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Abstract— This paper presents an approach to measure the
ability of a shared control system to track user input while
simultaneously ensuring safety. These CPI metrics, based on
reachability theory, are used to measure the Conservativeness
(C), Permissiveness (P) and the amount of Intervention (I)
applied to a user nominal control. The metrics apply to arbi-
trary dynamic systems, state and control constraints, and unlike
other existing metrics, they apply to non-differentiable shared
controllers including controllers implemented in procedural
code. Moreover, we propose a parallel algorithm based on
Rapidly-exploring Random Trees (RRTs) for conducting the
reachability analysis necessary for computing conservativeness
and permissiveness metrics efficiently. We demonstrate how CPI
metrics may be used to evaluate a Linear-Quadratic Regulator
(LQR) and two different Model Predictive Controller (MPC)
based safe shared controllers applied to the cartpole system,
for different control parameters.

I. INTRODUCTION

Shared control blends human and autonomous control,
wherein the controller filters a human user input to generate
the system control to provide additional safety or task assis-
tance. It is an important component in robot teleoperation [1],
assistive robotics (e.g. robotic wheelchairs [2]), and driver
assistance in automobiles [3].

Intervention is the amount by which the system controls
differ from the nominal user controls. A controller that
intervenes affects the system’s global reachability. There is
an inherent trade-off between safety and performance on the
one hand, and intervention and reachability on the other. On
the one hand, a shared controller can be overly cautious and
restrictive, preventing the user from reaching all unsafe states
but also limiting the operator’s control over the system. For
example, a collision avoidance braking system that limits
a vehicle to 10kph is quite safe, but prevents the vehicle
from reaching its operational limits. On the other hand, a
controller may be too permissive and allow a careless, negli-
gent or adversarial user to reach unsafe states. For example,
a collision avoidance system that only partially slows the
vehicle down before a collision is reliant on the human to
provide safety. However, existing shared control evaluation
methods have focused primarily on task performance, e.g.
task success rate, completion time or efficiency in terms of
control effort applied, or user preference [4], [5], [6], [7].
These metrics are system-specific, may require subjective
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Fig. 1. Qualitative illustration of the CPI metrics (M¢c, Mp, Mr).
The user velocity command and trajectory are shown as red arrows and
curve, respectively. The outputs of two hypotethical shared controllers are
drawn in blue and yellow. At the start (top left), the user issues a safe but
aggressive command. Controller 1 is more conservative and does not follow
the command closely, leading to higher M. Then, the user mistakenly
drives the robot toward wall obstacle (right). Controller 2 provides the
operator freedom to let the robot collide, resulting in higher Mp, while
Controller 1 avoids the collision. Based on the overall trajectories, Controller
1 stays slightly closer to the user command, leading to lower M. [Best
viewed in color.]

surveys, and thus cannot serve as a common language
between systems and controllers. The goal of this work
is therefore to provide quantitative and system-independent
metrics to evaluate the safety-performance trade-offs in de-
signing shared controllers.

We propose the metrics of conservativeness and permis-
siveness using concepts from reachability theory. These are
dimensionless quantities in the range [0,1] and are indepen-
dent of the user behavior. Qualitatively, a shared controller
can be described as conservative if it leverages only a small
portion of the system’s reachable viable set and as permissive
if it allows driving the system into states that would not be
able to reach the safe set. The infervention metric is inversely
proportional to how much control authority the user has
over the system, and low values are preferable if the system
designer trusts the operator’s expertise and attentiveness, and
wants to minimize surprise to the operator. These metrics
generalize to any system and serve as a basis upon which fair
comparison and understanding between shared controllers
can be made. They may then be used to design and select
the shared controller most appropriate to given requirements
(Fig. 1).

The C and P metrics require calculating reachable and
viable sets under the given shared controller, which are
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called the controller-dependent reachable and viable sets.
Although past work has addressed reachable and viable set
computation using Hamilton-Jacobi (HJ) methods, applying
these methods in our setting requires the controller to be
differentiable. To calculate reachable and viable sets of more
complex controllers, we introduce a reachability estimation
approach based on a parallel RRT-based algorithm.

