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ABSTRACT

Many research works in computational social choice assume a fixed
set of voters in an election and study the resistance of different vot-
ing rules against electoral manipulation. In recent years, however,
a new technique known as random sample voting has been adopted
in many multi-agent systems. One of the most prominent examples
is blockchain. Many proof-of-stake based blockchain systems like
Algorand will randomly select a subset of participants of the sys-
tem to form a committee, and only the committee members will be
involved in the decision of some important system parameters. This
can be viewed as running an election where the voter committee
(i-e., the voters whose votes will be counted) is randomly selected.
It is generally expected that the introduction of such randomness
should make the election more resistant to electoral manipulation,
despite the lack of theoretical analysis. In this paper, we present a
systematic study on the resistance of an election with a randomly
selected voter committee against bribery. Since the committee is
randomly generated, by bribing any fixed subset of voters, the des-
ignated candidate may or may not win. Consequently, we consider
the problem of finding a feasible solution that maximizes the win-
ning probability of the designated candidate. We show that for
most voting rules, this problem becomes extremely difficult for the
briber as even finding any non-trivial solution with non-zero objec-
tive value becomes NP-hard. However, for plurality and veto, there
exists a polynomial time approximation scheme that computes a
near-optimal solution efficiently. The algorithm builds upon a novel
integer programming formulation together with techniques from
n-fold integer programming, which may be of a separate interest.
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1 INTRODUCTION

We study the computational resistance/vulnerability of random
sample voting schemes for elections under bribery attacks. Our
problem is motivated by the extensive research in computational
social choice that studies the computational resistance/vulnerability
of various voting rules in a deterministic setting with a fixed set of
voters (see, e.g. [7] for a comprehensive survey), as well as the grow-
ing popularity of the adoption of random sample voting schemes in
multi-agent systems. Briefly, a random sample voting scheme will
poll a small number of randomly selected voters into a committee,
and the election is eventually conducted within the committee. That
is, the set of voters (who really votes) are no longer deterministic
but rather a random subset.

In most well-known blockchain systems like Bitcoin and Ethereum
1.0 [10], the decision-making is based on plurality: different branches
can be viewed as different candidates, and miners can be viewed as
voters. When a miner appends a block after one branch, this can
be viewed as voting for that branch/candidate. The longest chain
rule used in Bitcoin/Ethereum ensures that the branch/candidate
receives the highest votes wins (i.e., becomes the main chain and
the blockchain system will discard all other branches). For formal
modeling of blockchain system as a classical voting problem, please
refer to, e.g., [13].

Remarkably, the new version of Ethereum [10], namely Ethereum
2.0, introduces the sharding scheme where voters/miners are ran-
domly partitioned into subsets called shards. The decision method
within each shard is the same as Bitcoin/Ethereum 1.0. Therefore,
Ethereum 2.0 can be viewed as exactly our model where random
sample voting is used under plurality. Moreover, random sample
voting schemes are also implemented in various blockchain sys-
tems, including Algorand [27], Bitshares [37], etc. One of the key
techniques used by Algorand [27] is the verifiable random function,
which randomly selects users in a private and non-interactive way
to form a small committee for Byzantine agreement protocol.

Consequently, we are interested in figuring out whether the
random sample voting schemes can improve the resilience of a
voting system. Towards this, we consider the following problem
where we assume that there exists a set of voters, among whom a
committee will be formed to run an election. Every voter is selected
independently with a probability of p into the committee. There is
a briber/attacker who aims at making a designated candidate win
the election by bribing a subset of voters within a given budget,
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however, the briber cannot control whether a bribed voter is se-
lected into the committee or not. Consequently, depending on the
randomly generated committee, the briber may or may not succeed
in manipulating the electoral result. The goal of the briber is to
bribe a subset of voters such that it maximizes the probability of
winning for the designated candidate.

It is worth mentioning that there are two common ways of gener-
ating a random committee. The first method is to select each voter
independently with a uniform probability of p into the committee,
which has been used in, e.g, Algorand [27]. In this case, the size of
the committee (i.e., the total number of voters in the committee) is
not fixed, rather a random variable (though with an extremely high
probability that it lies within a small region). The second method is
to select a committee of a fixed size uniformly at random. In this
paper, we restrict our attention explicitly to the first method, as
such a random scheme guarantees some important features in cryp-
tography [27]. Nevertheless, due to the close relationship between
the two methods, our technique may be extended to handle the
second method or even a broader class of randomness.

1.1 Our Contributions

The major contribution of this paper is to provide a systematic
study on the computational vulnerability/resistance of the random
sample voting scheme with several scoring rules under bribery
attacks.

