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We search for a light Higgs boson (A°) decaying into a 777z~ or u*u~ pair in the radiative decays of
Y(1S). The production of Y(1S) mesons is tagged by Y(2S) — z*z~Y(1S) transitions, using 158 x 10°
Y(2S) events accumulated with the Belle detector at the KEKB asymmetric energy electron-positron

collider. No significant A? signals in the mass range from the 7*7~ or y*u~ threshold to 9.2 GeV/c? are
observed. We set the upper limits at 90% credibility level (C.L.) on the product branching fractions for
Y(1S) = yA® and A° — 777~ varying from 3.8 x 107 to 1.5 x 10™*. Our results represent an approxi-
mately twofold improvement on the current world best upper limits for the Y(1S) — yA%(— +77)
production. For A? — y*u~, the upper limits on the product branching fractions for Y(1S) — yA° and

A -yt~ are at the same level as the world average limits, and vary from 3.1 x 1077 to 1.6 x 107 The
upper limits at 90% credibility level on the Yukawa coupling fy(;5) and mixing angle sin 640 are also given.

DOI: 10.1103/PhysRevLett.128.081804

In 2012, the last missing standard model (SM) particle, a
Higgs boson, was discovered by ATLAS and CMS [1,2],
demonstrating that the Higgs mechanism would break the
electroweak symmetry and give rise to the masses of W and
Z bosons as well as quarks and leptons [3,4]. Besides this
massive Higgs boson, three CP-even, two CP-odd, and two
charged Higgs bosons are predicted by the next-to minimal
supersymmetric standard model (NMSSM) [5-9]. NMSSM
adds an additional singlet chiral superfield to the minimal
supersymmetric standard model [10] to address the so-
called “little hierarchy problem” [11], in which the value of
the supersymmetric Higgs mass parameter y is many orders
of magnitude below the Planck scale.

The lightest CP-odd Higgs boson, denoted as A°, could
have a mass smaller than twice the mass of the b quark,
making it accessible via radiative Y'(nS) — yA® (n = 1, 2,
and 3) decays [5-9,12]. The coupling of the A? to 7+7~ and
bb is proportional to tan /3 cos 8,0, where tan /3 is the ratio
of vacuum expectation values for the two Higgs doublets,
and 640 is the mixing angle between doublet and singlet
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CP-odd Higgs bosons [7]. The branching fraction of
Y (nS) — yA° could be as large as 107, depending on
the values of the A? mass, tan p, and cosd, [7]. For
2m, < my < 2m,, the decay of A° — 77~ is expected
to dominate [7,13]. For m,o < 2m,, the A — u*pu~ events
can be copiously produced [13].

Identifying the origin and nature of dark matter (DM) is a
longstanding unsolved problem in astronomy and particle
physics. One type of DM, often called the weakly interact-
ing massive particle (WIMP), is generally expected to be
in the mass region ranging from O(1) MeV [14,15] to
O(100) TeV [16-21]. An extensive experimental search
program has been devoted to WIMPs with the electroweak
mass, but no clear evidence has been found to date [22]. In
recent years, the possibility that WIMPs have a mass at or
below the GeV scale has gained much attraction. For
example, the decay of Y (nS) — yH followed by the H
decaying into a lepton pair such as 7z~ and ptu~ is
suggested to be searched for in the B factories [23-25],
where H is the mediator having an interaction between the
WIMP and SM particles.

BABAR and Belle Collaborations have searched for A°
decaying into a pair of low mass dark matter with the
invisible final states in Y(1S) radiative decays [26,27].
Searches for A° decaying into 777~ and ™ have been
also performed in Y(18, 28, 3S) radiative decays by CLEO
[28] and BABAR [29-32]. No significant signals were found.
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The upper limits at 90% credibility level (C.L.) on the
product of branching fractions B(Y(nS) — yA?)B(A° —»
7 /utp~) (n =1, 2, and 3) have been set at levels of
10~ and 1075. In particular, for Y(1S) decays, more
stringent upper limits are obtained by BABAR [29,30].