We evaluate the CPI metrics on an LQR and MPC-based
safe shared controllers applied to the cartpole system for
different control parameters. In particular, our approach can
be applied to a minimum intervention MPC, which performs
a finite-horizon trajectory optimization to minimize interven-
tion while maintaining safety, whereas prior HJ methods do

not apply.
II. RELATED WORK

1) Safe Shared Control: The safe shared controller can be
decomposed into two parts: potentially unsafe human input
and a shared controller which tracks user input in a minimum
intervention manner and only modifies it when considered
unsafe. The safety to be verified is stability certification and
constraint set certification [8].

Stability verification concerns closed-loop stability. Meth-
ods such as Sums-Of-Squares (SOS) to search for Lyapunov
functions can be used to verify safety by constructing funnels
[9] with Lyapunov properties. However, finding a Lyapunov
function for a system is nontrivial. Constraint set certification
tries to find a policy that keeps the system inside a control
invariant safe set (CIS), the set of initial states for which there
exists a controller such that the system constraints are never
violated [10], when the human input is considered unsafe.
This can be achieved through a safety filter style controller
[11]. One approach under this framework is an Active Set
Invariance Filter (ASIF) based on control barrier functions
(CBFs) [12], which puts the nominal control input through a
quadratic program to ensure it obeys certain constraints that
define the safe set of the system. However, it is only point-
wise optimal, and finding valid CBFs for a general dynamical
system is generally challenging. Another predictive safety
filter approach is given in [13], which guarantees the safety
of a learned controller by using a predictive controller to find
the closest control that is safe.

2) Shared Control Evaluation: Various metrics have been
applied to evaluate shared control. Carlson et al. evaluate a
robotic wheelchair in terms of performance, attention and
workload with emphasis on the human factor [4]. Tee et
al. introduce metrics for teleoperation task performance on
a curved object surface [5] such as task duration, nor-
malized error, jerk, and user experience using the NASA
TLX questionnaire. Broad et al. use the average observed
deviation between the user input and the closest safe signal
as well as the average percentage of sampled rollouts that
are safe at each timestep as safety metrics to evaluate a
shared controller [7]. Oh et al. propose four quantitative
metrics for obstacle avoidance tasks: task duration, travelled
distance, minimum proximity to the obstacle and the co-
sine distance between controls [6]. Although some existing

metrics capture user behavior and objective measures of
safety, our work provides a quantitative, control-theoretic
and system-independent framework upon which to evaluate
shared control.

3) Safety verification and viability: The control literature
has studied safety verification and viability checking ex-
tensively. The standard safety verification problem focuses
on proving whether there exist trajectories entering a set
of forbidden or unsafe states through forward reachability
analysis [14]. Viability checking, on the other hand, is a
backward reachability problem that involves finding all the
states from which a safe set can be reached [15].

The conservativeness and permissiveness metrics require
computing forward and backward reachable sets. There are
multiple ways to do so. Hamilton-Jacobi (HJ) methods solve
a partial differential equation to give an over-approximation
of the reachable sets [16]. This technique however requires
differentiable dynamics and suffers from a time complexity
which increases exponentially with the state dimension.
Recent work decomposes the computation of a reachable set
into several smaller dimensions [17], but suffers from an
over-approximation that worsens in higher dimensions and
requires knowledge of how to decompose the system appro-
priately. Set propagation over-approximates the reachable set
using polygonal approximations, and benefits from existing
software toolboxes [18]. However, accurate set propagation
for nonlinear systems is still a challenging problem and an
active area of research [19]. Finally, reachable sets can also
be computed with sampling-based methods, which require
intelligent sampling strategies to obtain better coverage. For
example, Lew et al. use an adversarial strategy to sample
states that can generate a larger convex set [20]. This comes
at the expense of an over-approximation of reachable sets that
becomes non-negligible when those are highly non-convex.

We opt for a sampling-based method based on the RRTs
framework [21], [22]. Prior work has used RRT as a falsifi-
cation method focusing on generating a set of test scenarios
that cause the system to fail [21]. A similar algorithm, R3T
[22], uses reachable set approximations to improve the RRT
distance metric and achieve faster convergence speeds. We
build on these approaches for shared controller-dependent
reachable and viable set computation in this work.