Despite the common intuition that the introduction of random
sample voting should always make the system more robust, we
show that its effect is quite sophisticated and dependent on the
election setting, or more precisely, on the number of candidates and
voting rules. If the number of candidates is a fixed constant, then
bribery in random sample voting can be solved in polynomial time
for any scoring rule. This coincides with the fact that bribery prob-
lems in the classical deterministic setting are usually easy to solve
when there are few candidates [12]. Consequently, random sample
voting schemes do not help much when there are few candidates.
On the other hand, if the number of candidates is part of the input,
then there is no polynomial time O(1)-approximation algorithm
for the bribery problem with random sample voting schemes under
k-approval for k > 3 as well as Borda (see Section 1.3 for a rigorous
definition of different voting rules).

Our main technical contribution is a polynomial time approxima-
tion scheme (PTAS) for the bribery problem with random sample
voting schemes under plurality and veto, when the number of can-
didates is part of the input. This is a surprising result, particularly
as the winning probability of the designated candidate has a very
convoluted mathematical expression and is difficult to compute
even if a solution is given. We emphasize that our approximation
algorithm is substantially different from many existing algorithms
for stochastic optimization that utilizes the central limit theorem to
bypass the obstacle in optimizing the tail probability (see, e.g., [14]).
Indeed, if the central limit is used, then it will inevitably introduce
an additive e-error in the objective value, which can be signifi-
cant when the optimal objective value is small. In contrast, our
approximation scheme only incurs a multiplicative factor of 1 + €.

In terms of techniques, our algorithmic result utilizes a non-
standard integer programming (IP) formulation of the problem,
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followed by a sequence of modifications that accommodate the
application of n-fold integer programming. Our techniques for
dealing with optimizing winning probabilities in random sample
voting, particularly the adoption of n-fold integer programming in
optimizing a sophisticated probability, may be of a separate interest
for other stochastic optimization problems.

1.2 Related Work

The computational complexity of the bribery problems has been
systematically studied in [25] and followed by a series of research
works. We refer the reader to the book [7] for a comprehensive
survey.

While most of the prior research works focus on deterministic
electoral manipulation problems, uncertainty in these problems
has received increasing attention in recent years. Our model is
most relevant to those studied in [15, 39, 40]. However, there is a
fundamental difference between our model and all of these prior
models:

e Walsh and Xia [39] studied a very similar election setting,
where a random committee is first generated and then the
winner is selected within the committee. However, they
study a different manipulation model. They assume that vot-
ers are divided into manipulator(s) and non-manipulators,
and they study whether the manipulator(s) can change pref-
erence in such a way that the winning probability of the
designated candidate can increase.

e Wojtas and Faliszewski [40] studied the problem where vot-
ers have no-show (i.e., absent in voting) probabilities. How-
ever, they are concerned with the prediction of possible win-
ner(s), and showed §P-completeness of computing the prob-
ability that a certain candidate wins. Note that, this does not
necessarily mean that it is computationally prohibitive to
manipulate the result.

o Chen et al. [15] considered the complexity of electoral ma-
nipulation when bribed voters have a probability of no-show.
The randomness in their paper is only associated with bribed
voters, which is substantially different from the random sam-
ple voting schemes considered in this paper where the ran-
domness of the voter set is independent of manipulation.

Besides these, uncertainty in elections has also been investigated
from various aspects: voter’s preference list is incomplete [3-5,
11, 33, 41]; bona fide incomplete voter’s preference list [23, 38];
voter’s preference list is under the probabilistic model [28, 31];
missing voters [17, 19]; additional candidates may be added [2,
16, 42]; incomplete knowledge about the voting rule [24, 26, 34,
40]. Bribery problem in multiple rounds of election/tournaments
with the uncertain winning relationship between each candidate is
investigated in [1, 36] . For the lobby problem, which is related but
slightly different, uncertainty information is considered in [6].

We utilize n-fold integer programming. Extensive research has
been conducted on efficient algorithms for n-fold integer program-
ming [20, 21, 29, 30, 32].

1.3 Problem Statement

We give the formal definition of the bribery problem in random
sample voting (BRSV).
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There are a set of m + 1 candidates and a set of n voters. The
election is conducted on the m + 1 candidates and a subset of voters
through a random sample scheme, which is specified in the follow-
ing paragraph. Each voter has a preference list (e.g., a permutation
of all candidates) over all candidates. There is a voting rule R. In
this paper, we focus on the scoring rule that maps a preference
list to an (m + 1)-vector a = (a1, a2, ..., @m+1), Where a; € Z>¢
is the score assigned to the candidate on the i-th position of the
preference list of voter vj and @ > a2 > ... > ay,. The total score
of a candidate is the summation of the scores it received from the
voters. Popular scoring rules include:

e plurality: @ = (1,0,0,---,0,0);

e borda:a=(m,m—1,---,1,0);

e k-approval: @ = (1,1,...,1,0,0,...,0);

NN
k m+1-k
e k-veto:a=(1,1,...,1,0,0,...,0);
-
m+1-k k

For convenience, we denote the bribery problem in random sample
voting under voting rule R as BRSV-R. The winner is the candidate
who receives the highest score. Co-winners (e.g., if there are more
than one candidates who receive the highest score simultaneously,
then all of them are winners) are allowed in our model.

