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Abstract
Vehicle routing problems (VRPs) can be divided
into two major categories: offline VRPs, which
consider a given set of trip requests to be served,
and online VRPs, which consider requests as they
arrive in real-time. Based on discussions with pub-
lic transit agencies, we identify a real-world prob-
lem that is not addressed by existing formulations:
booking trips with flexible pickup windows (e.g., 3
hours) in advance (e.g., the day before) and con-
firming tight pickup windows (e.g., 30 minutes) at
the time of booking. Such a service model is of-
ten required in paratransit service settings, where
passengers typically book trips for the next day
over the phone. To address this gap between of-
fline and online problems, we introduce a novel for-
mulation, the offline vehicle routing problem with
online bookings. This problem is very challeng-
ing computationally since it faces the complexity
of considering large sets of requests—similar to of-
fline VRPs—but must abide by strict constraints on
running time—similar to online VRPs. To solve
this problem, we propose a novel computational
approach, which combines an anytime algorithm
with a learning-based policy for real-time deci-
sions. Based on a paratransit dataset obtained from
our partner transit agency, we demonstrate that our
novel formulation and computational approach lead
to significantly better outcomes in this service set-
ting than existing algorithms.

1 Introduction
Vehicle routing problems (VRPs) can be divided into two ma-
jor categories. Offline VRPs consider a set of requests at
once and optimize their assignment to planned vehicle routes
[Golden et al., 2008; Laporte, 1992]. Online VRPs, on the
other hand, process requests as they arrive in real-time—
either one-by-one or in small batches—and optimize their as-
signment to vehicle routes that may already be in progress
[Toth and Vigo, 2002; Pillac et al., 2013]. While online VRPs
typically optimize fewer requests at a time, they are subject
to stricter constraints on running time due to the online nature
of the problems.

A socially beneficial application of VRPs is optimizing
paratransit services [Lave and Mathias, 2000], which are
curb-to-curb transportation services provided by public tran-
sit agencies for passengers who are unable to use fixed-route
transit (e.g., passengers with disabilities). These services are
crucial for providing transit accessibility to disadvantaged
populations. Paratransit trips are typically booked at least one
day in advance, which enables transit agencies to optimize
routes as an offline VRP: before each day, an agency can opti-
mize paratransit routes for that day based on all the requested
pickup and drop-off locations and pickup time windows.

However, based on discussions with public transit agen-
cies, we identified a problem that is not addressed by exist-
ing VRP formulations. When passengers book trips over the
phone, they often request broad pickup windows (e.g., going
for groceries in the afternoon, sometime between 2pm and
5pm). While passengers may have no preference between
pickup times within these broad windows, they do strongly
prefer to know in advance when they will be picked up. So,
transit agencies must confirm a tight pickup window (e.g., 30
minute interval within the broad window) at the time of book-
ing. The reason for this is very practical: vehicles may arrive
at any time within the confirmed windows, and passengers
need to be ready to be picked up. This presents an interesting
online optimization problem: how to select tight pickup win-
dows at the time of booking, based on information available
at the time, assuming that vehicle routes will be optimized as
an offline VRP once all the trips have been booked?

We formulate this as the offline vehicle routing problem
with online bookings. We assume that trip requests with broad
pickup windows are received one-by-one, and for each re-
quest, a tight pickup window must be selected in a matter of
seconds. At the end of the booking process, vehicle routes are
optimized as an offline VRP based on the selected tight win-
dows. The objective of optimizing the tight pickup windows
is to minimize the cost of the resulting offline VRP. Note that
this booking problem can be defined with respect to a wide
range of offline VRP formulations (that consider pickup win-
dows), so our framework could be applied to a range of real-
world problems where tight pickup windows must be chosen
during booking (e.g., scheduling the delivery of refrigerated
goods or dial-a-ride services). In this paper, we consider an
offline VRP formulation that models paratransit services.

This problem is very challenging computationally since
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it faces the complexity of considering large sets of trips—
similar to offline VRPs—but must abide by strict limits on
running time—similar to online VRPs. To address this chal-
lenge, we propose a novel computational approach that com-
bines an anytime algorithm with a reinforcement-learning
based policy. We demonstrate that our novel formulation and
computational approach lead to significantly better outcomes
in the paratransit-booking setting than existing algorithms us-
ing real-world data from a public transit agency.

2 Model and Problem Formulation
We formulate the offline VRP with online bookings by first
introducing an offline vehicle routing problem, which models
the optimization of allocating trip requests to vehicle routes
once all the trip requests have been booked and their tight
pickup windows have been confirmed. Building on this of-
fline problem, we then formulate the online booking problem,
which models the optimization of tight pickup windows in
real time, assuming that vehicle routes will be optimized af-
terwards. Table 1 in Appendix A provides a list of symbols.

2.1 Vehicle Routing Problem with Time Windows
Offline VRPs with time windows is a family of classical com-
binatorial problems. Here, we introduce the offline VRP for-
mulation that we employ in our experiments, which we de-
veloped to model paratransit services. However, it is impor-
tant to note that the online bookings problem could be defined
with respect to a wide range of offline VRP formulations with
pickup time windows, and our proposed solution approach
can incorporate existing offline VRP solvers for these prob-
lems. Since our offline VRP is a minor variation of classical
formulations, here we provide only a concise summary of this
problem, which is sufficient for formulating the novel online
bookings problem. Due to lack of space, we provide a de-
tailed formal definition in Appendix B.
Problem Input The input of the offline VRP problem is an
ordered set of trip requests T = ⟨T1, T2, . . . , Tn⟩, where each
trip request Ti contains a pickup location Lpickup

i , a drop-off
location Ldropoff

i , and the number of passengers to be trans-
ported Pi; and a corresponding ordered set of tight pickup
time windows w = ⟨w1, w2, . . . , wn⟩, where each time win-
dow wi is defined by an earliest wstart

i and latest wend
i pickup

time. The input also includes constants, such as the maximum
allowed duration Dmaxroute of a vehicle route, the passenger
capacity V of the vehicles, and so on (see Appendix B). For
ease of presentation, we will not list these constants explic-
itly and represent a VRP instance simply as (T ,w), assuming
that the constants are provided implicitly.
Solution and Objective A solution to the offline VRP
problem is a set of vehicle routes R = {R1, R2, . . . , Rm},
where each route is an ordered set of pickups Lpickup

i and
drop-offs Ldropoff

i (note that trips may be combined in a route,
i.e., pickups and drop-offs of different trips may be inter-
leaved). A set of vehicle routes R is a feasible solution if
each pickup Lpickup

i is included in exactly one route Rj , the
corresponding dropoff Ldropoff

i is also included in Rj , and ev-
ery route satisfies time constraints (passengers are picked up

within the pickup time windows, travel times between loca-
tions are respected, etc.) and vehicle capacity constraints (see
Appendix B). We let R(T ,w) denote the set of feasible so-
lutions for a VRP instance (T ,w).

The cost of a solution depends on the number of vehicle
routes and the duration of each route (see Appendix B). By
letting C(R) denote the cost of a solution R, we can express
the offline VRP problem as argminR∈R(T ,w) C(R). Finally,
we let VRP∗(T ,w) denote the total cost of an optimal solu-
tion for problem instance (T ,w). That is, VRP∗(T ,w) =
minR∈R(T ,w) C(R). Since there is a vast literature on solv-
ing offline VRPs, we assume that an offline VRP solver (i.e.,
heuristic or approximation algorithm for VRP∗) is given, and
focus on the online bookings problem in this paper.

2.2 Online Bookings Problem

Building on the offline VRP formulation, we now introduce
the online bookings problem. In this real-time decision prob-
lem, trip requests T1, T2, . . . are received one-by-one, and
each trip request Ti is accompanied by a broad pickup win-
dow Wi. Our goal is to select a tight pickup window wi ⊂Wi

for each trip request Ti in real-time (i.e., in a few seconds af-
ter the request is received), so that once we have received all
the trip requests T and selected all the pickup windows w, the
total cost VRP∗(T ,w) of the resulting offline VRP is mini-
mized. To model uncertainty and expectations about future
requests, we assume that the sets of trip requests and broad
pickup windows (T ,W ) are drawn at random from a known
probability distributionD (note that the number of requests is
variable). So, each decision is based on previously received
requests and expectation of future ones (i.e., distribution D).

Problem Input Formally, the input for the ith decision is
the ordered set of trip requests (including the ith request)
⟨T1, . . . , Ti⟩, the ordered set of previously selected tight
pickup windows (up to the (i−1)th request) ⟨w1, . . . , wi−1⟩,
and a broad pickup window Wi, which specifies the earliest
W start

i and latest W end
i pickup time for request Ti. The in-

put also includes the probability distributionD, the maximum
duration of tight pickup windows Dwindow (e.g., 30 minutes),
and any additional inputs that are required by the offline VRP
(e.g., vehicle capacity, maximum route duration); for ease of
presentation, we will not list these additional inputs explicitly.

