this subsection is to prove the following.
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Figure 2: Illustration of Lemma E.1 for M = {1, 2, 3}, υ = 4, h = 1 (recall that vectors start with the 0-th
coordinate). Each vertex in U (i.e., the solid circle) is a 4-dimensional vector. Each mega-vertex in Ū (i.e., the
dotted circle) contains exactly 3 vertices. Each solid line between vertices represents the mapping π which is
colored by one of 3 colors.

Lemma 3.5 1. For any π ∈ Aut(Mυ), there exist h-shufflers fh, f̂h ∈ Aut(Mυ) for every 1 ≤ h ≤ υ such that

F (y) = F̂ (π(y)) for any y ∈ Mυ, where F = fυ−1 ◦ fυ−2 ◦ · · · ◦ f0 and F̂ = f̂υ−1 ◦ f̂υ−2 ◦ · · · ◦ f̂0. Furthermore,

fh’s and f̂h’s can be constructed in time that is polynomial in |Mυ|.

For any finite set X, we denote by Aut(X) the set of all one-to-one mapping from X to itself. For any
f1, f2 ∈ Aut(X), we denote by f1 ◦ f2 ∈ Aut(X) the composition of f1 and f2, i.e., f1 ◦ f2(x) = f1(f2(x)) for any
x ∈ X. Note that Aut(X) is a symmetric group under composition. We denote by f−1 ∈ Aut(X) the inverse of
f ∈ Aut(X).

Let M be an arbitrary finite set of cardinality t. Let υ ∈ Z+. Denote by Mυ the set of all υ-dimensional
vectors whose entries belong to M.

For any vector y ∈ Mυ, we denote by y[h] ∈ M the h-th coordinate of y, and y[−h] ∈ Mυ−1 the vector
obtained by removing the h-th coordinate from y.

For any f ∈ Aut(Mυ) and 0 ≤ h ≤ υ − 1, we call f an h-shuffler if (f(y)) [−h] = y[−h] for all y ∈Mυ, that
is,

f(y) = f(y[0],y[1], · · · ,y[υ − 1]) = (y[0], · · · ,y[h− 1], z,y[h+ 1], · · · ,y[υ − 1])),

for some z ∈M.
We prove the following lemma.

Lemma E.1. For any π ∈ Aut(Mυ) and 0 ≤ h ≤ υ − 1, there exist h-shufflers f, f̂ ∈ Aut(Mυ) such that for

any y ∈ Mυ, (f(y)) [h] =
(
f̂(π(y))

)
[h]. Furthermore, f and f̂ can be constructed in time that is polynomial in

|Mυ|.

Briefly speaking, f and f̂ shuffles the h-coordinate of y and its image under π such that they become identical.
Now we are ready to prove Lemma 3.5.
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Proof. [Proof of Lemma 3.5] For ease of presentation, we let M = {1, 2, · · · , t}. Note that |Mυ| = tυ. Sort
elements (vectors) ofMυ in an arbitrary order and denote them by {c1, c2, · · · , ctυ}. We create a bipartite graph
G = (U ∪W,E) to represent π as follows: Both U and W contain tυ vertices. Let U = {u1, u2, · · · , utυ} and
W = {w1, w2, · · · , wtυ}. There is an edge between ui and wj if and only if π(ci) = cj . Since π is one-to-one
mapping, G is 1-regular.

As each ui and wi correspond to ci, we will slightly abuse notation and write ui[h] or ui[−h] to refer to ci[h]
and ci[−h].

Contraction. We contract the graph G as follows. We partition U (or W ) into tυ−1 subsets such that ui and uj
(or wi and wj) are in the same subset if and only if ui[−h] = uj [−h] (or wi[−h] = wj [−h]). Denote by Ūi (or
W̄i), 1 ≤ i ≤ tυ−1, all the subsets in the partition of U (or W ). It is clear that each Ūi (or W̄i) contains exactly
t vertices from U (or W ). We now contract all the t vertices in Ūi (or W̄i) into one mega-vertex, and denote
this mega-vertex as ūi (or w̄i). By doing so we generate parallel edges, that is, there are ` parallel edges between
each pair of mega-vertices ūi and w̄j if there are ` edges between vertices in Ūi and W̄j in the original graph G.
We denote by ψ an arbitrary one-to-one mapping between a parallel edge (between mega-vertices ūi and w̄j) and
an edge in G (between some vertex in subset Ūi and some vertex in subset W̄j). Denote by Ḡ = (Ū ∪ W̄ , Ē)
the contracted graph. Given that G is 1-regular and every mega-vertex contains exactly t vertices, we have the
following observation:

Observation 4. The contracted graph Ḡ = (Ū ∪ W̄ , Ē) is a t-regular bipartite graph.

Coloring. It is known that every bipartite regular graph admits a perfect matching (see, e.g. [26]). Consequently,
every t-regular bipartite graph can be decomposed into t perfect matchings. We decompose Ḡ into t perfect
matchings and color edges in each perfect matching with a distinct color. Overall we have used t colors. Since
|M| = t, we can map the i-th color to integer i ∈M.

Recall that ψ is a one-to-one mapping between Ē and E, hence via ψ we also obtain a coloring for E (by
coloring each edge in E with the same color as its corresponding edge in Ē). Recall that G is 1-regular. Thus we
can extend the edge coloring to a vertex coloring, such that each vertex in G is colored with the same color as
the unique edge incident to it.

Define functions f and f̂ . Consider every vertex set Ūk. We know Ūk contains t vertices, and let Ūk =
{uk1

, uk2
, · · · , ukt}. By definition uki [−h]’s are identical and uki [h]’s are exactly the t elements inM. Recall that

we decompose Ḡ into t perfect matchings and each perfect matching is colored with a unique color, we know the
t parallel edges incident to the mega-vertex ūk are colored with t distinct colors. Consequently, each vertex uki is
also colored with a distinct color. Recall the one-to-one correspondence between a vertex uj and cj ∈M. Now we
define a function f such that f(cki)[−h] = cki [−h], and f(cki)[h] equals the color of uki , where we interpret each
color as a number in {1, · · · , t}. Consequently, (f(ck1

), f(ck2
), · · · , f(ckt)) is a permutation of (ck1

, ck2
, · · · , ckt).

Hence, f ∈ Aut(Mυ).

Similarly, we consider each W̄k = {wk1 , wk2 , · · · , wkt} and define a function f̂ such that f̂(cki)[−h] = cki [−h],

and f̂(cki)[h] equals the color of wki . Consequently, (f̂(ck1
), f̂(ck2

), · · · , f̂(ckt)) is also a permutation of

(ck1 , ck2 , · · · , ckt), and f̂ ∈ Aut(Mυ).
Furthermore, the color of each ui or wj is defined as the color of the edge incident to it, hence if there is an

edge between ui and wj in G, then we know (f(ui))[h] = (f̂(wj))[h]. Hence, Lemma E.1 is proved.

See Figure 2 for an illustration of the mapping f, f̂ we construct in Lemma E.1. Iteratively applying
Lemma E.1, we are able to prove the following.

Proof. We prove the following statement by induction: For 0 ≤ k ≤ υ−1, there exist h-shufflers fh, f̂h ∈ Aut(Mυ)
for every 0 ≤ h ≤ k such that Fk(y)[h′] = F̂k(π(y))[h′] for any y ∈Mυ and h′ ≤ k, where Fk = fk ◦ fk−1 ◦ · · · ◦ f0

and F̂k = f̂k ◦ f̂k−1 ◦ · · · ◦ f̂0.
The statement is true for k = 1 by Lemma E.1. Suppose the statement is true for k, we prove it is true for

k + 1.
Consider f̂k ◦ f̂k−1 ◦ · · · ◦ f̂0 ◦ π ◦ f−1

0 ◦ f−1
1 ◦ · · · ◦ f−1

k . According to Lemma E.1, there exist (k + 1)-shufflers

fk+1, f̂k+1 such that

(fk+1(y)) [k + 1] =
((
f̂k+1 ◦ f̂k ◦ · · · ◦ f̂0 ◦ π ◦ f−1

0 ◦ f−1
2 ◦ · · · ◦ f−1

k

)
(y)
)

[k + 1], ∀y ∈Mυ.(E.4)
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Since fk ◦ fk−1 ◦ · · · ◦ f1 ∈ Aut(Mυ), for every y ∈ Mυ there exists some z ∈ Mυ such that y =
(fk ◦ fk−1 ◦ · · · ◦ f1) (z), plug this into Equation (E.4), for all z ∈Mυ we get

(fk+1 ◦ fk ◦ · · · ◦ f0) (z)[k + 1]

=
((
f̂k+1 ◦ · · · ◦ f̂0 ◦ π ◦ f−1

0 ◦ · · · ◦ f−1
k ◦ fk ◦ fk−1 ◦ · · · ◦ f0

)
(z)
)

[k + 1]

=
((
f̂k+1 ◦ · · · ◦ f̂0 ◦ π

)
(z)
)

[k + 1]

Moreover, for any h ≤ k, recall that fk+1 and f̂k+1 does not change the h-th coordinate, hence

(fk+1 ◦ fk ◦ · · · ◦ f0) (z)[h] = (fk ◦ · · · ◦ f0) (z)[h]

=
((
f̂k ◦ · · · ◦ f̂1 ◦ π

)
(z)
)

[h]

=
((
f̂k+1 ◦ f̂k ◦ · · · ◦ f̂0 ◦ π

)
(z)
)

[h]

Hence, the statement holds for all k ≤ υ − 1, and Lemma 3.5 is proved.

