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Abstract— This paper presents a novel iterative closest points
(ICP) variant, non-penetration iterative closest points (NPICP),
which prevents interpenetration in 6DOF pose optimization
and/or joint optimization of multiple object poses. This capa-
bility is particularly advantageous in cluttered scenarios, where
there are many interactions between objects that constrain the
space of valid poses. We use a semi-infinite programming ap-
proach to handle non-penetration constraints between complex,
non-convex 3D geometries. NPICP is applied to a common
use case for ICP as a post-processing method to improve the
pose estimation accuracy of a rough guess. The results show
that NPICP outperforms ICP, assists in outlier detection, and
also outperforms the best result on the IC-BIN dataset in the
Benchmark for 6D Object Pose Estimation.

I. INTRODUCTION

Accurate detection and estimation of the six degree-of-
freedom (6-DOF) pose (position and orientation) of objects
in a scene is needed for augmented reality and robot ma-
nipulation tasks, so pose estimation has been an active topic
of research for many years. However, state-of-the-art object
detection [8] and pose estimation [20] systems are still noisy,
often including many false positives, duplicate detections,
and inaccurate pose estimates. These problems get worse
when objects are cluttered in the scene, and when the same
object appears multiple times. Under these circumstances,
local information is often insufficient to disambiguate poses,
whereas global information about the scene such as geomet-
ric non-penetration and support relationships can help narrow
down the space of valid poses.

This paper addresses the use of non-penetration constraints
to improve the accuracy of local optimization for single-
object and multi-object pose estimation. Specifically, we ad-
dress the problem that complex, non-convex 3D geometries
impose a large number of constraints, which can number
in the tens or hundreds of thousands. Rather than use
standard nonlinear programming (NLP) techniques, we use
the idea of the exchange method for semi-infinite program-
ming (SIP) [17]. The optimizer progressively generates some
constraints to be included in a smaller NLP, and the series
of problems converges toward a true optimum of the original
problem.

Our proposed NPICP algorithm implements our SIP non-
penetration approach in an Iterative Closest Points (ICP)
algorithm that minimizes a point cloud registration energy
while respecting non-penetration constraints between objects
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(a) Ground Truth (b) CosyPose+ICP Result(c) CosyPose+NPICP Result

Fig. 1: Views from below of the reconstruction results of Scene 1 in the
IC-BIN dataset, showing (a) ground truth, (b) results of the best performer
on the IC-BIN dataset in the BOP Challenge which uses ICP to refine the
result of the CosyPose detector, (c) NPICP used in place of vanilla ICP.
Compared to the results in (b), NPICP resolves the deep penetration of the
yellow cup with the cup next to it, and corrects the pose of the beige cup. It
is also partially able to recover the pose of the cyan cup, but is influenced
by a false positive from CosyPose (red). [Best viewed in color.]

and the free-space of an RGB-D image. It is evaluated on the
single-view multi-object 6D pose estimation problem of the
IC-BIN dataset [4]. As a post processor for a deep neural net-
work (DNN) object detector/pose estimator, NPICP performs
geometry-based “cleanup” of physically implausible poses.
The advantages of NPICP are most apparent in cluttered
scenes, such as the example from the IC-BIN dataset [4]
shown in Fig. 1. The benefits of NPICP are most significant
under perfect detections, since it is a local method and
not able to overcome a poor initialization. Nevertheless, it
outperforms ICP under both perfect and noisy detections, and
outperforms the top performing pose estimator for the IC-
BIN dataset in the Benchmark for 6D Object Pose Estimation
(BOP Challenge) [1].

II. RELATED WORK

The BOP challenge is an open competition which aims
to capture the state of the art in the field of 6D object
pose estimation from an RGB-D image. Point pair features
(PPF) methods [6] are a common approach in which pairs
of oriented 3D points are matched between the test scene’s
point cloud and the model of the 3D object. The object’s
pose is then estimated through a voting scheme. However,
PPF methods are not robust to background clutter or sensor
noise, and their quadratic computational complexity is an
important drawback [2].

