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Nomenclature

= state matrix of the reduced-order system
geomagnetic A, index, 2 nano Tesla (2nT)
semimajor axis, km

input matrix of the reduced-order system
time-dependent coefficient for spatial mode i
= solarradio flux with wavelength of 10.7 cm, solar
flux unit (sfu)

Jacobian matrix

covariance

probability of collision

modified equinoctial elements (p is the semilatus
rectum, km; L is the true longitude, rad)

= body radius of ith object, km

position vector, km

left-singular vectors

input to the reduced-order system
right-singular vectors

velocity vector, km/s

neutral mass density in the log scale, kg/m?
reduced-order state

ballistic coefficient, kg/m?

global model parameter errors

errors in the initial state

mean

neutral mass density, kg/m3

singular values

standard deviation

multiplicative standard deviation

spatial mode i
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Subscripts

C =

k

continuous system
data at time step k
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n = nth space object

X = X component

y =y component

b4 =z component

Superscripts

w/o = without density error

p = with density error

p, corr = with density error and cross-correlation

correction

I. Introduction

HE growing population of satellites and orbital debris in Earth’s

orbit increases the spatial density, and therefore the risk of
collision events between objects. Therefore, satellites and other
objects need to be tracked and their orbits predicted to detect close
encounters and assess the risk of collision. Accurate calculation of the
probability of collision P, requires both accurate prediction of the
orbit and accurate estimation of the uncertainty in the orbit predic-
tion. The main sources of error in orbit prediction are errors in
observational data, limited knowledge of object properties (shape,
mass, and material) and attitude, and errors in the modeling of the
atmosphere needed for drag calculations [1].

Uncertainties in the initial state due to measurement errors can be
estimated during orbit determination. In addition, uncertainties in the
drag coefficient, frontal area, and mass can be combined in the
ballistic coefficient , which can be solved for in orbit determination
and can be included in the covariance. On the other hand, errors in the
atmospheric density estimates are often unknown or not well char-
acterized. Vallado and Finkleman [2] reported an average one sigma
accuracy of 10 to 15% for empirical density models. However, the
error in density depends on the employed density model as well as on
the space weather conditions and location [3]. Therefore, there is a
strong need to both accurately estimate density and the uncertainty in
the density. The goal of this work is to quantify the uncertainty in
atmospheric density and take these uncertainties into account for
collision probability calculations.

The current state of practice by the U.S. Space Force for incorpo-
rating uncertainty in the atmospheric density is by adding the uncer-
tainty in the density to the ballistic coefficient variance. A drawback
of this approach is that the density uncertainty scale is equal in all
atmospheric regions; whereas in reality, the density error is not uni-
form over the density field. This aspect becomes important when the
conjunction between two significantly different orbits (e.g., different
mean altitude or different orbital plane) is considered.

Several studies have looked into the effect of uncertainty on the
atmospheric density in orbit prediction [4-6]; however, few have
considered their effect on the probability of collision. In addition,
most of these studies focused on the error in atmospheric density due
to inaccurate space weather inputs and forecasts because these errors
become dominant for orbit prediction of several days. However, for
orbit determination and short-term orbit predictions, the error in the
density model itself is expected to be larger. Therefore, density
models need to be calibrated and the uncertainties in the model must
be estimated. Several techniques exist for density model calibration
[7-9]. However, these techniques do not provide direct estimates of
the uncertainty in the density. In addition, the calibration is carried out
using static atmospheric models; therefore, it is not possible to predict
how uncertainties in the density evolve over time (only the statistics
of historical predictions can be studied). There is, therefore, a strong
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need for the quantification of uncertainty in density models and the
propagation of these uncertainties into the future.