III. SAFE SHARED CONTROL PROBLEM FORMULATION

Let S be the system upon which we design a shared
controller. The dynamics of S are modeled by & = f(z,u)
with states z € R™ and controls u € R™. Let A" be the set
of feasible states, and U/ the set of admissible controls, i.e.
the set of states the system is allowed to be in and the set
of controls it is allowed to execute, respectively.

A shared controller takes the system’s current state z and
a human input 7, to generate a safe control policy 7g:

s = ms(x,mh) : X XU > U (1

where U, is the space of human inputs. The human input is
interpreted as being generated by a controller 7, = 7, (x, t)
which is usually unknown to the shared controller 7.



1) Safety: Let Xy C X be the initial set, i.e. the set of
feasible states the system may start in, and X5 C X the
safe set , which refers to a set of feasible states in which
a known auxiliary controller (e.g. LQR) is guaranteed to
maintain the system: X,z is chosen to be a system-specific
CIS, and may be conservatively set as a small region of
feasible states near the equilibrium, e.g. the set of feasible
states with zero velocity.

2) Human input: The space of user controls U}, is typi-
cally a user interface design choice. For instance, if the user
can drive the system’s controls directly, where m;, = u”,
then U;, = U. In addition to direct control, other more
intuitive and practical interfaces may designate position,
velocity, higher-order targets or a combination thereof as the
user command: 7, := . For example, if the system state
x = (q,q) consists of a configuration ¢ and its derivative ¢,
then a position control scheme sets U}, to a (n/2)-D subspace
of X.

3) Objectives: The goal of a safe shared controller is to
design a policy which follows the human operator’s com-
mand 7, as closely as possible and guarantees safety. To that
end, we define an infervention objective ling(-). Assuming
direct control u”, lint(+) can for example be defined as:
bing(z,u, ) = flu — ul% = (u — u")TR(u — uh),
where R is a cost matrix. If the user control is interpreted
as defining a target state 2P, then #,,; can be defined as:
bing (2, u, mp) = ||z —:vh||§2, where the cost matrix () weighs
the importance of different state dimensions.

The minimum intervention shared control (MISC) [7]
problem can be therefore formulated as the following op-
timization problem, assuming discrete time:

T—1
minimize Cing (g, ug, T (2, T
xl-ul ; (e nes 1)
subject to  Vt,xp1 = f (2, up) (2)

2o =2(0),2; € X,ur €U,
Additional constraints.

with the time horizon T € Ry U {400}, x[-] = (zo,21,...)
and u[] = (ug,u1,...). Safety is encoded through state
and control constraints with the sets X and . Additional
constraints may include other artificial state and control
constraints, but they are not required in this definition.
MISC is an idealized goal; Eq. 2 is not actually solvable
in practice since we do not have access to the user’s control
policy . Instead, the system can only approximate the
MISC using the current user command u} = (0, 0) and
past observation. MISC is often defined using a 1-step loss
[23] (i.e., minimizing only ;¢ (z0,ug,ul)), which works
fairly well if the human provides direct control, but works
poorly for target tracking, particularly in underactuated
systems. For tracking, past approaches include discounting
future target deviation cost to the currently commanded target
[23], and using intention prediction to obtain future human
command trajectories [24]. In our experiments in Sec. VI-
A.2, we introduce two MPC-based controllers that vary in

their approach to approximating MISC: MPC Safety Filter
(MPC-SF) [13] and MPC Target Tracking (MPC-TT). MPC-
SF obtains the system control from an unsafe controller, and
adopts a 1-step loss. MPC-TT is an undiscounted formulation
of (2).

IV. REACHABILITY ANALYSIS

Here we lay the groundwork, based on reachable sets,
needed to define the CPI metrics in Section V. We define
reachable and viable sets, distinguishing between controller-
dependent and controller-independent quantities. Let U =
Ry — U and Uy, =R — Up,.