DNN methods have made great progress in object de-
tection [8], [18], which further motivated their use in pose
estimation [20], [21]. After being dominated by the methods



(a) False positive (b) Duplicated detection (c) Flipped direction

Fig. 2: Common problems in DNN object detection and pose estimation
results. The blue and red shapes are rendered objects at the estimated poses.
(a) A coffee cup is incorrectly detected in free space. (b) The object is
detected twice. (c) The estimated pose of the juice box is in a flipped
direction compared with the ground truth. [Best viewed in color.]

based on PPF in the first several editions of the BOP
challenge, in 2020, the performance of deep neural network
(DNN) methods ultimately caught up [12]. However, as
shown in Fig. 2, the results of DNN methods can be
noisy. Thus, DNN pose estimation is often followed by
local refinement, such as ICP [19], which performs local
registration to improve the match between the point cloud
and object geometries. Particularly when much of an object
is occluded, local registration may not be enough to fix these
errors. Our work enhances local optimization by including
constraints to enforce non-penetration between objects, and
between objects and free space.

Other authors have used object interactions to improve
pose estimation accuracy. Mitash et al (2019) [14] propose a
method which generates multiple candidate poses per object
at first, and then searches over the Cartesian product of these
individual object pose candidates to find the optimal scene
hypothesis. However, due to the global optimization nature
of this method, its run time increases exponentially when the
number of objects in the scene increases, and in the paper’s
experiments, scenes containing at most 3 objects were tested.
Compared with this method, our method only considers local
interactions between objects, such that the run time increases
roughly linearly with the number of objects in the scene. Our
experiments on the IC-BIN dataset contains up to 19 objects
in scenes 1 and 3, which would be intractable for prior work.

Mitash et al (2020) [15] use the penetration between
objects to reject false positive pose hypotheses generated by a
DNN. We use a similar approach to help refine the output of
the CosyPose DNN. However, the primary focus of our work
is to include penetration information in pose refinement.

III. NON-PENETRATION ITERATIVE CLOSEST POINTS

A. Problem Setup

We address the single-view multi-object 6D pose estima-
tion problem, that is estimating the poses of N objects in an
RGB-D image I , assuming known 3D object geometries.
Since our method is most useful as a local registration
technique for a DNN-based initializer, we assume an ob-
ject detector generates a set of estimated objects e1∶n =
[e1,⋯, en], where ei = (eci , e

q
i , e

s
i , e

M
i ) contains the object

class eci ∈ {1,⋯,C}, the 6D object pose eqi ∈ SE(3)
with respect to the camera, a confidence score esi ∈ [0,1]
and a binary mask image eMi . Our approach generates a

(a) (b)

(c) (d)

Fig. 3: Illustration of how non-penetration information is helpful to improve
pose estimation accuracy. Pure ICP cannot distinguish between poses in (b)
or poses in (d), whereas non-penetration constraints are able to disambiguate
the correct pose. (a) and (b) illustrate how object non-penetration constraints
disambiguate the correct pose. (c) and (d) illustrate how object-free space
non-penetration constraints disambiguate the correct pose.[Best viewed in
color.]

refined set of object estimates o1∶m = [o1,⋯, om] where
oi = (oci , o

q
i , o

s
i , o

M
i ). Note that the first stage of our algorithm

filters out some proposed object estimates, so m is often
smaller than n.

To represent the object’s geometry, we use a dual represen-
tation, consisting of both the signed distance function (SDF)
and point cloud sampled from the surfaces of the object. We
denote the SDF of oi in its local frame as gi(⋅) ∶ R3 → R.
The surface of oi is also denoted as a point cloud in its local
reference frame as PCl

i .

B. Approach

Our approach uses two forms of non-penetration con-
straints to improve pose estimation accuracy: object-object
penetration and object-free space penetration (Fig. 3). ICP
only works to minimize the error of matches between points
and object geometry, but for occluded objects or those
with little texture, it has little information to leverage to
distinguish the true pose.

As illustrated in Fig. 3 (b), object non-penetration con-
straints can find shift poses closer to the ground truth. Free-
space constraints are also very informative, because each
point in the depth image is the closest point between the
camera and the objects in the scene along that direction, so
all objects should be behind the observed surface. So, from
the RGB-D image I and the intrinsic parameters K of the
camera we build a free space object ofree consisting of these
line segments in Fig. 3 (c). Fig. 3 (d) illustrates how object-
free space non-penetration can improve pose estimation by
pushing the left object downward under the observed surface.

However, directly adding all the estimated objects to
NPICP and optimizing their poses jointly can lead to low
accuracy and low efficiency. The false positives may take the
space of correctly detected objects, and very deep penetration
can cause trouble for NPICP. Besides, adding more object to
the optimization will result in longer solve time.