Decision Space and Objective The output of the ith deci-
sion is a tight pickup window wi that is at most Dwindow long
(i.e., wend

i −wstart
i ≤ Dwindow) and falls within the broad win-

dow (i.e., W start
i ≤ wstart

i ≤ wend
i ≤W end

i ).
Whether a decision wi is optimal depends not only on the

received requests and on our expectation of future requests,
but also on how we will respond to those future requests.
Thus, instead of trying to formulate the online booking prob-
lem as optimizing each decision wi, we formulate it as op-
timizing a decision-making policy µ, which maps each in-
put (⟨T1, . . . , Ti⟩, ⟨w1, . . . , wi−1⟩,Wi) to a tight pickup win-
dow wi. Formally, our goal is to find an optimal decision
policy µ∗, which minimizes the expected cost of the resulting
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offline VRP instance (T ,w):

argminµ E(T ,W )∼D

[
VRP∗ (T ,w)∣∣∣

wi=µ(⟨T1,...,Ti⟩,⟨w1,...,wi−1⟩,Wi)

]
.

Since the decision problem is subject to real-time constraints
(i.e., when someone calls over the phone to book a paratransit
trip, the transit agency must respond during the phone call,
within seconds), we must be able to evaluate the policy µ∗ in
a matter of seconds for any input.

3 Solution Approach
3.1 Anytime Algorithm
The online booking problem is computationally challenging
since it incorporates the offline VRP into its objective, which
is a computationally-hard combinatorial optimization prob-
lem ([Lenstra and Kan, 1981]). Indeed, existing approaches
for solving offline VRPs are not well suited for real-time ap-
plications (i.e., finding solutions within a matter of seconds).

To address this challenge, we propose performing compu-
tation between consecutive decisions. While there is limited
time for each real-time decision, there is significantly more
time between consecutive decisions (i.e., from when a tight
window is selected to when the next request is received). We
can take advantage of this extra time by continuously work-
ing on a vehicle-routing solution, which can then be used as
supporting input in the next real-time decision.

Unfortunately, the amount of time between consecutive re-
quests is not known in advance since calls arrive at random
times (note that the arrival time of a request is different from
its broad pickup window). Thus, we propose to employ an
anytime VRP algorithm, which we can start after each real-
time decision and stop when the next request arrives.

Anytime-supported Online Bookings Problem
Based on the above ideas, we reformulate our online decision
problem as the anytime-supported online bookings problem.

Policy Input and Decision Space The input for the ith de-
cision is the same as before, but now also includes a feasible
VRP solution R(i−1) (i.e., a set of routes), provided by the
(i−1)th execution of the anytime algorithm, which we spec-
ify below. For ease of exposition, we define R(0) = ∅ for the
very first request T1. The output of the ith decision is also the
same as before, but now also includes a feasible VRP solution
R̂(i) (i.e., R̂(i) ∈ R(⟨T1, . . . , Ti⟩, ⟨w1, . . . , wi⟩), provided
as supporting input for the ith execution of the anytime algo-
rithm. Note that we could omit the VRP solution R̂(i) from
the output of the online decision and let the anytime algo-
rithm assign the new request to a route. However, we found
that providing a feasible solution as a starting point for the
anytime algorithm is very beneficial in practice since the se-
lection of the pickup window must consider anyway how the
request will “fit” into the routes. Also note that finding a fea-
sible VRP solution does not introduce a computational chal-
lenge since we can let the decision policy assign each new
request to a new route and leave existing routes unchanged

(achieving feasibility, but leaving all of the VRP optimization
to the anytime algorithm); we of course train our policy to
provide better solutions.
Anytime Algorithm Input and Output The input for the
ith execution of the anytime algorithm consists of the trip re-
quests ⟨T1, . . . , Ti⟩, the tight pickup windows ⟨w1, . . . , wi⟩,
and a feasible VRP solution R̂(i), provided by the ith deci-
sion of the policy. The output of the ith execution of the any-
time algorithm is an improved feasible VRP solution R(i),
provided for the (i+1)th decision of the policy.

The objective of the anytime algorithm α is to find
a minimum-cost feasible solution for the VRP instance
(⟨T1, . . . , Ti⟩, ⟨w1, . . . , wi⟩), taking into consideration the
provided solution R̂(i):

R(i) = α
(
⟨T1, . . . , Ti⟩, ⟨w1, . . . , wi⟩, R̂(i)

)
≈ argminR∈R(⟨T1,...,Ti⟩,⟨w1,...,wi⟩) C(R).

Note that the objective of the anytime algorithm does not con-
sider future requests, only ones that have been received. In
our experiments, we found that we can attain very good per-
formance by letting the decision policy handle expectations
about future requests, and restricting the anytime algorithm
to optimizing for requests that have been received.
Optimal Decision Policy Finally, we can reformulate our
goal for the online bookings problem as finding an optimal
decision policy µ∗ for selecting tight pickup windows, sup-
ported by the anytime algorithm α:

argminµ E(T ,W )∼D

[
VRP∗ (T ,w)∣∣∣(

wi,R̂(i)
)
=µ
(
⟨T1,...,Ti⟩,⟨w1,...,wi−1⟩,Wi,R(i−1)

)
, R(i)=α

(
...
)].

Note that the anytime algorithm α can be implemented using
an existing offline VRP solver—as long as it is anytime.

3.2 Decision Policy
We can view online bookings as a Markov deci-
sion process (MDP): a decision input (⟨T1, . . . , Ti⟩,
⟨w1, . . . , wi−1⟩,Wi,R

(i−1)) is a state of the environment, a
decision output

(
wi, R̂

(i)
)

is an action, and running the any-
time algorithm until a new request arrives at random is the
state transition (reaching a terminal state when no more re-
quests arrive for the day). To formulate an MDP, we also
have to define the immediate cost (i.e., immediate negative
reward) that we incur for taking an action. The online book-
ings problem quantifies costs at the end of the day—after the
last decision—based on the total cost of the resulting offline
VRP instance (T ,w). Thus, the immediate cost ci incurred
for the ith decision is

ci =

{
0 if i < |T |
VRP∗(T ,w) if i = |T |.

By formulating the online bookings problem as an MDP, we
enable the application of reinforcement learning (RL) to find
an optimal decision policy µ∗. The advantage of RL is that
once a policy µ∗ has been trained, the computational cost of
execution is low, which is crucial for real-time decisions.

3
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To find an optimal policy, an RL algorithm gathers expe-
riences by repeatedly interacting with the environment in a
number of training episodes, recording the experienced states,
actions, and immediate costs. In our case, experiences can be
gathered by running simulations of the online bookings pro-
cess, where an input (T ,w) is drawn at random from distribu-
tionD for each episode. From these experiences, an RL algo-
rithm can learn an optimal policy that minimizes the expected
cumulative cost. Many popular RL algorithms, such as deep
Q-learning (DQN) and its variants, learn a policy by learn-
ing an action-value function, which estimates the expected
cumulative cost when taking a given action in a given state
(e.g., using the recursive Bellman equation to consider future
costs). Once the action-value function has been learned, the
optimal policy is to simply choose an action that minimizes
the action-value function in the current state.
Cost Design RL approaches face two significant challenges
in our environment. First, the total cost of the offline VRP in-
stance depends as much on the decision inputs (e.g., on the
sheer number of trip requests) as it does on the decisions of
the policy. Since the decision inputs are random and vary
significantly (e.g., there are significant differences between
the number of trip requests each day), experiences will be
extremely noisy and difficult to learn from. Second, simulat-
ing the environment is very expensive computationally since
each state transition requires running the anytime algorithm
for a significant amount of time (e.g., 5 minutes of running
time to obtain a single experience). This greatly exacerbates
the problem of noisy experiences since a low number of noisy
experience can lead to very inaccurate action-value functions.

To address these challenges, we replace the original imme-
diate cost ci of the MDP with a shaped cost c̃i, which assigns
a cost to each individual decision:

c̃i =VRP∗(T , ⟨w1, . . . , wi−1, wi,Wi+1, . . . ,W|T |⟩)
− VRP∗(T , ⟨w1, . . . , wi−1,Wi,Wi+1, . . . ,W|T |⟩).

The rationale behind the above formulation is to capture
the impact of narrowing down the broad window Wi to a tight
window wi in the ith decision. This shaped cost c̃i formula-
tion has two advantages. First, notice that

|T |∑
i=1

c̃i =

( |T |∑
i=1

ci

)
− VRP∗(T ,W ).

In other words, the difference between the original cumula-
tive cost

∑
ci and the shaped cumulative cost

∑
c̃i is re-

moving a part of the cost that does not depend on the deci-
sions (i.e., removing the cost VRP∗(T ,W ) of a “baseline”
VRP instance defined only by the input (T ,W )). So, shaped
costs c̃i capture only the impact of the decisions, thereby re-
ducing noise.

Second, since the shaped cost c̃i captures the impact of a
decision considering all future requests (i.e., considering the
complete ordered sets T and W ), we can use it to quantify the
value of a decision without taking future costs into account.
In other words, the expected impact of a decision on the total
cost VRP∗(T ,w) is captured by the immediate shaped cost c̃i
since this cost c̃i is the increase in the cost of the offline VRP

with all the trip requests T . Hence, we can use experiences
to learn a value function that estimates the expected imme-
diate shaped cost c̃i of a given action in a given state; once
the value function has been learned, our policy is to simply
choose an action that minimizes the value (i.e., cost) in the
current state. This significantly reduces the complexity of
learning and, thus, the number of experiences required.

