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Abstract—Accurately predicting the ridership of public-transit
routes provides substantial benefits to both transit agencies, who
can dispatch additional vehicles proactively before the vehicles
that serve a route become crowded, and to passengers, who can
avoid crowded vehicles based on publicly available predictions.
The spread of the coronavirus disease has further elevated the
importance of ridership prediction as crowded vehicles now
present not only an inconvenience but also a public-health risk. At
the same time, accurately predicting ridership has become more
challenging due to evolving ridership patterns, which may make
all data except for the most recent records stale. One promising
approach for improving prediction accuracy is to fine-tune the
hyper-parameters of machine-learning models for each transit
route based on the characteristics of the particular route, such as
the number of records. However, manually designing a machine-
learning model for each route is a labor-intensive process, which
may require experts to spend a significant amount of their
valuable time. To help experts with designing machine-learning
models, we propose a neural-architecture and feature search
approach, which optimizes the architecture and features of a deep
neural network for predicting the ridership of a public-transit
route. Our approach is based on a randomized local hyper-
parameter search, which minimizes both prediction error as well
as the complexity of the model. We evaluate our approach on
real-world ridership data provided by the public transit agency
of Chattanooga, TN, and we demonstrate that training neural
networks whose architectures and features are optimized for each
route provides significantly better performance than training
neural networks whose architectures and features are generic.

I. INTRODUCTION

Public transit is an integral part of modern metropolitan
cities as it enables diverse groups of people to access services
and jobs. Better public transit means less congestion, faster
commutes, increased social equity, and overall lower carbon
footprint [1, 2]. However, transit services are often severely
stressed or underdeveloped in practice. One of the primary
reasons for this is the inherent challenge in maximizing rider-
ship while providing fair coverage under resource constraints.
Transit authorities try to balance this tension between ridership
and scope; however, due to extreme spatial and temporal
heterogeneity in demand, the resulting schedules are often
not satisfactory to the needs of many demographics. This
lack of accessibility to public transit negatively affects the
lives of residents in a multitude of ways: it poses barriers
to educational attainment, accessing community services, and
accessing jobs.

Further, passenger crowding has always been a problem for
public transportation since it deteriorates the passengers’ well-
being and satisfaction. With the emergence of the novel coro-
navirus disease (COVID-19) pandemic and social distancing
regulations, passengers want to avoid crowds while commuting
now more than ever. People who can afford private vehicles
want to travel by public transport only if it is reliable, fast,
crowd-free, and comfortable.

Accurately predicting the maximum occupancy of each
scheduled transit-vehicle trip is crucial since it enables the
transit agency to prevent crowding by dispatching additional
vehicles to serve a transit route, if possible, based on these
predictions. This flexibility can help decrease the probability
of crowded trips, thereby improving the quality of transit
services. Additionally, transit agencies can lower their oper-
ational costs by reducing the number of vehicle trips if they
are expected to have low occupancy. So, to optimize their
services, improve resource efficiency, and ensure passenger
satisfaction, public transit agencies must accurately predict the
ridership demand of transit trips. These predictions can also
help commuters with planing their travels to avoid crowds.

Forecasting ridership demand, however, presents significant
challenges. While transit agencies and navigation applications
tend to focus on providing vehicle arrival time predictions,
relatively little effort is put into predicting the passenger
occupancy of the vehicles. In a recently added feature, Google
Maps tells commuters how busy a bus is; but this depends
largely on user feedback, i.e., users need to estimate inde-
pendently and provide inputs to indicate how crowded the
bus is [3]. This information might be sufficient for everyday
commuters in systems with one-way travel patterns. However,
different travel patterns would make it difficult for users to
determine how crowded the bus will be for other trips on
the same route [4]. Further, the majority of studies focus on
stop-level ridership [5, 6, 7], but very few consider route-level
prediction [8, 9]. There is a substantial difference between the
bus-stop and transit-route levels. The maximum occupancy of
a vehicle on a transit trip is assessed on the route level. In
contrast, all the boardings and alightings at a specific stop
are considered on a bus-stop level, and the direction aspect
is ignored.