In this Letter, we conduct a search for the light CP-odd
Higgs boson A? in Y'(1S) radiative decays with A — 777~
and A° — ppu~. This search is based on an Y(2S) data
sample with the integrated luminosity of 24.91 fb~!,
corresponding to (158 4-4) x 10% Y'(2S) events, collected
by the Belle detector [33] at the KEKB asymmetric-energy
eTe™ collider [34]. A detailed description of the Belle
detector can be found in Refs. [33]. The Y'(1S5) mesons are
selected via the Y(2S) — zTz~Y(1S) transitions. In this
case one must trigger and reconstruct final states in which
two extra low momentum pions are identified in the
detector, trying to avoid collecting too many background
events and at the same time maintaining a high trigger
efficiency. We assume that the width of A can be neglected
compared to the experimental resolution and the lifetime of
A is short enough [35].

We use EVTGEN [36] to generate signal Monte Carlo
(MC) events to determine signal line shapes and efficien-
cies, and optimize selection criteria. The vvPIPI model [36]
is used to generate the decay Y(2S) — z"z~ Y(1S). The
angle of the radiative photon in the Y(LS) frame (9,) is
distributed according to 1 + cos? 0, for Y(1S) — yA°. The
effect of final-state radiation (FSR) is taken into account
in the simulation using the PHOTOS package [37]. The
simulated events are processed with a detector simulation
based on GEANT3 [38]. Multiple A° masses are generated:
3.6(0.22) GeV/c? 10 9.2 GeV/c? in steps of 0.5 GeV/c? or
less for A° — 77~ (u* ™). Inclusive MC samples of Y'(25)
decays with four times the luminosity as the real data are
produced to check possible peaking backgrounds from
Y(2S) decays [39].

The entire decay channel can be written as Y(2S) —
=Y (1S), Y(1S) - yA% and A° - ¢tz /utp~. In
selecting A° — 77~ candidates, at least one tau lepton
decays leptonically, resulting in five different combina-
tions: 7z — ee, uu, ey, ex, and uzx, writing with neutrinos
omitted. Note that 7~ - 7z7v,, 7~ = 77 v, + na’ (n > 1),
are all included in 7 — z. Events in which both tau leptons
decay hadronically (zz — zz) suffer from significantly
larger and poorly modeled backgrounds than in the leptonic
channels, and therefore this mode is excluded.

The charged tracks and particle identifications for the
pions and leptons are performed using the same method as
in Ref. [40]. An electromagnetic calorimeter cluster is
treated as a photon candidate if it is isolated from the
projected path of charged tracks in the central drift
chamber. The energy of photons is required to be larger
than 50 MeV. The most energetic photon is regarded as the
Y(1S) radiative photon.

For A — 7777, the missing energy in the laboratory
frame is required to be greater than 2 GeV to suppress non-
7 decays and ISR backgrounds. The dominant backgrounds
come from Y(2S) - 2tz Y(1S)[—> ¢1¢ ()] (¢ =e, p,
or 7) decays, which have an event topology similar to that
of the signal. The backgrounds from z° decays are also
large, where photons from z° decays are misidentified as
Y(1S) radiative photons, especially when the energy of
Y(1S) radiative photon is low. To reduce such back-
grounds, a likelihood function is employed to distinguish
isolated photons from z° daughters using the invariant mass
of the photon pair, photon energy in the laboratory frame,
and the angle with respect to the beam direction in the
laboratory frame [41]. We combine the signal photon
candidate with any other photon and then reject both
photons of a pair whose 7 likelihood is larger than 0.3.
To further suppress z° backgrounds in p* — 770, we
require cos @(yzt) < 0.4, where cos §(yz™) is the cosine of
the angle between the photon from Y(1S) decays and 7™+
from z* decays in the laboratory frame. We impose
requirements of cosf(ye) < 0.95 and cosfO(yu) < 0.8 to
remove FSR and Y(1S) - pu"pu (y)/e"e (y) back-
grounds, where cos 6(ye) and cos §(yu) are the cosine of
the angle between the Y'(1S) radiative photon and e and y
from 7z decays in the laboratory frame. All of the above
selection criteria have been optimized by maximizing
FOM = N,/ /Nsig + Npko» Where N, is the expected
signal yield from signal MC samples assuming B(Y'(1S) —
YA )B(AY — 7777) = 107 [28,29], and Ny, is the num-
ber of normalized background events from inclusive
MC samples.

For A° — ptu~, a four-constraint (4C) kinematic fit
constraining the four momenta of the final-state particles
to the initial et e~ collision system is performed to suppress
backgrounds with multiple photons and improve mass
resolutions. The y?/n.d.o.f. of the 4C fit is required to
be less than 12.5, where the number of degrees of freedom
(n.d.o.f.) is four. The cosine of the angle between the
Y (1S) radiative photon and y is required to be less than 0.8
to suppress FSR and Y(1S) — utu~(y) backgrounds.
These requirements have also been optimized using the
FOM method assuming B[Y (1) — yA°|B(A® — ptu~) =
1076 [28,30].