Note that during training, we can estimate shaped cost c̃i
since we simulate the environment, so we can generate all the
trip requests (T ,W ) before feeding them to the policy one-
by-one. Once the value function has been learned, calculating
the shaped cost c̃i is no longer necessary since the policy is to
choose an action that minimizes the learned value (i.e., cost)
function in the current state. Finally, note that calculating
VRP∗ is computationally hard, so we can use a heuristic VRP
solver during training to estimate shaped cost c̃i.

Value Function Since our value function considers only the
immediate shaped cost c̃i, we can apply a simplified version
of the popular DQN algorithm. Before applying DQN, we
have to discretize the action space, that is, constrain each de-
cision to a discrete set of choices (e.g., pickup times must be
multiples of 15 minutes). Such discretization is natural for
transit agencies that prefer “round” pickup times.

Our goal is to learn the value function Q:

Q
(
⟨T1, . . . , Ti⟩, ⟨w1, . . . , wi−1⟩,Wi,R

(i−1)︸ ︷︷ ︸
state

, wi, R̂
(i)︸ ︷︷ ︸

action

)
≈ c̃i.

Once we have learned the value function Q, our policy µ∗ is
to iterate over the actions and select one that minimizes the
cost in the current state:

µ∗(state) = argminwi,R̂(i) Q(state, wi, R̂
(i)).

To enable learning, we represent Q as a neural network,
which we initialize with random weights. During training,
we execute our policy in simulated environments, where the
inputs (T ,w) are drawn at random from distribution D. We
collect experiences, that is, tuples of state, action, and imme-
diate cost, and we use these experiences to train the neural
network. As is standard in RL, we also include random ac-
tions in the training to balance exploration and exploitation.

Features Learning the value function Q poses one last chal-
lenge due to the size and complexity of the state space (i.e.,
space of all possible decision inputs, including possible sets
of requests ⟨T1, . . . , Ti⟩ and feasible sets of runs R(i−1)).
While similar state spaces have been considered in prior work
(e.g., [Joe and Lau, 2020; James et al., 2019]), the challenge
in our problem is exacerbated by the prohibitively high com-
putational cost of the environment (one state transition may
require running an anytime algorithm for 5 minutes), which
limits the number of experiences that we can collect.

To reduce the number of experiences required for training
the value function, we map the large and complex space of
states and actions to a low- and fixed-dimensional space of
feature vectors, and we replace the input of the value func-
tion Q with a feature vector. Specifically, we map each
state-action pair to a vector of features, which consider how
well the action fits the current state (i.e., how well it fits the
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previously chosen tight windows ⟨w1, . . . , wi−1⟩ and vehi-
cle routes R(i−1)) and our expectation of future trip requests
(i.e., distribution D).

Features that consider how well the action (wi, R̂
(i)) fits

the previously chosen tight windows ⟨w1, . . . , wi−1⟩ and ve-
hicle routes R(i−1) include (1) the increase in the duration of
routes due to taking the action (compared between R̂(i) and
R(i−1)), (2) the increase in the driving distance of routes,
and (3) the “tightness” of the route schedule R̂(i), that is,
how much time slack is left in the route before and after serv-
ing trip request Ti. Features that consider the distribution D
include the expected number of trips requests whose pickup
locations are nearby the pickup location Lpickup

i of request Ti

and/or whose drop-off locations are nearby the drop-off loca-
tion Ldropoff

i and/or whose broad pickup windows are around
the same time as window wi, as well as the expected num-
ber of future trip requests (i.e., expectation of |T | − i). For
any state and action, these features can be calculated at a rela-
tively low computational cost based on historical data, which
enables real-time application. Due to lack of space, we pro-
vide a formal description of these features in Appendix C.
Training Process Before we begin training, we initialize
the value function Q, which is represented by a neural net-
work, with random weights. We then train the policy µ (i.e.,
value function Q) over a number of training episodes, where
each episode is a simulation of the online booking process
with a random input (T ,W ) drawn from the probability dis-
tribution D, which we estimate based on historical data. To
simulate the online booking process, we process the trip re-
quests T one-by-one, first applying the decision policy µ and
then the anytime algorithm α for each request Ti. To apply
the policy µ, we calculate the feature vector for every action
(wi, R̂

(i)), evaluate the value function Q over these feature
vectors, and select the action that minimizes the value (i.e.,
cost). Next, we run the anytime algorithm α, which provides
supporting input for the next policy decision. We terminate
the algorithm after a random amount of running time, which
models the random inter-arrival time of requests (based on
historical data). Then, we repeat with next request Ti+1; or
with the next episode if i = |T |.

After each simulated decision, we collect an experience
(i.e., a tuple of the feature vector and the shaped cost ci) by
calculating the shaped cost c̃i using T , W , ⟨w1, . . . , wi⟩, and
a heuristic for VRP∗. We use these experiences to train the
value function Q (i.e., the neural network). In the beginning,
the policy µ chooses actions at random since function Q is
initialized randomly; but as we train function Q using more
and more experiences, the policy improves and converges to
an optimum µ∗ (given feature-vector inputs and objective ci).
To balance exploration and exploitation and to avoid converg-
ing to a local optimum, we occasionally take random actions
during training, as is standard in RL.

4 Evaluation
4.1 Dataset and Experimental Setup
Paratransit Data To evaluate our proposed approach, we
obtained real-world paratransit data from the public transit

agency of a mid-sized U.S. city. This dataset spans 180 days
of paratransit service, with an average of 140 trips per day
(minimum of 7 and maximum of 234 trips). Each trip has an
associated pickup and drop-off location (specified as latitude-
longitude pairs), the number of passengers, and the scheduled
pickup time. We will make both the anonymized dataset as
well as our software implementation publicly available.

Based on input from the agency, we instantiate our model
with vehicle capacity V = 9, maximum route duration
Dmaxroute = 10 hours, and maximum tight pickup window du-
ration Dwindow = 30 minutes. Since the agency did not record
the requested broad windows (current over-the-phone book-
ing process is manual), we assume each broad window Wi

to be 3 hours long (which is a practical value for the service)
and centered around the scheduled pickup time.

Experimental Setup We calculate travel times between
the locations using road-network data from OpenStreetMaps.
The road network contains 10,788 nodes (i.e., intersection)
and 28,100 edges (i.e., roads). For calculating feature vec-
tors, we consider two locations to be nearby if they have the
same ZIP code. We assume that the transit agency operat-
ing paratransit services must serve all the passenger requests
according to the Americans with Disabilities Act.

We implemented our framework in Python 3.8. To pro-
vide anytime algorithms, we implemented a heuristic greedy
αGreedy and a meta-heuristic simulated annealing algorithm
αSimAnn, which we use in tandem as our anytime VRP solver
αSimAnn+Greedy. Since these are based on standard techniques,
we describe them in Appendix D. During both training and
evaluation, we let the anytime algorithm run for 5 minutes on
average. In our experiments, we consider two offline VRP
solvers: VROOM [VRoom Project and Verso, 2021] and
the Google OR-Tools Vehicle Routing framework [Google,
2021]. We do not impose a running time limit on either
VROOM or Google OR-Tools. To represent the value func-
tion Q, we use a neural network with one input layer, one
hidden layer (64 neurons, ReLU activation), and one output
layer (linear activation). To train the network, we use the
Adam optimizer [Kingma and Ba, 2014] from the Keras li-
brary.

4.2 Results
We provide supplementary numerical results in Appendix E.

Running Time
We run all algorithms on an Intel Xeon E5-2680 28-core
CPU with 128GB of RAM. The running time of the trained
decision-making policy µ∗, including the calculation of the
feature vector, is 0.25 seconds on average and 2 seconds in
the worst case. This is sufficiently low for our problem set-
ting, where we typically have a couple of seconds to make an
online decision. The running time of one episode of training
is 1 day on average and 2 days in the worst case. Note that
this running time cannot be significantly lowered (other than
simulating multiple episodes in parallel) because the training
environment has to simulate the real bookings process, where
the anytime algorithm is running for the entire day. As for
the offline VRP solvers, the greedy algorithm αGreedy can as-
sign all trip requests R for a day in 15 seconds with tight
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Figure 1: Reduction in total cost due to using our approach for se-
lecting tight pickup windows (policy µ∗ supported by anytime algo-
rithm αSimAnn+Greedy), compared to using naı̈ve pickup windows with
VROOM (■) and Google OR-Tools (■) as offline VRP solvers.

pickup windows w and in 3 minutes with broad pickup win-
dows W ; the simulated annealing algorithm αSimAnn performs
around 30 iterations per second; and VROOM and Google
OR-Tools take around 3.3 minutes and 1 minute on average,
respectively, to solve an offline VRP instance.

Proposed Approach vs. Naı̈ve Pickup Windows
Next, we demonstrate the effectiveness of our proposed ap-
proach by showing that optimizing tight pickup windows can
lead to significant reductions in cost. Since the online book-
ings problem is novel to the best of our knowledge, exist-
ing VRP solvers do not address the online selection of tight
pickup windows. Therefore, to provide baselines for compar-
ison, we consider existing offline VRP solvers with “naı̈vely
selected” pickup windows, which we define as selecting the
middle interval of broad pickup windows as tight windows.

Figure 1 shows the reduction in the total cost of vehicle
routes due to using our proposed approach, compared to using
VROOM and Google OR-Tools with naı̈vely selected pickup
windows. For each comparison, we evaluate the algorithms
on 180 days of paratransit data, and plot the distributions.
We observe a significant reduction in costs compared to both
baseline solvers. Further, we find that our approach is robust
to variations in the duration of broad pickup windows since
it maintains a significant advantage when broad windows are
2- or 4-hours long, even though the decision policy µ∗ was
trained only on 3-hour broad windows.