The election runs a random sample voting scheme. In such a
scheme, while there are n voters, only a subset of them will eventu-
ally vote. More precisely, each voter is selected into a committee
independently with a probability of p € (0, 1]. The election will
eventually be conducted over the voter committee and the m + 1
candidates, the winner(s) is determined solely by the preferences
of voters within the committee.

We consider the bribery problem in elections with a random
sample scheme. There is a briber/attacker who wants to make a
designated candidate win (i.e., becomes a co-winner). Without loss
of generality, we assume the (m + 1)-th candidate is the designated
candidate. The briber can pay a voter-dependent cost c; to voter j
to change the preference of this voter arbitrarily. There is a total
budget B for the briber.

We assume that the briber cannot manipulate the random sam-
ple scheme. Hence, given a fixed set of bribed voters, the briber
may or may not succeed in making the designated candidate win,
depending on which bribed voters are in the committee. The goal of
the briber is to bribe a subset of voters within the budget such that
the winning probability of the designated candidate is maximized.

Formally, the bribery problem in random sample voting under
voting rule R is formulated as follows.

Bribery in Random Sample Voting (BRSV-R)

Input: A set of m+ 1 candidates D = {dj, . .., dpm+1} where dp41
is the designated candidate; a set of n voters V = {v1,...,0,},
together with the preference of each voter; the voting rule R; a
bribe cost c; € Q* for each voterv; € V; the probability p € (0,1]
of being selected into the random committee for each voter; total
bribing budget B € Q™.

Output: Bribe a subset of voters V* C V which maximizes the
winning probability of the designated candidate dj;+1 under vot-
ing rule R that satisfies Zvjev* cj <B.
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2 PRELIMINARY

DEFINITION (-APPROXIMATION ALGORITHM). For a maximiza-
tion problem, ALG is an a-approximation algorithm if for any instance
I of the problem it holds that o - ALG(I) > OPT(I).

Our work relies on the recent breakthrough in integer linear
programming with n-fold structure. To help understand, we give
the definition and the current known result (Lemma 1) for n-fold
integer linear programming in the beginning.

DEFINITION (n-FOLD INTEGER LINEAR PROGRAMMING). An integer
linear programming max{c’x : Ax < b,t < x < u,x € Z"} is
called n-fold integer linear programming if the coefficient matrix A
has the following structure

Al A2 An
Bl o 0
A=|0 B 0
0 0 B
where AL, ... A" € Z'™ arer X t matrices and B,...,B" € Z5%¢

are s X t matrices.

LEMMA 1. [18] The optimal solution of n-fold integer linear pro-
gramming can be solved by 20(rs?) (rsA)O<rzs+Sz) (nt)1*o() grith-
metic operations where A denotes the upper bound on the absolute
value of each entry of A.

3 RANDOM SAMPLE VOTING WITH
ARBITRARY NUMBER OF CANDIDATES

3.1 Hardness

We observe that BRSV-R problem incorporates the classical bribery
problem introduced in [25] as a special case. More precisely, if
p =1, then every voter is deterministically selected into the com-
mittee, in this case, BRSV-R reduces to the classical bribery problem
under voting rule R. Consequently, if it is NP-hard to determine
whether the designated candidate can win in the classical bribery
problem under R, then it becomes NP-hard to determine whether
the winning probability of the designated candidate is 1 or 0 in
BRSV-R, implying that there is no O(1)-approximation algorithm.
The statement remains true even if we restrict that p € (0,1) in-
stead p € (0, 1]. This is because if we choose p arbitrarily close to
1, say, p = 1 — 1/n?, then with sufficiently high probability (which
is at least 1 — 1/n) all voters are selected into the committee. Con-
sequently, it becomes NP-hard to distinguish between an instance
with a winning probability of at least 1 — 1/n and an instance with
a winning probability at most 1/n.

Notice that the classical bribery problem has been shown to be
NP-hard for common voting rules including k-approval for k > 3
[35], k-veto for k > 2 [8], borda [9], the following theorem follows
directly according to our argument above.

THEOREM 1. Assuming P#NP, there does not exist polynomial time
O(1)-approximation algorithms for BRSV-R if R is k-approval for
k > 3 or k-veto fork > 2 or borda.
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3.2 Algorithms for BRSV-plurality

Given the strong inapproximability of BRSV under most of the
natural voting rules, we now consider plurality, which is generally
expected to be easier to solve (and thus vulnerable to bribery).
Our goal in this section is to show that unlike voting rules like
k-approval, the advantage of random sample voting under plurality
is quite marginal. In particular, the (near-) optimal solution for the
briber can be computed efficiently for BRSV-plurality as implied by
Theorem 2 and Theorem 3 in the following subsections. Towards
this, we first introduce a natural integer programming formulation
for BRSV-plurality that will be utilized in the proof for the theorems.