The Y(1S) is tagged by the requirement on the mass
recoiling against a pion pair (recoil mass). The best
candidate is chosen by selecting the recoil mass of dipion
closest to the Y(1S) nominal mass [42].

Considering 7 decays with undetected neutrinos, we
identify the A° signal using the photon energy in the Y(15)
rest frame [E*(y)], which can be converted to M(z+77) via
M?*(tt77) = m%ms) — 2mry (15 E*(y), where my s is the
nominal mass of Y(1S) [42]. Hereinafter, M represents a
measured invariant mass. For A — u*u~, we identify the
A" signal using the invariant mass distribution of u*u~
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FIG. 1. The (a) E*(y) and (b) M(u"u~) distributions from the

Y(2S) data sample.

[M(utu™)]. After requiring the events within the Y(1S5)
signal region of [9.45,9.47] GeV/c? and the application of
the above requirements, the E*(y) and M (u" ™) distribu-
tions from the Y(2S) data sample are as shown in Fig. 1.
No significant signals are seen.

For A° — 77, we perform a series of two-dimensional
(2D) unbinned maximum-likelihood fits to E*(y) and
M,.(z*7~) distributions to extract the Y(1S) — yA%(—
7777) signal yields. The 2D fitting function f(E, M) is
expressed as

F(E.M) = N5, (E)s,(M) + N5 (E)ba (M)

+ Nisby (E)s>(M) + Nygby (E)bo(M). (1)

where s;(E) and b(E) are the signal and background
probability density functions (PDFs) for the E*(y) distri-
butions, and s, (M) and b, (M) are the corresponding PDFs

for the M.(z*z™) distributions. Here, N and Nbg denote
the numbers of peaking background events in the E*(y)
and M,..(n"7~) distributions, respectively, and Nbb is the
number of combinatorial backgrounds in both A° and
Y(1S) candidates. For A’ — p*yu~, similar 2D unbinned
maximum-likelihood fits to the M (u*u~) and M. (7" 7~)
distributions are performed.

In each 2D unbinned fit, the A° signal in the E*(y)
distribution is described by a crystal ball function [43], and
that in the M(u*u~) distribution by a double Gaussian
function. The Y'(1S) signal in the M ..(z"z~) distribution
is described by a double Gaussian function. The values of
the signal parameters are fixed to those obtained from the
fits to the corresponding signal MC distributions. The
background shapes are described by a polynomial function.
All parameters are floated in the fits. We choose the order of
the polynomial to minimize the Akaike information test
[44], and find that the first-order polynomial for M (u"u™)
and second-order polynomials for E*(y) and M ..(z"7")
are suitable. The fitting step is approximately half of the
resolution in E*(y) or M(u"p~), resulting in total of 724
and 2671 points for A — 777~ and A° — pFu~, respec-
tively. From the 777~ (u* ™) threshold [3.6(0.22) GeV/c?]
to 9.2 GeV/c?, the resolution of the E*(y) distribution
decreases from 5.5 to 0.5 MeV, and the mass resolution
of the M(uTu~) distribution increases from 1.4 to
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FIG. 2. The fitted result corresponding to the maximum local
significance of 3.5¢ with A° mass fixed at 9.2 GeV/c? for
A% — 7777 The blue solid curves show the best fitted result, and
the red dashed curves show the fitted total backgrounds. The
green curves show the signal component.

10.0 MeV/c?. For each 2D unbinned fit in A — ptu~
(my > 3.0 GeV/c?) and A° — 7777, the fitting range
covers a +=10c region. Since the number of selected signal
candidate events in the g+~ mode with m 0 <3.0GeV/c?
is small, we select the following fitting intervals for
different A° masses: 2m, < M(u"p~) <22 GeV/c?
for 0.22GeV/c? <m0 <2.0GeV/c?, and 1.8 GeV/c? <
Mutu™) <32 GeV/c*  for 2.0 GeV/c?* < myp <
3.0 GeV/c>.