Additionally, since the beginning of the COVID-19 pan-
demic, there have been drastic changes in ridership patterns
worldwide. In prior work, Wilbur et al. demonstrated signifi-
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cant differences between the ridership patterns of public transit
before and after lockdowns imposed due to the pandemic [10].
Because of the pandemic and associated state restrictions,
many public transit agencies introduced fare-free operations
and limited the capacity of vehicles to 50% to ensure social
distancing and minimize contact, which resulted in a drastic
drop in revenues. So, transit agencies significantly lowered
vehicle trips to keep costs under control. These changes
adopted by the public transport agencies have exacerbated
the challenges of the already difficult occupancy-prediction
problem. First, datasets that can be used for training have
shrunken in size since older data cannot be used due to the
changing ridership patterns. So, we have to work with rela-
tively small datasets. Second, the data has a very high variance
since ridership demand is more unpredictable than ever.

In this paper, we propose to improve prediction accuracy
by fine-tuning occupancy-prediction models for each transit
route. Manually designing machine-learning models for each
route-direction combination is practically intractable since
it would require significant time and effort from machine-
learning experts. Therefore, we introduce a neural-architecture
and feature search approach that fine-tunes the architecture’s
hyper-parameters and predictor variables of a deep neural
network. The hyper-parameter and feature-set optimization is
based on a randomized local search, which minimizes both
prediction error and the complexity of the model. Minimizing
the complexity of the model is crucial since it reduces compu-
tational cost and time during both training and inference. We
define forecasting the maximum occupancy of transit-vehicle
trips on a particular route-direction combination as a specific
task in the context of this paper. The research questions we
seek to answer are the following.

Q1 Do task-specific architectures and feature sets, which are
fine-tuned for specific transit routes, perform significantly
better than generic ones?

Q2 How much impact does the starting architecture of the
randomized local search have on the end results?

Q3 How well does the optimized architecture of one task
perform with respect to training for other tasks?

Q4 Are there any obvious relations between the characteristics
of a task and the complexity of the optimized architecture?

We demonstrate our approach and answer these research
questions using automatic passenger count (APC) data from
the public transit agency of Chattanooga, TN.

Organization: The remainder of this paper is organized
as follows. In Section II, we provide an overview of the
state of the art in ridership prediction and neural architecture
search. In Section III, we introduce our assumptions about the
available ridership data and how we process it. In Section IV,
we formulate the architecture and feature search problem and
describe our local-search algorithm. In Section V, we present
numerical results based on our experiments with real-world
data from Chattanooga, TN. Finally, in Section VI, we provide
concluding remarks.

II. RELATED WORK

In this section, we provide an overview of the state of the
art in predicting the transit ridership (Section II-A) and neural
architecture search (Section II-B).

A. Occupancy Prediction

Recent advancements in information and communication
technologies have led to several services for transport systems.
Mapping the occupancy level of public transport has always
held more significance in improving public transit’s overall
operations. Over recent years, research studies have been
trying to map the occupancy level of public transport.

