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We present the first observation of the Q0 — Q™ u"v, decay and present measurements of the branching

fraction ratios of the Q0 — Q~#*v, decays compared to the reference mode Q0 — Q~z*, (£ = e or u).
This analysis is based on 89.5 fb~!, 711 fb~!, and 121.1 fb~! data samples collected with the Belle detector
at the KEKB asymmetric-energy e*e™ collider at the center-of-mass energies of 10.52 GeV, 10.58 GeV,
and 10.86 GeV, respectively. The QO signal yields are extracted by fitting M, and M, spectra. The
branching fraction ratios B(Q) — Q e*1,)/B(Q2 > Q~x") and B(Q) — Q p'v,)/B(Q) — Q ") are
measured to be 1.98 + 0.13(stat) 4= 0.08(syst) and 1.94 £ 0.18(stat) + 0.10(syst), respectively. The ratio
of B(Q) - Q etw,)/B(Q) - Q uty,) is measured to be 1.02 =+ 0.10(stat) + 0.02(syst), which is
consistent with the expectation of lepton flavor universality.

DOI: 10.1103/PhysRevD.105.L091101

In the Standard Model (SM), the charged weak current
interaction has an identical coupling to all lepton gener-
ations, known as lepton flavor universality (LFU). However,
experiments have found tantalizing deviations from LFU in
b — ctv, and b — s£¢ decays [1-6], especially an evi-
dence of LFU breaking with a 3.1 standard deviations
on branching fraction ratio B(B* — K*u*u~)/B(Bt —
KTete™) at the LHCb experiment [7]. Since a violation of
LFU is a clear sign of new physics [8—12], tests of LFU in
additional semileptonic decays of heavy quarks are well
motivated.

Lying in the transition region between the perturbative
and nonperturbative energy scales of quantum chromody-
namics (QCD), charmed baryons play an important role in
studies of strong and weak interactions, especially via the
investigations of their semileptonic decays [13—15]. Their
decay amplitudes are the product of a well-understood
leptonic current describing the lepton system and a more
complicated hadronic current for the quark transition,
which helps to measure SM parameters such as CKM
matrix elements and study the details of decay dynamics.
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Due to the low production rates and/or high background
levels of current experiments, the study of charmed baryon
decays is statistically limited. Thus far, semileptonic decays
of AF and ZY have only been partially studied, and LFU is
found to be conserved within uncertainties [16—-19]. The
sole result on semileptonic decays of QU is CLEO’s
observation of 11.4 & 3.8 events of Q) — Q~e*v,, with
a branching fraction ratio of B(Q2 — Q e*v,)/B(Q0 —
Q 7)) measured to be 2.4 4 1.2 [20]. Compared with the
I — 1" transitions Af — A” and E) - E7, the 1+ - 3F
decay Q¥ — Q™ contains two more form factors in the
hadronic current, which makes it more difficult to predict
the decay rate theoretically [21]. The predicted branching
fraction B(Q? — Q~#*v,) varies between 0.005 and 0.127
in light-front quark models [21,22], heavy quark expansion
[23], and quark models [24]. Although the theoretical
predictions on Q¥ semileptonic decay widths differ by
more than an order of magnitude, the ratios between the e
and u modes are stable and can be compared with the
current experimental measurement to test LFU.

We note that the lifetime of Q¥ has been recently updated
from (69 4+ 12) x 1071 s [25] to (268 +£26) x 10715 s
[26,27]. A precise study of the QU is crucial to test the
theoretical models as well as understand the Q¥ lifetime by
comparing the measured branching fractions and correspond-
ing theoretical predictions [28-32], especially for its semi-
leptonic decay since constructive interference between the s
quarks can result in a large semileptonic decay width [23,33].
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In this paper, we present a study of the semileptonic
decays of Q¥ — Q~#*v, using data samples of 89.5 fb~!,
711 ftb~!, and 121.1 fb~! collected by the Belle detector at
the KEKB asymmetric-energy collider [34] at the center-of-
mass energies of 10.52 GeV, 10.58 GeV, and 10.86 GeV,
respectively, which is 66 times larger than the dataset used
in CLEO’s analysis [20]. Inclusion of charge-conjugate
states is implicit unless otherwise stated in this analysis. Q2
are produced in the process e*e™ — c¢ — QU + anything,
while Q~ baryons are reconstructed via the AK~ mode,
where A decays into pz~. Branching fraction ratios of
QY - Q F*v, to the reference mode Q0 — Q 7" are
measured. The precision of B(QY — Q efv,)/B(QY —
Q™) is significantly improved compared to the previous
result [20]. The previously unobserved QY — Quty,
decay is also studied. LFU is thus probed in the decays
QY — Q= ¢*u, for the first time.