Thus, we design a two-step method. In Step 1, Estimation



Fig. 4: The workflow of our method.

Association (EA), we filter out bad pose estimations using
geometry information, and we run NPICP individually on
each object to improve the estimated poses, which only
considers the non-penetration between the object and the free
space. In step 2, Joint NPICP, we run NPICP over all the
kept objects to optimize their poses jointly, using the non-
penetration both between objects and between objects and
the free space. The pipeline is illustrated in Fig. 4.

Next, we discuss each of the steps in detail.
1) Step 1: Estimation association
DNN object detection/pose estimation results can include

many false positives, and these are critical to remove because
spurious objects can cause NPICP joint pose optimization
to lose accuracy. Otherwise, NPICP will try to prevent
penetration between phantom objects, which can cause poor
estimates to cascade. Our first step (Alg. 1) filters out likely
false positives, and it also generates the target (scene) point
clouds which are used for the registration energy in NPICP.
It proceeds by examining each estimated object, in order of
most to least confident, by the following steps:

a) Low Quality Mask Removal
Line 3 removes estimations whose masks have fewer than

nmin valid pixels. DNN object detection methods sometimes
give detections that consist of very few pixels, which cannot
generate good pose estimation through ICP or its variants,
so these are filtered out.

b) Translation Adjustment
DNN pose estimation methods often produce large errors

in the estimated distance from the object to the camera, so
Lines 4–6 use the point cloud to adjust the initial translation
estimation. To do so, we render the object into a depth image
where the object is placed at the estimated configuration eqi
and then extract points PCren belonging the mask eMi . We
shift the estimated pose to match the centroid of the rendered
point cloud PCren to the centroid of the portion of the scene
point cloud containing ei

This stage also extracts a target scene point
cloud PCscn to be used in the NPICP regis-
tration energy. The extraction is performed by
GetObjectPointcloud(I,K, eMi , nobj , nn, rstd) in
Algorithm 1. First, we use the object mask and camera
intrinsics to determine a dense point cloud PCs

reg , then we
down-sample to nobj points to accelerate the optimization.
To make sure the down-sampled points are representative,
the iterative farthest point method is used. Then, we run
the statistical outlier removal method in Open3D [22] on
the down-sampled point cloud, with parameters nn and rstd
specifying how many neighbors are taken into account in

order to calculate the average distance for a given point,
and rstd is an outlier rejection threshold level based on the
standard deviation of distances.

c) Individual NPICP
To make sure that the object is roughly at the ground

truth pose, such that the following estimation quality check
step will not filter out good results, we run NPICP on each
estimated object before we pass it to the quality check. This
individual NPICP only considers the penetration between the
object and the free space object.

d) False Positive Removal
Next, Line 8 tests the penetration with prior objects o1∶m

and ofree. If all the absolute penetration distances are smaller
than a threshold d1, the sum of the absolute penetration
distances is smaller than a threshold d2, and the absolute
penetration distances with the free space is smaller than
another threshold d3, then we will go to the next step.
Otherwise, we discard the estimation. All of d1, d2 and d3
are determined by the size of the geometry to be examined.

e) Duplicated Detection Removal
DNN object detection methods sometimes detect an object

instance multiple times. So, for the next estimated object ei
to be examined, Line 9 checks the distance δqij = ∥eqi .t −
oqj .t∥ ∀j ∈ 1, ...,m, where eqi .t is the translation of the
estimated pose. If any δqij is smaller than some threshold
δqmin, then we consider the estimation as a duplication.

Algorithm 1 Estimation Association
Input:

• RGB-D image I , camera intrinsic parameters K.
• Estimations e1∶n.
• Free space object ofree.
• Maximum iterations Nsingle

max , step size tolerance ε, index
addition and deletion threshold gmax.
• Minimum # of pixels occupied in object mask nmin.
• Maximum # of points retained in object point clouds nobj .
• Outlier removal parameters nn, rstd, inlier percentage p.