F Construction of the Scheduling Instance

Now we provide the details of the reduction. We first recall all the functions and parameters we have set in
proving Lemma 3.4.

• Recall that τ is the one-to-one mapping that maps i to k for every (zi ⊕ ¬zk) ∈ C2.

• Apply Lemma 3.3 by taking N = n, we get σ : Zn → Zn′ where n′ = n
1+O( 1√

log log n
)
, σ(i) =

∑γ
j=0 ai[j]x

j

for ai[j] ∈ Sd where γ = d logn
log log ne + O( logn

(log log n)3/2 ), d = eO(
√

log log n) log n and x = 5d + 1. We lift the

dimension such that ai = (ai[0], · · · ,ai[γ + 3]) where ai[γ + 1] = ai[γ + 2] = ai[γ + 3] = 0.

• Apply Lemma 3.3 again by setting N = 4γ+ 4, we get another injection σ′ such that σ′(y) = o(log2 n) < x2

for y ≤ 4γ + 4.

• We have constructed in the proof of Lemma 3.4: b0
i = ai,b

1
i ,b

2
i , · · · ,b

2γ+2
i = b̂

2γ+2

k , b̂
2γ+1

k , · · · , b̂
1

k, b̂
0

k = ak
where k = τ(i).

• Again, each vector c represents the polynomial
∑
i c[i]xi. Polynomials and vectors are used interchangeably.

• Let σmax = xγ+6 = n
1+O( 1√

log log n
)
, and thus σmax > x · bhi x and σmax > x · b̂

h

i x for any i, h, and also
σmax > σ′(y)xγ+3 for any y ≤ 4γ + 4.

Construction of the scheduling instance. We shall construct two major classes of jobs, gap jobs and main jobs.
Main jobs are divided into 5 types: dummy jobs, clause jobs, truth-assignment jobs, link jobs and variable jobs.
The three types – truth-assignment, link and variable jobs – are further divided into sub-types, e.g., variable jobs
are further divided into 4 sub-types (see Table 1). A gap job is defined as a fixed huge value 1014σmax subtracting
several main jobs.

The processing time of each job can be expressed as a summation over three components: Type, Index and
True/False. The type component of a main job is always of the form 10jσmax where 2 ≤ j ≤ 13. Table 1
summarizes the value j for each kind of main job, e.g., the type-component of a variable job whose sub-type
belongs to V·,+,1 is 105σmax. The index-component of clause jobs, truth-assignment jobs and variable jobs is
of the form 10σ(i) for some index i. Dummy jobs do not have index-component; Link jobs have much more
complicated index-components, which will be specified in the following part of this subsection. Each main job
has a true version and a false version. A gap job does not have a true/false version but only one unified version.

Define a function ζ that maps the (sub)-type of a main job to the exponent of 10 as indicated by Table 1, e.g.,
ζ(TR·,a) = 11. Now we provide the exact processing time of every job. In the following ρ ∈ {T, F}, ι ∈ {+,−}.
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\ Dummy Clause Truth-assignment Link Variable

\ DM CL· TR·,a TR·,b TR·,c TR·,d LN·,+ LN·,− V·,+,1 V·,+,2 V·,−,1 V·,−,2

ζ(·) 13 12 11 10 9 8 7 6 5 4 3 2

Table 1: Type-component of main jobs

• Variable jobs: 4 jobs V ρi,+,1 and V ρi,+,2 are constructed for the positive literal zi, and 4 jobs V ρi,−,1 and V ρi,−,2
are for the negative literal ¬zi.

s(V Ti,ι,κ) = 10ζ(V·,ι,k)σmax + 10σ(i) + 1,

s(V Fi,ι,κ) = 10ζ(V·,ι,k)σmax + 10σ(i) + 2, κ = 1, 2, ι = +,−

• Truth-assignment jobs: 8 jobs TRρ
i,a, TRρ

i,b, TRρ
i,c and TRρ

i,d are constructed for every i.

s(TRT
i,κ) = 10ζ(TR·,κ)σmax + 10σ(i) + 1.5,

s(TRF
i,κ) = 10ζ(TR·,κ)σmax + 10σ(i) + 1. κ = a, b, c, d

• Clause jobs: there are 3 clause jobs for every clause cl` ∈ C1 where ` ∈ {2, 5, · · · , n− 1}, with one CLT` and
two copies of CLF` :

s(CLT` ) = 10ζ(CL·)σmax + 10σ(`) + 2, s(CLF` ) = 10ζ(CL·)σmax + 10σ(`) + 1.

• Dummy jobs: there are n+ n/3 true dummy jobs DMT of processing time 10ζ(DM)σmax + 1, and n− n/3
false dummy jobs DMF of processing time 10ζ(DM)σmax + 2.

• Link jobs: We create 4γ+4 links jobs for each clause in C2. Recall the vectors bhi and b̂
h

i for 1 ≤ h ≤ 2γ+2.
For every clause (zi ⊕ zk) ∈ C2 and every 1 ≤ h ≤ 2γ + 2, we create two pairs of link jobs, LNT

i,h,+ and LNF
i,h,+,

and LNT
k,h,− and LNF

k,h,− such that

s(LNT
i,h,+) = 10ζ(LN·,+)σmax + 10bh(i)x + 1, s(LNF

i,h,+) = 10ζ(LN·,+)σmax + 10bhi x + 2,

s(LNT
k,h,−) = 10ζ(LN·,−)σmax + 10b̂

h
(k)x + 1, s(LNF

k,h,−) = 10ζ(LN·,−)σmax + 10b̂
h
(i)x + 2.

Let TRA, TRB , TRC , TRD be the set of jobs TRρ
i,a, TRρ

i,b, TRρ
i,c and TRρ

i,d respectively. Sometimes we may

drop the superscript for simplicity, e.g., we use TRi,a to represent TRT
i,a or TRF

i,a. We construct gap jobs. There
are 5 kinds of gap jobs.
• There are two gap jobs (variable-link jobs) θLN,i,+ and θV-L,i,− for each variable zi:

s(θV-L,i,+) = (1014 − 107 − 104)σmax − 10

ai[0] + 2

γ∑
j=1

ai[j]x
j + (F0(ai))[0] · xγ+1 + σ′(1)xγ+2

− 3

=
(

1014 − 10ζ(LN·,+) − 10ζ(V·,+,2)
)
σmax − 10(ai + b1

i )x− 3

s(θV-L,i,−) = (1014 − 106 − 102)σmax − 10

ai[0] + 2

γ∑
j=1

ai[j]x
j + (F̂ (ai))[0] · xγ+1 + σ′(1)xγ+2

− 3

=
(

1014 − 10ζ(LN·,−) − 10ζ(V·,−,2)
)
σmax − 10

(
ai + b̂

1

i

)
x− 3

• There are 4γ + 3 gap jobs (link-link jobs), θL-L,i,h,+ and θL-L,i,h,− and θL-L,i,+,− for every 1 ≤ i ≤ n. For
h = 1, 2, · · · , 2γ + 1, we define

s(θL-L,i,h,+) =
(

1014 − 2× 10ζ(LN·,+)
)
σmax − 10

(
bhi x + bh+1

i

)
x− 3

s(θL-L,i,h,−) =
(

1014 − 2× 10ζ(LN·,−)
)
σmax − 10

(
b̂
h

i x + b̂
h+1

i

)
x− 3
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Additionally, we define

s(θL-L,i,+,−) =
(

1014 − 10ζ(LN·,+) − 10ζ(LN·,−)
)
σmax − 2× 10b2γ+2

i x− 3

Here recall that b2γ+2
i = b̂

2γ+2

τ(i) .
• There are three gap jobs (variable-clause-dummy jobs) for each cl` ∈ C1 (` ∈ {2, 5, · · · , n − 1}): for

i = `− 1, `, `+ 1, if zi ∈ cl`, we construct θV-C-D,`,i,+, otherwise ¬zi ∈ cl`, and we construct θV-C-D,`,i,−:

s(θV-C-D,`,i,+) =
(

1014 − 10ζ(DM) − 10ζ(CL·) − 10ζ(V·,+,1)
)
σmax − 10(σ(`) + σ(i))− 4,

s(θV-C-D,`,i,−) =
(

1014 − 10ζ(DM) − 10ζ(CL·) − 10ζ(V·,−,1)
)
σmax − 10(σ(`) + σ(i))− 4.