Two studies that considered the effect of density errors on the
collision probability were carried out by Bussy-Virat et al. [10] and
Hejduk and Snow [11]. Bussy-Virat et al. [10] analyzed the effect of
errors in the future space weather prediction on the P, and used
different future space weather scenarios to obtain a probability
density function (PDF) for the P.. For this, they considered errors
in the solar activity proxies F'o7 and A, but did not consider errors in
the density model itself. Hejduk and Snow [11] studied how the
severity level of conjunctions changes due to errors in density and
density uncertainties. They assumed density errors of a factor of 0.5
to 2.0 with respect to the model density due to model and space
weather forecast errors, and they used a consider parameter to include
density uncertainties in the covariance. They analyzed the effect of
the error and uncertainties on the P,., and showed that ignoring
density uncertainties can lead to failure to detect severe conjunction
events. Hejduk and Snow did not, however, consider the cross
correlation in position uncertainties due to density errors.

If an estimate of the uncertainty in density is available, one can
study the effect of density errors on the probability of collision. The
most widely used technique, called linear or two-dimensional P,.
estimation, uses the covariances of the two objects at the time of
closest approach (TCA) to compute the P.. It is important to account
for correlation in the position errors when computing the joint
position covariance for probability of collision calculation [12,13].
When two objects fly through the same atmosphere, the position
errors due to errors in the density will be correlated, and thus one
should account for the cross correlation [12,13]; however, most
previous work does not consider this effect on the P,. calculation.

In this Note, we propose a new technique to estimate and include the
uncertainty in atmospheric density for conjunction assessment. For this,
we use a recently developed dynamic density model that enables
density forecasting [14]. Common physics-based models of the thermo-
sphere, such as Global Ionosphere Thermosphere Model (GITM) and
Thermosphere Ionosphere Electrodynamics General Circulation
Model (TIE-GCM), require solving Navier—Stokes equations over a
high-dimensional discretized spatial grid involving 10*10° state varia-
bles, which is computationally expensive. On the other hand, empirical
models are able to produce fast prediction but have a limited forecasting
capability. Traditionally, correction to empirical density models is
achieved by estimating scale parameter(s) that correct the models to
match the measured orbital data[15,16]. Mehta et al. [ 14] used reduced-
order modeling to develop a low-dimensional dynamic model for the
thermospheric density. This model enables efficient estimation of the
density using a Kalman filter. Improvement in the accuracy of the
estimated density was demonstrated by assimilating accelerometer-
derived density measurements [17], two-line element (TLE) data
[18], satellite position measurements [17], and radar and Global Posi-
tioning System tracking data [20]. The authors showed that density
estimates based on TLE data were more accurate than the Jacchia—
Bowman 2008 (JB2008)® and 2001 United States Naval Research
Laboratory Mass Spectrometer and Incoherent Scatter Radar Exo-
sphere (NRLMSISE-00)" models [18]. In addition, the estimates for
the uncertainty in estimated density were obtained. These density
uncertainties depend on the latitude, local solar time, and altitude. In
addition, the uncertainty was found to be dependent on the epoch (i.e.,
solar activity) and measurement data. This is a significant improvement
over a single global density error estimate that does not include the
location and time dependency of density errors. Moreover, the density
prediction depends on the solar activity such that the predicted density
uncertainty also depends on the future space weather.

We use the dynamic model to estimate both the global atmospheric
density using TLE data and the uncertainty in the estimated density.
The dynamic model is then used to predict the future density
and corresponding uncertainty. By propagating the orbit and the

SModel available online at http://sol.spacenvironment.net/jb2008/code
.html [retrieved 10 May 2022].

fModel available online at https://www.brodo.de/space/nrimsise [retrieved
10 May 2022].

atmospheric state simultaneously, and by employing uncertainty
propagation, we can obtain the uncertainty in the orbit due to uncer-
tainty in both the initial orbital state and in the density model. Finally,
we use the orbit and covariance computed for two space objects to
calculate the probability of collision between the objects and com-
pare the result with P, in cases where density uncertainties are not
considered. Here, the effect of cross correlation due to density errors
is considered as well.

In previous work, Gondelach and Linares demonstrated the use of
the dynamic density model for accurate density estimation and
density uncertainty quantification [18]. The contributions of this
work are as follows:

1) The future density uncertainty is computed by propagating the
uncertainty during the density prediction.