The Belle detector is a large-solid-angle magnetic
spectrometer that consists of a silicon vertex detector, a
50-layer central drift chamber, an array of aerogel threshold
Cherenkov counters, a barrel-like arrangement of time-of-
flight scintillation counters, and an electromagnetic calo-
rimeter comprised of CsI(T1) crystals; all these components
are located inside a superconducting solenoid coil that
provides a 1.5 T magnetic field. An iron flux return located
outside of the coil is instrumented to detect K9 mesons and
identify muons (KLM). The direction of the e™ momentum
is defined as the z-axis direction. The detector is described
in detail elsewhere [35].

To optimize the signal selection criteria and calculate the
signal reconstruction efficiency, we use Monte Carlo (MC)
simulated events. The eTe™ — ¢c process and the signal
QY semileptonic decays are simulated with the PYTHIA with
matrix element model [36]. The QY — Q7+ decay is
generated with EviGen [37]. The simulated Y (4S) — BB,
1(55) » BB, Y(58) > BYB®(z), and Y(55) —
Y (4S)y events with B = B* or B%, and e*e™ — ¢ events
with ¢ = u, d, s or c at the center-of-mass energies of data
are used as background samples after removing the signal
events. The MC events are processed with a detector
simulation based on GEANT3 [38]. The background sources
and fit methods described later are also validated with
simulated generic samples [39].

Except for the charged tracks from Q~ decays, the
impact parameters perpendicular to and along the ™ beam
direction are required to be less than 0.5 cm and 4.0 cm,
respectively, and the transverse momentum in the lab frame
must be higher than 0.1 GeV/c. For charged tracks,
information from different detector subsystems is com-
bined to form the likelihood £; for species i, where i = e,
u, m, K, or p [40]. A track with a likelihood ratio
Lx/(Lg + L) > 0.6 is identified as a kaon, while a track
with Lg/(Lx + L) < 0.4 is treated as a pion [40]. With
this selection, the kaon (pion) identification efficiency is

about 94% (98%), while 2% (5%) of the pions (kaons) are
misidentified as kaons (pions). A track with a likelihood
ratio L£,/(L, + Lyon—e) > 0.9 is identified as an electron
[41]. The y conversions are suppressed by examining all
combinations of an e track with other oppositely charged
tracks in the event that they are identified as e¥ and
requiring an e* e~ invariant mass larger than 0.4 GeV/c?.
Tracks with £,/(L, + Lx + L,) > 0.9 are considered as
muon candidates [42]. The muon tracks also should hit at
least five layers of the KLM subdetector and cannot be
identified as kaons by requiring Lx/(Lx + L,) < 0.4 to
suppress backgrounds with kaons. With the above selec-
tions, the efficiencies of electron and muon identifications
are 98% and 76%, respectively, with the pion fake rates less
than 2%.

The A baryons are reconstructed in the decay A — pz~
and selected if |M,,- —m,| < 3.5 MeV/c? (about three
times the invariant mass resolution (¢)). Here and through-
out the text, M, represents a measured invariant mass,
and m; denotes the nominal mass of the particle i [27].
The proton track from A decay is required to satisfy
L,/(Ly+L,)>02 and L,/(Lx+L,)>02. These
requirements identify protons with an efficiency of 95%
and the contamination from pions and kaons is less than
1%. We define the Q~ signal region as |Myg- — mg-| <
3.5 MeV/c? (~306). Since the background components of
the M g distributions can be described by a horizontal
straight line, the Q™ mass sidebands are chosen as
13 MeV/c? < |Mygx- — mg-| <27 MeV/c?,  which is
four times the width of the signal region for facilitating
the normalization in the following fits. To suppress the
combinatorial background, we require the flight direc-
tions of A and Q™ candidates, which are reconstructed
from their fitted production and decay vertices, to be
within 5 degrees of their momentum directions in both 3D
space and the plane perpendicular to the z axis in the
lab frame.

For Q) — Q e*y,, the cosine of the opening angle
between Q™ and e" in the lab frame is further required
to be in the region (0.2, 0.95), and the momentum of the e™
in the center-of-mass frame is required to be in the region
(0.35, 1.5) GeV/c. For QY — Q u*v,, the cosine of the
opening angle between Q™ and ux* in the lab frame is
required to be larger than 0.35, and the momentum of the p™
in the center-of-mass frame must be less than 1.6 GeV/c.

