IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022 1

Structured Action Prediction for Teleoperation in
Open Worlds

Patrick Naughton! and Kris Hauser!, IEEE Senior Member

Abstract—Shared control can assist a human tele-operator in
performing tasks on a remote robot, but also adds complexity
in the user interface to allow the user to select the mode of
assistance. This paper presents an expert action recommender
framework that learns what actions are helpful to accomplish
a task, and generates a minimal set of recommendations for
display in the user interface. We address the learning problem
in an open world context where the action choice depends
on an unknown number of objects, i.e., the output domain of
the prediction problem changes dynamically. Using structured
prediction, we can simultaneously learn what actions to suggest
and what objects those actions should act on. In experiments
on three tasks in cluttered table-top environments, this method
achieves over 90% accuracy in producing the correct suggestion
in the top 5 predictions, and also generalizes well to novel tasks
with limited training data.

Index Terms—Telerobotics and Teleoperation, Learning from
Demonstration, Intention Recognition

I. INTRODUCTION

ELEOPERATION of robotic manipulators has potential

to aid a wide variety of applications including search-
and-rescue operations, assistive robotics, and remote medical
care. However, multiple factors such as kinematic differences
between the robot and the operator, limited perceptual feed-
back, and network latency prevent the operator from complet-
ing tasks as capably as they could in person. Much research
has been devoted to developing different kinds of assistive
actions to close this performance gap. For example, several
methods have been proposed to assist operator grasping [I,
2, 3]. Many previous works have also used machine learning
to infer the operator’s intent and autocomplete tasks [4, 5,
6, 7]. Each of these methods performs well in some context,
but the variety of contexts in which a robot operates means
teleoperators need access to many kinds of actions at different
points during operation. For complex systems with many
actions, presenting them in a standard menu interface can
quickly become overwhelming.

This highlights a fundamental trade-off: we wish to max-
imize the capabilities of a teleoperated robot by supplying
many actions, while minimizing the time to access these
actions through the user interface. A standard menu interface

Manuscript received: September, 9, 2021; Revised December, 10, 2021;
Accepted January, 10, 2022.

This paper was recommended for publication by Editor Jee-Hwan Ryu upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by NSF Grant #2025782.

1P. Naughton and K. Hauser are with the Department of Computer
Science, University of Illinois at Urbana-Champaign, IL, USA. {pnl0,
kkhauser}@illinois.edu

Digital Object Identifier (DOI): see top of this page.

Snap Left

Snap Right
Left Right
Global Local Global Local
X X X X
Y Y Y Y
z y4 z y4

Roll Roll Roll Roll
Pitch Pitch Pitch Pitch
Yaw Yaw Yaw Yaw
! Left Sensitivity Right Sensitivity
Normal Normal

Sensitive Sensitive

Suggested Actions :. e lf ‘;’.,.. h,

Teleop Telecp Snap Snap

() (B) C._“:) (x) °¢ (¥) °F

(b)

Fig. 1: A standard menu interface for selecting actions and their parameters (a)
compared to a mockup of a menu incorporating an expert action recommender
(EAR) that suggests the most likely next expert actions automatically (b). (A),
(B), (X), and (Y) refer to buttons on the operator’s controllers which can be
clicked to accept the corresponding suggested action. Teleop actions allow
the user to move the gripper in the indicated DoFs while Snap actions align
the gripper with the selected plane. Best viewed in color.

in Fig. la offers extensive functionality, but can be confusing
and time consuming to navigate, even if the user has significant
experience with the system [8]. We address this problem using
an expert action recommender (EAR) approach, illustrated in
Fig. 1b. The EAR infers the most likely actions an expert user
would perform at a given time, taking into account the desired
task, the robot’s history of states, and perception information
from the environment. It prompts the operator with the &
most probable actions, much like a predictive text system on
smartphones, so that their decision reduces to only considering
which suggestion is best or falling back to the original menu.
Higher k values increase the likelihood of including the best
suggestion at the expense of increasing the user’s cognitive
load. A well-designed EAR aids in scaling shared control
systems to accept more modes of assistance while enhancing
fluency for both novice and expert users.

The main contribution of this work is an EAR for action
prediction in open worlds, where the set of feasible actions

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

changes over time. Because the set of perception objects —
and hence the feasible set of actions — is dynamic, standard
classification techniques cannot be applied. We evaluate struc-
tured action prediction (SAP) and a combination of feature-
space regression with a nearest neighbors search (R+NN) for
finding these recommendations. Structured prediction learns a
scoring function that rates all candidate actions on a shared
scale and suggests the action with highest score [9], whereas
regression with nearest neighbors predicts the feature vector
of an optimal action (which may or may not be feasible) and
suggests the feasible action nearest to this prediction in feature
space.