• There is one gap job (variable-dummy job) for each variable. Notice that each variable appears exactly
once in clauses of C1, if zi appears in C1, we construct θV-D,i,−. Otherwise, we construct θV-D,i,+ instead.

s(θV-D,i,+) =
(

1014 − 10ζ(DM) − 10ζ(V·,+,1)
)
σmax − 10σ(i)− 3,

s(θV-D,i,−) =
(

1014 − 10ζ(DM) − 10ζ(V·,−,1)
)
σmax − 10σ(i)− 3.

Thus, for each clause cl` and i = `−1, `, `+1, either θV-D,i,+ and θV-C-D,`,i,− exist, or θV-D,i,− and θV-C-D,`,i,+

exist.
• There are four gap jobs (variable-truth jobs) for each variable zi, namely θV-T,i,a,c, θV-T,i,b,d, θV-T,i,a,d and

θV-T,i,b,c:

s(θV-T,i,a,c) =
(

1014 − 10ζ(V·,+,1) − 10ζ(TR·,a) − 10ζ(TR·,c)
)
σmax − 30σ(i)− 4,

s(θV-T,i,b,d) =
(

1014 − 10ζ(V·,+,2) − 10ζ(TR·,b) − 10ζ(TR·,d)
)
σmax − 30σ(i)− 4,

s(θV-T,i,a,d) =
(

1014 − 10ζ(V·,−,1) − 10ζ(TR·,a) − 10ζ(TR·,d)
)
σmax − 30σ(i)− 4,

s(θV-T,i,b,c) =
(

1014 − 10ζ(V·,−,2) − 10ζ(TR·,b) − 10ζ(TR·,c)
)
σmax − 30σ(i)− 4,

Overall, we have constructed 2γn+8n gap jobs. We also construct 2γn+8n machines. The following Table 2
summarizes the processing times of all jobs.

G Proof of Theorem 3.1

The proof is carried out in 4 steps. We first show in Section G.1 that every job in the constructed instance has a
unique processing time. This allows us to refer to a job by its symbol (e.g., V Ti,+,1) as well as by its processing time.
Next, we show in Section G.2 that if a significant fraction of clauses in the 3SAT′ instance are satisfiable, then
the constructed scheduling instance admits a solution with a small objective value. Next, we show in Section G.3
that if any truth-assignment for the 3SAT′ instance will leave a significant fraction of clauses unsatisfied, then
the constructed scheduling instance does not admit a solution with a small objective value. Finally, we are able
to prove the correctness of our reduction in Section G.4 by leveraging the above two facts.

G.1 Uniqueness of job processing times We claim that the processing time of each job we create is unique,
whereas there is a one-to-one correspondence between the symbol of a job and its processing time. To see the
claim, consider Table 2. It suffices to compare the processing time of jobs within each subtype. Given that σ is an
injection, it is easy to see that the processing time of each variable job, truth-assignment job, clause job, variable-
dummy job and variable-truth job is unique. For variable-clause-dummy jobs, by property 4 of Lemma 3.3 we
know the sum σ(`)+σ(i) for i = `−1, `, `+1 is unique. The uniqueness of link jobs follows from the uniqueness of
bhi ’s from Lemma 3.6. The uniqueness of link-link jobs follows from the uniqueness of the summation bhi + bh+1

i

from Lemma 3.7.
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Job-type Sub-type Type-component Index-component
T/F
(T)

T/F
(F)

Variable

Vi,+,1 10ζ(V·,+,1)σmax 10σ(i) 1 2

Vi,+,2 10ζ(V·,+,2)σmax 10σ(i) 1 2

Vi,−,1 10ζ(V·,−,1)σmax 10σ(i) 1 2

Vi,−,2 10ζ(V·,−,2)σmax 10σ(i) 1 2

Truth-assignment

TRi,a 10ζ(TR·,a)σmax 10σ(i) 1.5 1

TRi,b 10ζ(TR·,b)σmax 10σ(i) 1.5 1

TRi,c 10ζ(TR·,c)σmax 10σ(i) 1.5 1

TRi,d 10ζ(TR·,d)σmax 10σ(i) 1.5 1

Clause CL` 10ζ(CL·)σmax 10σ(`) 2 1

Dummy DM 10ζ(DM)σmax 0 1 2

Link
h ∈ {0, 1, · · · , 2γ + 2}

LNi,h,+ 10ζ(LN·,+)σmax 10bhi x 1 2

LNi,h,− 10ζ(LN·,−)σmax 10bhi x 1 2

Variable-Link
θV-L,i,+ (1014 − 10ζ(LN·,+) − 10ζ(V·,+,2))σmax −10(ai + b1

i )x -3

θV-L,i,− (1014 − 10ζ(LN·,−) − 10ζ(V·,−,2))σmax −10(ai + b̂
1

i )x -3

Link-Link
h ∈ {1, · · · , 2γ + 1}

θL-L,i,h,+ (1014 − 2× 10ζ(LN·,+))σmax −10(bhi + bh+1
i )x -3

θL-L,i,h,− (1014 − 2× 10ζ(LN·,−))σmax −10(bhi + b̂
h+1

i )x -3

θL-L,i,+,− (1014 − 10ζ(LN·,+) − 10ζ(LN·,−))σmax −20b2γ+2
i x -3

Variable-Clause
-Dummy, |i− `| ≤ 1

θV-C-D,`,i,+ (1014 − 10ζ(DM) − 10ζ(CL·) − 10ζ(V·,+,1))σmax −10(σ(`) + σ(i)) -4

θV-C-D,`,i,− (1014 − 10ζ(DM) − 10ζ(CL·) − 10ζ(V·,−,1))σmax −10(σ(`) + σ(i)) -4

Variable-Dummy
θV-D,i,+ (1014 − 10ζ(DM) − 10ζ(V·,+,1))σmax −10σ(i) -3

θV-D,i,− (1014 − 10ζ(DM) − 10ζ(V·,−,1))σmax −10σ(i) -3

Variable-Truth

θV-T,i,a,c (1014 − 10ζ(V·,+,1) − 10ζ(TR·,a) − 10ζ(TR·,c))σmax −30σ(i) -4

θV-T,i,b,d (1014 − 10ζ(V·,+,2) − 10ζ(TR·,b) − 10ζ(TR·,d))σmax −30σ(i) -4

θV-T,i,a,d (1014 − 10ζ(V·,−,1) − 10ζ(TR·,a) − 10ζ(TR·,d))σmax −30σ(i) -4

θV-T,i,b,c (1014 − 10ζ(V·,−,2) − 10ζ(TR·,b) − 10ζ(TR·,c))σmax −30σ(i) -4

Table 2: Job processing times

G.2 3SAT′ to Scheduling The goal of this subsection is to prove the following lemma.

Lemma G.1. If there are at most ϑn clauses which are not satisfied, then the constructed scheduling instance

admits a feasible schedule with objective value at most (1014σmax)q(2γn+8n)+ϑn· q(q−1)
2 (1014σmax)q−2+o(nσq−2

max).

Recall that every main job, except the clause job, admits a true copy and false copy, while the clause job
admits a true copy and two false copies. We first ignore the true/false version of jobs and schedule them according
to Table 3, where each row represents jobs that are scheduled on one machine.

We show that if we schedule according to Table 3, then every job has been scheduled (ignoring the superscripts
T or F , which will be determined later). It is obvious that every gap job is scheduled. For simplicity, we abuse
the notation a bit by using the symbol of a gap job to denote the machine on which it is scheduled.
• Consider clause jobs. Recall that for each clause cl` and i = ` − 1, `, ` + 1, we either construct θV-D,i,−

and θV-C-D,`,i,+ if the positive literal zi occurs in C1, or construct θV-D,i,+ and θV-C-D,`,i,− if the negative literal
¬zi occurs in C1. Hence the three copies of job CL` appear on machine θV-C-D,`,`−1,+ or θV-C-D,`,`−1,−, machine
θV-C-D,`,`,+ or θV-C-D,`,`,−, and machine θV-C-D,`,`+1,+ or θV-C-D,`,`+1,−. Thus, all three copies of a clause job are
scheduled.
• Consider truth-assignment jobs. There are two copies of TRi,a, TRi,b, TRi,c and TRi,d. It is easy to see

that all of them are scheduled on machines θV-T,i,a,c, θV-T,i,b,d, θV-T,i,a,d and θV-T,i,b,c.
• Consider variable jobs. There are two copies of Vi,+,1, Vi,+,2, Vi,−,1 and Vi,−,2. It is easy to see that one

copy of them are scheduled on machines θV-T,i,a,c, θV-T,i,b,d, θV-T,i,a,d and θV-T,i,b,c. One copy of Vi,+,2 and Vi,−,2
are scheduled on machines θV-L,i,+ and θV-L,i,−. If machines θV-D,i,− and θV-C-D,`,i,+ exist (when the positive
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Variable-Link
θV-L,i,+ Vi,+,2 LNi,1,+ \
θV-L,i,− Vi,−,2 LNi,1,− \