To suppress combinatorial backgrounds in each of
the Qetv,, Q utv,, and Q 7" modes, we require the
scaled momentum x, = pgx/pmax > 0.5, where pgy is
the momentum of the QX system in the center-of-mass

frame (for X =e, ¢ and 7z, respectively), and pj.c =

Epeam” — (mgp)? [43] (Epea is the beam energy in the

center-of-mass frame). This requirement removes all cor-
rect QX combinations from Q¥ produced in BE;) decays.
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The fits to the (a) Mq,, (b) Mg, and (c) M, distributions for the selected candidates from data. The dots with error bars

represent the data, the solid lines are the best fits, and the dashed lines are the fitted total backgrounds. The blank areas between the red
dashed lines and shaded histograms are from backgrounds with mischosen £*. The “u — z misID” in plot (¢) means the background
component from Q) — Q=7+ + hadrons decays. The other fit components are illustrated by the legends.

After the above selections, the obtained Mq,, Mq,, and
Mg, mass spectra from the data samples are shown in

Fig. 1. The Q0 signals are extracted by binned maximum-
likelihood fits to these invariant mass spectra. In fitting the
Mg, spectrum, the QY signal shape is described by a
double-Gaussian function with same mean value, while the
background shape is represented with a first-order poly-
nomial, where all the parameters are floated. For QU
semileptonic decays, the signal shapes are taken directly
from MC simulations. The background shapes from
wrongly reconstructed Q~ candidates are described by
the Mq-,+ distributions of ©~ mass sidebands. The back-
grounds from eTe”™ — gg due to mischosen #7 are
represented by the Mg-,- distributions of Q77" events
with their normalized €~ mass sidebands subtracted. The
other backgrounds are from eTe™ — BE )) ngi

*
N

+ anything
with Q™ from one BE:)) and 7 from another Bg; , whose
shapes are taken from simulated data. Background from
QY - Q7% "y, decay is negligible since it violates
isospin conservation and should be strongly suppressed.
In fitting the Q™™ mass spectrum, the y — 7 misidentifi-
cation background component stemming from QU —
Q 7" + hadrons events is added, with the relevant decay
widths set to the PDG values [27]. In the fits to Mo, spectra
above, the shapes of all fit components are fixed, and the
yields are floated except for the backgrounds from wrongly
reconstructed Q- candidates whose yields are normalized
according to the Q~ invariant mass distribution. Figure 1
shows the fitted results for QO decays to (a) Q z™,
(b) Q e*v,, and (c) Q utv,. The fitted results together
with the corresponding detection efficiencies are listed in
Table 1. The efficiencies are computed on simulations and
are then corrected to take into account data and MC
discrepancies in the particle identifications (PID), where
details will be explained in the section dedicated to the
systematic uncertainty description. The significances of the
QY — Q¢ *v, are both larger than 10s. The significances

are calculated using /=2 In(Ly/Lax ), Where Lg and L,

are the likelihoods of the fits without and with a signal
component, respectively.

The Q0 semileptonic decay branching fraction ratios are
calculated using

B(Qg = Q_erl/f) - NQf *EQr
BQ) = Qx")  Nop-éar

’

where N and € are the fitted signal yields and detector
efficiency of the corresponding Q0 decay, respectively. The
calculated results are listed in Table I. Similarly, we also
obtain B(Q) - Q e"v,)/B(Q - Q putv,) =1.02+0.10.
Here, the uncertainties are statistical only.

Several sources of systematic uncertainties contribute to
the measurement of the branching fraction ratios. Using
Dt - D%, D - K=z*, and J/w — £¢ control sam-
ples, the efficiency ratios between data and MC simulations
are (95.4 +£0.9)%, (98.2 £0.9)%, and (98.7 + 0.6)% for
pion, electron, and muon, respectively. The central values
of the ratios are taken as efficiency correction factors, and
the relative errors are taken as systematic uncertainties,
written as opp in Table II. The systematic uncertainties
associated with tracking efficiency and Q™ selection
approximately cancel in the branching fraction ratio mea-
surements so that the uncertainties on those are negligible.
We estimate the systematic uncertainties associated
with the fitting procedures (o) for Q2 — Q= #*1, and

TABLE I. List of the fitted signal yields and the corresponding
detection efficiencies with the particle identification correction
factors included. The last column gives the ratios of branching
fractions R = B(Q2 - Q ¢*v,)/B(Q2 — Q z"). The branch-
ing fractions of Q= — AK and A — pz~ are not included in the
detection efficiencies. Quoted uncertainties are statistical only.