Based on data gathered on a physical robot from cluttered
table-top scenes, SAP outperforms R+NN in terms of action
selection accuracy across multiple different tasks, achieving
top 5 accuracy rates above 90%. We also find that SAP gen-
eralizes well in the few-shot setting on novel tasks, requiring
fewer demonstrations to achieve high accuracy once examples
from other tasks have been collected.

II. RELATED WORK

Assistive teleoperation has received much attention in the
literature, especially after multiple teams identified signifi-
cant human-robot interaction challenges in the 2013 DARPA
robotics challenge [8, 10, 11]. One of the primary obstacles
to completing tasks was the large array of interface elements
the operators had to use: in one system, the resulting cognitive
overload caused the robot to remain still 65% of the operation
time, waiting for instructions [8]. Current methods for aiding
teleoperation offload some control to the robot itself, and may
predict the user’s intent to inform how it can help achieve their
desired goal. We categorize these works by how heavily their
predictions use environment information, since the objects
present and task context provided can significantly affect the
type and amount of aid the system can offer.

Without any environment information, current methods can
provide useful but limited assistance. For example, Zein et
al. showed that using previous input commands to predict a
motion primitive for a drone can improve the pilot’s speed and
cognitive load when driving around a track [5]. This method
however is difficult to extend to manipulation tasks, where
useful geometric motion primitives are more difficult to define.
The lack of environmental dependence also prevents learned
behaviors from generalizing to new environments.

Another line of work focuses on inferring the operator’s
intent to guide the robot’s end-effector to a desired target
automatically [4, 7, 12, 13, 14]. When the operator’s intent
is known, Leeper et. al introduced a technique to assist
pose tracking in the presence of obstacles [15]. These works
tend to either focus on lower level functionality, such as
reaching for target points or tracking a trajectory [4, 15], or
they require hand-identified frames of interest for objects and
restrict experiments to well-known scenes [7, 12, 14], or both
[13]. Our contribution seeks to provide assistance for higher
level tasks without relying on hand-specified frames of interest
and instead learns these from data.

Kent et al. [1, 3] and Wang et al. [6] use environment
information most heavily out of the work reviewed here. Kent

Select
actions

Context Expert s ??10?
History of Vector P! suggestion
Action User
Robot States
Recommender
S‘::Etg:)s::d Commands
PEE—
Cameras User | Selected action | Shared
Interface Control
RGBD Images Motion
Commands
Perception Robot
Module Perception Objects (P)

Il Proposed System

Fig. 2: Block diagram of traditional shared control architecture and proposed
modifications (green) to produce expert action recommendations.

et al. examined the effect of increasingly autonomous oper-
ation for grasping objects in clutter. They showed that more
assistance allowed users to complete tasks more quickly and
with higher success rates. However, their interface for post-
grasp manipulation was restricted to a few motion primitives.
This paper addresses a higher level problem of creating a
framework that accommodates many different types of actions.
Wang et al. is the most similar to this work: they used 6 DoF
input to control a simulated robot and deep learning to predict
the user’s desired action and the target of that action based on
the operator’s motions and high-level environment information
(such as the states of entire objects). Such predictions could
identify, for example, that the user wanted to grasp a ball and
help correct the arm’s trajectory to achieve that goal. However,
Wang et al. restricted the robot’s environments to a maximum
of 8 objects and used training and testing environments with
the same number and type of objects. In contrast, this paper
introduces a new framework to handle open-world scenarios
where the types and quantities of objects are not known a-
priori, and our work is applied to a physical robot in cluttered
scenarios.

III. APPROACH

Our EAR considers a generic robot with sensors and a
perception pipeline that can identify the robot’s state (joint
positions, transforms of key points on the robot) as well
as relevant perception objects (denoted P) such as objects
to grasp, planes fitted to the environment, or point clouds
of the robot’s surroundings. A block diagram of a typical
teleoperation system, along with the proposed EAR pipeline,
is shown in Fig. 2. The EAR considers the history of robot
states and available perception objects to produce contextually
relevant action suggestions. Each action configures a shared
control module, that allows the operator to command different
behaviors to the robot.