Advantage of Combining Policy with Anytime Algorithm
While Figure 1 demonstrates the effectiveness of our pro-
posed approach, it does not prove that every element of our
approach is necessary. One may wonder if a simpler approach
would work equally well. To demonstrate that both the any-
time algorithm and the learning-based decision policy are cru-
cial, we compare our complete approach to (1) using the de-
cision policy µ∗ without anytime support and (2) using the
anytime algorithms αSimAnn+Greedy as offline VRP solvers with
naı̈ve pickup windows (i.e., without decision policy).

Figure 2 shows the reduction in the total cost of vehicle
routes due to using our complete approach compared to in-
complete variants (1) and (2). We observe that there is a
significant reduction in cost compared to both, which demon-
strates that both the learning-based decision policy µ∗ and the
anytime algorithms αSimAnn+Greedy are crucial.
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Figure 2: Reduction in total cost due to using our complete ap-
proach (policy µ∗ supported by anytime algorithm αSimAnn+Greedy),
compared to using a policy µ∗ without anytime support (■) and us-
ing naı̈ve pickup windows with algorithm αSimAnn+Greedy as the offline
VRP solver (■).

5 Related Work
Some prior works has been focused on solving the dial-a-ride
problem [Berbeglia et al., 2012; Liu et al., 2015; Parragh et
al., 2015; Gschwind and Irnich, 2015].

[Mo et al., 2018] focus on advance booking in an of-
fline VRP. We also consider advance bookings (i.e., day
before the travel). [De Filippo et al., 2021] consider en-
hancing the solution quality of offline VRP by using on-
line algorithms that can optimize the solution obtained from
offline VRP algorithms. Prior works such as [Lowalekar
et al., 2019; Shen et al., 2019; Alonso-Mora et al., 2017;
Ota et al., 2016; Simonetto et al., 2019; James et al., 2019;
Joe and Lau, 2020] consider real-time demand. Among
them, [Simonetto et al., 2019; Alonso-Mora et al., 2017] con-
sider real-time positioning of vehicles. [Gupta et al., 2010;
Wen et al., 2018] consider both real-time vehicle scheduling
and advance booking. [Simonetto et al., 2019] consider a
system where the agency uses idle vehicles by relaxing the
time-related constraints, rather than rejecting user requests.

[Nguyen et al., 2019] consider a hierarchical approach by
prioritizing requests. In our paratransit service setting, we
treat all service requests with the same priority. [Simonetto
et al., 2019] assign one request to one vehicle from a given
batch of requests for faster real-time assignment. [Goodson
et al., 2017] consider a lookahead strategy by using rollout
algorithms. [Joe and Lau, 2020] consider a route-based MDP.

6 Conclusion
Optimizing pickup windows during day-ahead trip booking
can be crucial for offline VRPs (e.g., paratransit service ap-
plications). In this paper, we propose a novel problem for-
mulation to capture offline VRPs with online bookings. We
also introduce a novel computational approach that combines
a learning-based policy with an anytime algorithm. Based
on experiments with real-world paratransit data, we observe
a significant reduction in costs due selecting pickup windows
using our decision policy instead naı̈ve selection. Further, our
experiments also show a reduction of 14 - 18% in costs due to
using our policy in tandem with an anytime algorithm instead
of using the policy by itself.
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A Notation

Table 1: List of Symbols

Symbol Description

Offline Vehicle Routing Problem (VRP)

L set of locations

Ldepot ∈ L location of the vehicle depot (i.e., garage)

T ordered set of trip requests (T = ⟨T1, T2, . . .⟩)
Lpickup
i ∈ L pickup location of trip request Ti ∈ T

Ldropoff
i ∈ L drop-off location of trip request Ti ∈ T

Pi passenger occupancy of trip request Ti ∈ T (i.e., number of passengers to be transported)

w ordered set of pickup time windows (w = ⟨w1, w2, . . .⟩; |T | = |w|)
wstart

i start time of pickup window wi ∈ w (i.e., earliest pickup time)

wend
i end time of pickup window wi ∈ w (i.e., latest pickup time)

Ddwell dwell time for pickup and dropoff

Dmaxroute maximum duration of a vehicle route

Dtravel
l1,l2

time to drive from location l1 ∈ L to location l2 ∈ L

V vehicle passenger capacity (i.e., maximum number of passengers on a vehicle at a time)

Cnroutes cost factor for the number of routes in the objective function

Offline VRP Solution

R set of vehicle routes (R = ⟨R1, R2, . . .⟩)
Rstart

i start time of route Ri ∈ R (i.e., time when vehicle leaves the depot)

Rend
i end time of route Ri ∈ R (i.e., time when vehicle returns to the depot)

R(T ,w) set of feasible solution for the VRP instance (T ,w)

C(R) total cost of the VRP solution R

VRP∗(T ,w) total cost of an optimal solution for the VRP instance (T ,w) (i.e., VRP∗(T ,w) = minR∈R(T ,w) C(R))

Online Bookings Problem

W ordered set of broad pickup time windows (W = ⟨W1,W2, . . .⟩; |W | = |T |)
W start

i start time of window Wi ∈W (i.e., earliest pickup time)

W end
i end time of window Wi ∈W (i.e., latest pickup time)

D probability distribution of (T ,W )

Dwindow maximum duration of a tight pickup window

µ∗ optimal decision policy for the online bookings problem

Solution Approach

α anytime algorithm for solving an offline VRP with supporting input R̂(i)

R(i) feasible solution (i.e., set of routes) output by the ith execution of the anytime algorithm α

R̂(i) feasible solution (i.e., set of routes) output by the ith execution of the decision policy µ

ci immediate cost incurred after the ith decision (MDP formulation)

c̃i shaped immediate cost incurred after the ith decision

Q value function for predicting cost c̃i for a state-action pair (i.e., for a decision input and decision)
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B Offline Vehicle Routing Problem with Time
Windows

In Section 2.1, due to lack of space, we provided a brief de-
scription of the offline vehicle routing problem with time win-
dows, which was sufficient for formulating the online book-
ings problem. Here, we provide a complete and formal de-
scription of the offline VRP problem. Please note that the on-
line bookings problem can be defined with respect to a range
of offline VRP variants that consider pickup time windows,
and our proposed solution approach could incorporate any of-
fline VRP solver for these problems.

Notation
Throughout the description of the model, we use R to denote
the set of real numbers, N to denote the set of natural num-
bers, L to denote the set of locations, and Dtravel

l1,l2
to denote the

travel time between locations l1 ∈ L and l2 ∈ L. We assume
that points in time as well as time durations are represented
by real numbers.

Input
The input of the offline VRP problem is

• an ordered set of trip requests T = ⟨T1, T2, . . . , Tn⟩,
where each trip request Ti contains a pickup location
Lpickup
i ∈ L, a drop-off location Ldropoff

i ∈ L, and the
number of passengers to be transported Pi;

• a corresponding ordered set of tight pickup time windows
w = ⟨w1, w2, . . . , wn⟩, where each time window wi is
defined by an earliest wstart

i ∈ R and latest wend
i ∈ R

pickup time;
• the maximum allowed duration Dmaxroute ∈ R of a vehi-

cle route (e.g., maximum length of a driver’s shift);
• the passenger capacity V ∈ N of a vehicle (i.e., maxi-

mum number of passengers on board at a time);
• the dwell time Ddwell ∈ R at the pickup and drop-off

locations;
• the location Ldepot ∈ L of the vehicle depot (i.e.,

garage);
• the cost factor Cnroutes for the number of routes in the

objective function.
For ease of presentation, we represent a VRP instance as
(T ,w), assuming that the constants are provided implicitly.

Solution Representation
A solution to the offline VRP problem is a set of vehicle
routes R = {R1, R2, . . . , Rm}. Informally, each vehicle
route is a list of locations (pickup or drop-off) with associated
arrival times (i.e., when the vehicle arrives at the location to
pick up or drop off passengers). Formally, a vehicle route Ri

is an ordered set of tuples ⟨l, t⟩ ∈ L × R, where l is either
a pickup Lpickup

j or drop-off location Ldropoff
j , and t is the time

when the vehicle on route Ri arrives at location l. Note that
in Section 2.1, we represented a vehicle route as an ordered
set of pickup and drop-off locations for ease of exposition.
While we could use that representation here, it will actually
be easier to use this representation to provide a complete for-
mal definition of the offline VRP problem.

Constraints
A set of vehicle routes R is a feasible solution to the offline
VRP problem (T ,w) if it satisfies the following set of con-
straints.