A large stream of literature discusses different aspects of
transit ridership. Some approaches investigate the effect of
different events, weather, etc., on ridership behavior. Karn-
berger and Antoniou provide an insight into the relationship
between ridership and events in predicting the public transit
ridership [9]. Zhou et.al. explore the influence of daily weather
condition changes on the usage of public transit [11]. There
are several studies where machine learning approaches were
adopted for occupancy prediction. Vandewiele et al. proposed
classifying the occupancy level of a train [12]. They used
time, weather features, and a matrix explaining the connections
between origin and destination as training features. First, they
train a neural network and later used the output as a feature
in the extreme Gradient Boosting (XGBoost) model. Zhang
et al. and Silva et al. treated the problem as a regression
task [13, 14]. Their experiments show that the XGBoost
algorithm outperforms other prominent algorithms on both
tasks and reported an RMSE of 25 [13]. There is a group
of studies that attempts to predict passenger occupancy on
public transport in the near future, using real-time information
from smart cards [15, 5, 16]. Tsai et al. presented a study
based on a statistical analysis of historical data and compare
multiple temporal units NN (MTUNN) and parallel ensemble
NN (PENN) with conventional multi-layer perceptron (MLP)
[16]. Both MTUNN and PENN outperform MLP. Nuzzolo et
al. proposed Short Term Occupancy Prediction (STOP), which
predicts the number of passengers on a bus in the nearby future
[5]. They designed STOP using Behavioral prediction models,
such as ARIMA and RBF neural networks.

While the discussed research attempts provide many inter-
esting insights, there are some fundamental differences with
our research. First, we aim to predict the maximum occupancy
for the bus on a trip on a given route and heading in a given
direction for a certain point in time and location. Second, we
have used both sequential and non-sequential features as our
predictor variables. We have used a neural network consisting
of feedforward and recurrent layers to predict occupancy.

B. Neural Architecture Search

Neural Architecture Search is a technique that aims to
outperform the performance of a hand design network by
automating the design of an artificial neural network. Although
model architectures designed by human experts are often
successful, there is no way to be sure whether a better model
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exists or not. A systematic and automatic way of learning high-
performance model architectures can help find better models.

NAS is very computationally expensive since it explores
the search space to propose better architectures and partially
or fully train them. Researchers have studied different methods
to improve NAS over the past few years. Zoph and Le
proposed a reinforcement learning search method with a search
space that contained convolutional networks and an RNN
based controller to optimize architecture configurations where
all the proposed architectures are trained from scratch until
convergence [17]. But this approach required high compu-
tational power. So, in a later study, Zoph et al. narrowed
down the search space and trained the RNN based controller
on a proxy dataset. Later on, the learned architecture is
transferred to the actual dataset [18]. Pham et al. also use an
RNN based controller where the search samples subnetworks
from a large parent network [19]. The parameters are shared
among the proposed subnetworks instead of trashing them
every single time and training from scratch. This approach is
less computationally expensive than the previous ones. Along
with RL based architecture search, other techniques such as
evolutionary algorithm [20], boosting [21], hill-climbing [22],
random search [23], etc. have also been used in architecture
search. But all the approaches have been evaluated on image
data sets.

Our research is different than the existing research attempts
for a few reasons. First, despite the popularity of Neural
Architecture over the recent years, it has only been used in
solving the image classification problems. In our approach,
we implement NAS in solving a regression problem, i.e.,
occupancy prediction . Second, our search space is fundamen-
tally different than the discussed approaches since it consists
of both the predictor variables, i.e., input features for the
model, and the hyper-parameters of the architectures. Also,
the architectures’ hyper-parameters include two different types
of layers (feedforward and recurrent) in the search space. This
work’s main contribution is finding the optimal neural network
architecture and the set of features that will produce the lowest
loss for a particular regression task with the help of Neural
Architecture Search.

III. DATA COLLECTION AND PROCESSING

We first provide an overview of the data sources that we
use in our study (Section III-A) and then describe the data
processing methods (Section III-B).

A. Data Sources

1) Automatic Passenger Count (APC): Automatic passen-
ger counting systems record the number of people entering
and exiting vehicles at different bus stops. Transit authorities
install a people counter sensor over each door of the vehicles
and these sensors detect the passengers as they enter and exit.
Each record in the APC dataset represents an event at a bus
stop for one trip servicing on a particular route and a particular
direction. For trips on a specific route-direction combination,
we aim to predict the maximum number of people on the bus.