A. Learning Problem

The robot’s shared control system is configured according
to an action (a,(®), in which a € A is an action type and
D@ = (¢1,. .., bge) is a list of action parameters. Actions

NAUGHTON et al.: STRUCTURED ACTION PREDICTION

are policies that map the joint state of the robot, user, and
environment to robot motions and a termination flag. These
policies are described by arbitrary code blocks. Once an action
completes, it sets its termination flag, and the robot reverts
to an idle state. The user can also preemptively set this flag
to end an action when they choose. For example, a pick
action on a bimanual robot could accept a list of parameters
PpPiek) — (plitem) p(arm)) where the two parameters denote
the item in the environment to grasp and which arm to use.
This action would terminate after grasping the desired object.
To assist a user during teleoperation, the EAR decides when
to suggest an action(s) to the user, and which action(s) to
suggest. For simplicity, we consider the case in which the EAR
produces suggestions whenever the robot is not performing an
action. This suggests actions only when the user is considering
starting a new one to avoid distracting them from the current
task.

The goal of prediction is to find & distinct actions (a, 1)(%))
that achieve the highest values of p(a, 1)(*)|2) where p encodes
the probability distribution over action types and parameter
lists that an expert teleoperator would select given the context
x. We represent context as a vector encoding a history of
robot states and previous actions. We predict the actions an
expert, rather than the current user, would take because these
suggestions can guide novices to more efficiently accomplish
their task. We model p by learning an expert’s likely action
choices from data. To collect such a dataset, we record several
sequences of actions S; an expert uses to complete a given
task and denote the full dataset D = UY ;S;. We then split
demonstrations for each task into training, validation, and
testing sets.

Although the set of action types A is known a-priori, for ac-
tions that use perception objects, the domain of v will depend
on P, so the learned model of p and the top k predictions must
be adaptable to dynamic domains. Specifically, we denote the
domain of () as ¥(®)(P), and throughout this paper our
notation will drop the domain’s dependence on P if it is clear
from context.

B. Implemented Actions in Our System

Our implementation uses a single robot arm with a
parallel-jaw gripper and a wrist-mounted camera. We im-
plement two action types: teleop (s, x, y, z, roll,
pitch, yaw) that applies different filters to the user’s input
when sending commands to the robot arm, and snap (pl)
that aligns the robot’s gripper with the selected plane. Thus,
A ={teleop,snap}.

The teleop action accepts a discrete sensitivity setting
(“Normal” or “Sensitive”), and 6 flags denoting constraints
on the translation and rotation of the end effector (“On”
or “Off”). We can then write the domain of (te1e°P) ag
g(teleor) — (Normal, Sensitive} x {On, Off}5. While the
user is using a teleop action, the pose of their controller
relative to its pose when the action is started is tracked and
may be modified depending on the action’s parameters. At
“Normal” sensitivity, the target pose of the hand is the result of
applying the same relative transformation of the controller to

Snap 1 Ids

e/ —

Fig. 3: Effect of the snap action in 2D applied to a plane detected from the
lid of a jar (red). After the snap action, the vector pointing out of the gripper
is parallel to the normal of the plane. Best viewed in color.

the starting pose of the end-effector. Switching the sensitivity
mode scales down this relative transform by i to enable more
precise manipulation. For each constraint marked as active
in the action’s parameters, the target pose is constrained to
have the same value in that task space DoF as the initial pose
of the end-effector. For example, teleop (Normal, Off,
Off, Off, On, On, On) will only allow the gripper
to translate, its orientation will remain constant regardless
of how the user moves the controller. These flags activate
different virtual fixtures constraining the end-effector to a
lower-dimensional space to simplify operation [16, 17]. This
final target pose is then tracked by compliantly moving the
robot’s arm to the inverse kinematic solution nearest its
current configuration. Compliance is achieved with Cartesian
impedance control [18]. To track the user’s hand motion we
use the controllers of an Oculus Quest 2. The user can initiate a
teleop action by holding down one of the controller buttons
and ends the action by releasing it.