2) The orbital state uncertainty that includes uncertainty due to the
density errors is computed by propagating the state and density
uncertainties simultaneously.

3) The probability of collision is computed using position cova-
riances that include uncertainty due to density.

4) The combined position covariance used for collision probability
calculation is adjusted to account for the effect of cross correlation in
the position uncertainties due to density errors.

5) The effect of density uncertainties and the effect of cross
correlation on the probability of collision estimate are assessed.

6) The estimated collision probability is compared with collision
probabilities computing using Monte Carlo analysis.

In the following, first, the methods employed for the new approach
are discussed. After that, the test cases for conjunction assessment are
presented. P, is computed for the different scenarios, with and with-
out considering density uncertainties and cross-correlation effects.
Finally, the results are discussed and conclusions are drawn.

II. Methodology

First, we briefly introduce the development of the dynamic
reduced-order density model (RODM). After that, density estimation
using the dynamic model and TLE data with a Kalman filter is
discussed. Finally, the technique of computing the collision proba-
bility is presented.

A. Dynamic Reduced-Order Density Model

The goal of the development of a RODM is to enable computa-
tionally efficient forecasting of atmospheric density. This is achieved
by reducing the dimension of atmospheric state with respect to
physics-based models and by deriving a dynamic model for the
reduced-order state. The main idea of reduced-order modeling is to
reduce the dimensionality of the state space while retaining maxi-
mum information. In our case, the full state space consists of the
neutral mass density values on a dense uniform grid in latitude, local
solar time, and altitude. First, to make the problem tractable, the state-
space dimension is reduced using proper orthogonal decomposition
(POD). Second, a linear dynamic model is derived by applying
dynamic mode decomposition with control (DMDC). Under the
DMDC formulation, the reduced-order states are approximated as a
linear process, where the current reduced-order state only depends on
the reduced-order state, linear and nonlinear space weather™" indices
from the previous epoch. Details for the POD and DMDC formu-
lation can be found in Ref. [18].

In this work, we use a RODM based on density data from the
JB2008 density model. We computed hourly density data on a dense
grid in latitude, local solar time, and altitude over 12 years from 1999
to 2010. The data were then used to perform POD and DMDC to
obtain our dynamic RODM for the thermosphere.

**Data available online at http://celestrak.com/SpaceData/ [retrieved 10
May 2022] and http://sol.spacenvironment.net/jb2008/indices.html
[retrieved 10 May 2022].
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B. Density Estimation

‘We can estimate the reduced-order density state using the RODM.
In this work, this is achieved by simultaneously estimating the
reduced-order density state and the orbital states of objects by data
assimilation of TLE data, as described in a previous paper by Gon-
delach and Linares [18]. A square-root unscented Kalman Filter is
used as the estimation filter [21]. The state x that is estimated consists
of the osculating orbital states [expressed in modified equinoctial
elements (MEEs)], the ballistic coefficient of the objects f;, and the
reduced-order density state z:

T
7pn7fn7gn’hn’kn7Ln,ﬁn, ZT:l
(1

x= [Pl,fl,gl,hl,kuLl,ﬂl,

where n is the number of objects. The measurements consist of
osculating orbital states extracted from TLE data (expressed in
MEESs). The reduced-order density state z is propagated using the
RODM. The orbits are propagated in the J2000 Earth-centered
inertial reference frame by considering geopotential acceleration
(Earth Gravitational Model 2008 (EGM2008) with 20 x 20 harmon-
ics) and atmospheric drag computed using the RODM. By using a
subset of well-tracked objects (with accurately estimated /) that are
evenly distributed in the atmosphere, we are able to accurately
estimate the global thermospheric density. For more details about
the orbital dynamical model and process as well as the measurement
noise used for estimation, we refer the reader to Ref. [18].