Link-Link
h ∈ {1, 2, · · · , 2γ + 1}

θL-L,i,h,+ LNi,h,+ LNi,h+1,+ \
θL-L,i,h,− LNi,h,− LNi,h+1,− \
θL-L,i,+,− LNi,2γ+2,+ LNτ(i),2γ+2,− \

Variable-Clause-Dummy
|i− `| ≤ 1

θV-C-D,`,i,+ Vi,+,1 CL` DM

θV-C-D,`,i,− Vi,−,1 CL` DM

Variable-Dummy
θV-D,i,+ Vi,+,1 DM \
θV-D,i,− Vi,−,1 DM \

Variable-Truth

θV-T,i,a,c Vi,+,1 TRi,a TRi,c

θV-T,i,b,d Vi,+,2 TRi,b TRi,d

θV-T,i,a,d Vi,−,1 TRi,a TRi,d

θV-T,i,b,c Vi,−,2 TRi,b TRi,c

Table 3: SAT to Scheduling – Jobs scheduled on each machine

literal zi occurs in C1), then Vi,−,1 and Vi,+,1 are scheduled on them respectively; otherwise machines θV-D,i,+ and
θV-C-D,`,i,− exist (the negative literal ¬zi occurs in C1), then Vi,+,1 and Vi,−,1 are scheduled on them respectively.
• Consider link jobs. There are two copies of LNi,h,+ (or LNi,h,−) for 1 ≤ h ≤ 2γ + 2. Let ι ∈ {+,−}. The

two copies of LNi,1,ι are scheduled on machines θV-L,i,ι and θL-L,i,1,ι. The two copies of LNi,h,ι are scheduled on
θL-L,i,h,ι and θL-L,i,h+1,ι for 2 ≤ h ≤ 2γ + 1. The two copies of LNi,2γ+2,+ are scheduled on machines θL-L,2γ+1,+

and θL-L,i,+,−, and the two copies of LNi,2γ+2,− are scheduled on machines θL-L,2γ+1,− and θL-L,τ−1(i),+,−, where
τ−1 is the inverse of the mapping τ (note that τ−1 exists since τ is one-to-one).
• Consider dummy jobs. There are in total 2n dummy jobs. It is obvious that for every i, 2 dummy jobs are

scheduled on machines θV-C-D,`,i,+, θV-D,i,− or machines θV-C-D,`,i,−, θV-D,i,+.
Next, we consider the load of every machine. According to Table 2, it is easy to verify that if we sum up the

type-component of jobs on each machine, it becomes 1014σmax; if we sum up the index-component of jobs on each
machine, it becomes 0. Now we consider the T/F-component of jobs. It is easy to verify that the T/F-components
of all jobs add up to 0, hence we have the following direct observation.

Observation 5. The total processing time of all jobs add up to 1014σmax · (2γn+ 8n).

Variable-Link
θV-L,i,+ V Ti,+,2 LNF

i,1,+ \
θV-L,i,− V Fi,−,2 LNT

i,1,− \

Link-Link
h ∈ {1, 2, · · · , 2γ + 1}

θL-L,i,h,+ LNF
i,h,+ LNT

i,h+1,+ \
θL-L,i,h,− LNF

i,h,− LNT
i,h+1,− \

θL-L,i,+,− LNT
i,2γ+2,+ LN∗τ(i),2γ+2,− \

Variable-Clause-Dummy & Variable-Dummy
Case 1: positive literal zi ∈ C1

θV-C-D,`,i,+ V Ti,+,1 CL∗` DM∗

θV-D,i,− V Fi,−,1 DM∗ \

Variable-Clause-Dummy & Variable-Dummy
Case 2: negative literal ¬zi ∈ C1

θV-C-D,i,− V Fi,−,1 CL∗` DM∗

θV-D,i,+ V Ti,+,1 DM∗ \

Variable-Truth

θV-T,i,a,c V Fi,+,1 TRF
i,a TRF

i,c

θV-T,i,b,d V Fi,+,2 TRF
i,b TRF

i,d

θV-T,i,a,d V Ti,−,1 TRT
i,a TRT

i,d

θV-T,i,b,c V Ti,−,2 TRT
i,b TRT

i,c

Table 4: Scheduling of Truth/False types of jobs if the variable zi is true
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Variable-Link
θV-L,i,+ V Fi,+,2 LNT

i,1,+ \
θV-L,i,− V Ti,−,2 LNF

i,1,− \

Link-Link
h ∈ {1, 2, · · · , 2γ + 1}

θL-L,i,h,+ LNT
i,h,+ LNF

i,h+1,+ \
θL-L,i,h,− LNT

i,h,− LNF
i,h+1,− \

θL-L,i,+,− LNF
i,2γ+2,+ LN∗τ(i),2γ+2,− \

Variable-Clause-Dummy & Variable-Dummy
Case 1: positive literal zi ∈ C1

θV-C-D,`,i,+ V Fi,+,1 CL∗` DM∗

θV-D,i,− V Ti,−,1 DM∗ \

Variable-Clause-Dummy & Variable-Dummy
Case 2: negative literal ¬zi ∈ C1

θV-C-D,i,− V Ti,−,1 CL∗` DM∗

θV-D,i,+ V Fi,+,1 DM∗ \

Variable-Truth

θV-T,i,a,c V Ti,+,1 TRT
i,a TRT

i,c

θV-T,i,b,d V Ti,+,2 TRT
i,b TRT

i,d

θV-T,i,a,d V Fi,−,1 TRF
i,a TRF

i,d

θV-T,i,b,c V Fi,−,2 TRF
i,b TRF

i,c

Table 5: Scheduling of Truth/False types of jobs if the variable zi is false

Consider the truth-assignment of Isat. If the variable zi is true, then we determine the true/false version of
main jobs according to Table 4. Otherwise the variable zi is false in the assignment, then we flip the True/False
version of all jobs in Table 4, i.e., we schedule according to Table 5. It is easy to see that in each row of Table 4,
if there is no job with a superscript of ∗, then their T/F-components sum up to 0, i.e., the load of this machine
is exactly 1014σmax. We call the current schedule a semi-schedule. It remains to determine the true/false version
of jobs with the superscript ∗.
• Consider link-link machines. We only need to consider machines θL-L,i,+,−. The T/F-type of the job

LNi,2γ+2,+ has already been decided based on the true/false of variable zi. Consider the other job LNτ(i),2γ+2,−
scheduled on this machine. Notice that based on the true/false of the variable zτ(i), one copy of LNτ(i),2γ+2,−
is scheduled on θL-L,τ(i),2γ+1,−, and the remaining copy is scheduled on θL-L,i,+,−. If zτ(i) is true, the remaining
copy is LNF

τ(i),2γ+2,−; otherwise, the remaining copy is LNT
τ(i),2γ+2,−. Hence, we have the following observation:

– if variables zi is true and zτ(i) is false, then LNT
i,2γ+2,+ and LNT

τ(i),2γ+2,− are on this machine, whereas the load

is 1014σmax − 1;

– if variables zi is false and zτ(i) is true, then LNF
i,2γ+2,+ and LNF

τ(i),2γ+2,− are on this machine, whereas the load

is 1014σmax + 1;

– if variables zi and zτ(i) are both true or both false, then one of LNi,2γ+2,+ and LNτ(i),2γ+2,− is true and the
other is false, whereas the load is 1014σmax.

The above observation leads to the following claim.

Claim 2. The load of machine θL-L,i,+,− is 1014σmax if the clause (zi ⊕ ¬zτ(i)) is satisfied, and is 1014σmax ± 1
otherwise.

• Consider variable-clause-dummy and variable-dummy machines. Notice that there is one true copy and two
false copies of CL`, scheduled on machines θV-C-D,`,i,κi−` where i ∈ {` − 1, `, ` + 1} and κi−` ∈ {+,−}. If there
exists at least one i = i∗ such that V Ti,κi∗−`,1 is on machine θV-C-D,`,i∗,κi∗−` , then we schedule CLT` on machine

θV-C-D,`,i∗,κi∗−` , and schedule the two copies of CLF` on the remaining two machines, respectively. Otherwise,

we schedule CLT` on machine θV-C-D,`,`−1,κ−1
and the two false copies CLF` on machines θV-C-D,`,i,κi−` where

i = `, `+ 1.
Finally, we determine the true/false version of dummy jobs on variable-clause-dummy and variable-dummy

machines. Recall that there are n+ n/3 true dummy and n− n/3 false dummy jobs.
On variable-clause-dummy machines, if the clause job is true, schedule a true dummy job. Otherwise, the

clause job is false, then if the variable job is true (or false), schedule a false (or true) dummy job.
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On variable-dummy machines, we schedule dummy jobs in the following way. A false variable job is always
scheduled with a true dummy job. For true variable jobs, we first partition the indices of variables, {1, 2, · · · , n},
into two subsets S1, S2 such that

S1 = {i : On machine θV-C-D,`,i,κi−` there is a true clause job and a false variable job},

and S2 consists of the remaining indices. On machine θV-D,i,+ or θV-D,i,− where i ∈ S1 and the variable job is
true, we schedule a true dummy job; on machine θV-D,i,+ or θV-D,i,− where i 6∈ S1 and the variable job is true,
we schedule a false dummy job.