The snap (pl) action accepts argument pl, a plane de-
tected from the environment (i.e., in P), and prepares the user
to manipulate objects on or near it. This action aligns the
outward normal of the arm’s tool-flange with the normal (or
negative normal, whichever is closer) of pl and moves the
robot’s tool-tip ds cm away from pl. We set d; = 3cm.
Fig. 3 illustrates this process in 2D. This motion keeps the
point projected from the robot’s tool-tip to the plane stationary,
assuming that the user has previously used a teleop action
to move to a suitable position for their task. This is similar to
the third strategy for grasping presented in Ref. [2], but the
robot will immediately execute the plan to its target pose after
the user selects the desired plane. To find candidate planes in
the scene, we modify the agglomerative hierarchical clustering
algorithm in Ref. [19] to work with unstructured point clouds
by gridding the input point cloud volumetrically instead of
in image space. P(®12"¢) denotes the set of planes extracted
from the environment using this algorithm, and hence the
action parameter domain is W(s2p) = p(plare) Each plplane)
consists of the normal vector n and a list of the supporting
points p. The user initiates snap actions by clicking a button
in the standard menu interface and then clicking on one of the
planes that appear. If the resulting desired pose is reachable,
the snap action moves the end-effector to that pose and
terminates automatically once it has been reached.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

These two actions can help a user complete certain tasks
more effectively. For example, if the user wants to press
buttons on an instrumentation panel, they can align their end
effector to the plane of the panel (snap (panel)) and restrict
their motion to be normal to this plane and reduce their
sensitivity (teleop (Sensitive, Off, On, On, On,
On, On)). This prevents them from raking the end-effector
across multiple buttons or pushing the buttons too hard and
damaging them.

IV. LEARNING METHODS

Although the domain of each parameter list ¥(%) is po-
tentially dynamic, for learning we assume an embedding

w(a) of fixed dimension g(*) (Sec. IV-D). This lets us build
approximations of p and score top k actions across a dynamic
domain that contains any number of perception objects in P.

A. Structured Action Prediction

Structured prediction is well suited for this problem because
it rates each candidate action on a shared scale, rather than
trying to directly predict the best one [9]. This aids in directly
comparing different action types in top k prediction.

Let + € R? be a context vector, including a short
history of the robot’s state and previous actions per-
formed by the operator. Let E(z,a,1)) R? x A x
Y aca U(@)(P) — R be a scoring function. We want to
train E so that the most likely next action (a*,1*) satisfies
(a*,9*) = argmax,) E(r,a,¢) Yo € D. We define
E in terms of neural networks G and A. The parameter
scorer G(@) gx,w(a);eé?)) . R9+4 5 R for each a € A
assigns a scalar score to a candidate parameter list for action
type a given the context vector x and is parameterized by
weights Hgl). The action scorer A (x;04) : RY — Rl is
parameterized by 64 and maps each action type to a scalar. In
the rest of this paper, we may omit functional dependencies
on 9(5) and 6,. Using G(*) and A, we express E as

E(z,a,1) = el A(z) + G\ (2,1) (1)

where e, denotes the ath standard basis vector. F' is undefined
if the type of ¢ is not a. To perform inference, we must solve
the program

argmax FE(z,a,) 2)
a€Apev(a)
taking the solution as the most likely next action and parameter
list. We perform this optimization by exhaustively enumer-
ating each action and parameter. This is feasible because
|p(teleor)| — 128, and for typical scenes |¥(s72®)(P)| < 50.
To make this approach more scalable for larger parameter
domains, we could implement a branch-and-bound search [20]
or use approximate inference [21].
For training, we minimize the structured SVM loss function
[21, 22]:

ST Nmax[A((a,), (ai, 1))
{wiaipiyep (@) 3)
+ E(w,a,9) — E(wi, a5,9:))+

where [-]+ denotes max(-,0) and A(-,-) is a distance between
candidate [action type, parameter list] pairs. Let c,, denote the
number of times a; appears in D. A\; = |D|/cq,. To evaluate
(3), we need to find the candidate output with maximum loss
augmented margin violation for each training point, solving
a,

We use the same optimization procedure to solve (4) as in

(2). We define A(-,-) as a variant of the Hamming loss:

Sa(t,9) a=a

Amax else

A((a,), (a,9)) = { 5)
where A 1S @ hyperparameter specifying the distance be-
tween distinct action types (simply set to max, ¢(*) in our
implementation), and J, is the Hamming distance

q
Sa(th,0) = Tor = 4] 6)

(a)
k=

1

where I[-] denotes the indicator function.