C. Uncertainty Estimation

From the Kalman filter estimation, we obtain both an estimate for
the state x and an estimate of the covariance P, :

P Opifi %pig
(o2 (72 (o2
pifi fi fi1&

2
Opigi Cfiesr Ou

The lower right part of P, contains the covariance of the reduced-
order density state z (P,). This covariance can be used to compute the
effect of density uncertainty on the position uncertainty, and thus on
the collision probability. In addition, P, can be converted to uncer-
tainty in the physical density. Using a single row of the projection
matrix U, that corresponds to one grid point i in the full space U, ;, we
obtain the uncertainty in the density as follows:

o2 =U,,PU", 2)

where (T%’_ is the variance of the variation of density X in log space at
grid point i, see Ref. [18].

D. Collision Probability Calculation

We use Alfano’s method [22] to calculate the probability of
collision P,. This technique provides an accurate estimate of the true
P, if the PDF of the position is Gaussian and the duration of the
encounter between the two objects is very short such that the PDF is
constant during the encounter. In this work, we have assessed the
Gaussianity and short encounter duration for our test cases. In
addition, we will assume that the distance of close approach (DCA)
is not affected by the error in the density; whereas in reality, it is.

However, if the change in DCA due to uncertainties is small com-
pared to the covariance size, then the effect on P,. is small.

In Alfano’s method [22], P, is computed by projecting the combined
position covariance and relative miss distance on the encounter plane,
and computing the probability that the miss distance is smaller than the
combined body radius. P, can be computed using [23]

e =0 )

y [exp (M) + exp (w)] dr 3

202 202

where

erf(z) = % L Tt dr @)

is the error function, and R = R; + R, is the combined body radius of
the two objects. For this integral, the x axis is aligned with the major axis
of the projected covariance such that the projected covariance is given by
the standard deviations o, and 5, and the relative position is given by x,,
and y,. More information on Alfano’s method can be found in
Refs. [22,23]. In Sec. ILE, we will show how to compute the combined
covariance P,, that accounts for cross correlation between the object’s
position uncertainties due to density errors.

E. Uncertainty Propagation

To compute P,., we need to calculate position covariances P; and
P, of the two objects at the TCA. For this, we augment position
covariance matrix P; of the object with the covariance of the object’s
ballistic coefficient and the covariance of the reduced-order state;
then, we propagate this joint covariance using an unscented trans-
formation (i.e., sigma point propagation) [21,24]. For uncertainty
propagation, the orbital state is expressed in modified equinoctial
elements to mitigate the departure from “Gaussianity” of the state
PDF under the nonlinear propagation with respect to Cartesian
coordinates. After computing the covariance in MEEs at the TCA,
the covariance is converted to Cartesian space using unscented trans-
formation to obtain the position covariance needed in Alfano’s
method [22]. Note that if the position PDF becomes strongly
non-Gaussian, then Alfano’s method does not provide an accurate
approximation of P. anymore. For the scenarios that we are
interested in, the objects are assumed to be well tracked such that
the position PDF does not become strongly non-Gaussian through-
out the conjunction scenario. The Gaussian assumption for the
position PDF during the conjunction scenario is analyzed in
Sec. IV.B.

F. Cross Correlation

Casali et al. [13] described a technique to consider the effect of
cross correlation of orbital errors on the probability of collision. In
this section, we follow the derivation by Casali et al. [13] to obtain
an equation to correct for cross correlation due to density errors
in the calculation of P,. Starting from the definition of the miss
distance r,, = r, — ry, the mean and covariance of the miss distance
are given by

By = E[r, ]| =Er,—r|=Er]-Er]l=p-pu O

P, =P, + P — E[(ry — ) (ry — )] = E[(r; —p)(ry — p2)"]
(6)

When the position errors in r; and r, are independent, the cross-
correlation terms are zero such that P, = P, + P;. This is gener-
ally the assumption when performing conjunction assessment using
linear techniques because errors from orbit determination are
assumed to be statistically independent.
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Now, let us assume that the errors in the orbit predictions are due to
both errors in the initial state 5 and global model parameter errors A,,.
Then, for the position deviations at the TCA, we can write

ri—p =®6; +GA, @)

where @ is the state transition matrix that maps the deviation in the
initial state & to a deviation in the state at the TCA, and G is a state
transition matrix that provides the linear approximation of the effect
of the error A, on the state at the TCA over the prediction window as