3.2.1 A Natural Integer Programming Formulation for BRSV-plurality.
We first provide a natural integer programming formulation of the
BRSV-plurality problem. This will be useful for our greedy algo-
rithm and will also serve as a starting point towards our novel
integer programming formulation in the following subsection.

Under plurality rule e.g., & = (1,0,...,0), for each voter only the
candidate who is on the 1-st position of the preference list could
get one score. Hence, for ease of notations, we say a voter votes for
a candidate d; if d; is on the 1-st position of the voter’s preference
list. And denote V; as the set of voters who vote for the candidate
d; in the absence of bribery.

Towards the integer programming formulation, we need the
following functions. Suppose there remains y; voters who vote for
candidate d; after bribery. We are mainly interested in the number
of votes eventually received by candidate d;, which is equal to the
number of voters, among the y; voters, who are selected into the
committee. Let X; be the number of voters among y; voters that
are selected in to the committee, using the fact that each voter is
selected independently with a probability of p, we have that

Pr[Xj=t]= ¢y, (t):= {(()Zi)pt(l R ?)tietr\fzisii ®
and
0 t<0
PrX;<t] = @y, (t):= ;1:0 $yi(h) 0st=y @
1 t>vy;

Now we are ready to give the natural integer programming NIP,
which has a non-linear objective function:

max Z (¢ym+1(t) : n ‘Dyi(t))
=0 i=1

n

s.t. Z cjxj < B (3a)
j=1
n
Vi1l + Z Xj = Ym+1 (3b)
j=1
Z(l—x»)=yi Vi€ [1,m] (30)
JeVi

Here we omit the constraints x; € {0,1} and y; € N. The binary
decision variable x; = 1 denotes that voter j is bribed. The integral
variable y; represents the number of voters voting for candidate d;
after bribery.
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We explain the constraints: Eq (3a) represents that the total
bribing cost cannot be larger than B. Note that under plurality
rule, if a voter is bribed, then the voter will vote for the designated
candidate d;;41, and thus we have Eq (3b) and Eq (3¢).

We explain the objective function of NIP. Recall that for any
fixed t, $y,,,., (t) is the probability that exactly ¢ voters voting for
dm+1 are selected into the committee, and @, (¢) is the probability
that at most ¢ voters voting for d; are selected into the committee.
SO By,er (1) - TTIZ; @y, (t) denotes the probability of the event that
Xm+1 = tand X; < t,V1 < i < m happens simultaneously. Tak-
ing the summation over ¢, this is the probability of the event that
Xi € Xm+1,¥1 < i < m, ie, when the designated candidate dy,41
becomes one of the co-winners.

Now we are ready to present our main algorithmic result.

3.2.2  An Optimal Algorithm for BRSV-plurality with Unit Cost.

THEOREM 2. There exists a greedy algorithm within O(n+mlog m)
time that returns an optimal solution for the BRSV-plurality problem
when all bribery costs are unit, i.e, cj = 1 forallv;j € V.

The greedy algorithm works exactly the same way as that of that
for the deterministic bribery problems [25]: ignoring the random
sampling process, we iteratively bribe a voter who votes for a can-
didate who currently receives the most number of votes (regardless
of whether it will be selected into the committee or not), until the
budget runs out. The greedy algorithm works in the determinis-
tic problem because of a straightforward exchange argument: if
candidates d;, receives the most votes but we bribe more voters
voting for d;, than those voting for d;, , then by bribing more voters
voting for d;, but fewer voters voting for d;, instead, the designated
candidate can still win. Luckily, the exchange argument also works
under the random sampling process. More precisely, we are able to
prove the following lemma using Vandermonde’s identity:

LEMMA 2. Lety = (y1,y2,- -+ . Ym+1) andy’ = (Y1, yp -+, Ypyy)
be two feasible solutions to NIP which differ on exactly two coordinates
u,v and satisfy

yi i #uoro,
yi=qyi+tl i=u,
yi—1 i=wo.

Ifyy < yy — 2, then it holds that obj(y) < obj(y’), where obj(y) =
20Dy (1) - T2, @y, (1)) is the objective function of NIP with
respect to solution'y.

3.2.3 Approximation Scheme for BRSV-plurality with Arbitrary Cost.

THEOREM 3. For any € > 0, there exists an approximation scheme
(Algorithm 1) that runs in (nmL/e)O(l/ez) time and outputs an (1+€)-
approximation solution for BRSV-plurality, where L denotes the input
length of the problem.