B. Regression + Nearest Neighbors

For comparison, we also implement a simpler approach,
R+NN, which predicts action type probabilities and regresses
the parameter feature vector for the chosen action. First, we
train a multi-layer perceptron (MLP) with |A| output units
with a standard cross entropy loss, taking the z context
vector as input. This network outputs p(a|z), a probability
distribution over action types given the input z and we select
the action type arg max, 4 p(a|z) with maximum likelihood
to suggest. To predict the parameters of actions, we train
a separate MLP B (z) : RY — R7” for each action,
each outputting the predicted concatenation of all parameter
vectorizations for context vector x. This can be thought of as
the features of the “optimal” parameter list, but it may not
be feasible (for example, the predictor may regress a feature
vector for a plane that does not exist in the environment).
To select the top k parameters, we find the k feasible pa-
rameters whose vectorizations are closest to B(z), that is,
¢* = argmingcy@ ||[B(x) — 1||. During training, each
parameter predictor optimizes the squared loss:

>

{zi,a:,%i}€D

2

|B @)

(7

C. Learner Architectures

Fig. 4 shows a block diagram of the architectures used for
R+NN and SAP. To make comparisons between techniques
fair, the internal structure of the networks were kept as
consistent as possible. The action predictor and action scorer
have the same architecture: we found that a linear predictor
sufficed for this submodule. Each parameter scorer in SAP
begins with a feature MLP F(z;6'") : R? — R% that
produces a feature embedding f of the input. This is then
concatenated with the embedding of a candidate parameter

list o = [f,1]. We concatenate the vector o with the unique

NAUGHTON et al.: STRUCTURED ACTION PREDICTION

Distribution
Over
Actions

Action
Scorer

Action
Predictor

Score

States States

Predicted
Parameter
Vector

Parameter
Scorer

Parameter
Predictor

Candidate j

Parameter

Fig. 4: R+NN (left) and SAP (right) architectures for learning actions.

TABLE I: Context features.

Gripper lag,qg > 0.4,q4 > 0.5,q94 > 0.6]

Distance to closest point to the wrist camera

Vision 3 X 3 x 1 (5 cm) occupancy map around Ty

Action type (|.A| element one-hot vector)

Hist =4
istory (n) [Aqg, AT, .z, \/(ATbt-x)2 + (ATy:.y)?]

terms of the outer product 0-0T and pass the result into another
MLP H that produces the final score. Experiments find that
the outer product operation provides a small accuracy boost.
Each parameter predictor in R+NN has an MLP with the same
architecture as F' but whose output f has size dy + 7. We
then perform the same flattening and deduplication procedure
on f - fT before concatenating it with f and passing the
resulting vector through another MLP whose architecture is
the same as H but with g(* output units. We lightly tuned
the hyper parameters of training based on validation set
performance, but kept them constant across task type, using a
learning rate of 0.001 for both the structured and regressive
models, while training the structured model for 200 epochs
and the regressive one for 500. We used the Adam optimizer
[23] to train our networks with a batch size of 10, updating

the entire weight set § = {9(‘4), gLeteor) G(Cfnap)]

D. Feature Selection

To learn to predict we must represent parameter lists and
the context of the robot as vectors. The context vector x is a
concatenation of gripper, vision, and history features, which
are described in more detail in Table I. In this listing, ¢,
denotes the joint angle of the robot’s gripper and T3, the
transform of the robot’s tool tip in the robot’s base frame.
The current state is measured just before the start of the next
action. History is recorded for the previous 1 = 4 actions and
A indicates the difference in a value between the start and end
of the corresponding action.

For parameter ¢, ¢ denotes its representation as a fea-

ture vector in R™ (n different for each type) and E(a) de-
notes the concatenation of a list of parameter vectorizations,
(b1, ..., ¢,]- Sensitivity ¢(*) is encoded as a two-element one-
hot vector, and Booleans are either 0 or 1. Plane encodings
are much more complex. Denote the transforms T = (R, p)
of the robot’s base, end effector, and tool-tip in the world

frame respectively as Tup, Twe, Twt- We also compute the

TABLE II: Parameter features.

31 (sAP) Point count |p|/108
RMSE e
“Circleness” area(h)/(mr2,)
Plane distance |72 (Pwt — ¢)|
Alignment Ryt.x-n
Centroid distance [le = pwt]|
7 in end-effector frame Tent
¢ in end-effector frame Tujelc
c in base frame T;blc
$(pla“e) (R+NN) c in end-effector frame leelc
7 in base frame RLZIﬁ
c in base frame T,pc

TABLE III: Number of demonstrations collected for each task type.