A. Controller-independent sets

We define the controller-independent forward reachable set
as the set of states that can be reached from X via a feasible
state trajectory obeying some feasible control:

R(Xo) = {2 |37 >0, Jue U, 2(0) € Xp,
T = f(myu), .%‘(T) = i'}

Similarly, we define the controller-independent viable set
as the set of states that can reach some Xj,¢. via a feasible
state trajectory obeying some feasible control:

V()(safe) = {1_7 | a7 > 0, Ju € U’ 17(0) = 5'7
T = f(x,u), l‘(T) € Xsafe}

Note that R(X,) and V(AXp) depend only on the system
controls and dynamics, not the shared controller.

3)

4)

B. Controller-dependent sets

The controller-dependent forward reachable set is defined
as the set of states reachable under the shared controller 7

under any user control inputs u” € Uj:
R(ms, Xp) = {z | 3T > 0, Fu" € Uy, 2(0) € Ay, )
T = f(xaﬂs(l‘7uh))7 I(T) = j}

Similarly, we define the controller-dependent viable set:
V(7s, Xsate) = {2 | 3T > 0, e Uy,
i = f(l’,?TS(I7uh))7 $(T) S Xsafe}

which is the set of states that can reach X,z via a feasible
state trajectory obeying a shared controller policy 7, as a
response to user input from Up,.

These sets are illustrated in Fig. 2. Note that R (7, Xp) C
R(Xy) and V(7s, Xsate) € V(Xsate). We confine z(t) € X
at all times.

(6)

C. Connections with other sets and functions

We point out here connections between our set definitions
and some other key sets defined in control theory related
to stability guarantees and safety constraints. The difference
often depends on whether it’s forward or backward propaga-
tion of the dynamics, what is the target set considered, if a
controller is applied, whether the disturbance is considered
as well as time horizon used in set computing, whether it’s
discrete or continuous representation, etc. Given a target set
X, the maximum controllable set [10] is the same as our
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Fig. 2. Tllustration of a controller-independent reachable set R(Xp) (green
area with the densely dashed boundary), a viable set V(Xsaze) (light orange
with the solid boundary), a controller-dependent reachable set R(ws, Xo)
(blue with the dashed and dotted boundary) and a viable set V(ms, Xsafe)
(orange with the sparsely dashed boundary) used in M and M. [Best
viewed in color.]

controller-independent viable set V(X ), and both of them
are valid CIS. Our controller-dependent viable set V(7s, X'n)
is a valid positive invariant set [10]. The region of attraction
[25] is a subset of V(ms, X ). Finally, the control Lyapunov
functions (CLFs) [26] is a continuous-time representation
of a subset of V(Xy) and the CBFs [26] can be seen as
a continuous-time version of a subset of our reachable set
R(Xp). If systems are subject to disturbance w(k) € W then
robust will be used to indicate the sets, usually added in front
of the set definitions

V. CPI METRICS

The CPI metrics map a safety controller 7w, and a user
behavior 7, to a three-tuple (M¢, Mp, M), measuring
conservativeness in terms of how much we are limiting
the capabilities of the system artificially through adding
intervening controls, permissiveness in terms of the portion
of the forward reachable set that is outside of the viable
set, and the intervention in terms of the actual amount of
intervention applied on a user control, respectively. We note
that Mo and Mp have the favorable properties of being
dimensionless and taking the range [0, 1], with O being better.
M7 is in Ry, with O corresponding to no intervention from
the shared controller.

A. Conservativeness Metric

M is defined as one minus the fraction of the intersection
of the controller-independent reachable and viable sets that
is reachable under the safety controller, i.e.

. VO](,R,(’ITS7 X()) N V(Xsafe))
vol(R(Xp) NV (Xsate))

where vol stands for a volume measure.

Mo =1

)

M captures whether a controller is conservative, with
more conservative controllers having higher values of M¢,
and less conservative controllers having M¢ closer to 0. As
an extreme, the pass-through controller 7s(x, 7,) = 7y, that
simply replicates the user control will exhibit Mo = 0.