Consider the true/false versions of all two jobs on a variable-dummy machine and use (T/F, T/F ) to denote
the true/false version of the two jobs in the order of variable job, dummy job. Then the above scheduling can be
restated as follows. A variable-dummy machine θV-D,i,+ or θV-D,i,+ is:

• (F, T ), if a false variable job is on it;

• (T, F ), if a true variable job is on it and i 6∈ S1;

• (T, T ), if a true variable job is on it and i ∈ S1.

Hence there are in total three kinds of variable-dummy machines (F, T ), (T, T ), (T, F ).
Now we check the total number of true and false dummy jobs scheduled in the above way. Similarly we consider

the true/false versions of all three jobs on a variable-clause-dummy machine and use (T/F, T/F, T/F ) to denote
the true/false versions of the three jobs in the order of variable job, clause job and dummy job, then there are in
total four kinds of variable-clause-dummy machines: (F, T, T ), (T, T, T ), (T, F, F ), (F, F, T ). Let ](T/F, T/F, T/F )
and ](T/F, T/F ) be the number of machines of each kind. Then we have the following observations:

](F, T, T ) = |S1|(G.5a)

](F, T, T ) + ](T, T, T ) = n/3(G.5b)

](T, F, F ) + ](F, F, T ) = 2n/3(G.5c)

](F, T ) + ](T, T ) + ](T, F ) = n(G.5d)

](F, T, T ) + ](F, F, T ) + ](F, T ) = n(G.5e)

](T, T ) = |S1|(G.5f)

Here Eq (G.5a) follows from the definition of S1. Eq (G.5b) follows from the fact that there are in total n/3
true clause jobs. Eq (G.5c) follows from the fact that there are in total n clause jobs, and hence 2n/3 false clause
jobs. Eq (G.5d) follows from the fact that there are in total n variable-dummy machines. Eq (G.5e) follows
from the fact that there are in total n false variable jobs. We now explain Eq (G.5f). Notice that for each i
there are in total 8 variable jobs (i.e., Vi,·,·), 4 true copies and 4 false copies. Among them 2 true and 2 false
copies are scheduled on variable-truth machines, 1 true and 1 false copies are scheduled on variable-link machines
(see Table 4). Hence, 1 true and 1 false copies are scheduled on variable-clause-dummy and variable-dummy
machines. For any i, if the false (or true) variable job Vi,·,· is scheduled on a variable-clause-dummy machine,
then the remaining true (or false) variable job is scheduled on a variable-dummy machine. Now consider the set
of all i’s where the true variable job Vi,·,· is scheduled with a true dummy job on a variable-dummy machine and
let it be S3. According to the way we schedule, on machine θV-D,i,+ or θV-D,i,−, we schedule a true variable job
and a true dummy job only if i ∈ S1 (otherwise, either the variable job or the dummy job is false), hence S3 ⊆ S1.
Meanwhile, for any i ∈ S1, we know the false variable job Vi,·,· is scheduled on a variable-clause-dummy machine,
whereas the true variable job must be scheduled on a variable-dummy machine, this implies that any i ∈ S1 also
satisfies that i ∈ S3. Hence S1 = S3 and Eq (G.5f) is true.

The total number of true dummy jobs scheduled equals ](F, T, T )+](T, T, T )+](F, F, T )+](F, T )+](T, T ) =
n + ](T, T, T ) + ](T, T ) = n + n/3 − |S1| + |S1| = 4n/3. Similarly, we can show the total number of false jobs
scheduled equals 2n/3. Hence, our way of scheduling dummy jobs is feasible.

Now we check the load of every variable-clause-dummy machines and variable-dummy machines. It is easy
to verify that for a variable-clause-dummy machine, if its kind is (T, T, T ), or (T, F, F ), or (F, F, T ), then its load
is 1014σmax; if its kind is (F, T, T ), then its load is 1014σmax + 1. For a variable-dummy machine, if its kind is
(F, T ) or (T, F ), then its load is 1014σmax; if its kind is (T, T ), then its load is 1014σmax − 1.
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Notice that for every 1 ≤ i ≤ n, the variable-dummy machine θV-D,i,· is of (T, T ) if and only if the variable-
clause-dummy machine θV-C-D,`,i,· is of (F, T, T ). Recall that we always try to schedule the true clause job CLT`
with a true variable job, if possible. Hence, CLT` is scheduled with a false variable job if and only if all the
three variable jobs scheduled on variable-clause-dummy machines, i.e., V`−1,κ−1,1, V`,κ0,1 and V`+1,κ1,1, are all
false where κ−1, κ0, κ1 ∈ {+,−}. Consider V`−1,κ−1,1. If κ−1 = +, then θV-C-D,`,`−1,+ exists, indicating case 1 of
Table 4 or Table 5 occurs, i.e., the positive literal z`−1 is in clause cl` ∈ C1. Furthermore, as V F`−1,+,1 is scheduled
on the variable-clause-dummy machine, the scheduling follows Table 5, the variable z`−1 is false in the assignment
of Isat. That is, cl` is not satisfied by z`−1. Similarly, we can show that if κ−1 = −, then the negative literal
¬z`−1 is in cl` and variable zi is true, whereas cl` is not satisfied by z`−1, either. Using the same argument, we
can show that if all three jobs V`−1,κ−1,1, V`,κ0,1 and V`+1,κ1,1 scheduled together with CL` are all false, then cl`
is not satisfied by the assignment. Furthermore, according to our scheduling method, if we cannot schedule CLT`
with a true variable job, we schedule it with the false job V F`−1,κ−1,1

. That means, among the three machines

θV-C-D,`,i,·, only θV-C-D,`−1,i,· is of kind (F, T, T ) and has a load of 1014σmax + 1. The other two machines have a
load of 1014σmax. Similarly, we check variable-dummy machines and see that among the three machines θV-D,i,·
where i ∈ {` − 1, `, ` + 1}, only machine θV-D,`−1,· is of kind (T, T ) and has a load of 1014σmax − 1. The other
two machines have a load of 1014σmax.

According to our observation in the above paragraph, we have the following claim.

Claim 3. If cl` ∈ C1 is satisfied, then the three clause-variable-dummy machines θV-C-D,i,`,· and the three variable-
dummy machines θV-D,i,·, i ∈ {` − 1, `, ` + 1} all have a load of 1014σmax; otherwise, machine θV-C-D,`−1,`,· has
a load of 1014σmax + 1, θV-D,`−1,· has a load of 1014σmax − 1, and all the remaining 4 machines have a load of
1014σmax.

Combining Claim 2 amd Claim 3, we know that each unsatisfied clause can lead to at most 2 machines with
load 1014σmax± 1. Recall that the total processing time of all jobs is 1014σmax · (2γn+ 8n), hence the number of
machines with load 1014σmax + 1 should equal the number of machines with load 1014σmax − 1. Consequently, if
there are ϑn unsatisfied clauses, the resulted schedule will contain at most 2ϑn machines with load 1014σmax± 1.
Using Taylor’s expression, we have that

(x+ 1)q + (x− 1)q = xq[(1 +
1

x
)q + (1− 1

x
)q]

= xq(1 +
q(q − 1)

2x2
+ o(

1

x2
))

= xq +
q(q − 1)

2
· xq−2 + o(xq−2),

Hence, by simple calculations Lemma G.1 is proved.

G.3 Scheduling to 3SAT′ The goal of this subsection is to show that if the constructed scheduling instance
admits a feasible schedule of a small objective value, then the given 3SAT′ instance admits a truth-assignment
that satisfies most clauses. More precisely, we prove the following lemma.

Lemma G.2. If there are at least ϑn clauses not satisfied, then any feasible schedule has an objective value at

least (2γn+ 8n)(1014σmax)q + q(q−1)ϑn
48 · (1014σmax)q−2 + o(nσq−2

max).

In the following we consider a solution Sol for scheduling whose objective value is bounded by (2γn +

8n)(1014σmax)q + ( q(q−1)ϑn
48 − ε′) · (1014σmax)q−2 for arbitrarily small ε′ > 0.

Recall that we have constructed in total 2γn+8n machines. According to Subsection G.2, the total processing
time of all jobs is (2γn+ 8n) · 1014σmax. Consider an arbitrary schedule. We say a machine is good if its load is
exactly 1014σmax; otherwise, the machine is bad. Since the processing times are half-integral (multiples of 1/2),
the load of a bad machine is either no larger than 1014σmax − 0.5, or no less than 1014σmax + 0.5. Furthermore,
we say a machine is very bad if its load deviates from 1014σmax by at least σmax, i.e., the load of a very bad
machine is either no larger than (1014 − 1)σmax, or no smaller than (1014 + 1)σmax.

Lemma G.3. If there exists a very bad machine, then the objective value of the schedule is at least m(1014σmax)q+
c1σ

q
max for some constant c1 > 0.
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Towards the proof, we need the following lemma.