Unfortunately, the greedy algorithm fails once the bribery costs
are no longer unit. Towards this, we leverage recent advances in
integer programming to handle the general problem. There are
two critical challenges. One is that the winning probability is too
convoluted to serve directly as an objective function in an inte-
ger program. A common approach in stochastic optimization is
to approximate it by the central limit theorem, however, this will
inevitably create an additive error which violates our target of a
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multiplicative approximation. To handle this, we introduce the no-
tion of “r-segment"” which provides a “staircase” approximation.
Another challenge is that to model BRSV-plurality we have to intro-
duce a lot of integer variables, while integer programming in high
dimension is typically hard to solve. To handle this, we formulate a
novel integer program NIP(¢), and provide a series of modifications
on NIP(¢) such that its constraint matrix has a specific structure
that allows us to apply the algorithm (see Lemma 1, which is a recent
breakthrough achieved in the community of integer programming)
for n-fold integer programming.

A New Integer Programming Formulation. It is easy to see that
if we know the number of voters within V; that are bribed, then we
will always bribe the cheapest voters. Therefore, we define A;;. as the
total bribing cost of the cheapest |V;| — k voters within V;. Suppose
the total number of bribed voters is £ — |Vju+1| € [0, n], that is, £
is the total number of voters preferring the designated candidate
dm+1 after bribery. We propose the following integer programming
with a non-linear objective, NIP(¢), for BRSV-plurality:

m Vil
s.t. Z lekx,k <B (4a)
i=1 k=0
m |Vi
Z kxj=n—¢t (4b)
i=1 k=0
Vi
X =1 Vi e [1,m] (4¢)
k=0
m V
> Z In(Dp (1)) xik = 2t vt € [0,n] (4d)
=1 k=0

Here we omit the constraints x;; € {0, 1} and z; € R. The binary
decision variable x;; indicates that if x;p = 1, then there are exactly
k voters that vote for candidate d; after bribery (e.g., |V;| — k voters
among V; are bribed).

We explain the constraints. First notice that Eq (4c) enforces that
for candidate i there exists one and only one k such that x;; = 1,
which implies that we bribe |V;| — k voters in V;. As bribing the
cheapest |V;| — k voters in V; costs A;1, adding up the bribery cost
for each V; shall not exceed the budget B, as is implied by Eq (4a).
Further, adding up the number of bribed voters, which is |V;| — k for
each V;, shall be exactly ¢. Using the fact that };; |Vi| = n, Eq (4b)
follows. Finally, by Eq (4d) we use the supplementary variable z;
to denote the logarithm of the probability of the event that X; < ¢
happens simultaneously for 1 < j < m. Consequently, e* is the
probability of this event. Recall that ¢,(¢) is the probability that
Xm+1 = t, X1 e(t)e is thus exactly the probability of the event
that X; < Xp4q forall1 < j <m.

It is worth mentioning that using z; is merely to simplify the
objective function. The reader may simply substitute z; in the ob-
jective with Eq (4d) to obtain an objective function in x;;’s. Notice
that while the current objective function Y7 ¢¢(t)e* is separable
convex (in z;’s), constraint Eq (4d) contains n+ 1 inequalities where
each of them involves all x;;’s, which is far from the structure of
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n-fold IP. On the other hand, if we remove Eq (4d) and rewrite the
objective function in x;;’s, then the objective function is no longer
separable convex. Hence, we cannot directly apply the algorithm
for n-fold IP (see e.g., [21]) to solve NIP(¢). New techniques are
needed to further modify the structure of NIP(?).

Notice that we do not know how many voters are bribed in the
optimal solution, however, we may simply solve NIP(¢) for each
integer ¢ € [0, n] and pick the best solution. The remaining part of
this section is devoted to the solving of NIP(¢) for each fixed ?.

LEmMMA 3. For any e > 0, there exists an algorithm which runs in

(nmL/e)O(1/€Z> time and outputs an (1 + €)-approximation solution
for NIP(¢) where L is the encode length of NIP(?).

To solve NIP(?), the high-level idea is to utilize a recent break-
through in integer programming - the algorithm for n-fold integer
programming. Recall Lemma 1 and the structure of n-fold integer
programming. There are two major issues with NIP(¢) that pre-
vent us from applying the algorithm: (i) the objective function is
non-linear; (ii) the constraints involve huge coefficients A;, while
noting that the running of n-fold integer programming depends on
A, the largest absolute value of coefficients in the constraints. In
the following, we handle these two issues.

Dealing with the nonlinear objective function. To handle the
non-linearity, we introduce the following notion.

DEFINITION. Let (x,z), (%,Z) be two feasible solutions to NIP(f).
We say (x, z) is 5-better than (X, 2), if forany t it holds thatzy > 2;—0.

Based on the above definition, simple calculations lead to the
following observation.

OBSERVATION 1. If(x,z) isk - log(1 + §)-better than (%, z), then

Z pe(t)e?t < (1+2k6) Z pelt)e.
t=0 t=0

That is, the objective value of the two solutions differs by at most a
multiplicative factor of 1 + 2ké6.