2) Weather: Our weather data includes data from multi-
ple weather stations. Based on the geometric location of a
particular stop, we identify the nearest weather station and
combine the trip’s passenger counts with weather information
collected at that particular station. The weather features used
in our study include temperature, precipitation intensity, hu-
midity, etc.

B. Data Processing

The direction a vehicle is heading towards can affect the
level of crowdedness. For example, there can be a lot of
boarding events at a particular station in the morning. Still,
the crowdedness of different vehicles can differ based on
the different directions from the stop. So, each trip in our
processed dataset inherently includes a direction. We process
the time series APC data recorded from the vehicles by seg-
menting them in route-direction combination and integrating
them with weather, based on location and time. We also
calculate previous ridership information for different trips on
the same route-direction from historic data and include them
with the dataset’s existing attributes.

Each trip in the dataset is represented with a fixed-
dimension feature space consisting of information about trip,
time and weather and also some sequential features which
presents previous trips’ passenger boarding information and
time difference. Before training and testing, we map categor-
ical variables (e.g., day of week) into sets of binary features
using one-hot encoding. Our final predictor variables include
number of total stops in the trip, month, day of week, time
of day, multiple weather attributes as the fixed dimensional
features and maximum and median occupancy of n preceding
trips with their time-difference as the sequential inputs. The
maximum occupancy for a trip on a particular route and
direction is the target feature.

The data processing strategies and our proposed method
(Section IV) can be applied to any typical dataset from other
transit agencies.

IV. NEURAL ARCHITECTURE AND FEATURE SEARCH FOR
OCCUPANCY PREDICTION

Our primary goal in this work is to provide accurate
ridership predictions of different public transit routes and help
transit agencies ensure better services. To achieve this, we de-
sign a machine learning approach and propose an architecture
and feature search framework. We want to find an architecture
and set of features, Abest that minimize the prediction error
and model complexity. We can express our objective as -

minA (ℓRMSE +model complexity) (1)

The prediction error is measured with RMSE and model
complexity is defined in terms of the total number of trainable
parameters in the model.

Neural architecture search algorithm consists of three main
parts; a search space, a search technique, and a performance
evaluation strategy. In this section, we explain our proposed
NAS algorithm in detail and explain how the random search
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algorithm proposes better architecture with time to minimize
the prediction error. Algorithm 1 presents the proposed neural
architecture search.

A. Search Space

NAS aims to find optimal training hyper-parameters on a
specific architecture search space, including the list of hyper-
parameters, to pick from while proposing a new architecture.
Since our goal is to optimize the architecture and input features
that minimize prediction error and model complexity, our
search space consists of both architecture’s hyper-parameters
and the features.

Our proposed machine learning approach has three modules;
a recurrent module, a feed-forward module, and another feed-
forward module that combines the output of the two modules.
There is a separate input layer to the recurrent module for
processing the sequential features and another to the feed-
forward module for processing the non-sequential features. All
the modules have one or more fully connected hidden layers.
The outputs of the feed-forward and recurrent modules are
concatenated before going into the final set of feed-forward
layers connected to the output neuron. The activation func-
tions for the feed-forward and recurrent module are Sigmoid
and Relu accordingly. The model is optimized using Adam
optimizer and trained to minimize the root mean squared error
(RMSE). Figure 1 shows an example diagram of the prediction
model with all the modules. iF and iR indicates non-sequential
and sequential input features respectively. hF , hR, and hFcomb

indicate the hidden units in feed-forward, recurrent, and com-
bined module and hout indicates the output neuron.

As the occupancy prediction model consists of feed-forward
and recurrent neurons and we also aim to get the optimal
predictor variables, our search space, Ω consists of multiple
hyper-parameters, HP for both the architecture and input
features. Ω includes the number of layers, L in different
modules and the number of neurons, N in each layer of the
modules, and the learning rate α for the model and all non-
sequential and sequential features, F .

B. Search Technique

For the search technique, we have used a random localized
search algorithm. At each iteration of the NAS, the random
search technique will either increase/decrease particular fea-
tures, F from the training samples or pick any other hyper-
parameter, h to tune with a given probability, PHP .