Task Train Val Test Avg. Actions per Demo
Jar 25 5 9 9.4

Animal 4 1 2 52.0

Erase 15 4 6 8.7

centroid of the supporting points (c), the convex hull of those
points projected to the plane (h), the RMSE fitting error (e),
and the projections of the points onto the plane (p’). Let
Tm = MaXe,P ||s —cl|.

We picked a(plane) for each of SAP and R+NN by picking
a set of features we thought would indicate how likely a
plane is to be snapped to. We down-selected from this set
by iteratively ablating each one and measuring the resulting
model’s validation accuracy on all tasks. This was done
individually for SAP and R+NN. Table II shows the resulting
features for each method.

V. EXPERIMENTS

We demonstrate our system on three tasks: opening a jar,
solving an animal puzzle, and erasing a white board. These are
illustrated in Fig. 5. Each task can benefit from autonomous
alignment with planes: aligning with the lid of the jar makes
it easier to isolate a twisting motion along the correct axis
to unscrew it; aligning with the plane of the puzzle makes
it easier to drop pieces in their slots; and aligning with
the white board makes it easier to erase with large motions
while maintaining contact. Demonstrations are collected using
a single URS5e robot arm with a Robotiq 2F-140 parallel-
jaw gripper mounted to its tool-flange. The URSe arm has
a force-torque sensor at its wrist whose feedback is used
to achieve impedance control. Perception data comes from a
wrist-mounted Intel L515 LiDAR camera. When teleoperating,
the expert demonstrator (one of the authors) uses an Oculus
Quest 2 headset and controllers, as well as an on-screen
interface to send commands to the robot, and can view both
the robot itself and the colored point cloud from the wrist
camera.

Table III shows how many demonstrations were collected
for each type of task as well as the train/validation/test
split of the data and the average number of actions in each
demonstration. Typically, a teleop action lasts between 10
and 15s while a snap action takes 3 to 5s. Demonstrations
for the jar and erase tasks take about 200s on average while
animal tasks take about 15 min.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

Fig. 5: Examples of the initial setups for the jar, animal puzzle, and whiteboard tasks. Red circles in the jar and erase tasks highlight the jar to unscrew and
eraser to use respectively. Best viewed in color.

TABLE IV: Top 1, 3, and 5 accuracies on the single task test.

Task Model Top 1 Top 3 Top 5
Tar R+NN 65.4% 67.9% 69.1%
SAP 82.7% 85.29% 87.7%

Animal R+NN 73.2% 82.1% 84.8%
ma SAP 79.5% 89.3% 91.1%
Er R+NN 72.0% 76.0% 82.0%
ase SAP 84.0% 90.0% 90.0%

A. Single Task

In this test, we train each model only on demonstrations
of a specific task and test on different demonstrations of that
same task. Table IV shows that SAP outperforms R+NN by a
6.3-18.6% margin on each task. The Jar task is most difficult,
likely because there are often multiple nearby planes that are
nearly aligned (e.g., detected from the sloped sides of the
jar). In cases like these, SAP has an advantage because it
explicitly reasons over each plane in the environment, rather
than relying on nearest neighbors. Both methods have ~10%
jumps in performance when going from top 1 to top 3 accuracy
on the animal task. This performance boost highlights how a
modest increase in k can dramatically increase the chances of
providing a useful recommendation.

B. Multi-Task

Next, we combine all of the training demonstrations and
train a single Unknown-Task model that must predict the next
action without knowledge of the task. We also trained Known-
Task models where the current task is encoded as a four
element one-hot vector (jar, animal, erase, unknown which
is unused in this case) and appended to the x vector. Table
V compares the performance of these models. As expected,
SAP benefits slightly from knowing the overall task. R+NN
actually performs slightly worse when aware of the task,
which we hypothesize is due to overfitting to the specific task
type. The gap between SAP and R+NN is much larger for
snap than for teleop actions. This is expected because
the domain of W(te1e°P) is not dynamic, making it easier
for traditional regression methods to learn likely teleop
than snap parameters. Perhaps with additional tuning of the

TABLE V: Top 5 accuracy on the multi task test. Rows compare settings
when the task type is known and unknown to the model. Columns compare
test accuracy for each action type and overall.

Task Type Model teleop snap Total
Known?
K R+NN 84.7% 56.6% 78.6%
nown SAP 90.5% 90.6% 90.5%
Unknown R+NN 86.3% 58.5% 80.2%
ow SAP 88.9% 94.3% 90.1%

nearest neighbors search, this gap could be reduced. Structured
prediction on the other hand naturally handles any number
of candidate parameters, allowing it to predict variables with
dynamic domains much better.