B. Permissiveness Metric

Mp is defined as the fraction of the boundary of the
controller-dependent reachable set that is not viable.
vol (0 {R(ms, Xo) \ V(7rs, Xsate) } N OV(7s, Xsate))

Mp = vol(0 {R(ms, Xo) N V(7s, Xeate) })

®)
where O denotes the boundary, and the volume measure
here operates on sets of dimension n — 1. The numerator
is shown as the dashed red boundary in the bottom right of
Fig. 2, and the denominator is the bold yellow boundary. This
ratio estimates of the likelihood that the user would reach
an unsafe boundary of the viable set, with more permissive
controllers having higher values of Mp and safer controllers
having Mp closer to 0. As an extreme, a controller that
enforces staying at a safe state at all times (e.g. for the
cartpole system, an LQR which does not take any user input
and instead simply tracks the upright position) will exhibit
Mp = 0. Less safe controllers will have 0 < Mp < 1 with
larger values indicating more “dangerous” controllers.

C. Intervention Metric

M7 is the expected value of the amount of intervention
applied to the user nominal control over a distribution of user
behaviors 7. Define a trajectory 7 as a sequence of states
and controls 7 = (xg,ug, 1, u1,...). We collect a set of
trajectories D = 7;—1 ..k, wWhere each trajectory is obtained
by letting the user control the system while being assisted
by the shared controller. We then define the M; metric as
the sample estimate:

1 T-1

M = DN 7;) ; Cing (2, u, ™h), 9
where N > 0 is the length of each trajectory for which we
estimate M7, and éint(x,u, ) is an intervention objective
as defined in Sec. III-.3 but with a fixed cost matrix to make
it possible to compare different controllers on a comparable
score. As stated, this metric assumes that all user commands
are meaningful and should be followed if possible. If there
exists a way to measure how “meaningful” a command is at a
given time step, it should be used to weight the intervention
score. M reaches its minimum at O by a controller that
always replicates the user’s desired control.

D. Reachable and viable set computation

To calculate volumes, state space are discretized onto
grid cells with resolution r, which dictates the accuracy
of the sets: finer resolution yields a closer and smoother
approximation of the true sets, at the expense of longer
computation time. We are concerned with the volumetric
ratio, which is the number of occupied grid cells over the
total number of cells in the grid.



Algorithm 1 Reachability Estimation with RRT
1: Input

2: N maximum number of samples

3: n  number of trajectories sampled per extension
4: {Zinit } < SampleStates(Xinit)

5: T <+ {xinit}

6: R+ 0

7: for i =1,...,N do

8: Zyand < SampleState(X)

9: Znearest < FindNearestTreeNode (T, Zyand)
10: E <« SampleTrajectories(Zpearest, 1)

11: R+ RUE

12: Znew < FindNearestState(=, Z,anq)

13: Add z,ew to T as a child of Tpearest

14: return R

We adapted the RRT algorithm to compute reachable
sets as outlined in Alg. 1. First, we sample initial states
from X, and then start building a tree in RRT fashion
by sampling a random state x,,nq € X and finding the
nearest node Zpearest 1N the tree. A weighted Euclidean
distance metric is used, and the nodes in tree are stored
in a k-d tree data structure to accelerate nearest neighbors
computation. From Zpearest, W€ generate n trajectories with
different controls. In the case of shared controllers, controls
are sampled from the space of user inputs. The generated
trajectories are added into the reachable set, and the closest
terminal state to T;anq 1S denoted Tpew. Tnew 1S added into
the tree as a child of xpearest. We then keep sampling until
convergence of the reachable set, which is defined as the rate
of change of the volumetric ratio falling below a threshold
for certain number of iterations.

In order to speed up the computation and convergence rate,
instead of building one single tree of N nodes, we build &
trees of N/k nodes in parallel and take the aggregation of
the reachable sets resulting from each tree as the final result.
The aggregation is done by taking the union of the occupied
grids in each reachable set. In this way, the algorithm takes
O(% log (N/K)) time — in other words, more than k times
faster than with one single tree, and in practice we have found
that it achieves a same or better coverage, likely due to the
history-dependent nature of RRT construction. We can also
choose a larger grid resolution and interpolate in trajectories
to speed up the convergence of the reachable set.

The method to compute viable sets is similar to the way
forward reachable sets are computed. The only difference
is that we need to reverse the direction of time in the
dynamical system, i.e. we apply backward instead of forward
differencing.