Lemma G.4. For x, q,m > 1 and k ≥ 1, it holds that

(x− k)q + (m− 1)(x+
k

m− 1
)q ≥ mxq +

q(q − 1)

4
min{(x− 1)q−2, (x+ 1)q−2}.

Proof. Taking the derivative of (x−k)q+(m−1)(x+ k
m−1 )q with respect to k, we get−q(x−k)k−1+q(x+ k

m−1 )q−1 >

0 when x, q,m > 1 and k ≥ 1, hence the function (x − k)q + (m − 1)(x + k
m−1 )q is an increasing function of k,

thus it suffices to prove the lemma for k = 1. According to the mean value theorem, we have

Γ :=
1

m
(x− 1)q +

m− 1

m
(x+

1

m− 1
)q − xq

= − 1

m
[xq − (x− 1)q] +

m− 1

m
[(x+

1

m− 1
)q − xq]

= − 1

m
[xq − (x− 1

2
)q]− 1

m
[(x− 1

2
)q − (x− 1)q] +

m− 1

m
[(x+

1

m− 1
)q − xq]

= − 1

2m
q(x− θ1)q−1 − 1

2m
q(x− 1

2
− θ2)q−1 +

m− 1

m
· 1

m− 1
· q(x+ θ3)q−1

for some θ1, θ2 ∈ (0, 1/2) and θ3 ∈ (0, 1
m−1 ). Further apply the mean value theorem, we have

Γ ≥ q

2m
[(x+ θ3)q−1 − (x− 1

2
− θ2)q−1]

=
q

2m
(θ2 + θ3 +

1

2
)(q − 1)(x+ θ4)q−2

for some θ4 ∈ (−1/2 − θ2, θ3). If q ≥ 2, then (x + θ4)q−2 ≥ (x − 1)q−2. Otherwise 1 < q < 2 and it holds that
(x+ θ4)q−2 ≥ (x+ 1)q−2. Thus

Γ ≥ q(q − 1)

4m
min{(x− 1)q−2, (x+ 1)q−2}.

Hence, the lemma is proved.

Similarly, we can prove that

Lemma G.5. For x, q,m > 1 and k ≥ 1, it holds that

(x+ k)q + (m− 1)(x− k

m− 1
)q ≥ mxq +

q(q − 1)

4
min{(x− 1)q−2, (x+ 1)q−2}.

Now we are ready to prove Lemma G.3.

Proof. [Proof of Lemma G.3] Suppose the load of one very bad machine is (1014 − k)σmax for some |k| ≥ 1, then
total load of all other machines is 1014(m− 1)σmax + kσmax. By the convexity of the function xq, the objective
value of such a solution is at least:

(1014 − k)qσqmax + (m− 1) · [ 1014(m− 1)σmax + kσmax
m− 1

]q

= σqmax[(1014 + k)q + (m− 1)(1014 +
k

m− 1
)q]

≥ m(1014σmax)q + σqmax ·
q(q − 1)

4
min{(1014 − 1)q−2, (1014 + 1)q−2}

Hence, the lemma is proved.
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We have shown that if a schedule admits a very bad machine, then its objective is significantly large and
cannot be Sol. To prove Lemma G.2, it suffices to restrict our attention to schedules without any very bad
machine.

Notice that the processing time of a gap job is at least (1014 − 2× 1013)σmax, we know that there can be at
most one gap job on a machine that is not very bad. Given the fact that the total number of gap jobs equals the
number of machines, and there is no very bad machine in Sol, we have the following observation.

Lemma G.6. There is exactly one gap job on each machine in Sol.

Given Lemma G.6, we will use the symbol of a gap job, e.g., θV-L,i,+, to denote the machine on which this
job is scheduled.

The following lemma is straightforward by observing that σmax > x · σ(i) for all i, and hence the type
coordinates (i.e., the term 10jσmax) of jobs on a machine that is not very bad cannot add up to smaller than
(1014 − 2)σmax or larger than (1014 + 2)σmax.

Lemma G.7. If in a solution there is no very bad machine, then

• On a variable-link machine θV-L,i,ι where ι ∈ {+,−}, there are exactly three jobs – a gap job, a variable job
and a link job.

• On a link-link machine θL-L,i,h,ι where ι ∈ {+,−}, there are exactly three jobs – a gap job and two link jobs.

• On a variable-dummy machine θV-D,i,ι where ι ∈ {+,−}, there are exactly three jobs – a gap job, a variable
job and a dummy job.

• On a variable-clause-dummy machine θV-C-D,`,i,ι where ι ∈ {+,−}, there are exactly four jobs – a gap job,
a variable job, a clause job and a dummy job.

• On a variable-truth machine θV-T,i,ρ where ρ ∈ {(a, c), (b, d), (a, d), (b, c)}, there are exactly four jobs – a
gap job, a variable job and two truth-assignment jobs; Furthermore, the two truth-assignment jobs are:

– TR·,a and TR·,c if ρ = (a, c);

– TR·,b and TR·,d if ρ = (b, d);

– TR·,a and TR·,d if ρ = (a, d);

– TR·,b and TR·,c if ρ = (b, c).

Proof. The proof can be carried out through a counting argument in the order of dummy jobs, clause jobs, truth-
assignment jobs, link jobs and variable jobs according to Table 1. In the following, we prove dummy jobs and
the other types of jobs can be proved in a similar way. The reader may refer to Table 2 for a quick overview
on job processing times. Note that a dummy job has a processing time at least (1013 − 1/2)σmax. It is easy
to see that if a variable-link machine, or link-link machine, or variable-truth machine accepts one dummy job,
then the load of this machine is larger than (1014 + 1)σmax, contradicting the fact that there is no very bad
machine. Hence, dummy jobs can only be scheduled on variable-clause-dummy machine or a variable-dummy
machine. Similarly, if a variable-clause-dummy machine or a variable-dummy machine accepts two or more
dummy jobs, its load becomes larger than (1014 + 1)σmax, hence each of these machines can accept at most 1
dummy job. On the other hand, there are 2n dummy jobs, which is equal to the sum of the number of variable-
clause-dummy machines (which is n) and the number of variable-dummy machines (which is also n). Hence, each
variable-clause-dummy machine or variable-dummy machine accepts exactly one dummy job. Subtracting one
dummy job together with the gap job on each variable-clause-dummy machine or variable-dummy machine, we
know that if the machine is not very bad, then the remaining jobs on a variable-clause-dummy machine should
add up to some value within [(1012 + 105 − 2)σmax, (1012 + 105 + 2)σmax] (if this machine is θV-C-D,`,i,+) or
[(1012 + 103− 2)σmax, (1012 + 103 + 2)σmax] (if this machine is θV-C-D,`,i,−), and the remaining jobs on a variable-
dummy machine should add up to some value within [(105 − 2)σmax, (105 + 2)σmax] (if this machine is θV-D,i,+)
or [(103 − 2)σmax, (103 + 2)σmax] (if this machine is θV-D,i,−). Consequently, we can apply the same argument to
clause jobs, and then truth-assignment jobs, then link jobs and then variable jobs.
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Using Lemma G.7, we further have the following observation.

Lemma G.8. On a good machine, the type-component of jobs add up to 1014σmax, the index-components and the
true/false-components of jobs add up to 0, respectively.

Now we further identify the index-component of jobs on each machine.

Lemma G.9. Consider an arbitrary variable-dummy machine θV-D,i,ι where ι ∈ {+,−}. If the machine is good,
then the variable job on this machine is Vi,ι,2.

Applying Lemma G.8, the proof is straightforward by checking the sum of type-components and index-
components of jobs, respectively.

Lemma G.10. Consider an arbitrary variable-clause-dummy machine θV-C-D,`,i,ι where ι ∈ {+,−}. If the
machine is good, then the clause job on this machine is CL`, and the variable job on this machine is Vi,ι,1.

Proof. By Lemma G.8, the type-components of the three jobs add up to 1014σmax, hence it is easy to see that
the variable job should be Vi′,ι,1 for some i′. Let the clause job be CL`′ for some `′. As the index-components of
the three jobs add up to 0, we have

σ(`′) + σ(i′) = σ(`) + σ(i).

Notice that for any machine θV-C-D,`,i,ι it holds that i ∈ {`−1, `, `+1} and ` ∈ {2, 5, · · · , n−1}. We claim that
`′ = ` and i′ = i. To see why, consider two cases. If ` = i, then σ(`′) + σ(i′) = 2σ(`). According to Lemma 3.3,
we have `′ = i′ = ` = i and the claim follows. Otherwise, i = ` ± 1. According to Lemma 3.3, the only solution
for σ(j) + σ(j + 1) =

∑k
h=1 σ(jh), k ≤ 5, is k = 2 and {j1, j2} = {j, j + 1}. Hence, we have {`′, i′} = {`, i}. Note

that `′, ` ∈ {2, 5, · · · , n− 1}, hence `′, ` ≡ 2( mod 3). But i 6≡ 2( mod 3). Thus, ` = `′ and i = i′. In both cases,
Lemma G.10 holds.