The above property provides a way to bypass the non-linearity of
the objective function. In particular, denote by (x*,z*) the optimal
solution to NIP(¢), then a feasible solution (x, z) has an objective
value at least 1+ ¢ fraction of the optimal value it is k -log(1+¢/2k)-
better than (x*, z*). Unfortunately, the optimal solution is unknown.
To handle this issue, we need to further introduce the following
concept called 7-segment vector.

DEFINITION. For any feasible solution (x, z) to NIP(f), at-dimensional

vector S(x) = (S1(x), S2(x), - - -, S7(x)) € N7 is called the T-segment
vector of (x,z) if it satisfies the following property:
e foranyt < S;(x), it holds that
m_|Vi|

2= ) ) In(@(t)xy < In(t/7)

i=1 k=0
e foranyt > Sj(x), it holds that

m_ Vil

Z Z In(® (1)) x> In(t/7)
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Figure 1: Illustration of k-segment vector

Here 7 can be viewed as a control over the precision. In the final
part of this section we will show that setting 7 = 1/log(1+ §) <
O(1/e) suffices.

See Figure 1, for a intuitive understanding of 7-segment vector.

The height of each bar depicts the value of ¢%’s for a feasible
solution (x,z) in a toy example consisting of 10 voters (i.e., n =
10). We can see that for r = 5, the 5-segment vector of (x,z) is
(2,3,5,6,8).

Based on the above definition, simple calculations lead to the
following observation.

OBSERVATION 2. Let (%, z), (X, Z) be two feasible solutions to NIP(f).

Let S(x) and S(x) be the t-segment of these two solutions, respectively.
IfSj(x) > S;_i (%) forall j > k, then (x,z) is %—better than (%, z).

While the optimal solution to NIP(¢) is unknown, we can guess
its 7-segment vector through at most n” enumerations. Denoted
by S* the 7-segment vector of the optimal solution. We can further
transform NIP(¢) into a feasibility test problem of the following
integer linear programming denoted as ILP (¢, S*):

m_ |Vi|
Z Zlikxik <B

i=1 k=0

m_ |Vi

Z Z kxj=n—-¢

i=1 k=0

m_|Vi]

D7 In( @ (S7)xik < In(t/7)
i=1 k=0
Vi
ink

k=0

(5a)

(5b)

vVt e [1,7] (5¢)

=1 Vi€ [1,m] (5d)
Here again we omit the constraint x;; € {0, 1}. The binary decision
variable x;; = 1 denotes that |V;| — k voters in V; are bribed.

We explain the constraints: Eq (5a), Eq (5b), Eq (5d) are the same
as the Eq (4a), Eq (4b), Eq (4d) of NIP(¢); Eq (5¢) requires that each
coordinate of the solution’s 7-segment vector is no less than the
corresponding coordinate of S*. Of course, the optimal solution
will satisfy all the constraints.

According to our previous analysis, by setting the parameter
7 to be 7 = 1/log(1 + §), we know that if $* is guessed correctly,
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then any feasible solution to ILP(¢, S*) is a (1 + €)-approximation
solution to NIP(¢).

Note that ILP(¢, S*) is a feasibility test problem and it only in-
volves linear constraints whose structure follows that of n-fold
integer programming. However, recall that by Lemma 1 the run-
ning time of the algorithm for n-fold integer programming depends
on A, the largest absolute value among all entries. It remains to
deal with the large coefficients in ILP (¢, S*).

Dealing with huge coefficients in constraints. First note that
ILP(¢,S*) involves non-integral coefficients i.e., In(®x (S})) in Eq (5¢).
Fortunately, these non-integral coefficients can be scaled up and
rounded to the nearest integer. Through the following calculation,
we can show it only introduces an additive error of 1/7 error via
rounding up to a multiple of 1/mnz. Notice that while the error
here is additive, Eq (5¢) is the logarithm of the probability used in
the objective function, whereas an additive error of 1/7 eventually
leads to a multiplicative factor of e!/7 which is bounded by 1+0(e)
once we set 7 = 1/log(1+ §).
Vi) [mntIn(®x(S7)) ]
TR

mnt

ik
. 1
2 (n(@k(81)) = — )i

. 1
In(® (S))xik — Z

Finally, we observe that A;; could be some value that is very
large as it denotes the least bribing cost for |V;| — k voters among V;.
Notice that except A;;’s, the coefficients in all the other constraints
of ILP(#, S*) have an absolute value that is bounded by a polynomial
in n. Given that ILP(¢, S*) is a feasibility test problem, we can shift
Eq (5a) to the objective, and derive the following n-fold integer
linear programming RIP(#, S*):

m_ Vil
min Z Z AikXik
i=1 k=0
m_ Vi
Z Z kxjp=n—¢
i=1 k=0
m Vi
Z katx,-k < mntln(t/7)

i=1 k=0

Vi)
Z Xik

k=0
Here again we omit the constraint x;;. € {0, 1}. The constraint
Eq (6b) is a rounded version of Eq (5¢) where fi, = mnt In(®x(S7))].
It is easy to see the coefficient matrix of RIP(¢, S*) has n-fold
structure (see section “Preliminary” for its definition) with r = 7+1,
s=1,t=n+1and A = mn?rmax{|log(p)|,|log(1 — p)|}. As we
know, |log(p)| and |log(1 — p)| are both bounded by the input

length of the problem.
As stated in Lemma 1, solving the optimal solution of RIP(£, S*)

s.t. (6a)

vt € [1,7] (6b)