Interestingly, the unknown multi task SAP model outper-
forms single task SAP on the jar and erase tasks, and only
performs slightly worse on the animal task. This indicates
that our features capture the utility of various constrained
teleoperation settings, and that the notion of “useful” planes
to snap to generalizes well across tasks.

Next, to study the importance of various context features in
SAP we perform an ablation study. Full SAP denotes the use
of the whole system for prediction as previously described.
No History sets n = 0 so that the model can only observe
the robot’s current state, No Gripper eliminates the gripper
context features from the input, and No Vision removes vision
features (distance measurement and occupancy map). Finally,
No Outer Product replaces the outer product operation on the
concatenated input and parameter list feature embeddings with
the identity operation. Table VI shows the top 5 accuracy
achieved under each of these treatments, trained and tested
in the Known Task setting.

History features provide the largest improvement. Most of
this gain comes from improved teleop prediction accuracy.
This is expected because teleop parameters are difficult
to score in isolation, but are highly correlated with previous
actions. For example, it is much easier to determine that the
user would want to constrain the gripper’s pitch and yaw if it
is known that a snap action just occurred, than to infer this
from the other context features. Gripper and vision features, as
well as the outer product operation, provide modest accuracy
boosts as well.

NAUGHTON et al.: STRUCTURED ACTION PREDICTION

TABLE VI: Top 5 accuracy with different parts of the model or input removed,
Known-Task test.

Treatment Test Accuracy
Full SAP 90.5%
No History 65.0%
No Gripper 86.8%
No Vision 88.1%
No Outer Product 89.7%
1.0 1
0.8 1 2%
. aw?®
§ 0.6 1 ,x——:::%:"'—
= el xT
3 0.4 -(’/’ m Top 5
<t b~ P
0.2 - s Top 3
Top 1
0.0 T T T T
0 2 4 6 8

Demonstrations

Fig. 6: Few-shot generalization. Top 1, 3, and 5 accuracy of SAP on the jar
task as more examples of the jar task are included in the training dataset of
animal and erase task demonstrations.

C. Few-Shot Generalization

Finally, we explore whether SAP generalizes to novel tasks.
We train each model on the full training sets of the animal and
erase tasks, and include between O and 8 jar demonstrations.
We then examine their performance on the entire test set of
jar demonstrations. Task type is not included in the model
input. Fig. 6 shows the top 1, 3, and 5 accuracy on the jar
task as more jar demonstrations are added to the training set.
Even with relatively few demonstrations, SAP can generalize
from the animal and erase tasks, achieving over 80% top 5
accuracy with only 8 demonstrations. Practically, this means
that once the model has been trained on a few task types, it
may achieve acceptable prediction accuracy for novel tasks
without requiring extensive teleoperation data.

VI. CONCLUSION

We demonstrated an application of structured prediction
to generate accurate suggestions for a teleoperator in open-
world scenarios based on expert demonstrations. Even without
knowledge of the task to perform, the predictor can produce
accurate suggestions and can generalize to new tasks with only
a few demonstrations. In future work, we would like to apply
this framework to more types of actions such as pick that
make use of higher level perception objects like segmented
items. Additionally, we would like to perform a user study on
novice operators with and without the EAR to determine how
this affects task completion time, cognitive load, and required
menu interactions.

REFERENCES

[1] D. Kent, C. Saldanha, and S. Chernova, “A comparison of remote robot
teleoperation interfaces for general object manipulation,” in ACM/IEEE
Int. Conf. Human-Robot Interaction, 2017, pp. 371-379.

[2] A. E. Leeper, K. Hsiao, M. Ciocarlie, L. Takayama, and D. Gossow,
“Strategies for human-in-the-loop robotic grasping,” in J. Human-
Robot Interaction, ACM Press, 2012, pp. 1-8.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

D. Kent, C. Saldanha, and S. Chernova, “Leveraging depth data in
remote robot teleoperation interfaces for general object manipulation,”
Int. J. Robotics Research, vol. 39, no. 1, pp. 39-53, 2020.

K. Hauser, “Recognition, prediction, and planning for assisted tele-
operation of freeform tasks,” Autonomous Robots, vol. 35, no. 4,
pp. 241-254, 2013.

M. K. Zein, M. A. Aawar, D. Asmar, and 1. H. Elhajj, “Deep Learning
and Mixed Reality to Autocomplete Teleoperation,” in /EEE Int. Conf.
Robotics and Automation, May 2021.