Lemma G.11. Consider an arbitrary variable-truth machine θV-T,i,ρ where ρ ∈ {(a, c), (b, d), (a, d),
(b, c)}. If the machine is good, then the variable and truth-assignment jobs are:

• Vi,+,1 and TRi,a, TRi,c if ρ = (a, c);

• Vi,+,2 and TRi,b, TRi,d if ρ = (b, d);

• Vi,−,1 and TRi,a, TRi,d if ρ = (a, d);

• Vi,−,2 and TRi,b, TRi,c if ρ = (b, c).

Proof. According to Lemma G.8, the type-components of jobs add up to 1014σmax. Hence, it is easy to verify
that for some i1, i2, i3 the variable and truth-assignment jobs are Vi1,+,1 and TRi2,a, TRi3,c, if ρ = (a, c); Vi1,+,2
and TRi2,b, TRi3,d, if ρ = (b, d); Vi1,−,1 and TRi2,a, TRi3,d, if ρ = (a, d); Vi1,−,2 and TRi2,b, TRi3,c, if ρ = (b, c).

We prove i1 = i2 = i3 = i, and Lemma G.11 follows. According to Lemma G.8, the index-components add
up to 0, hence

10σ(i1) + 10σ(i2) + 10σ(i3) = 30σ(i),

i.e., σ(i1) + σ(i2) + σ(i3) = 3σ(i). According to Lemma 3.3, the above equation has a unique solution, which is
i1 = i2 = i3 = i.

Lemma G.12. Consider an arbitrary variable-link machine θV-L,i,ι where ι ∈ {+,−}. If the machine is good,
then the variable job on this machine is Vi,ι,2, and the link job on this machine is LNi,1,ι.

Proof. Using the fact that the type-components of all jobs add up to 1014σmax, it is easy to see that the variable
job should be Vi1,ι,2 and the link job should be LNi2,h,ι for some 1 ≤ i1, i2 ≤ n and 1 ≤ h ≤ 2γ+ 2. We prove the
lemma for ι = +. The case that ι = − can be proved in the same way.

Given that the index-components should add up to 0, we have the following:

ai + b1
i = ai1 + bhi2(G.6)

Recall that ai = b0
i . According to Lemma 3.7, we have h = 1 and i1 = i2 = i.
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Lemma G.13. Consider an arbitrary link-link machine θL-L,i,h,ι where ι ∈ {+,−}, 1 ≤ h ≤ 2γ+1. If the machine
is good, then the two link jobs on this machine are LNi,h,ι and LNi,h+1,ι.

The proof is similar to that of Lemma G.12 by utilizing Lemma 3.7.

Lemma G.14. Consider an arbitrary link-link machine θL-L,i,+,−. If the machine is good, then the two link jobs
on this machine are LNi,2γ+2,+ and LNτ(i),2γ+2,−.

Proof. Using the fact that the type-components of all jobs add up to 1014σmax, it is easy to see that the two link
jobs should LNi1,h1,+ and LNi2,h2,−. Given that the index-components should add up to 0, we have the following:

2b2γ+2
i = bh1

i1
+ b̂

h2

i2(G.7)

According to Lemma 3.8, we have i1 = i and i2 = τ(i), and h1 = h2 = 2γ + 2.

We have proved, so far, that if a machine is good, then the jobs scheduled on it must follow Table 3. Finally
we consider the true/false-components of jobs on good machines. Based on the T/F-component of jobs, the
following lemma is easy to verify.

Lemma G.15. The followings are true:

• If a variable-link machine is good, then the T/F-type of the variable job and link job on this machine is
(T, F ) or (F, T );

• If a link-link machine is good, then the T/F-type of the two link jobs on this machine is (T, F ) or (F, T );

• If a variable-clause-dummy machine is good, then the T/F-type of the variable job, clause job and dummy
job on this machine is (T, T, T ) or (T, F, F ) or (F, F, T );

• If a variable-dummy machine is good, then the T/F-type of the variable job and dummy job on this machine
is (T, F ) or (F, T );

• If a variable-truth machine is good, then the T/F-type of the variable job and two truth-assignment jobs on
this machine is (T, T, T ) or (F, F, F );

G.3.1 Truth-assignment based on scheduling Given a feasible schedule Sol, we give a truth-assignment of Isat
as follows: if the job V Ti,+,1 is scheduled on machine θV-T,i,a,c, then we let variable zi be false; if the job V Fi,+,1 is
scheduled on machine θV-T,i,a,c, then we let variable zi be true. If Vi,+,1 is not scheduled on machine θV-T,i,a,c,
we let zi be true.

We call the machines in the following Table 6 as machines of group i. Notice that groups are not disjoint,
particularly machines θL-L,i,+,−, θL-L,τ−1(i),+,− will appear in two groups. Besides the two machines, all other
machines in a group do not appear in other groups. We have the following lemma.

Lemma G.16. Suppose all machines in group i are good. If V Fi,+,1 is scheduled on machine θV-T,i,a,c, then the

jobs scheduled on these machines are according to Table 6 ; if V Ti,+,1 is scheduled on machine θV-T,i,a,c, then the
jobs scheduled on these machines are according to Table 7.

Proof. We prove the first half of Lemma G.16, the second half can be proved in the same way. If V Ti,+,1 is scheduled

on machine θV-T,i,a,c, then by Lemma G.15 we know the other two jobs are TRF
i,a and TRF

i,c, consequently, TRT
i,a is

scheduled on machine θV-T,i,a,d. Using similar argument it is easy to see the jobs scheduled on the 4 variable-truth
machines follow Table 6.

We consider variable-clause-dummy and variable-dummy machines. It follows that the remaining V Ti,+,1 and

V Fi,−,1 are scheduled on these machines. The T/F type of the other jobs on these machines follow from Lemma G.15.
Next, we consider variable-link machines. Again by the scheduling on variable-truth machines, the remaining

V Ti,+,2 and V Fi,−,2 are scheduled on these machines. The T/F-type of the link jobs are determined by Lemma G.15.
Finally we consider link-link machines. Based on the link jobs scheduled on variable-link machines and

Lemma G.15, LNF
i,1,+ and LNT

i,2,+ must be scheduled on θL-L,i,1,+, consequently the remaining LNF
i,2,+ must be
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Variable-Link
θV-L,i,+ V Ti,+,2 LNF

i,1,+ \
θV-L,i,− V Fi,−,2 LNT

i,1,− \

Link-Link
h ∈ {1, 2, · · · , 2γ + 1}

θL-L,i,h,+ LNF
i,h,+ LNT

i,h+1,+ \
θL-L,i,h,− LNF

i,h,− LNT
i,h+1,− \

θL-L,i,+,− LNT
i,2γ+2,+ LNF

τ(i),2γ+2,− \
θL-L,τ−1(i),+,− LNT

τ−1(i),2γ+2,+ LNF
i,2γ+2,− \

Variable-Clause-Dummy & Variable-Dummy
Case 1: positive literal zi ∈ C1

θV-C-D,`,i,+ V Ti,+,1 CL∗` DM∗

θV-D,i,− V Fi,−,1 DMT \

Variable-Clause-Dummy & Variable-Dummy
Case 2: negative literal ¬zi ∈ C1

θV-C-D,i,− V Fi,−,1 CLF` DMT

θV-D,i,+ V Ti,+,1 DMF \

Variable-Truth

θV-T,i,a,c V Fi,+,1 TRF
i,a TRF

i,c

θV-T,i,b,d V Fi,+,2 TRF
i,b TRF

i,d

θV-T,i,a,d V Ti,−,1 TRT
i,a TRT

i,d

θV-T,i,b,c V Ti,−,2 TRT
i,b TRT

i,c

Table 6: Scheduling of group i machines when V Fi,+,1 is scheduled on machine θV-T,i,a,c (and we set variable zi to
be true)

Variable-Link
θV-L,i,+ V Fi,+,2 LNT

i,1,+ \
θV-L,i,− V Ti,−,2 LNF

i,1,− \

Link-Link
h ∈ {1, 2, · · · , 2γ + 1}

θL-L,i,h,+ LNT
i,h,+ LNF

i,h+1,+ \
θL-L,i,h,− LNT

i,h,− LNF
i,h+1,− \

θL-L,i,+,− LNF
i,2γ+2,+ LNT

τ(i),2γ+2,− \
θL-L,τ−1(i),+,− LNF

τ−1(i),2γ+2,+ LNT
i,2γ+2,− \

Variable-Clause-Dummy & Variable-Dummy
Case 1: positive literal zi ∈ C1

θV-C-D,`,i,+ V Fi,+,1 CLF` DMT

θV-D,i,− V Ti,−,1 DMF \

Variable-Clause-Dummy & Variable-Dummy
Case 2: negative literal ¬zi ∈ C1

θV-C-D,i,− V Ti,−,1 CL∗` DM∗

θV-D,i,+ V Fi,+,1 DMT \

Variable-Truth

θV-T,i,a,c V Ti,+,1 TRT
i,a TRT

i,c

θV-T,i,b,d V Ti,+,2 TRT
i,b TRT

i,d

θV-T,i,a,d V Fi,−,1 TRF
i,a TRF

i,d

θV-T,i,b,c V Fi,−,2 TRF
i,b TRF

i,c

Table 7: Scheduling of group i machines when V Ti,+,1 is scheduled on machine θV-T,i,a,c (and we set variable zi to
be false)

scheduled on machine θL-L,i,2,+. Iteratively carrying on the above argument we can show that jobs scheduled on
machines θL-L,i,h,+ must follow Table 6. Similar arguments can be applied to machines θL-L,i,h,−, θL-L,i,+,− and
θL-L,τ−1(i),+,−.