@ does. Using these expressions for the state deviations, we obtain
from Eq. (6)

P,, = E[(®,6, + G,A,)(P,6, + G,A,)"]
+ E[(®6, + G 1Ay (P16, + GlAg)T]
— E[(©,6, + G,A,)(0,6, + G |A,)"]
— E[(©,6, + GA,) (0,6, + G,A,)T] (8
Now, we assume there is no dependence between the errors due to
orbit determination and between the error due to orbit determination
and the global error (i.e., E[6,61] = 0 and E[6,AT] = E[§,Al] = 0),
whereas E[A,AT] = P,. We then get
Pm = (I’ZPZ.()(I)zT + q)IPl,O(DIT + (GngG; + GngGIT
-G,P,GT - GngGg)
= ((1)2P2_0q)g + GngGg) + (®1Pl,0q)1T + GIPgG{)
- G,P,G] -G, P,G}
=P, + P, - G,P,GI -G,P,G] )
where P, and P  are the initial covariances representing errors in .
In our case, the global errors A, are given by the covariance of the
reduced-order density state P,. Therefore, to calculate the cross
correlation in the state errors due A,, we need to compute matrices
G, and G, that give the first-order relation between errors in the
density and errors in the states at the TCA.
Matrix G is a Jacobian that contains the partial derivatives of the

position r at the TCA with respect to the reduced-order density state at
the initial epoch zg:

ory ory
020,1 o aZO’y
Ol
S (10)
azo . . .
or, or,
0201 0z,

These partial derivatives are approximated using central finite
differences. For this, we use the sigma points that we have already
computed for propagating the covariance such that the partials are
approximated as, e.g.,

ory N re(Bzo) = re(=Azg)
920,1 2Az9,

(11)

where r,(Az 1) is the value of r, when a change of Az | is applied to
the initial state. These values are taken from the results of the sigma
point propagation. Note that we did not notice any numerical insta-
bility in approximating the partial derivatives using sigma points;
however, we would like to caution the readers on the possibility of
numerical instability; alternatively, the readers can opt to use higher-
order stencil approaches for better accuracy and numerical stability.
Once G, and G, are computed, we can calculate the covariance of the
miss distance P,, that accounts for cross correlation due to atmos-
pheric density errors using Eq. (9). This P,, is then used in Alfano’s

method [22] to calculate the P, that accounts for the effect of cross
correlation.

III. Test Cases

To test our new approach for computing the effect of density
uncertainties on P, we generated artificial conjunction scenarios.
The test case consists of two nearly identical near-polar orbits at about
400 km altitude that have a different right ascension of the ascending
node such that they have a conjunction point at high latitude; see
Table 1. The conjunction was set to take place on 13 February 2003, at
00:00:00 hrs Coordinated Universal Time (UTC). The conjunction
assessment is carried out over a two-day window such that the start
epoch for orbit prediction for P, estimation was two days earlier on
11 February 2003, at 00:00:00 hrs UTC. The initial conditions of the
orbits two days before conjunction were obtained by starting from the
conjunction point and propagating the orbits backward in time to
the start epoch (i.e., two days before the time of conjunction) using
the nominal atmospheric density. Six different conjunction scenarios
were created by varying the f of one of the objects and by changing
the DCA via changing the in-track position of one of the objects at the
TCA; see Table 2. The combined hard-body radius R was set to 2 m.

To obtain accurate density and covariance estimates, we estimated
the reduced-order density state and its covariance over a 10-day
window before the conjunction scenario from 1 February to 11
February 2003. The reduced-order density state on 1 February was
initialized using the JB2008 modeled density field on that day [18].
During the 10-day estimation, TLE data from 17 objects (with North
America Aerospace Defense Command (NORAD) catalog identifi-
cation numbers 63, 165, 614, 2153, 2622, 4221, 6073, 7337, 8744,
12,138, 12,388, 14,483,20,774,23,278,26,405,27,391,and 27,392)
were assimilated into the reduced-order density state to obtain an
accurate initial reduced-order density state and its covariance for the
two-day conjunction scenario. The reduced-order density state was
then propagated forward for two days to obtain a prediction of the
atmospheric density, which is the nominal density for the conjunction
assessment.