1: Number of retained objects m = 0
2: for ei in Sort(e1∶N) do
3: if V alidP ixel(eMi ) > nmin then
4: PCscn ← GetObjectPointcloud(I,K, eMi , nobj , nn, rstd)

5: PCren ← RenderPointcloud(eci , e
q
i , e

M
i ,K)

6: eqi .t +← Centroid(PCscn) −Centroid(PCren)

7: eqi ← NPICP ([ei], [PCscn], ofree,N
single
max , gmax, ε, p)

8: if not FPRemoval(ei, o1∶m) then
9: if not DuplicateRemoval(ei, o1∶m) then

10: m←m + 1
11: om ← ei
12: PCs

m ← PCscn

13: os1∶m ←ModifyConfidenceScore(os1∶m, o
M
1∶m)

14: return o1∶m, PC
s
1∶m

f) Score Modification
For all retained objects, we adjust their confidence scores

from the DNN object detection method according to a
heuristic so that objects with fewer occlusions have higher
confidence scores (these are used in the scoring function in
BOP challenge; this step is not strictly necessary). We modify
the score according to the number of pixels in the mask



image oMi , setting osi = osi +
V alidPixel(oMi )

Pixelmax
∀i = 1, . . .m,

where Pixelmax =maxmi=1 V alidP ixel(oMi ).
At the end of step 1, all objects are considered to be inliers

and NPICP only modifies their poses hereafter.
2) Step 2: Non-penetration Iterative Closest Point
The next stage is the main contribution of this paper, which

is an ICP implementation with non-penetration constraints.
This includes the non-penetration constraints between each
object and the free space, and the non-penetration constraints
between each pair of objects.

We use the local SDF representations of each object, gi(⋅),
to measure penetration. Denoting the volume of the free
space object ofree as Vfree, the non-penetration constraint
between ofree and oi is expressed as gi((oqi )−1 ⋅ y) ≥
0 ∀y ∈ Vfree. The non-penetration constraint between object
i and object j is expressed as gi((oqi )−1 ⋅ o

q
j ⋅ y) ≥ 0 ∀y ∈

PCl
j . Although there are an intractable number of points in

these constraints, we follow the SIP formulation of Hauser
(2018) which uses fast deepest-penetrating-point techniques
to construct a manageable number of constraints [7].

The point cloud registration energy of object oi is defined
by the sum of squared distances of the geometry to the scene
point cloud PCs

i . A standard technique used in ICP is to
reject outliers by only registering the closest p percent of
points in PCs

i to oi [19]. This improves the the accuracy
and stability of pose estimation by rejecting invalid matches.
Denote di(oqi ) = [gi((o

q
i )−1ysi,1)2,⋯, gi((o

q
i )−1ysi,Ns

i
)2]T as

the vector concatenating the squared distances of points in
PCs

i to oi, with Ns
i = ∣PCs

i ∣. Also, let 1p(di) be an inlier
selection function, which selects the smallest p percent points
from di. The returned vector has the same dimension as di,
and dij = 1 if the j’th distance is an inlier and dij = 0 if it
is an outlier. Then the NPICP optimization problem is given
by the following form:

argmin
oq1∶m

1

2

m

∑
i=1

1p(di(oqi ))
T di(oqi )

s.t. gi((oqi )
−1y) ≥ 0 ∀i ∈ 1,⋯,m ∀y ∈ Vfree

gi((oqi )
−1 ⋅ oqj ⋅ y) ≥ 0 ∀y ∈ PC

l
j

∀i ∈ 1,⋯,m, ∀j ∈ 1,⋯,m, i ≠ j. (1)

The primary challenge is that Vfree and each of the PCl
i

may contain tens or hundreds of thousands of points, making
direct optimization of (1) using an NLP solver intractable.
We leverage semi-infinite programming (SIP) techniques to
improve the speed of optimization. SIP allows constraints
to depend on free variables, known as index points, which
may range over an infinite set. Certainly, an infinite number
of constraints cannot be solved directly in a standard NLP
solver. Thus, an exchange method [9] is used to instantiate
a series of finite dimensional optimization problems, each of
which progressively adds some number of constraints. Also,
through using a judicious index point selection procedure,
called an oracle, the series of problems converges toward
one that contains a true optimum of the original infinite
dimensional problem. The same approach can be applied to
greatly accelerate optimization in problems with a very large

(a) Front View (b) Top View

Fig. 5: Index points between objects generated by the maximum-violation
oracle when the objects are at the configurations shown in the figure. The
points are the closest points (or deepest penetration points) between each
pair of objects. The index points between different pair of objects are
represented by different colors. [Best viewed in color.]

number of constraints, like ours.
We use a maximum-violation oracle [17], which identifies

a parameter value that has a large effect on the next iterated
solution, to instantiate index points. Specifically, on itera-
tion k of the optimization, we calculate the most violating
parameter of each non-penetration constraint:

ymin
i,j ← arg min

y∈PCl
j

gi((oqi )
−1 ⋅ oqj ⋅ y) (2)

and similarly for the free-space violation constraint. An
example of the index points between objects instantiated by
the most-violation oracle is shown in Fig. 5.