The T/F-type of the clause job CL` is not determined in Table 6. Recall that among three copies of CL`
there is one true copy CLT` . Suppose CLT` is scheduled on group i machines. If V Ti,+,1 is scheduled on machine
θV-T,i,a,c and we set variable zi to be true, then from Table 6 we know case 1 must happen, which implies that
clause cl` is satisfied by zi. If V Fi,+,1 is scheduled on machine θV-T,i,a,c and we set variable zi to be false, then
from Table 7 we know case 2 must happen, which implies that clause cl` is satisfied by ¬zi. Hence the following
lemma is true.
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Lemma G.17. If all machines in group i are good and CLT` is scheduled on these machines, then the clause
cl` ∈ C1 that contains variable zi is satisfied by this variable.

Now consider clauses in C2 and we have the following lemma.

Lemma G.18. If all machines in group i are good, and all machines in group τ(i) are also good, then the clause
(zi ⊕ ¬zτ(i)) is satisfied.

Proof. There are two possibilities. If V Fi,+,1 is scheduled on machine θV-T,i,a,c and we set variable zi to be true,

then LNF
τ(i),2γ+2,−, implying that LNT

τ(i),2γ+2,− is scheduled in group τ(i). By checking Table 6 and Table 7 for

variable zτ(i), it follows that Table 6 is the case when LNT
τ(i),2γ+2,− is scheduled, and consequently variable zτ(i)

is set to be true, whereas (zi ⊕ ¬zτ(i)) is satisfied. The other case when V Ti,+,1 is scheduled on machine θV-T,i,a,c

and we set variable zi to be false can be proved in a similar way.

Lemma G.19. In a feasible schedule Sol, if there are at most m′ machines which are not good, then in the
corresponding truth-assignment, there are at most 6m′ clauses that are not satisfied.

Proof. We say a group is good if all machines in this group are good. According to Lemma G.17, if a clause cl`
in C1 is not satisfied, then the group that contains the job CLT` is not good, that is, there is at least one machine
that is not good in this group. Hence, if there are m1 clauses in C1 not satisfied, then there are at least m1

groups that are not good. According to Lemma G.18, if a clause (zi ⊕ ¬zτ(i)) in C2 is not good, then among
group i and group τ(i) there is at least one group which is not good. Given that each group is only involved in
two clauses of C2, if there are m2 clauses in C2 not satisfied, then there are at least m2/2 groups which are not
good. Hence, there are at least max{m1,m2/2} groups which are not good, given m1 +m2 clauses which are not
satisfied. Using the fact that m1+m2

max{m1,m2/2} ≤ 3, we know if there are at most m′ machines which are not good,

then there are at most 2m′ groups which are not good, and hence there are at most 6m′ clauses which are not
satisfied.

Lemma G.20. In a feasible schedule, if there are at least m′ machines which are not good, then its objective value
is at least (2γn+ 8n)× (1014σmax)2 +m′/4.

Proof. Recall that if a machine is not good, then its load is either ≥ 1014σmax+0.5 or ≤ 1014σmax−0.5. Suppose
there are m′1 machines, with load 1014σmax + µ1, 1014σmax + µ2, · · · , 1014σmax + µm′1 where µj ≥ 1/2; there

are m′2 machines, with load 1014σmax − ν1, 1014σmax − ν2, · · · , 1014σmax + νm′2 where νj ≥ 1/2. It follows that∑
j µj =

∑
j νj and m′1 +m′2 = m′. The objective value of the schedule is

(2γn+ 8n−m′)(1014σmax)q +

m′1∑
j=1

(1014σmax + µj)
q +

m′2∑
j=1

(1014σmax − νj)q

= (2γn+ 8n)(1014σmax)q +
q(q − 1)

2
[

m′1∑
j=1

µ2
j+

m′2∑
j=1

ν2
j ](1014σmax)q−2 + o([

m′1∑
j=1

µ2
j+

m′2∑
j=1

ν2
j ]σq−2

max)

≥ (2γn+ 8n)(1014σmax)q +
q(q − 1)

2
[
m′1
4

+
m′2
4

](1014σmax)q−2 + o(m′σq−2
max)

= (2γn+ 8n)(1014σmax)q +
q(q − 1)m′

8
(1014σmax)q−2 + o(m′σq−2

max).

Combining the above lemmas, Lemma G.2 is proved.

G.4 Finalizing the Proof of Theorem 3.1 Suppose on the contrary there exists a PTAS for P ||
∑
i C

q
i that runs

in time 2O((1/ε)1/2−δ) + nO(1), we show that this algorithm can be used to distinguish between instances of 3SAT′

with 4n/3 clauses where at least 4(1 − ε′)/3 clauses are satisfiable from instances where at most 4(β + ε′)n/3

clauses are satisfiable in time 2O(n1−δ), contradicting Lemma 3.1.
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Consider the constructed scheduling instance with 2γn + 8n = O( n logn
log log n ) machines. Recall σmax =

n1+O( 1
log log n ). If the 3SAT′ instance has at most 4ε′n/3 unsatisfied clauses, then by Lemma G.1 (taking ϑ = 4ε′/3)

the objective value Obj1 of the constructed scheduling instance is at most

Obj1 ≤ (2γn+ 8n)(1014σmax)q + 4ε′n/3 · q(q − 1)

2
(1014σmax)q−2 + o(nσq−2

max)

= (2γn+ 8n)(1014σmax)q +
2ε′q(q − 1)n

3
· (1014σmax)q−2 + o(nσq−2

max)

If the 3SAT′ instance has at least 4(1 − β − ε′)n/3 unsatisfied clauses, then by Lemma G.2 (taking
ϑ = 4(1 − β − ε′)/3) the objective value Obj2 of any feasible solution for the constructed scheduling instance
is at least

Obj2 ≥ (2γn+ 8n)(1014σmax)q +
q(q − 1) · 4(1− β − ε′)n/3

48
· (1014σmax)q−2 + o(nσq−2

max)

= (2γn+ 8n)(1014σmax)q +
q(q − 1)(1− β − ε′)n

36
· (1014σmax)q−2 + o(nσq−2

max)

for some constant β < 1.

We apply the PTAS for P ||
∑
i C

q
i by setting ε = 1

(2γ+8)×(1014σmax)2 · q(q−1)ε′

36 = Θ(γ−1σ−2
max) = n−2−O( log log n

log n ),

then it follows that the PTAS runs in time 2O(n1−o(1)). If there exists a feasible schedule with objective value at
most Obj1, then the PTAS returns a solution with objective value at most

Obj1 · (1 + ε) ≤ (2γn+ 8n)(1014σmax)q +
q(q − 1)ε′n

36
· (1014σmax)q−2 + o(nσq−2

max) < Obj2.

Otherwise, any feasible solution has an objective value of at least Obj2. That is, the PTAS can be used to
distinguish between scheduling instances that admit a feasible schedule at most Obj1 and scheduling instances
that do not admit any feasible schedule of objective value no more than Obj2, and thus can also be used to
distinguish 3SAT′ where at least 4(1 − ε′)n/3 clauses are satisfiable from instances where at most 4(β + ε′)n/3
clauses are satisfiable, contradicting Lemma 3.1.
Remark. It is important to observe that our reduction is only valid when the number of machines m = Õ(n) =
Õ(
√

1/ε). If m = O((1/ε)κ) for κ < 1/2, then applying the same reduction we have ε = Õ(n−1/κ) by using that

m = Õ(n), whereas we have Corollary G.1 below. On the other hand, if m = Ω((1/ε)κ) for κ > 1/2, then we
also have n = Ω((1/ε)κ). The objective value is Θ(mT 2) = Ω((1/ε)3κ). Therefore, a PTAS brings an error of
O(mT 2ε) = Ω(n · (1/ε)2κ−1) = Ω(n), which is large enough to accommodate the gap of O(n) in the reduction,
i.e., the reduction does not work any more.

Corollary G.1. Let q > 1 be an arbitrary constant. Assuming ETH, for any ε such that m = O((1/ε)κ) for

some κ ≤ 1/2, there is no (1 + ε)-approximation algorithm for P ||
∑
i C

q
i that runs in time 2O((1/ε)κ−δ) + nO(1)

time for any constant δ > 0.
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