Figures 2 and 3 show the fitted results when the A°
masses are fixed at 9.2 GeV/c?> and 8.51 GeV/c? for
A® = 7t77 and A° — utu~, respectively, where we find
the maximum local signal significances for possible A°
peaks. We define the local signal significance as
sigh(Ngig) /=2 In(Lo/Linax) [45], where Ly and Ly
are the maximized likelihoods without and with the A°
signal, respectively. The signal yields are 116.5 £ 33.4
and 22.6 & 8.2 with statistical significances of 3.5¢ and
3.00, respectively. The global significances are obtained to
be 2.26 and 2.06 with look-elsewhere-effect included by
extending the searched mass ranges to be 0.15-0.4 GeV in
the E*(y) distribution for A - 77~ and 8.3-8.7 GeV/c?
in the M(u*u~) distribution for A’ — p*u~, respectively
[46]. The statistical signal significances as a function
of A” mass for A° — 7t~ and A° — pTp~ are shown in
Figs. 4(a) and 4(b).
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FIG. 3. The fitted result corresponding to the maximum local

significance of 3.0c with A mass fixed at 8.51 GeV/c? for
A% =yt~ The blue solid curves show the best fitted result, and
the red dashed curves show the fitted total backgrounds. The
green curves show the signal component.
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The sources of systematic uncertainties in the measure-
ments of upper limits on B(Y(1S) — yA°)B(A® —
777 /utp~) include detection efficiency, MC statistics,
trigger simulation, branching fractions of intermediate
states, signal parametrization, background parametrization,
and total number of Y'(2S) events. The detection efficiency
uncertainties include those for tracking efficiency (0.35%/
track), particle identification efficiency (1.1%/pion, 1.2%/
electron, and 2.8%/muon), and photon reconstruction
efficiency (2.0%/photon). The above individual uncertain-
ties from different 77z~ decay modes are added linearly,
weighted by the product of the detection efficiency and all
secondary branching fractions. Assuming these uncertain-
ties are independent and adding them in quadrature, the
final uncertainty related to the detection efficiency is 6.4%
for A - 777 For A - u*yu~, the total uncertainty of
detection efficiency is obtained by adding all sources in
quadrature; it is 6.5%. The statistical uncertainty in the
determination of efficiency from signal MC samples
is 1.0%. We include uncertainties of 1.5% and 1.3%
from trigger simulations for A° — 77~ and A° — utpu~,
respectively. The uncertainty of 1.5% from B[Y(2S) —
a7 Y(18)] is included [42]. The uncertainties of the
branching fractions of 7 decays can be neglected [42].

Using the control sample of z°/n — yy, the maximum
energy bias and fudge factor for the radiative photon are
1.004 and 1.05 [47], respectively. Thus, in the fitting to the
E*(y) spectrum for A° — 7+7~, we change the central value
by 0.4% and energy resolution by 5% for each A mass
point to recalculate the 90% C.L. upper limit, and the
difference compared to the previous result is taken as
the uncertainty of signal parametrization. For A — u*pu~,
the systematic uncertainty in the mass resolution is esti-
mated by comparing the upper limit when the mass
resolution is changed by 10% for each A° mass point.
By comparing the upper limits in different fit ranges and
using higher-order polynomial functions, the systematic

uncertainty attributed to the background parametrization
can be estimated. The uncertainties on the total number of
Y (2S) events is 2.3%. All the uncertainties are summarized
in Table I and, assuming all the sources are independent,
summed in quadrature for the total systematic uncertainties.

We compute 90% C.L. upper limits xU“ on the signal
yields and the products of branching fractions by solving
the equation [} L(x)dx/ [i* L(x)dx = 0.90, where x is
the assumed signal y1eld or product of branching fractions,
and £(x) is the corresponding maximized likelihood of the
fit to the assumption. To take into account systematic
uncertainties, the above likelihood is convolved with a
Gaussian function whose width equals the total systematic
uncertainty. The upper limits at 90% C.L. on the product
branching fractions of Y(15) — yA® and A® — 77~ /utp~
are calculated using

NUL

total
NT Ys) X €

(2)

where NUL is the upper limit at 90% C.L. on the signal

yield, N‘f.gs) = 1.58 x 10% is the number of Y'(25) events,

BUY(1S) — yA%B(A® — to /utpT) =

TABLE 1. Relative systematic uncertainties (%) in the mea-
surements of upper limits for A — z+7~ and A — pu*y~.
Sources A0 = 7t A® = ptu
Detection efficiency 6.4 6.5
MC statistics 1.0 1.0
Trigger 1.5 1.3
Branching fractions 1.5 1.5
Signal parametrization 0.1-24.4 0.1-19.4
Background parametrization 0.1-19.6 0.1-17.2
Total number of Y(2S) events 2.3 23
Sum 7.2-32.2 7.3-26.9
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and ¢ is the reconstruction efficiency with the branching
fractions of Y(2S) - z7z~Y(1S) and 7 decays included.
For A° — 777, the reconstruction efficiency decreases
from 2.1% to 0.7% with the increased A° mass, and for
A® — utpu~ the reconstruction efficiency decreases from
4.7% to 0.6% in the studied mass range from the u*p~
threshold to 9.2 GeV/c?.