C. Wang, S. Huber, S. Coros, and R. Poranne, “Task autocorrection for
immersive teleoperation,” in [EEE Int. Conf. Robotics and Automation,
May 2021.

A. K. Tanwani and S. Calinon, “A generative model for intention
recognition and manipulation assistance in teleoperation,” in IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, 2017, pp. 43-50.

M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, T. Schneider,
H. Dai, C. P. D’Arpino, R. Deits, M. DiCicco, D. Fourie, et al., “An
architecture for online affordance-based perception and whole-body
planning,” J. Field Robotics, vol. 32, no. 2, pp. 229-254, 2015.

A. Deshwal, J. R. Doppa, and D. Roth, “Learning and Inference for
Structured Prediction: A Unifying Perspective,” in Int. Joint Conf.
Artificial Intelligence, International Joint Conferences on Artificial
Intelligence Organization, Aug. 2019, pp. 6291-6299.

E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J.
Strauss, G. Pratt, and C. Orlowski, “The darpa robotics challenge finals:
Results and perspectives,” Journal of Field Robotics, vol. 34, no. 2,
pp. 229-240, 2017.

H. A. Yanco, A. Norton, W. Ober, D. Shane, A. Skinner, and J. Vice,
“Analysis of human-robot interaction at the darpa robotics challenge
trials,” J. Field Robotics, vol. 32, no. 3, pp. 420444, 2015.

C. Z. Qiao, M. Sakr, K. Muelling, and H. Admoni, “Learning from
Demonstration for Real-Time User Goal Prediction and Shared As-
sistive Control,” in IEEE Int. Conf. Robotics and Automation, May
2021.

A. D. Dragan, S. Siddhartha Srinivasa, and K. Kenton Lee, “Teleop-
eration with Intelligent and Customizable Interfaces,” J. Human-Robot
Interaction, vol. 2, no. 2, pp. 33-79, Jun. 2013.

G. Quere, A. Hagengruber, M. Iskandar, S. Bustamante, D. Leidner,
F. Stulp, and J. Vogel, “Shared control templates for assistive robotics,”
in IEEE Int. Conf. Robotics and Automation, 2020, pp. 1956-1962.
A. Leeper, K. Hsiao, M. Ciocarlie, I. Sucan, and K. Salisbury, “Meth-
ods for collision-free arm teleoperation in clutter using constraints from
3D sensor data,” in [EEE-RAS Int. Conf. Humanoid Robots, Oct. 2013,
pp. 520-527.

S. A. Bowyer, B. L. Davies, and F. Rodriguez y Baena, “Active
Constraints/Virtual Fixtures: A Survey,” IEEE Trans. Robotics, vol. 30,
no. 1, pp. 138-157, Feb. 2014.

D. Aarno, S. Ekvall, and D. Kragic, “Adaptive virtual fixtures for
machine-assisted teleoperation tasks,” in IEEE Int. Conf. Robotics and
Automation, 2005, pp. 1139-1144.

A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger, “Cartesian
impedance control of redundant robots: Recent results with the DLR-
light-weight-arms,” in /EEE Int. Conf. Robotics and Automation, vol. 3,
2003, pp. 3704-3709.

C. Feng, Y. Taguchi, and V. R. Kamat, “Fast plane extraction in
organized point clouds using agglomerative hierarchical clustering,” in
IEEE Int. Conf. Robotics and Automation, May 2014, pp. 6218-6225.
M. Sun, M. Telaprolu, Honglak Lee, and S. Savarese, “An efficient
branch-and-bound algorithm for optimal human pose estimation,” in
IEEE Conf. Computer Vision and Pattern Recognition, Jun. 2012,
pp. 1616-1623.

D. Belanger and A. McCallum, “Structured prediction energy net-
works,” in Int. Conf. Machine Learning, PMLR, 2016, pp. 983-992.
B. Taskar, C. N. Guestrin, and D. Koller, “Max-Margin Markov
Networks,” Neural Inf. Processing Systems, p. 8, Dec. 2003.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

	Introduction
	Related Work
	Approach
	Learning Problem
	Implemented Actions in Our System

	Learning Methods
	Structured Action Prediction
	Regression + Nearest Neighbors
	Learner Architectures
	Feature Selection

	Experiments
	Single Task
	Multi-Task
	Few-Shot Generalization

	Conclusion