When the feature, F is picked for a particular iteration,
it either adds or removes specific attributes from the non-
sequential features or increases or decreases the number of
sequential inputs with a probability, PF . The search algo-
rithm tunes the final non-sequential input features by adding
or removing different elements from the existing predictor
variables at random. It also adjusts the sequential input features
by increasing or decreasing the preceding number of trips
at random.

For the remaining hyper-parameters of the architecture, such
as (L, N or α), the algorithm is less likely to modify L in

iR1
iR2

iR3
iF4

iF5
iF6

hR1
hR2

hF3
hF4

Concat

hFcomb1
hFcomb2

hout

Fixed Sized Input Sequential Input

Feed
Forward

hF

Recurrent
hR

Concatenation Layer

Combined
Feed Forward

Output
Max Occupancy

Fig. 1: Example architecture with feed-forward, recurrent, and
combined feed-forward modules.

any module. Since adding or removing a hidden layer can be
a big step in the search space, higher probabilities are given
to changing N and α. When the algorithm modifies L in a
particular module, it can either add a new layer at the end or
remove a hidden layer from the existing ones. N in the new
layer is chosen randomly within one and twice the average of
the existing neurons in different layers. When the algorithm
picks to modify N in any particular module, it will randomly
choose an L from the existing layers and modify N in that
layer with a percentage, βN . The algorithm can also modify
the learning rate, α with a change percentage, βα.

C. Performance Evaluation

Our random search algorithm considers both the loss on
the validation set and the model complexity to evaluate a
particular architecture. The final RMSE is the mean of all
RMSEs obtained after evaluating the architecture with k-fold
cross-validation. Recurrent models trained in practice do not
always satisfy stability [24]. Based on our experiments, we
have also seen that the performance of the recurrent layers can
sometimes be inconsistent. While it happened only a handful
of times, we wanted to remove such unstable results from
our assessment. So, we evaluate all the architectures using k-
fold cross-validation. Again, training and assessing multiple
architectures can be computationally costly. So, to minimize
time by reducing expensive training, we start with five different
90% / 10% data splits and get five RMSEs. Then we check
for variations in the observed losses. A decrease in variation
should lead to fairer predictability. We use the coefficient of
variation, CV , to measure variation. CV = σ/µ, where σ is
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Algorithm 1: NAS(Astart, t)
Input : A ← start architecture

t← task
Initialization: Ω← {HP}, Search Space

PHP ← {f(HP):f(HP)≥ 0, ∀HP ∈ Ω}
A ← Astart

βα ← change percentage of α
βN ← change percentage of N

1 Function evaluateArch(A):
2 model← trainModel (t,A)
3 return ℓRMSE(t,model) + ω ·model complexity

4 Function searchArch(A):
5 HP = random.choice(Ω, 1, p = PHP)
6 if F in HP then
7 A′ ← changeFeatures(HP ,A)
8 else if L in HP then
9 A′ ← changeLayers(HP ,A)

10 else if N in HP then
11 hlayer := random.choice([0, |A[HP]|])
12 Ncurr ← A[HP][hlayer]
13 A′[HP][hlayer]← Ncurr + ⌈Ncurr · βN ⌉
14 else
15 A′[α]← A[α] +A[α] · βα

16 return A′

17 Sprev = evaluateArch(A)
18 while iter < itermax do
19 A′ ← searchArch(A)
20 S ′ ← evaluateArch(A′)

AcceptProbability ← exp ((Sprev − S ′) ·K)
21 accept← random([0, 1])
22 if accept < AcceptProbability then
23 A ← A′

24 Sprev ← S ′

25 iter ← iter + 1

Result: Abest: best architecture found

the standard deviation and µ is the mean. We calculate the
CV for errors in each fold, and if the CV is higher than
a threshold, we pick 3 new folds to train. We continue this
process until the CV is minimized or all the 90% / 10% data
splits have been used. From all the prediction errors observed,
we remove the couple of best and worst results and average
over remaining RMSEs obtained this way.