First, each trip Ti ∈ T is picked up by at most one vehicle
route Rj ∈ R:

∀Ti ∈ T , Rj ∈ R, tj ∈ R, Rk ∈ R, tk ∈ R :

⟨Lpickup
i , tj⟩ ∈ Rj ∧ ⟨Lpickup

i , tk⟩ ∈ Rk ⇒ j = k ∧ tj = tk

In other words, if trip Ti is picked up by route Rj at tj , then
no other route Rk can pick up this trip (and neither can this
route Rj at any other time tk). Similarly, each trip Ti ∈ T is
dropped off by at most one route Rj ∈ R:

∀Ti ∈ T , Rj ∈ R, tj ∈ R, Rk ∈ R, tk ∈ R :

⟨Ldropoff
i , tj⟩ ∈ Rj ∧ ⟨Ldropoff

i , tk⟩ ∈ Rk ⇒ j = k ∧ tj = tk

Second, each trip Ti ∈ T is served by at least one route
Rj ∈ R such that the passengers are picked up by the vehicle
within the time window wi and dropped off on time, by wend

i +
Dtravel

Lpickup
i ,Ldropoff

i

at latest:

∀Ti ∈ T :

∃Rj ∈R, tpickup ∈ R, tdropoff ∈ R ∧
(

⟨Lpickup
i , tpickup⟩, ⟨Ldropoff

i , tdropoff⟩ ∈ Rj

∧ wstart
i ≤ tpickup ≤ wend

i

∧ tpickup < tdropoff

∧ tdropoff ≤ wend
i +Dtravel

Lpickup
i ,Ldropoff

i

)
In other words, for each trip request Ti ∈ T , there exists a
vehicle run Rj ∈ R that picks up the passengers at some
time tpickup ∈ R and drops them off at some time tdropoff ∈
R (second and third lines), the pickup time tpickup is within
the pickup window wi (fourth line), the pick time tpickup is
earlier thn the drop-off time tdropoff (fifth line), and the drop-
off time tdropoff is no later than wend

i +Dtravel
Lpickup

i ,Ldropoff
i

(sixth line).

Note that the last clause ensures that passengers arrive at their
dropoff location Ldropoff

i no later than if they were picked up at
the latest possible time wend

i and drove to the dropoff location
without any detours. Our formulation and algorithms could
very easily be extended to consider detour times (defined with
respect to pickup times). In our experiments, we consider the
above formulation since it captures the requirements of the
transit agency.

Third, every vehicle route Rj ∈ R satisfies travel-time and
dwell-time constraints:

∀Rj ∈ R, l1 ∈ L, l2 ∈ L, t1 ∈ R, t2 ∈ R :

⟨l1, t1⟩, ⟨l2, t2⟩ ∈ Rj ∧ t1 < t2

⇒ t1 +Ddwell +Dtravel
l1,l2 ≤ t2

In other words, if vehicle route Rj ∈ R arrives at location
l1 ∈ L at time t1 ∈ R and later arrives at location l2 ∈ L
at time t2 ∈ R, then the time difference between t1 and t2
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must be at least Ddwell (time required to pick up or drop off
passengers at location l1) plus Dtravel

l1,l2
(time required to drive

from location l1 to l2). Note that if the constraint is satis-
fied for consecutive locations, then it is also satisfied for non-
consecutive ones due to the triangle inequality, so the above
constraint could be reformulated to consider only consecu-
tive locations. We use the above formulation for the sake of
simplicity.

Fourth, the duration of each vehicle route Rj ∈ R is at
most Dmaxroute, where the duration of a route is the time be-
tween leaving the garage (i.e., vehicle depot) and returning to
it. We introduce this constraint based on input from the tran-
sit agency, which stores all vehicles at a garage overnight, and
has strict constraints on the duration of the routes due to the
drivers’ labour contracts. To express this, we define the start
time Rstart

j of route Rj as the time when the vehicle needs to
leave the garage to serve its first trip:

Rstart
j = min

⟨l,t⟩∈Rj

t−Dtravel
Ldepot,l

Similarly, we define the end time Rend
j of route Rj as the

time when the vehicle can arrive at the garage after serving
its last trip:

Rend
j = max

⟨l,t⟩∈Rj

t+Ddwell +Dtravel
l,Ldepot

Then, we can formulate the constraint on the duration of ve-
hicle routes as follows:

∀Rj ∈ R : Rend
j ≤ Rstart

j +Dmaxroute

Finally, the number of passengers on board a vehicle does
not exceed the passenger capacity V of a vehicle at any time.
When vehicle route Rj ∈ R picks up passengers at a pickup
location Lpickup

i , the occupancy of the vehicle serving route
Rj is incremented by the number of passengers Pi. Similarly,
when route Rj ∈ R drops off passengers at a drop-off loca-
tion Ldropoff

i , the occupancy of the vehicle serving route Rj

is decreased by the number of passengers Pi. For each route
Rj ∈ R, the occupancy of the vehicle serving the route at any
time t ∈ R is less than or equal to the passenger capacity V :

∀Rj ∈ R, t ∈ R : ∑
Ti∈T ,t′∈R: ⟨Lpickup

i ,t′⟩∈Rj∧t′<t

Pi

−
∑

Ti∈T ,t′∈R: ⟨Ldropoff
i ,t′⟩∈Rj∧t′<t

Pi ≤ V

Note that the first summation adds up all the passengers who
have been picked up before (at some time t′ < t), while the
second summation adds up all the passengers who have been
dropped up before (at some time t′ < t). Hence, their dif-
ference is the number of passengers on board the vehicle at
time t.

Objective
We define the objective of the offline VRP as minimizing the
total cost of the vehicle routes R, which depends on the du-
ration and number of vehicle routes. Formally, we define the

total cost C(R) of a set of vehicle routes R as follows:

C(R) =
∑

Rj ∈R

(Rend
j −Rstart

j ) + Cnroutes · |R| (1)

where Cnroutes is a cost factor that captures the constant “over-
head” costs associated with each vehicle route. In practice, an
8-hour vehicle route does not cost eight times as much as a
1-hour vehicle route since there are constant costs associated
with the route (e.g., preparing a vehicle for the drive, bring-
ing in a driver, or markup for outsourcing). In fact, very short
routes (e.g., 20 minutes) may be prohibitively uneconomical
in practice. The second term of the offline VRP objective
enables capturing this.
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C Features
In this section, we provide a detailed description of the fea-
tures that the value function Q takes as input, which we
briefly introduced in Section 3.2. Please recall that the val-
ues of these features are defined for a particular state (i.e., de-
cision input) (⟨T1, . . . , Ti⟩, ⟨w1, . . . , wi−1⟩,Wi,R

(i−1)) and
particular action (i.e., decision) (wi, R̂

(i)).
First, we describe features based on the probability distri-

bution D, which capture our expectations of future requests.
Busyness (BN ) These features consider how busy certain
locations and certain times of the day are, in terms of the
number of expected trip requests around those locations and
times of day. Specifically, they consider the expected number
of daily trip requests whose pickup locations Lpickup

j are in the
same geographical area as the pickup location Lpickup

i of re-
quest Ti (e.g., in the same ZIP-code area in the U.S.) and/or
whose drop-off locations Ldropoff

j are in the same geographi-
cal area as the drop-off location Ldropoff

i and/or whose broad
pickup windows start around the same time W start

j as the nar-
row window wstart

i (e.g., within the same 1-hour interval). In
other words, these features consider the expected number of
trip requests received for a day that satisfy some of the fol-
lowing criteria:

• same geographical area as the pickup location Lpickup
i ,

• same geographical area as the drop-off location Ldropoff
i ,

• similar time as the tight pickup windows wi.
Based on the above three criteria, we define four variants

of the busyness feature:

• BN (D, Lpickup
i , Ldropoff

i , wi): expected number of daily
trip requests that travel from the geographical area of
Lpickup
i to the geographical area of Ldropoff

i and whose
broad pickup windows start around the same time as wi.

• BN (D, Lpickup
i , wi): expected number of daily trip re-

quests that travel from the geographical area of Lpickup
i

and whose broad pickup windows start around the same
time as wi.

• BN (D, Ldropoff
i , wi): expected number of daily trip re-

quests that travel to the geographical area of Ldropoff
i and

whose broad pickup windows start around the same time
as wi.

• BN (D, wi): expected number of daily trip requests
whose broad pickup windows start around the same time
as wi.

All of the above features can be estimated based on histor-
ical data (i.e., using an empirical distribution for D) for any
given state-action pair. Note that the distribution of requests
D may vary significantly between days (e.g., weekends are
typically less buy than weekdays); hence, we can use a dif-
ferent D depending on the day of week.
Expected Requests (ER) While the above features con-
sider the expected number of requests received in a whole
day, it is also helpful to consider how many more requests we

expect to receive for the day. To capture this, we introduce
the expected requests ER(D, i) feature, which is the expected
value of |T | − i when making the ith decision. Note that in
practice, this feature can also depend on the day of week since
the distribution D varies among the days. Further, since re-
quests do not arrive at the same rate throughout the day (i.e.,
during some hours of the day, the agency receives many more
calls to book trips than during other hours), we also consider
the time of day when the booking call is received to estimate
ER (based again on historical data, in this case the rate at
which booking calls are received throughout the day).

State Features
Finally, besides considering future requests, we must also
consider trip requests that we have already been received. To
this end, we introduce three features that capture how well a
decision (wi, R̂

(i)) fits the previously selected tight windows
⟨w1, . . . , wi−1⟩ and vehicle routes R(i−1):

• Time increase T I(R̂(i),R(i−1)): increase in the dura-
tion of the routes, compared between R̂(i) and R(i−1):

DI(R(i−1), R̂(i)) =
∑

Rj∈R̂(i)

(
Rend

j −Rstart
j

)
−

∑
Rj∈R(i−1)

(
Rend

j −Rstart
j

)
• Distance increase DI(R̂(i),R(i−1)): increase in the

driving distances of the routes, compared between R̂(i)

and R(i−1) (i.e., same as T I , but considering distance
driven instead of time spent).