The upper limits at 90% C.L. on the product branching
fractions of Y(15) — yA® and A — 7+¢~ /u*u~ are shown
by the blue curves in Figs. 4(c) and 4(d), where the By, B,,
and B represent B[Y(1S) — yA°], B(A° - r¥77), and
B(A® - utyu~), respectively. Note that the systematic
uncertainties have been taken into account. The corre-
sponding results from BABAR [29] are also shown by the
red curves. For A° — 7777, in most A° mass points, our
limits are lower than those from BABAR [29]. The most
stringent upper limit can reach 4 x 107 from Belle. While
from BABAR, the typical upper limit is at the level of 107,
More stringent constraints on A — 777~ production in
radiative Y(1S) decays are given. For A? — utyu~, the
upper limits at Belle are almost at the same level as those
from BABAR [30].

The upper limit at 90% C.L. on the product branching
fractions can be converted to the Yukawa coupling fy(;s)
directly via [12,48,49]

B[Y(1S) - yAY] _f%r(ls) <1 B m%, > 3)
BY(1S) = £7¢7]  \2za \' mi )"

where £ = e or u and « is the fine structure constant. The
upper limits at 90% C.L. on the f%r(]S)B(A0 = utur)
as a function of A mass are shown by blue curves in
Figs. 4(e) and 4(f). The results from BABAR [29] are also
shown by red curves.

The limit on the A° production in Y'(15) radiative decays
is related to the mixing angle (sinf40), which can be
compared with those from other experiments. The mixing
angle is defined as [25]

B[Y(1S) = yA°]|B(A° — hadrons)
BY(1S) = 7177

2
GFmb

\/iﬂ'a

= sin?6 40

where G is the Fermi constant and m,, is the mass of
bottom quark [42]. When the mass of A° is smaller than
77~ threshold, upper limits from A° — u*u~ are used to
calculate the sinf,0; on the contrary, upper limits from
A® — 777~ are used. The ratios of B(A? — utu~)/B(A° —
hadrons) and B(A° — 7+77)/B(A° - hadrons) are taken
from Ref. [13]; they are changed from 0.08 to 0.28 and
0.7 to 1.0 for A° - p*u~ and A® — 7777, respectively.

-,

—_
Q o

<

_. SN1987A

_
oqo
NS

Al

107"

1 10
on (GeV)

FIG. 5. The surviving parameter space on the plane of sin @ o
and myo. The constraints from LEP [50] (direct production of
Higgs), BESII [51] (J/y decay), Belle (Y'(1S) decay), LHCb
[52,53] (B*/° decay), NA62 [54-56] (Kt decay), KTeV
[13,57,58] (K; decay), CHARM [13,59-62] (beam dump),
PS191 [63] (beam dump), SN1987A [64], BBN [65], and the
prospect of future SHiP [13,62] (beam dump) are shown.

The surviving parameter space on the plane of sin 6,0 and
myo (the same as m,, and my in Refs. [13] and [25]) from
different processes are shown in Fig. 5.

To conclude, we have searched for the light CP-odd
Higgs boson in Y(1S) — yA? with Y(2S) - z" 2~ Y(1S)
tagging method using the largest data sample of Y(2S)
at Belle. The upper limits at 90% C.L. on the product
branching fractions for Y(1S) —» yA® and A° —
w77 /utu are set. In comparisons with previous studies
[28-30], our results can further constrain the parameter
space in NMSSM models [6,7] for Y(1S) — yA%(— 7777)
and have the same restrictions for Y(15) — yA%(— u*u™).
Our limits are applicable to any light scalar or pseudoscalar
boson and dark matter, which arises in various extensions
of SM. We have used the branching fraction limits to set
limits on the Yukawa coupling fy(;5) and mixing angle
sin@,0. For the latter, different processes from diffferenct
experiments are compared to it.
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