We define the set of instantiated index parameters as
Y , and choose an index addition and deletion threshold
gmax. Then if gi((oqi )−1 ⋅ o

q
j ⋅ ymin

i,j ) ≤ gmax, we will add
(ymin

i,j , i, j) to Y . To simplify notation, we regard the free
space object as object 0 (ofree ≡ o0) and set its pose to
the identity transform. We also delete constraints from the
constraint set when they are not deemed necessary. To be
specific, if any index parameter (ymin

i,j , i, j) in Y that satisfies
gi((oqi )−1 ⋅ o

q
j ⋅ ymin

i,j ) > gmax, then we will delete it from Y
to accelerate the following NLP solving.

Letting Y k be the index set generated at iteration k, and
freezing the inlier selection vector as 1k ← 1p(di(oq,k−1i ))
for the poses at the start of the iteration, we solve the
following the nonlinear program to determine a desired set
of poses at iteration k:

argmin
oq1∶m

1

2

m

∑
i=1

(1k)T di(oqi )

s.t. gi((oqi )
−1 ⋅ oqj ⋅ y

l
j) ≥ 0 ∀(ylj , i, j) ∈ Y k. (3)

Simply taking the NLP solution as a step could cause
infeasibility for a non-instantiated constraint, so instead we
use a line search. The line search ensures a sufficient decrease
in a merit function that penalizes the worst-case violation of
a constraint. Let g∗i,j(o

q
i ) ≡ min

y∈PCl
i

gi((oqi )−1 ⋅ o
q
j ⋅ y) ≥ 0 be

the worst-case violation of the collision constraint between
objects i and j. This is then used in the merit function
φ(oq1∶m, Y,w1,w2) = f(oq1∶m) + w1 × ∣D(oq1∶m, Y )−∣ + w2 ×
∣g∗(oq1∶m)−∣ (see Algorithm 2 Line 7). In this function,
D(oq1∶m, Y ) returns a stack of the distances of the instantiated
index points, and g∗(oq1∶m) returns a stack of the closest
distances between each pair of objects and the closest dis-



tance between each object and the free space object, where
(⋅)− ≡min(⋅,0). We also add the penetration points detected
during line search to the index set in the next iteration.

NPICP is summarized in Algorithm 2.

Algorithm 2 Non-Penetration Iterative Closest Point
Input:

• Estimations o1∶m.
• Target point clouds PCs

1∶m.
• Free space object ofree.
• Maximum iteration number Nmax, step size tolerance ε.
• Index addition and deletion threshold gmax.
• Inlier selection parameter p.

1: k ← 0
2: ok1∶m ← o1∶m, Y k

← {}, Y k
LS ← {}

3: for k = 1, . . . ,Nmax do
4: Y k

←DeleteIndex(Y k−1, ok−11∶m, ofree, gmax)

5: Y k
← Oracle(Y k, Y k−1

LS , ok−11∶m, ofree, gmax)

6: Solve Equation 3 to get oq,k1∶m

7: Run line search on φ to get step size α and new penetration
points detected during line search Y k

LS

8: ∆oq1∶m ← α(oq,k1∶m − o
q,k−1
1∶m )

9: oq,k1∶m ← oq,k−11∶m +∆oq1∶m
10: ▷ Test for convergence
11: if ∥∆oq1∶m∥/m ≤ ε then return ok1∶m

IV. EXPERIMENTS AND RESULTS

We tested our method on the IC-BIN dataset, which
contains two object types that appear in multiple locations
with heavy occlusion in a bin-picking scenario (Fig. 6).
These scenes also have severe foreground occlusions and
background distractors.