• Tightness of schedule T S(R̂(i)): tightness of the route
schedule captures how well trip Ti fits into route Rj ,
where Rj is the route serving trip Ti in solution R̂(i).
The rationale behind this feature is to express how “frag-
mented” a route schedule is, i.e., how much waiting time
there is between consecutive trips, which is not long
enough to allow serving another trip, but long enough
to significantly increase route duration. To capture this,
we consider the amount of waiting time x between trip
Ti and the preceding trip on route Rj (i.e., waiting time
before trip Ti on route Rj), and the amount of waiting
time y between trip Ti and the following trip (i.e., wait-
ing time after serving trip Ti), where the waiting time be-
tween two consecutive trips is defined as the amount of
time between dropping off all passengers from the previ-
ous trip and needing to leave for the next trip. Note that
when consecutive trips are interleaved, waiting time is
defined to be zero. Then, we can formulate the tightness
of schedule feature as T S(R̂(i)) = |x−y|

|x+y| . By maxi-
mizing this feature, we ensure that time gaps in the route
schedule are either minimized (to avoid waiting) or max-
imized (so that another trip can be served in the gap).
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D Greedy and Simulated-Annealing
Algorithms

We provide a high-level overview of the greedy and
simulated-annealing algorithms in Appendix D.1 and then de-
scribe them in detail in Appendix D.2 and Appendix D.3, re-
spectively.

D.1 Overview of Algorithms
Simulated Annealing
First, we introduce a simulated annealing algorithm αSimAnn,
which improves upon a given feasible solution R̂(i) using an
iterative random search. We provide a detailed description of
this algorithm in Appendix D. In each iteration, the algorithm
tries to improve upon the current solution R by generating a
random neighbor R′ of the current solution R using two op-
erations. The first one, called Swap, randomly chooses two
vehicle routes Rx, Ry ∈ R that overlap in time, and tries
to swap a pair of randomly chosen trip request Ti, Tj (where
Lpickup
i ∈ Rx, Lpickup

j ∈ Ry) between the two routes. The sec-
ond one, called SplitAndMerge, also chooses two overlapping
routes Rx, Ry ∈ R at random, but then splits each route into
two halves (earlier trips in the first half, later ones in the sec-
ond) and tries to merge the first half of Rx with the second
half of Ry and vice versa. In each iteration, the algorithm
repeatedly applies these operations to the current solution R
to obtain a feasible random neighbor R′. Whether this ran-
dom neighbor replaces the current solution (R ← R′) or if
it is discarded is decided at random, with a probability that
depends on C(R) − C(R′). When terminated, the algorithm
returns the best feasible solution that it has encountered dur-
ing the search as the VRP solution R(i).

Greedy Algorithm
To enhance the practical performance of our approach, we
also introduce a greedy algorithm αGreedy for solving the para-
transit VRP formulation. While this is not an anytime al-
gorithm, its running time is low enough so that we can suc-
cessfully execute it between most consecutive requests. The
solution output by the greedy algorithm αGreedy can then be
fed into the simulated annealing αSimAnn (if it is better than
the current solution). This algorithm also follows an iterative
approach: starting with an empty solution R = ∅, it adds
a new routes to the solution one-by-one. For each route, it
starts with an empty set of requests R = ∅, and tries to assign
unserved requests to this route one-by-one, always choosing
one that minimizes a heuristic cost function, until there are no
feasible assignments or the minimum cost exceeds a thresh-
old. We provide a detailed description of this algorithm in
Appendix D.

D.2 Simulated Annealing
The simulated-annealing algorithm follows an iterative pro-
cess. In each iteration, the algorithm obtains a random neigh-
boring solution R

′
of the current feasible solution R using

RandomNeighbor. If the total cost (C) of R′ is lower than
the total cost of R, then the algorithm always accepts R′ as
the new current solution. Otherwise, the algorithm computes
the probability AcceptProbability of accepting it based on a

Algorithm 1: Simulated Annealing(R, trun,
pstart, pend, palter, L

depot, Ddwell, Dmaxroute, V )

Solutions← {R}
Hstart ← −1

ln pstart

Hend ← −1
ln pend

Hrate ←
(

Hend

Hstart

) 1
trun−1

Ht ← Hstart

δavg ← 0
tstart ← GetCurrentTime()
tcurrent ← tstart

while tcurrent − tstart ≤ trun do
R

′
← RandomNeighbor(R, palter)

δe ← C(R
′
)− C(R)

if tcurrent − tstart = 1 then
δavg ← δe

end
AcceptProbability← exp

(
−δe

δavg·Ht

)
if C(R

′
) < C(R) or AcceptProbability >

UniformRandom([0, 1]) then
R← R

′

δavg ← δavg +
δe−δavg

|Solutions|
Solutions← Solutions ∪ {R}

end
tcurrent ← GetCurrentTime()
Ht ← Hstart ·Hrate{tcurrent−tstart}

end
R∗ ← argminR′∈Solutions C(R

′
)

Result: R∗

decreasing temperature value Ht and the cost difference be-
tween R

′
and R, and then accepts R

′
at random. The algo-

rithm terminates after its total running time (tcurrent − tstart)
exceeds the configured maximum running time trun, and re-
turns the best solution found up to that point.

Algorithm 2: RandomNeighbor(R, palter, L
depot, Ddwell,

Dmaxroute, V )

NumberOfAlters← max{1, |R| · palter}
for 1, . . . ,NumberOfAlters do

operation←
UniformRandom([Swap, SplitAndMerge])
R← operation(R)

end
Result: R

Algorithm 2 follows an iterative process: in each iteration,
the algorithm randomly chooses one operation from Swap
and SplitAndMerge, and modifies the input solution R. The
detailed descriptions of the two operations is in the next para-
graphs. The running time of this algorithm is O

(
|T |4

)
.

Algorithm 3 randomly chooses two vehicle routes
R1, R2 ∈ R that overlap in time, and tries to swap a pair
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Algorithm 3: Swap(R, Ldepot, Ddwell, Dmaxroute, V )

R1, R2 ← UniformRandom(R)
T1 ← UniformRandom(R1)
T2 ← UniformRandom(R2)

R
′

1, SolCost1 ←
Feasible(R1, T2, L

depot, Ddwell, Dmaxroute, V )
R

′

2, SolCost2 ←
Feasible(R2, T1, L

depot, Ddwell, Dmaxroute, V )
if SolCost1 ̸=∞∧ SolCost2 ̸=∞ then

R← R \ {R1, R2} ∪ {R
′

1, R
′

2}
end
Result: R

of randomly chosen trip request T1, T2 (where Lpickup
1 ∈ R1,

Lpickup
2 ∈ R2) between the two routes. If the swap is feasible

(i.e., satisfies time and occupancy constraints), then update
R with the newly modified routes (R

′

1, R
′

2) and remove the
initial routes (R1, R2). Finally, return the updated routes R.
The time complexity of this algorithm is O

(
|T |3

)
.

Algorithm 4: SplitAndMerge(R, Ldepot, Ddwell,
Dmaxroute, V )

R1, R2 ← UniformRandom(R)
R1

1, R
2
1 ← SplitRuns(R1)

R1
2, R

2
2 ← SplitRuns(R2)

success1, R
′

1 ←
MergeRuns(R1

1, R
2
2, L

depot, Ddwell, Dmaxroute, V )
success2, R

′

2 ←
MergeRuns(R1

2, R
2
1, L

depot, Ddwell, Dmaxroute, V )
if success1∧ success2 then

R← R \ {R1, R2} ∪ {R
′

1, R
′

2}
end
Result: R

Algorithm 4 chooses two overlapping routes R1, R2 ∈ R
at random, and then splits each route into two halves (earlier
trips in the first half R1

i , later ones in the second half R2
i ).

Then, the algorithm obtains the merged route R
′

1 by merging
R1

1 and R2
2, and similarly obtains the merged route R

′

2 by
merging R1

2 and R2
1. If both merged routes are feasible, then

update R with newly modified routes (R
′

1, R
′

2) and remove
the initial routes (R1, R2). Finally, return the updated routes
R. The algorithm MergeRuns has the time complexity of
O
(
|T |4

)
. Accordingly, the time complexity of this algorithm

is O
(
|T |4

)
.

D.3 Greedy Algorithm
Inputs
In our VRP formulation (Appendix B), we defined time win-
dows only for pickups since the latest drop-off time is implic-
itly defined by the latest pickup time and the travel time for
each trip request. Here, we present a greedy algorithm that
can solve a more general VRP formulation, in which time

windows are defined for both pickups and drop-offs. Specif-
ically, we present a greedy algorithm that takes as input—
in addition to the inputs defined in Appendix B—an ordered
set of drop-off time windows dw, where dwstart

i is the ear-
liest time that passengers from trip Ti can be dropped off
and dwend

i is the latest time that they can be dropped off.
Then, we can solve instances of our problem formulation
from Appendix B by letting dwstart

i = wstart
i + Dtravel

Lpickup
i ,Ldropoff

i

and dwend
i = wend

i +Dtravel
Lpickup

i ,Ldropoff
i

for each trip request Ti.