The total number of trainable parameters indicates the
model complexity. We consider the model complexity in
evaluating performance so that the algorithm proposes smaller
networks that will produce a lower loss. The number of train-
able parameters of the prediction model is calculated using the
connection between layers and biases in each layer [25]. The
total number of trainable parameters of the prediction model

can be determined with the help of Equation (2).

train params→= iF · hF0
+ hF0

+
x∑

k=1

(hFk−1
· hFk

+ hFk
)

+hR0 · (iR + hR0) + hR0 +

y∑
k=1

(hRk
· hRk−1

+ hRk
)

+
n∑

k=1

((hFx + hRy ) · hFcombk
+ hFcombk

· hout)

+hFcombn
+ hout

(2)

Given an architecture set G sampled from Ω and a task, t,
our random search algorithm aims to minimize the score S:

S = ℓRMSE(t,model) + ω · train params (3)

where ℓRMSE(t,model) is the RMSE obtained after training
and cross validating the model on task, t. Factor ω is a cost
ration between prediction error and model complexity.

First, Algorithm 1 obtains an initial score Sprev using the
start architecture, Astart. Then, it follows an iterative process.
In each iteration, the algorithm gets a new architecture, A′

using random localized search of the current best architecture,
A and a new score S ′. If the new score, S ′ (see Equation (3))
of A′ is lower than the score, Sprev of A, then the algorithm
always accepts A′ and S ′ as the new solution. Otherwise, the
algorithm computes the probability of accepting it based on
simulated annealing approach using K and the score difference
between Sprev and S ′, and then accepts A′ and S ′ at random.
The algorithm terminates after a fixed number of iterations
itermax and returns the best solution, Abest found up to
that point.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate our algorithms based on real-
world transit data from Chattanooga, TN. We first describe our
experimental setup (Section V-A) and then present numerical
results (Section V-B). We will publish our dataset and imple-
mentation under open-source licenses.

A. Experimental Setup

1) Data: We use APC data for Chattanooga, TN, acquired
from the Chattanooga Area Regional Transportation Authority
(CARTA). Our study uses 34 months of APC data, from
January 2019 to October 2021. CARTA operates a number
of transit routes, with trips running in two directions: inbound
and outbound. The processed APC dataset from CARTA has
trips from 23 routes and both directions. For our study, we
have selected 5 routes in both directions, so we have in total 10
different route-direction combinations (i.e., tasks) over which
we evaluate our algorithms. We chose these routes to ensure
a diverse selection of tasks, considering the number of trips,
average occupancy, variance in occupancy values, etc.
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Fig. 2: Neural architecture search with score based on model
complexity and the average RMSE over all tasks.

2) Architecture and Feature Search: For the initial architec-
ture of Algorithm 1, we use a neural network that has two hid-
den layers in each module (feedforward, recurrent, and com-
bined) and a learning rate of 2.5×10−5. The hyper-parameter
probability PHP is set so that 25% of the time, Algorithm 1
fine-tunes the set of features, and the remaining 75% of the
time, it adjusts the hyper-parameters of the architecture search
space. For the feature set, we prepare a set of 6 different non-
sequential features and the occupancy of 10 preceding trips
as the sequential features. Since time information is crucial
for predicting the ridership of any route, we always include
time features (time of day and day of week) as part of the
non-sequential inputs. When the algorithm tunes the feature
space, it can pick either sequential or non-sequential features
with a uniform probability PF . The neuron change percentage,
βN is chosen uniformly at random from [−25%, 25%] in each
step. The learning rate change percentage, βα is either −20%
or 20%. The NAS algorithm runs for 6,000 iterations before
termination, and each architecture A in G is trained until
the learning converges. The training time of each architecture
varies based on model complexity and dataset size. Running
Algorithm 1 for 6,000 iterations on different datasets takes
around 4 to 5 days on average on 1 CPU node with 20 cores.