Note that our method does not require any derivatives of
the system, unlike HJ reachability which requires a differen-
tiable expression of the shared controller. This makes our
approach suitable to non-differentiable shared controllers,
e.g. those that result from solving an optimization problem.
Moreover, we only record the index of the reachable or

viable grid during computation instead of storing the whole
grid space, making it amenable to some extent to high-
dimensional systems.

VI. EXPERIMENTAL RESULTS

To evaluate our work, we compute the CPI metrics
for LQR and MPC-based safe controllers to cartpole via
numerical simulation, and illustrate how they correspond
to qualitative system behavior. Note that the metrics are
computed offline given access to a shared controller and
system simulator as stated in Section III and a sample of
user trajectories for the M metric as stated in Section V-C.

A. Setup

1) Dynamical systems: We consider a cartpole system
with configuration q = [d 6] ", where d is the horizontal
position of the cart, 6 is the angle of the pole (defined to be 0
at the upright position). The standard cartpole dynamics oper-
ate on the state variable x = [q ¢ and the control variable
which is the force applied on the cartpole. The state and
control spaces are chosen to be X' = [~o0, 00] X [-F, ] X
[—6, 6] x [—27, 27] and control U = [—50, 50]. The initial set
Xo = {0}* and the safe set Xaae = {[—00, 00] x {0} }NX.
The partition resolution of the state space is r = 0.1.
The user input considered is a state command x” generated
randomly from [—10, 10] x {0} x {0} x {0}, and is assumed
to change at every time step, set to dt = 0.02s.

2) Shared controllers: The first controller we consider is
an infinite-horizon LQR of weight matrices Q14r and R, with
the dynamics linearized at equilibrium point. Q. is varied
in the experiments as shown in Table I while R is fixed to
1. User input is saturated if the generated policy is beyond
the range of admissible controls.

We also consider the two safe shared controllers MPC-SF
and MPC-TT. The MPC-SF [13] is formulated as a one-step

penalization of the control deviation:

mini[n]lize [Jug — uh||§3
subject to  zo = z(0), zy € XN
Vk e {0,...,N — 1},

Tr1 = f (o, up) , op € X up €U.

(10)

where N is the control horizon and X the terminal con-
straint set. We formulate MPC-TT as the aggregate penal-
ization of the target deviation over a given horizon V:

N-1
minimize |z — |2
x(ul] kZ:O “ (1)
subject to  same constraints as in Eq. 10
A terminal cost term V (zy) = |zn — th?QN can be

added in Eq. 11, but not required. This formulation permits
us to replace = with a predicted trajectory coming from our
testing dataset.

The cost matrices used are R = [1] and @Q = I4. The
terminal constraint set X is set to Agafe. The optimization
time step is h = 0.1 and the problem is solved via direct



Fig. 3. Controller-independent reachable set R(Xp) (left) and viable set
V(Xsate) (right) of a cartpole system using RRT-based reachability analysis.
The volumetric ratio is 46.92% and 47.23% for each.

collocation using the open-source solver CasADi [27]. We
treat the MPC horizon as a parameter, N =5, 10, or 20.

B. Reachability analysis

We remove the position dimension of the state from our
state space grid representation since it is a dynamically in-
variant dimension of the system. The controller-independent
reachable and viable sets, R(Xp) and V(Xsate), as computed
per Alg. 1 are shown in Fig. 3. The volumetric ratios are
46.92% and 47.23%, respectively. We use the following
parameters: tree count £ = 10, number of sampled nodes
N = 100000, number of trajectories sampled for each node
n = 15, trajectory length 10, and weight matrix for the
distance metric w = diag(0,4, 1,1) (6 is more safety-critical
than the other dimensions). The total time for computing the
reachable set is around 30 min. The parameters listed here
could be optimized with further investigation.

In order to evaluate whether the sets are reasonable in
terms of space coverage, we use HJ reachability (via the level
set toolbox [28]) as a baseline and compare the volumetric
ratios of the two methods. The volumetric ratios for R(Ap)
and V(Xsage) are 47.47% and 47.36%, respectively, with a
computing time of around 2 hours. We can thus bring the
coverage of the sets from our sampling-based method within
2% of the baseline HJ reachability method while requiring
approximately one fourth of the computing time.