Outputs
The output of the algorithm is a set of routes R, as described
in Appendix B. To facilitate the description of our algorithms,
we extend this solution representation with additional fields.
First, we let the term node refer to a pair ⟨l, w⟩, where l ∈ L
is a location and w ∈ w ∪ dw is a time window.

We let each route Rk ∈ R consist of the following:

• YRk
: list of nodes served by route Rk. We let Y first

Rk
de-

note the first node in YRk
and let Y last

Rk
denote the last

node in YRk
.

• DRk
: list of points in time (|DRk

| = |YRk
|), where each

element represents the time when route Rk reaches the
location of the corresponding node of YRk

. We let Dfirst
Rk

denote the first time point in DRk
and let Dlast

Rk
denote

the last time point in DRk
.

• ORk
: list of integers (|ORk

| = |YRk
|), where each ele-

ment represents the occupancy of the vehicle (i.e., num-
ber of passengers on board) when route Rk reaches the
location of the corresponding node of YRk

.

Algorithm 5: GetPlacements(Ri, ln, wn, index, Ddwell)

Placements← ∅
for ⟨lk, wk⟩ ∈ YRi

do
if k ≥ index then

if k = 0∧ Reachable(ln, wn, lk, wk, D
dwell)

then
Placements← Placements ∪ {0}

end
if k < |YRi

| − 1 then
lk+1, wk+1 ← YRi [k + 1]
if Reachable(lk, wk, ln, wn, D

dwell)∧
Reachable(ln, wn, lk+1, wk+1, D

dwell)
then

Placements← Placements∪{k+1}
end

else if k = |YRi
| − 1 then

if Reachable(ln, wn, lk, wk, D
dwell) then

Placements← Placements∪{k+1}
end

end
end

end
Result: Placements
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Algorithm 5 identifies the time-feasible placements of a
new node ⟨ln, wn⟩ into the existing list of nodes YRi

of
route Ri (i.e., positions at which at the new node ⟨ln, wn⟩
could be inserted into the list YRi

without violating any time
constraints). The implementation of the algorithm considers
three cases:

• First case: the algorithm checks whether the new node
⟨ln, wn⟩ can be placed before the first node of route Ri.
In other words, it checks whether the vehicle route Ri

can reach location lk ∈ L from location ln ∈ L without
violating any travel-time and time-window constraints.

• Second case: the algorithm checks for each pair of con-
secutive nodes YRi

[k] and YRi
[k + 1] whether it can

place the new node ⟨ln, wn⟩ between nodes YRi
[k] and

YRi
[k + 1]. In other words, it checks whether vehicle

route Ri can reach location ln ∈ L from location lk ∈ L
and reach location lk+1 ∈ L from location ln ∈ L
without violating any travel-time and time-window con-
straints.

• Third case: The algorithm checks whether the new node
⟨ln, wn⟩ can be placed as the last node into the route Ri.
In other words, it checks whether vehicle route Ri can
reach location ln ∈ L from the location lk ∈ L without
violating any travel-time and time-window constraints.

The running time of this algorithm is O(|T |).
Algorithm 6 checks whether each request Tj ∈ T can

be inserted into the given route Ri based on existing nodes
(YRi

) in the route Ri. This algorithm considers two cases;
first, when the route is empty (i.e., no nodes exist for the
route), this case is trivial. The algorithm adds the request
by just appending the pickup node ⟨Lpickup

j , wj⟩ and drop-
off node ⟨Ldropoff

j , dwj⟩without checking any time constraints
and capacity constraints. Next, when the route is not empty,
the algorithm first obtains all the possible placements for
the pickup node ⟨Lpickup

j , wj⟩. If it can obtain at least one
placement, then the algorithm tries to obtain all the possible
placements for drop-off node ⟨Ldropoff

j , dwj⟩. If it has feasi-
ble placements for both the pickup and drop-off nodes, then
the algorithm checks the feasibility of each pair of placement
values using Adjust. If the assignment is feasible (i.e., the
SolCost ̸= ∞), then the algorithm computes threshold value
using the function GThreshold. We can formally express the
function GThreshold as follows:

GThreshold(ratio, R
′

i) =

pconst + pratio−thres · ratio + plength · ((R
′

i)
end − (R

′

i)
start)

(2)

If the SolCost is less than the threshold value and less
than the current minimum cost, then update the current mini-
mum cost with the SolCost and update the best-updated route
((R

′

i)
best), and update the extra time and wait time corre-

sponding to the minimum cost. At the end of this itera-
tive process, the algorithm will return whether a feasible as-
signment exists for the request (Tj), the best-updated route
((R

′

i)
best), and the cost MinCost corresponding corresponding

Algorithm 6: Feasible(Ri, Tj , ratio, Ldepot, Ddwell,
Dmaxroute, V )

success← False
(R

′

i)
best ← Ri

MinCost←∞
if |YRi | = 0 then

(R
′

i)
best,MinCost←

Adjust(Ri, 0, 0, Tj , ratio, Ldepot, Ddwell, V )
else if dwend

j + < Rstart
i +Dmaxroute then

index← 0
Placementspickup ←
GetPlacements(Ri, L

pickup
j , wj , index, Ddwell)

Placementsdropoff ← ∅
if
∣∣Placementspickup

∣∣ > 0 then
index← min(Placementspickup)− 1
Placementsdropoff ←
GetPlacements(Ri, L

dropoff
j , dwj , index, Ddwell)

end
if
∣∣Placementspickup

∣∣× ∣∣Placementsdropoff
∣∣ > 0

then
MinCost←∞
for pidx ∈ Placementspickup do

for didx ∈ Placementsdropoff do
if pidx < didx then

R
′

i, SolCost←
Adjust(Ri, pidx, didx, Tj , ratio, Ldepot,
Ddwell, V )

if SolCost ̸=∞ then
threshold←

GThreshold(ratio, R
′

i)
if SolCost < threshold ∧
SolCost < MinCost then

MinCost← SolCost
(R

′

i)
best ← R

′

i
end

end
end

end
end

end
end
Result: (R

′

i)
best,MinCost

to the best-updated route. The running time of this algorithm
is O(|T |3).

Algorithm 7 checks whether the assignment of a new re-
quest to a given pickup placement (pidx) and dropoff place-
ment (didx) violates any travel-time, capacity, or route length
constraints (such as maximum route duration). If the as-
signment does not violate any constraints, then the algorithm
computes the increase in the route duration (Dextra) for route
Ri, as well as the additional wait time Dwait before serving
the request Tj in the current route Ri if the algorithm as-
sign request Tj to the route Ri by placing the pickup node
at the pickup placement value (pidx) and placing the drop-off
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Algorithm 7: Adjust(Ri, pidx, didx, Tj , ratio, Ldepot,
Ddwell, Dmaxroute, V )

YR
′
i
← AdjustNodes(Ri, pidx, didx)

successd, DR
′
i
← AdjustTimes(YR

′
i
)

successo, OR
′
i
← AdjustCapacities(YR

′
i
, V )

SolCost←∞
if successd ∧ successo then

lfirst, wfirst ← Y first
R

′
i

llast, wlast ← Y last
R

′
i

Dsource ← Dtravel
Ldepot,lfirst

Dsink ← Dtravel
llast,Ldepot

Dnewduration ← Dlast
R

′
i

−Dfirst
R

′
i

+Dsource+Dsink+Ddwell

if Dnewduration ≤ Dmaxroute then
Dextra ← Dnewduration −Ri

end −Ri
start

Dwait ← 0
if YR

′
i
= YR + {(Lpickup

j , wj), (L
dropoff
j , dwj)}

then
if |YR| > 0 then

lprev, wprev ← Y last
R

Dwait ←
max(0, wstart

prev −Dtravel
lprev,L

pickup
j

−Ddwell)

end
end
SolCost← GCost(ratio, Dextra, Dwait)

end
end
Result: R

′

i, SolCost

node at the drop-off placement value (didx). Finally, the al-
gorithm computes the cost based on the function GCost (see
Equation (3)) with increase in the route duration (Dextra), ad-
ditional wait time (Dwait), and the ratio of requests assigned
so far (ratio). We can formally express the function GCost as
follows,

GCost(ratio, Dextra, Dwait) =

Dextra + (pwait + pratio−cost · ratio) ·Dwait (3)

The algorithm returns the updated route ((R
′

i)
best) and

the corresponding cost SolCost. Algorithms AdjustTimes
and AdjustCapacities have a time complexity of O(|T |),
whereas algorithm AdjustNodes has a time complexity of
O(1). Hence, the computation time of this algorithm is
O(|T |).

Algorithm 8 finds the request that has the lowest weighted
cost when the algorithm inserts the request into the given
route Ri based on existing nodes (YRi

) for the route Ri and
remaining requests (T ). The algorithm iterates over each re-
quest Tj ∈ T and first checks whether the algorithm can add
request Tj to route Ri. If it can, then the algorithm computes
the weighted cost. At the end of this process, the algorithm
returns the request ((Tj)

best) with the lowest weighted cost

Algorithm 8: BestAssignment(Ri,T , ratio, Ldepot, Ddwell,
Dmaxroute, V )

MinCost←∞
(R

′

i)
best ← Ri

(Tj)
best ← None

for Tj ∈ T do
R

′

i, SolCost←
Feasible(Ri, Tj , ratio, Ldepot, Ddwell, Dmaxroute, V )

if SolCost ̸=∞ then
if SolCost < MinCost then

MinCost← SolCost
(R

′

i)
best ← Ri

(Tj)
best ← Tj

end
end

end
Result: (R

′

i)
best, (Tj)

best

and the updated best route ((R
′

i)
best). The running time of

this algorithm is O(|T |4).