B. Numerical Results

1) Task-specific vs. Generally Optimized Architecture (Q1):
Our first research question is whether the architecture found
by a route-direction specific search outperforms a generally
optimized architecture. To answer this question, we first run
a generic architecture and feature search to find an optimal
architecture and feature set that work best on average for all
tasks, i.e., over all route-direction combinations. We start the
search with all available features and a hand-designed initial
architecture. The search algorithm proposes an architecture,
and for each task, trains a separate model to obtain an RMSE
score. For each task, we use 5–fold cross–validation to obtain
an average RMSE score. Finally, the architecture and feature
set are accepted or rejected by the search based on model
complexity and the average RMSE score over all the tasks.
This search returns an architecture and a feature set Abest

that work best on average over all tasks. Later, we also use
Abest as the starting architecture for the task-specific searches.

Figure 2 shows the first 900 scores of the accepted architec-
tures of the generic search. After trying around 600 different
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Fig. 3: Comparison between architectures that were found by
generic (yellow ) and task-specific searches (blue ) based on
NAS score for each specific task.
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Fig. 4: Comparison between NAS scores attained for each
specific task by searches from the hand-designed architecture
(blue ) and from the best generic architecture (purple ).

architectures, the search reaches the best architecture based on
average RMSEs on the validation sets and model complexity.

For the comparison, we run task-specific architecture and
feature searches, where we optimize each architectures for
predicting the ridership of a specific route and direction.
The starting point of each task-specific search is the same
hand-designed initial architecture. We run the search for 6000
iterations and select the best architecture. Finally, we retrain
the best architecture found by the generic search (Figure 2)
on each task, and compare the results with architectures found
by task-specific searches.

Figure 3 shows the score after training a specific task
with both generic and task-specific architectures. There is a
clear gap between the two losses, which indicates that the
architecture and feature set found by the task-specific search
outperforms the ones found when optimizing for all tasks.
So, prediction error and model complexity can be reduced by
optimizing the hyper-parameters for a specific task.

2) Starting Architecture of Task-Specific Search (Q2): Our
second research question is how much the choice of the
initial architecture impacts the performance of the architecture
search. To answer this question, we execute the task-specific
neural architecture search from two starting points: a hand-
designed architecture and the best generic architecture Abest

(Figure 2). Each architecture is evaluated based on model
complexity and validation set RMSE after 10-fold cross-
validation on the specific task.

Table II shows for each task, the NAS score of the best
architecture and the time taken by the search to find this
architecture from two different starting points (i.e., from hand-
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TABLE I: NAS Scores for Models Trained for Various Tasks using Architectures Optimized for Different Tasks

Optimized Arch.

Task
4 Inbound 4 Outbound 1 Inbound 1 Outbound 9 Inbound 9 Outbound 2 Inbound 2 Outbound 7 Inbound 7 Outbound

4 Inbound 4.96 5.30 3.85 3.14 4.66 4.62 2.66 1.94 1.89 2.17
4 Outbound 4.91 5.09 3.98 3.14 4.39 4.33 2.68 1.95 1.89 2.19
1 Inbound 5.69 5.81 3.79 3.41 4.88 4.48 2.77 2.03 2.07 2.85

1 Outbound 4.94 5.24 3.91 3.03 4.37 4.58 2.66 1.94 1.88 2.14
9 Inbound 5.04 5.26 3.95 3.56 4.52 4.50 2.75 2.08 1.97 2.37

9 Outbound 5.12 5.42 3.97 3.42 4.64 4.50 2.58 2.03 1.96 2.37
2 Inbound 5.06 5.36 3.95 3.18 4.47 4.19 2.34 1.57 1.72 2.23

2 Outbound 4.96 5.27 3.81 3.07 4.28 4.21 2.41 1.72 1.56 2.15
7 Inbound 5.06 5.26 3.90 3.15 4.17 4.10 2.20 1.69 1.54 2.25

7 Outbound 5.58 5.91 3.81 3.38 4.71 4.73 2.64 1.91 1.93 2.07
Generic NAS 5.17 5.58 4.02 3.37 4.56 4.61 2.89 2.10 2.17 2.32