Channel Signal yields Detection efficiency R
Q- Qzt  865.3+353 17.87%
Q- Qety, 707.6+37.7 7.40% 1.98 £0.13
Q- Q puty, 3679+314 3.93% 1.94+0.18
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TABLE II. The relative systematic uncertainties on Ngy/éeqyx,
where the common systematic uncertainties in all the decay
channels are not included (%).

tot
Channel opp Ot Ox, oMC O g ON/Je

(s)

Q) - Qat 09 04 21 - 2.3
QS Qety, 09 10 05 26 14 33
Q-Quty, 06 10 05 30 28 43

QY - Q 7t separately. For Q2 — Q=#*v, decays, we
change the bin width of the Mg, spectra by
+5 MeV/c?, change the Q™ mass sidebands from four
to three times that of the signal region, and take the relative
differences of the fitted signal yields as oy;: These are 1.0%
for the electron mode and muon mode. For Q0 — Q 7™,
we estimate og, by changing the range of the fit and the
order of the background polynomial and take the relative
difference of the signal yields, 0.4%, as the systematic
uncertainty. For Q0 — Q~z7, the x, distribution is cor-
rected with efficiencies bin by bin and is fitted with

Peterson’s fragmentation function 1/(x,-(1—-1—:2-)%)
L 1=,

[44]. The signal MC samples of all three decay modes are
generated with the fitted Peterson’s fragmentation function,
and the relative difference of the detection efficiencies
obtained by changing the fitted €, by +1o are taken as the
systematic uncertainty (o-xp), which are 0.5%, 0.5%, and

2.1% for electron, muon, and pion mode, respectively. For
semileptonic decays, to conservatively estimate the uncer-
tainties due to possible imperfect modeling by the PYTHIA
matrix element model, the signal MC samples of Q0 —
Q~¢"v, decays are simulated with phase space model. The
changes in measured No,/eq, are taken as the uncertain-
ties related to the MC model (oyic), which are 2.6% and
3.0% for the electron and muon mode, respectively. The

relative changes of the N, /eq, by fitting the M, spectra

without the background component from BE;‘))

taken as the uncertainties due to BE’:; decay (0 ,¢), which
‘ )

decays are

are 1.4% and 2.8% for the electron and muon mode,
respectively. The corresponding systematic uncertainties
are summed in quadrature to yield the total systematic
uncertainty (aj{;}g) for each Q¥ decay mode, which yields
2.3%, 3.3%, and 4.3% for the pion, electron, and muon
mode, respectively. The relative systematic uncertainties
described above are summarized in Table II.

The final systematic uncertainty of the branching frac-
tion ratio is the sum of the corresponding two o). in
quadrature, which yields 4.0% and 4.9% for
B(QY - Q ¢*v,)/B(Q0 - Q nt), with £+ =et and
u", respectively. The total systematic uncertainty on
B(QY - Qety,)/B(Q) - Quty,) is 2.3% with the

c Ox, and oy positively correlated.

(OF
B )

(s

According to the analysis above, the branching fraction
ratios B(QY - Qe*1,)/B(QY - Q zt) and B(Q? —
Quty,)/B(Q) — Q zt) are measured to be 1.98+
0.13 £ 0.08 and 1.94 + 0.18 £ 0.10, respectively. The ratio
B(Q2 - Qetv,)/B(Q2 - Q x') is consistent with the
previously measured value 2.4 4+ 1.2 by the CLEO col-
laboration [20] with greatly improved precision. The ratio
of B(QY » Q e™w,)/B(Q) - Q p'v,) is measured to be
1.02 £ 0.10 £ 0.02, which is consistent with the expected
LFU value 1.03 0.06 [22]. Here, the first and second
uncertainties are statistical and systematic, respectively.

In summary, based on data samples of 89.5, 711 and
121.1 fb=! collected with the Belle detector at the center-
of-mass energies of 10.52, 10.58, and 10.86 GeV, respec-
tively, we measured branching fraction ratios of B(Q —
Q¢ u,)/B(QY - Q 7F) and B(QY—Q~etv,)/B(Q2 —
Q u'y,). The Q) - Q u'w, decay is seen for the first
time. Our measured B(Q) — Q= ¢*v,)/B(Q) - Q~zt)
are larger than those from the predictions of the light-front
quark models [21,22], and B(Q - Qe*v,)/B(Q2 —
Q utv,) agrees with the expectation of LFU. The semi-
leptonic  branching fraction ratio B(Q) — Q 7*v,)/
B(Q2 - Q~zt) is an important input used to constrain
parameters of phenomenological models [21-24] and the
ongoing lattice QCD calculations of heavy flavor baryon
decays. Once measurement of the absolute branching
fraction of B(Q? — Q~z) become available in the near
future, the results presented in this paper will lead to the
value of B(Q) — Q#*v,), which can be compared with
more theoretical expectations and with those of other
semileptonic decays of charmed baryons.
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