Algorithm 9: Greedy(T , Ldepot, Ddwell, Dmaxroute, V )

i← 0
R← ∅
tsize ← |T |
while |T | > 0 do

Ri ← CreateEmptyRun(i)
while |T | > 0 do

ratio← |T |
tsize

R
′

i, Tj ←
BestAssignment(Ri,T , ratio, Ldepot,
Ddwell, Dmaxrun, V )

if Tj ̸= None then
Ri ← R

′

i
T ← T \ {Tj}

else
break

end
end
R← R ∪ {Ri}
i← i+ 1

end
Result: R

Algorithm 9 assigns all the available requests T . The al-
gorithm follows an iterative process, where in each iteration,
the algorithm generates a new route Ri and tries to add re-
quests one-by-one from T . When no more feasible requests
are available for the route Ri, but there are more requests
remaining to be assigned, then the algorithm generates the
next route and repeats the process. This iterative process ter-
minates when the algorithm has assigned all the requests to
routes. The running time of this algorithm is O(|T |5).

16



Accepted for publication in the proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI 2022).

2 Hour 3 Hour 4 Hour

0%

50%

Broad Window Size

R
ed

uc
tio

n
in

C
os

t

Figure 3: Reduction in total cost due to using our approach (µ∗ and
αSimAnn+Greedy) for selecting tight pickup windows, compared to using
naı̈ve window selection, with three different offline VRP solvers:
VROOM (■), Google OR-Tools (■), and our greedy and simulated
annealing algorithms as offline VRP solvers (■).

E Supplementary Numerical Results
Hyperparameter Search
We first perform a grid search to find optimal hyperparam-
eters for the greedy algorithm. Based on the results of this
search, we set values for the wait-time pwait = 0.1 and frac-
tion of requests served pratio−cost = 0.1 parameters, which
are used by the algorithm to estimate the cost of assigning
a request to a route (see Algorithm 7). We also set values
for the length of the route plength = 10, the fraction of re-
quests served pratio−thres = 0.1, and the constant value of
the threshold pconst = 0.1 parameters, which restrict the as-
signment of requests to routes (see Algorithm 6).

We next perform a grid search to find optimal hyperparam-
eters for the simulated annealing algorithm. Based on the re-
sults of this search, we set the altering rate to palter = 0.4
(see Algorithm 2) and the initial and final probabilities to
pstart = 0.9 and pend = 0.5, respectively (see Algorithm 1).

Proposed Approach vs. Naı̈ve Pickup Window
Here, we present additional numerical results showing the ad-
vantage of using our proposed approach to select tight pickup
windows. Figure 3 shows the reduction in the total cost of ve-
hicle routes due to using our approach (policy µ∗ supported
by anytime algorithm αSimAnn+Greedy) to select tight pickup
windows, compared to naı̈vely selected pickup windows. We
consider three offline VRP solvers to compare our windows
with the naı̈ve ones: VROOM, Google OR-Tools, and our
greedy and simulated annealing algorithms applied as offline
VRP solvers. In each case, we evaluate the algorithms on 160
days of paratransit data, and plot the distributions. We ob-
serve that when we use our algorithms as offline VRP solvers,
there is a significant, 14-18% reduction in cost, which is con-
sistent with Figure 2. Again, we see that longer broad pickup
windows lead to more pronounced reduction since they pro-
vide more flexibility for optimizing the tight pickup windows.

On the other hand, we see a less significant reduction in
cost when using VROOM and Google OR-Tools: 4-6% and
1-2% reduction, respectively. We hypothesise that this is ex-
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Figure 4: Evolution of the performance of the policy µ, measured as
the average total cost of the resulting VRPs, throughout the training
process. Each datapoint is based on 5 distinct policies (trained for
the given number of episodes), which are evaluated on 5 different
problem instances each.

plained by the fact that we train our policy µ∗ with our algo-
rithms (αSimAnn+Greedy as the anytime and αGreedy as the shaped
cost c̃i estimator); hence, our policy µ∗ learns to work well
with our VRP solvers. Since VROOM, Google OR-Tools,
and our algorithms are all heuristic, the tight windows se-
lected by our policy µ∗ may not work well with VROOM and
Google OR-Tools. We can address this by training a policy µ
with VROOM and with Google OR-Tools, so that the policy
µ will select tight windows that fit these VRP solvers. We
will investigate this in future work.

Training Process
Finally, we present numerical results on the reinforcement-
learning process to show how the performance of the policy
µ improves as it is trained on more and more episodes. Since
the reinforcement-learning process is non-deterministic (as
the neural-network representation of Q is initialized at ran-
dom, and random actions are chosen occasionally to ensure
exploration), we provide robust results by initializing 5 differ-
ent neural-network instances and then training these instances
independently of each other over a number of episodes. Af-
ter each episode, we evaluate each policy (i.e., each neural-
network instance) on 5 problem instances (i.e., 5 days of para-
transit data). Figure 4 shows the average performance of these
5 policies over the 5 problem instances, for training episodes
0 (i.e., untrained networks) to 12.

We observe that trained policies (more than 0 episodes)
have a significant advantage over untrained policies (0
episodes), which select tight windows at random (within the
broad windows) since the neural networks are initialized with
random weights. Further, we see that the performance curve
starts to “flatten out” around 8-12 episodes, which suggests
that we may not need many more episodes to find optimal
policies.
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Figure 5: Evolution of the performance of the policy µ, measured as
the average total cost of the resulting VRPs, throughout the training
process. Each box plot is based on 5 distinct policies (trained for
the given number of episodes), which are evaluated on 5 different
problem instances each.
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F Dataset Statistics
In this section, we study how the spatial and temporal dis-
tribution of the trips varies based on the booking time. Ac-
cordingly, we categorize the requests into the requests made
in the morning (9 am - 12 pm), afternoon (12 pm - 3 pm),
and evening (3 pm - 5 pm). Then, we look into the spatial
and temporal distribution of the requests based on these three
categories.

The Figure 6 shows the distribution of the pickup time of
requests based on the time of booking. In the figure, we ob-
serve that customers are more likely to book requests for the
next day early morning, either in the morning or afternoon of
the previous day. Similarly, the customers are more likely to
book requests for the next day late evening in the evening of
the booking day.

The Figure 7 shows the distribution of the pickup location
(ZIP code) of the requests based on the time of the booking.
We shifted the coordinates to anonymize the data. The dis-
tribution of pickup locations does not vary much between the
requests made in the morning and afternoon. Moreover, the
distribution of pickup locations varies considerably between
requests made in the evening and the rest of the day.

These observations indicate that there is a considerable dif-
ference between the pickup location and pickup time, be-
tween the requests booked in the morning, afternoon, and
evening.
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Figure 6: Distribution of the pickup time of the requests based on the booking time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

500

1,000

1,500

Anonymized ZIP codes

N
um

be
ro

fR
eq

ue
st

s Morning Afternoon Evening

Figure 7: Distribution of the pickup location of the requests based on the booking time
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G Extended Discussion of Related Work
We can divide prior work on vehicle routing problems into
two main categories: offline (or day-ahead) VRPs and online
(or real-time) VRPs. We presented a discussion of relate work
focusing on this distinction in Section 5. Here, we provide a
further discussion of related work focusing on the objective
formulation of VRPs as well as the approaches used to solve
dial-a-ride problems.

VRP Objectives
Vehicle routing problems can also be categorized based on
their objectives, that is, based on how they quantify the cost
of a VRP solution. [Agatz et al., 2011; Turmo et al., 2018;
Alonso-Mora et al., 2017; Ota et al., 2016; Simonetto et al.,
2019; Wen et al., 2018] consider minimizing the total miles
traveled by the vehicles. Meanwhile, [Turmo et al., 2018;
Gupta et al., 2010; Simonetto et al., 2019] consider mini-
mizing the total hours traveled by the vehicles, similar to our
VRP formulation. In contrast, [Alonso-Mora et al., 2017;
Turmo et al., 2018; Wen et al., 2018] focus on improving the
quality of VRP solutions from the perspective of passengers
by minimizing the passengers’ total waiting time. Similarly,
[Salazar et al., 2018] consider reducing the total passenger
travel time. In our VRP formulation, we consider minimizing
the total travel time of the vehicles and the number of vehicle
routes.

Dial-a-Ride Problem
Previous research efforts use approaches such as tabu search
[Mo et al., 2018; Berbeglia et al., 2012], greedy approach
[Qian et al., 2017; Alonso-Mora et al., 2017], and exact meth-
ods [Liu et al., 2015; Parragh et al., 2015; Gschwind and Ir-
nich, 2015] to solve the scheduling in dial-a-ride problem and
paratransit operations.

Pickup and delivery problem
In earlier research efforts the researchers uses adaptive neigh-
bourhood search [Ropke and Pisinger, 2006], and exact-
methods [Ropke et al., 2007; Ropke and Cordeau, 2009;
Qu and Bard, 2015] to solve the pickup and delivery prob-
lem.
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