TABLE II: Searches with Different Starting Architectures

Task
NAS from

Hand-Designed Architecture
NAS from

Optimized Architecture
Score Runtime [%] Score Runtime [%]

4-In 4.836 47.12 4.894 31.27
4-Out 5.239 65.48 5.056 31.53
1-In 3.675 36.00 3.714 18.57

1-Out 3.039 97.13 3.005 45.88
9-In 3.929 80.15 3.973 87.30

9-Out 3.799 73.23 3.963 86.63
2-In 2.144 61.25 1.973 96.67

2-Out 1.852 65.43 1.584 58.85
7-In 1.543 98.28 1.288 97.63

7-Out 2.030 61.93 1.961 99.03
Average 3.21 68.6 3.14 65.3

designed architecture and from the best generic architecture
Abest). Runtime is represented as a percentage of the total
number of search iterations. Figure 4 compares the two search
results visually based on NAS score. For most tasks (i.e.,
route-direction combinations), we see that the best architecture
found when we initialize the search with the already optimized
architecture (found in Section V-B1) performs slightly better.
This suggests that we may obtain better NAS results by
performing a generic search first, considering all tasks, and
then task-specific searches starting from the output of the first
search. Further, if we consider the runtime from Table II, we
see that the search can converge to the best architecture in
slightly less time for most tasks when we start the search from
an already optimized architecture.

3) Comparison among Architectures Optimized for Specific
Tasks (Q3): Our goal is to assess how an architecture that
was optimized for one specific task performs when we use
it to train models for other tasks. To this end, we take the
best architectures found by the task-specific searches, and we
use each architecture to train models for every task in our
dataset. Table I shows the NAS scores for all the models
based on a 10-fold cross-validation. Each row represents the
architecture optimized for a particular task, and each column
represents training a model using that architecture for one
particular tasks. Darker shades of red and green indicate
worse and better scores, respectively. Note that cells on the
diagonal show scores for models trained for tasks using their
corresponding optimized architectures. We see that for every
task, the architecture optimized for that particular task almost
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Fig. 5: Characteristics of the tasks and their optimized archi-
tectures.

always performs best; however, due to the randomness of the
search, there are some variations. The last row of Table I
shows the NAS score when each task is trained using the best
architecture found by the generic search (Figure 2). We can
see a significant performance drop in almost every case.

4) Relationship between Characteristics of Tasks and Opti-
mized Architectures (Q4): Figure 5 shows the characteristics
of each task in terms of dataset size and variance of occupancy
values as well as the complexity of the architecture found by
the task-specific search. We observe no obvious relationship
between the task and its optimized architecture; we leave a
more in depth study of possible relationships to future work.

VI. CONCLUSION

Accurate prediction of transit ridership provides significant
benefits by enabling transit agencies to prevent crowding and
passenger to better plan their travel. Due to the challenging
nature of this problem, we propose to improve prediction
accuracy by fine-tuning machine-learning architectures for
each transit route in each direction—a task which could require
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significant effort and time from machine-learning experts.
Our key contribution is proposing a framework for neural-
architecture and feature-set search, which alleviates the need
for fine-tuning by machine-learning experts, and demonstrat-
ing that our algorithms can significantly reduce prediction
error and model complexity based on real-world data. Further,
we found that performing a generic search to bootstrap the
task-specific searches may slightly reduce runtime; the fact
that searches converge to similar architectures regardless of the
starting architecture also shows the robustness of our approach.
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