C. CPI metrics evaluation

Fig. 4 shows some sets computed to evaluate M and Mp
for cartpole model with an LQR controller (Qiqr = 10 - Iy).
Metric values for other weights are given in Table I. We
observe larger weights result in smaller values of M, be-
cause the controller commands more aggressive movements,
thereby resulting in a larger coverage of reachable states that
are viable. This also lets the user drive the system into more
non-viable states, thereby resulting in larger values of Mp.

CPI metrics for cartpole system with MPC-based safe
shared controller are shown in Table II, We observe that
in both formulations Mo decreases with the horizon, which
is also aligned with the results in Fig. 5. This is due to
larger horizons allowing the system to reach more states,
which can further recover the maximum reachable set when
N — o0. In the extreme case, an infinite horizon MPC with
an unbounded I/ would make conservativeness tend to zero,
ie. Mo = 0. Mp, on the other hand, is always 0 because

(b) 7?4(-)(0) n V(Xsafe)

(¢) The numerator (red) and denomina-
tor (yellow) in Mp

(d) R(ﬂ'lqr s Xsafe)

Fig. 4. Sets used to calculate M and Mp for cartpole with LQR.
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Fig. 5. R(ws, Xp) for MPC-TT with horizons N=5 (dark green), N=10
(green) and N=20 (light green). Set labeled with "R” is R(Xp) and labeled
with "V is V(Xsate). Curves in the two sets are trajectory samples
generated when computing the sets. All the sets are in [0 6] dimensions.
[Best viewed in color.]

the terminal constraint guarantees that reachable states are
always viable. Indeed, if MPC finds a solution that fulfills
the terminal constraint, since Xy C V(7s, Xsafe), then all
the intermediate states will be in the viable set.

Finally, for the M metric, both LQR and MPC controllers
are evaluated over a user input dataset D that is mixed with
user input trajectories generated through sinusoidal, step,
and linear functions. The dataset is designed such that we
have user input with different challenges to experiment on.
Sinusoidal functions take the form A sin(27 ft) where A and
f are drawn uniformly at random from [1,10] and (0, 5],
respectively. Step functions take the form 27;1 A 1{t;—1 <
t < t;} with the number of steps m drawn uniformly at
random from {1,2, 3,4} and A; and ¢; from [—10,10] (and
to = 0) and [0, 10], respectively. Finally, linear functions
take the form k - ¢t with k& drawn uniformly at random from



TABLE I
CPI METRICS FOR LQR, VARYING WEIGHT MATRIX

qur 14 10 - I4 100 - 14
Mc 0.586  0.381 0.302
Mp 0.061  0.153 0.190

My 0.36 0.32 0.31

TABLE II
CPI METRICS FOR MPC-SF AND MPC-TT VARIANTS.

MPC-SF MPC-TT
Horizon 5 10 20 5 10 20
Mc 0.988 0539 0446 0994 0392 0.071
Mp 0.0 0.0 0.0 0.0 0.0 0.0
M 038 032 032 040 031 032
M (Pred.") 040 024 024

T: Clairvoyant prediction of future user command

[-1,1]. Each function category contains 25 samples, with
the duration set to 10 s. Trajectories that leave the feasible
space are truncated in the calculation of Mj.

From Table I we observe that larger ()iqr values lead to
smaller M. This is due to larger cost matrices helping the
tracking converge faster, resulting in a smaller intervention.
Results in Table II show that the intervention decreases at
N =10 for both MPC-SF and MPC-TT in general because
the controller a larger horizon gives more time to plan
and track. However, increasing the horizon further does not
help because the constant user input assumption becomes
less valid as the prediction horizon increases. This can be
alleviated by including a human intention prediction module.
The result of MPC-TT with human intention prediction
(MPC-TT-Pred) is also shown in Table II, where we feed
in the clairvoyant human trajectory as the trajectory to be
tracked. The results show that accurate intent prediction has
a strong impact on reducing the intervention metric.