=1 Vie [1,m] (6¢)

costs (anL)O(TZ) time where L denotes the input length of the



Main Track

Algorithm 1 Approximation Scheme for BRSV-plurality
o Vs }

Input: m,n, B, e, {3, ..
Output: X

. F=0; 7=1/log(1+%);

2. for all ¢ € [|V;],n] and S* € N* do

3. solve the optimal solution x of RIP(¢, S*)

& Af 37 SV dyxy < B then

5 F — FU(x,1,5%)

6. endif

7: end for v
A n 33 In(® () xik
8 X argmaX(x,[’S*)eg:tZO e (t)er=1k=0

problem. In total, we solve RIP(¢,5*) for n°(7) times and get an
feasible solution which is %—better than the optimal solution of the
BRSV problem. Hence, setting 7 = 1/log(1+§) < O(1/¢), Theorem
3 is proved. We summarize our algorithm as Algorithm 1.

3.3 Algorithms for BRSV-veto

Our goal in this section is to show that random sample voting under
the veto (i.e., 1-veto) rule is computationally vulnerable to bribery
in the sense that the (near-)optimal solution for the attacker/briber
can be computed in a very efficient way. More precisely,

THEOREM 4. For any e > 0, there exists an approximation scheme
within (nmL/e)O(l/ez) time that outputs an (1 + €)-approximation
solution for the BRSV-veto problem, where L denotes the input length
of the problem.

Recall that the score vector for veto is & = (1,..., 1,0), all can-
didates could get one score except the one who is on the last posi-
tion of the preference list. To carry over our algorithm for BRSV-
plurality to BRSV-veto, we observe that the BRSV-veto problem
can be viewed as the following equivalent form: each voter votes
for one candidate, which is the one who is on the last position of
his/her preference list and the winner is the candidate who receives
the least number of votes. We will be using this equivalent form
in the following part of our analysis. In particular, we say a voter
votes for the candidate d; under veto if d; is on the last position of
the voter’s preference list, and denote V; as the set of voters who
votes the candidate d; in the absence of bribery. Note that under
this viewpoint, the objective of the briber is to make the designated
candidate receive the least number of votes.

Recall the nonlinear integer programming NIP(¢) introduced for
the BRSV-plurality problem. Under the plurality rule, we can see
that there is no need to bribe voters between two undesignated
candidates. When we bribe a voter from an undesignated candidate,
it is always better to let he/her vote for the designated candidate
rather than other candidates.

When considering the veto rule, we need to consider two kinds
of bribery: from the designated candidate to one of the undesig-
nated candidate; from one of the undesignated candidate to an-
other undesignated candidate. Similarly, replacing Eq (4a) (4d) with
Eq (7a) (7d), we can still formulate the BRSV-veto problem as the
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following nonlinear integer programming NIP2(¢):

max Z de(t)e*
=0

m n
st > Auik < B Amare (7a)
i=1 k=0
m n
Zkaik:n—{ (7b)
i=1 k=0
n
Zx,-k =1 Vi e [1,m] (7c)
k=0
m n
Z Z In(1-® (1)) %31 = 22 vt € [0, n] (7d)
i=1 k=0

where £ < |Vj,41| denotes the total number of voters preferring the
designated candidate dj;,4+1 after bribery.

The definition of the decision variable x;; and z; are the same
as NIP(¢). We omit the constraints x;; € {0,1} and z; € R. The
binary decision variable x;; indicates that if x;; = 1, then there
are exactly k voters that vote for candidate d; after bribery. It has
to be noticed that for each candidate i we need to take n decision
variables (e.g., xi1, Xi2, - . ., Xin) into consideration rather than |V;|
decision variables in NIP(?).

The coefficient iik = Ajg for k < |V;], and iik =0 for k > |Vi|.
And A;; means the total bribing cost of the cheapest |V;| — k voters
within V; which is initially introduced in NIP(¢).

We explain the objective: recall the definition of ¢, (t) and
Oy, (t) see e.g., Eq (1) (2). For any fixed t, ¢y,,,,, (¢) is the probability
that exactly ¢ voters voting for dy,+1 are selected into the committee,
and @, (¢) is the probability that at most ¢ voters voting for d; are
selected into the committee. So ¢y,,.,, (t)-[172; [1-®y, (+-1)] denotes
the probability of the event that Xp,41 = tand X; > t,V1 <i<m
happens simultaneously. Taking the summation over t, this is the
probability of the event that X; > X41, V1 < i < m, i.e., when the
designated candidate d,;,+; becomes one of the co-winners!.