We followed the evaluation methodology provided by the
BOP Challenge to evaluate the pose estimation results. The
performance of a method on a dataset is measured by the
Average Recall: AR = (ARV SD+ARMSSD+ARMSPD)/3.
VSD is the Visible Surface Discrepancy [11], [10], which
measures the distance difference in the depth image using
only the visible part of the object in the image. MSSD
is the Maximum Symmetry-Aware Surface Distance [5],
which measures the maximum surface deviation and is rel-
evant to robotic manipulation. MSPD [10] is the Maximum
Symmetry-Aware Projection Distance, which changes the
average distance in 2D projection [3] by the maximum
distance and is relevant for augmented reality applications.
An object is only considered in the evaluation if at least 10%
of its surface is visible. All experiments were run on a single
core of a 3.6 GHz AMD Ryzen 7 processor.

We use the following parameters in all the experiments:
● Nsingle

max = 10, N joint
max = 10, ε = 5e − 4, gmax = 5mm.

(a) Scene 1 (b) Scene 2 (c) Scene 3

Fig. 6: Example images of the IC-BIN dataset. [Best viewed in color.]

Scene Method AR Pen/obj (mm)

1
Init 0.376 10.84
ICP 0.695 5.18

NPICP 0.808 1.53

2
Init 0.425 9.04
ICP 0.788 2.07

NPICP 0.814 0.90

3
Init 0.400 11.50
ICP 0.686 4.37

NPICP 0.823 1.42

TABLE I: The results of ICP and NPICP given perfect detection on the
three scenes of IC-BIN seperately.

● nmin = 100, nobj = 200, nn = 50, rstd = 2, p = 95.
● Denoting the smallest dimension of the bounding box

of the object to be examined as d∗, we use d1 = d∗

3
,

d2 = d∗

2
and d3 = d∗

3
.

A. Perfect detection, disturbed ground truth pose
The first set of experiments compares ICP and NPICP

when we have perfect detection but imperfect pose estima-
tion. In this case, we know the true number of objects m = n
and their classes, and we skip the Estimation Association
filters (Lines 3, 8, and 9 in Algorithm 1) and directly set
o1∶m ∶= e1∶n. The initial estimated poses are the ground
truth poses plus random disturbances, with each disturbance
sampled as a random rotation in the range ±0.25 rad and
translation in the range ±3 cm. We run both ICP and NPICP
on three scenes of IC-BIN. The ICP baseline we used is the
point-to-point ICP in Open3D [22]. For a fair comparison,
we run the translation adjustment for both algorithms.

The results of this experiment are shown in Table I. Init
is the initial guess. AR is the average recall and Pen/obj is
the average penetration of an object with all its surrounding
objects. Compared with ICP, NPICP greatly increases the
AR and decreases the penetration between objects. Also, the
improvement of NPICP over ICP is larger when the scene is
highly cluttered, as in scenes 1 and scene 3.

To validate the design choice of our algorithm, we test the
following NPICP variants:
● NPICP Ind: Run NPICP individually on each object

(skipping Joint NPICP in Fig. 4).
● NPICP Joint: Run NPICP jointly over all the objects

(skipping line 7 in Algorithm 1).
● NPICP: Run NPICP both individually and jointly.
Results on the IC-BIN dataset are shown in Table II.

Time/img is the average time used for the pose optimization
of each image. NPICP provides the best results of all the
three variants while taking the most time. However, NPICP
is only slightly slower than NPICP Joint, which we believe
is because the individual optimization makes the initial
condition of the joint optimization more ideal, which enables
the joint optimization to converge more quickly.

The Pen/obj of NPICP Ind is larger than that of ICP
because NPICP Ind only constrains penetration with the free
space object, such that there is no guarantee that it will
decrease the penetration between objects.

B. DNN-based detection, DNN-based pose estimation
The second experiment compares ICP and NPICP given

DNN object detection and pose estimations. We use the



Method AR Pen/obj (mm) Terr /obj Time/img (s)
µ σ

Init 0.393 10.88 31.3 7.6 -
ICP 0.704 4.40 19.2 14.4 17.6

NPICP Ind 0.743 4.85 14.9 17.5 26.8
NPICP Joint 0.812 1.59 12.0 18.0 106.5

NPICP 0.815 1.40 11.8 17.6 108.6

TABLE II: Results of ICP and three variants of NPICP given perfect
detection on the IC-BIN dataset. Pen/obj is the average penetration of
the objects selected by the BOP AR calculation procedure. Terr is the
average pose error compared with the ground truth pose, which sums the
translational error (in mm) and rotational error (in degrees).

results of CosyPose [13] as the initial guess.
The variant of CosyPose which has the best performance

additionally applies an ICP refinement, and is currently the
best result on the IC-BIN dataset in the BOP Challenge.
We run all the three variants of NPICP as a post-processing
method for CosyPose (without ICP), and compare their
results with the ICP variant of CosyPose.