Although the prior tests used synthetic user inputs to
estimate M7, we show that the metric is indeed predictive
of real-world performance. We collected data from a human
operator through a human-machine interface for full-body
control of a wheeled robot and used it as a velocity command
[29]. We scaled the user input signal by 40 in order to trigger
LQR failure cases and then fed that LQR control output to
MPC-SF (horizon N = 10). We also send the scaled user
input to be tracked by MPC-TT and the clairvoyant human
velocity trajectory to MPC-TT-Pred. The output is shown in
Fig. 6. Each MPC variant produces a safe control, but MPC-
TT-Pred fits the user velocity command the best. This result
is consistent with the M estimations of Table II in which
MPC-TT-Pred outperforms the other techniques.

-4

-6

© UoR == UwMpc-sF === Umpc-TT UMPC —TT - Pred

40

20

Fig. 6. Forward velocity e and control output e from different controllers
given real human velocity input Zyser . The command is aggressive and LQR
violates feasibility at approximately 7 s. Each MPC controller is able to filter
out unsafe controls and the system remains feasible. MPC-TT-Pred tracks
the user command the best out of the four controllers because it is able to
anticipate future changes of the command.

D. Discussion

1) Testing on high-dimensional system: We applied
our reachability analysis approach on a 7 degrees-of-
freedom double-wheeled inverted pendulum (DWIP)
system [30] to extract the sets required for metric
evaluation for LQR controllers. The state variables
e = [x vy 6 9 d 6 1/)] include zy-plane
coordinates, tilt angle 6, steering angle ¢ and their
velocities, as well as the forward velocity d. The controls
are wheel torques. The state and control spaces are

chosen to be X = [—4,4] x [-4,4] x [-5, 5] x [7,7] x
[-3,3] x [-3,3] x [-3,3] and U = [-5,5] x [-5,5].
Initial set is Xy = {0}7 and safe set is Xoafe =

{[—00,00] x [-00,00] x 0 x [—00,00] x {0}*} N X.

We use a coarser partition resolution 7 =
[1.0,1.0,0.2,1.0,0.5,0.5,0.5] so as to reduce computation
time. The user input are forward movement dd € [—5, 5]
and steering change 01y € [—2,2]. The cost matrices used
in LQR are R =I5 and @ is set to Ig, 10 - Ig, and 100 - Ig.
Note we reduce state from 7D to 6D by substituting z,y
with d when computing LQR gain to remove the correlated
dimension. We used 18 trees each with 50k nodes for
reachability analysis and the volumetric ratios for R(Xp)
and V(Xare) are 18.25% and 18.21%, respectively. The
resulting M¢ are 0.373, 0.098, 0.024 for each (Q and Mp
are 0.515, 0.537, 0.539. Therefore, we obtain the same
conclusion for both metrics: larger weights result in less
conservativeness and increasing permissiveness.

The results are sensitive to the number of iterations and
nodes sampled. Since our approach is an approximation of
the true reachable set, when HJ reachability computation is
tractable, we can use it as a reference to guide parameter



tuning. However, we lose this sanity checking benefit for
higher dimensional systems as HJ reachability scales poorly.
Although we could alleviate the computational burden of
high dimensional reachability analysis via coarser resolu-
tions and looser convergence criteria, a more principled
approach would be to devise a more efficient representation
of reachable sets that have lower memory consumption and
approximate better in higher dimensions. This is a future
direction to investigate.

2) User behavior model: M; depends on the user be-
havior distribution model. In particular, humans can learn
to predict the behavior of the shared controller, and early
partial intervention before violating a safety constraint can
teach the user about the limits of the system. At the same
time, 7, can have better tracking performance in terms of
intervention when it can predict the human policy 7, closely.
This can be our future work to solve.

VII. CONCLUSION

We introduced CPI metrics to evaluate shared controllers
in a principled manner by quantifying their conservativeness,
permissiveness and the amount of intervention, given some
user behavior. We proposed an RRT-based framework for
efficiently computing the reachable sets required for said
metrics. Case study on the cartpole comparing LQR with
different MPC-based safe shared controllers has shown that
these metrics are useful to evaluate a shared controller and
to choose the most appropriate one for given requirements.
We envision several promising directions for future work:
considering different user behavior models when generating
the CPI metrics, varying user input and the shared control
task with more complex environments, and empirically con-
firming the metrics on a real robot.
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