Through simple calculation, we can find that the technique in-
troduced in Section 3.3 - "Dealing with the nonlinear objective
function" and "Dealing with huge coefficients in constraints" can
still be utilized for dealing with NIP2(¢). Hence, can have the fol-
lowing observation.

COROLLARY 1. For any € > 0, there exists an algorithm which
runs in (nmL/e)O(I/ez) time and outputs an (1 + €)-approximation
solution for NIP2(¢) where L is the encode length of NIP2({).

4 RANDOM SAMPLE VOTING WITH A
CONSTANT NUMBER OF CANDIDATES

We consider BRSV when the number of candidates, m + 1, is a
fixed constant. We show that under an arbitrary scoring rule, BRSV
admits a polynomial time algorithm with a constant number of
candidates, more precisely,

UIf co-winners are not allowed, we can simply replace the objective function with the
probability of X; > X541, V1 < i < m.
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THEOREM 5. For any scoring rule R, there exists an algorithm that
outputs an optimal solution for the BRSV-R problem within n(m+1)!
time.

We know the total different kinds of preference order is M :=
(m+1)!. Define S; i as the set of preference orders where candidate
i is on the k-th position of the preference order. For each preference
order oj, we define N as the set of voters whose preference is o;
after bribing.

LEMMA 4. The winning probability of the designated candidate
after bribing is only dependent on |Njj|’s, where1 < j < M = (m+1)!.

Proor. Suppose the random committee is selected to be V/ C V.
Then, whether the designated candidate dy;,+1 has no less score than
candidate d; can be characterized by the following (0, 1)-indicate
function g; (V') where g;(V’) = 1 if and only if the following holds

Z Z (Xk'lv’ﬂNﬂSZ Z ak'|V’mNj|:

k Jjioj€Sik k jESm1k

where recall that & = (a1, a2, . . ., @m+1) is the scoring vector. Fur-
thermore, whether the designated candidate wins or not if the
random committee is selected to be V/ C V can be characterized
by the (0, 1)-indicate function g(V’) which is defined as below

g(v’) = ﬂgi<V'>.

We know that, in the absence of bribery, the winning probability
of the designated candidate equals

D, 9(v)PrRC =V
Vv
where the random variable RC denotes the set of voters be selected
into the random committee.
We can expand g(V’) as following

M
g(v’) = Z (nl\v'mNj\:nj)'

ny,...np i=1

g(V’ | |V/ NNyl = nl&.‘.&|V' N Nyl = np)

where [1; 1|y/nn;|=n; is the (0, 1)-indicate function which equals 1
ifand only if it holds that [V'NN;| = ny and. .. and |V NNy| = npy.
Observing the definition of the g(V’), it is no hard to see when
[V/ N Nj| = nj the function g(V’) can be expressed in terms of
ni, ..., np. Abuse the notation, we denote it as g(ny, ..., ny).
Hence, the winning probability of the designated candidate can
be reformulated as the following form

M
2, 9nm) 3 [ ] Lwien o, PrIRC= V']
Ni,e.sip V/CV j=1

Since, N; does not overlap with each other and Uj\i 1Nj=V.
We know that the probability

> [ Trveen, s, - Prirc=v']

VeV i
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can be expressed as the following closed form

M nj . IN;|-n;
]—[(Wj')pf(l—p) s1=m;

Jj=1

There are n(™*D! different possibilities on all the values of |Nj|.
Given the values of all [N;|’s, it is straightforward to calculate the
minimal total bribing cost needed to change preferences. Hence,
Theorem 5 is true.

5 CONCLUSION

In this paper, we give a systematic study on the computational
vulnerability/resistance of elections with random sample voting
schemes under bribery attack, which incorporates the classical
bribery problem as a special case. We show strong inapproximabil-
ity results for k-approval where k > 2, and for k-veto where k > 2.
We then complement our results by showing a greedy algorithm for
BRSV-plurality with unit bribery costs, and polynomial time approx-
imation schemes for BRSV-plurality and BRSV-veto for arbitrary
bribery costs. Finally, we show that if the number of candidates is
a constant, then BRSV can be solved for an arbitrary scoring rule,
which coincides with the deterministic bribery problem.

One important open problem is whether the decision version of
BRSV-plurality and BRSV-veto (e.g., given the threshold T € Q*
whether is it possible to bribe a subset of voters such that the win-
ning probability of the designated candidate is no less than T and
satisfies the budget constraint) is NP-hard, despite that our algorith-
mic results already imply its vulnerability. Another interesting open
problem is whether there exists an FPT (fixed-parameter tractable)
algorithm parameterized by the number of candidates for BRSV un-
der an arbitrary scoring rule. It is also interesting to consider other
bribery models, especially the swap bribery model (see, e.g. [22]).
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