The results of this experiment are shown in Table III. CP
is CosyPose for short. Given the results of CosyPose, all
the NPICP variants increase the average recall and decrease
the penetration between objects, even though the margin of
performance increase is not as large as with perfect detection.
We believe that this is caused by the following reasons: 1)
Some objects are not detected, thus the interactions between
that object and the objects surrounding it could not be used
in the joint optimization. 2) The confidence score of the
object detection module are not reliable. Some bad detections
could take the place of good detections if they have higher
scores, and could also influence its surrounding objects.
Given imperfect detection, NPICP still performs the best
among all the three NPICP variants.

An example of how the poses of objects are updated
through iterations of NPICP is shown in Fig. 7.

C. Analysis

The advantages of NPICP are the best with perfect detec-
tion, and given imperfect detection, although the improve-
ments beyond ICP degrade, it still outperforms the best result
on the IC-BIN dataset in the BOP Challenge.

The run time of NPICP are shown in Table II and Table III,
which only counts the optimization time and does not include
the time used for processing the geometries. The run time
depends roughly linearly on the following factors: 1) The
number of initial estimation N . 2) The number of kept
objects m. 3) The iteration number N joint

max , Nsingle
max . 4) The

number of point in PCs
1∶m.

Although the run time of the problem is tens of seconds,

Method AR Pen/obj (mm) Time/img (s)
CP+ICP 0.647 4.24 11.4∗

CP+NPICP Ind 0.667 2.83 40.5
CP+NPICP Joint 0.672 1.33 73.9

CP+NPICP 0.674 1.28 99.2

TABLE III: The results of the ICP variant of CosyPose and using three
variants of NPICP as post-processing methods on CosyPose. ∗The average
run time of CP+ICP is 11.358 s as listed on BOP Challenge’s website. It
was run on a machine with 20-core Intel Xeon 6164 @ 3.2 GHz CPU and
Nvidia V100 GPU. As a reference, the average run time of CP without ICP
is 0.678 s on the same machine.

(a) Initial (b) Iteration 1

(c) Iteration 3 (d) Iteration 7

Fig. 7: Visualization of iterations of NPICP. Deep penetrations are quickly
resolved in the first few iterations and later iterations fine-tune to reach
a balance between scene point cloud fitting and penetration elimination.
Penetrations are marked with boxes. [Best viewed in color.]

the computational performance of the current implementation
could be significantly improved. We coded in Python for
the purpose of rapid prototyping, and the run time could be
reduced if we rewrite the code in a compiled language such
as C++. Also, although the run time is not ideal for real
time application, as far as we know, methods which could
deal with highly occluded scenes that have a similar number
of objects, and could provide similar accuracy are all far
from real time.

D. Parameter variations

To compare the influence of false positive removal, we
tested different choices for d1-d3 values in Algorithm 1.
When thresholds are large (d1 = 1/2 d∗, d2 = 3/4 d∗, d3 =
1/2 d∗), some deeply penetrated objects are not discarded by
Algorithm 1, which decrease the AR to 0.657 and increases
the penetration to 4.96 mm. When thresholds are small (d1 =
1/6 d∗, d2 = 1/4 d∗, d3 = 1/6 d∗), some good detections
could be discarded, which decrease the AR to 0.667 but
slightly decrease the penetration to 1.09 mm.

V. CONCLUSION AND FUTURE WORK

We proposed NPICP, a method for including non-
penetration constraints into pose estimation. Our method
is particularly advantageous in highly cluttered scenarios,
where there are many interactions between objects. NPICP
outperforms the best result in the BOP Challenge for single-
view multi-object 6D pose estimation on the cluttered IC-
BIN dataset. Moreover, we suspect that non-penetration
information will become progressively more important object
detection accuracy increases, since with perfect detection
NPICP improves the BOP AR score by 15% and reduces
penetration by 68% beyond standard ICP. Future extensions
might use information of the environment (such as the table
in the IC-BIN dataset) to constrain the pose of the objects to
further improve the estimation accuracy. Also, the proposed
approach can accept other objective functions, and could
work with other iterative pose estimation techniques such
as Coherent Point Drift (CPD) [16].
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