For the conjunction assessment, we assume uncertainties in the
initial state, ballistic coefficient, and reduced-order density. The
assumed uncertainty in the initial states expressed in MEEs is shown
in Table 3. These uncertainties were obtained from the orbit deter-
mination for the Gravity Recovery and Climate Experiment
(GRACE) - A satellite using TLE data, and subsequently arbitrary
scaled by a factor of 0.1 (i.e., reduced by one order of magnitude) to
obtain magnitudes for the uncertainty that were more realistic when
having access to accurate orbital data. f# is assumed to have a 1-¢ error
of 0.5%: o5 = 0.005 - S.

P, is computed using Alfano’s method [22] with and without
considering density uncertainties and with and without considering
cross correlation when computing the combined position covariance.
Finally, to estimate the true P, with density uncertainty, we perform

Table1 Nominal orbits at collision point

Orbit a, km e i,deg Q,deg w,deg v, deg

1 6778.13630 0.00300 89.0 0.0 90.0  0.41418532
2 6778.13630 0.00300 89.0  45.0 90.0 -0.41418532

Table 2  Six conjunction scenarios with different DCAs
and object ballistic coefficients f

Test case
Scenario identification DCA,km f;, m?/kg f,, m?>/kg
Same SO 0.00031 0.01 0.01
S1 0.92375 0.01 0.01
S2 1.84756 0.01 0.01
Different DO 0.00015 0.01 0.001
D1 0.92412 0.01 0.001
D2 1.84756 0.01 0.001
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Table3 Assumed 1-6
uncertainty in the initial MEE states

State Uncertainty

6,  1.40546843775429 x 10~* km
of 1.54877138747695 x 10~
o, 1.54788273902825 x 1077
o 2.50908224756075 x 1077
oy 1.36880945273941 x 1077

oy 2.28039102756189 x 107 rad

Monte Carlo analyses by sampling initial densities from the density
PDF and calculating the resulting P by considering only initial state
uncertainty. From the Monte Carlo analyses, we obtain a mean P,
which is the expected P, value.

IV. Results
A. Density Estimation and Uncertainty Quantification

The accuracy of the RODM-estimated densities based on TLE data
in 2003 and 2007 was presented in previous work by Gondelach and
Linares [18]. Here, we will have a closer look at the corresponding
estimated uncertainties. Figure 1 shows the error and estimated 3-¢
error in orbit-averaged density with respect to Challenging Minis-
atellite Payload (CHAMP) accelerometer-derived densities over the
year 2007. (The estimated 3-¢ error jumps up every 15 days because
the density estimation was restarted every 15 days to enable parallel
calculation. After a couple of days of estimation, the estimated
density becomes more accurate and estimated uncertainty drops.)
Note that 97.0% of the errors are within the estimated 3-¢ error
bounds. This shows that estimated uncertainty provides a good
estimate of the true error in density. (The CHAMP and GRACE
densities used in this work were derived by Sutton [26]).

The atmospheric density field and its associated uncertainties
10 days before our test case (1 February 2013) were propagated
forward and assimilated with TLE data to 11 February 2003. The
uncertainty in the estimated density on 11 February 2003, at 400 and
500 km altitudes is shown in Fig. 2a. The plots show the multiplica-
tive standard deviation of 6* = 10°, where ¢ is the standard deviation
in log space computed using Eq. (2). This serves as an initial con-
dition of the atmospheric density reduced-order state for our start
epoch. For the conjunction assessment, the density and uncertainty
were propagated for two days up to the TCA. In this two-day window,
the solar activity was moderately high; the F;,; was about 135, and
the A, varied between 5 and 27. Figure 2b shows the uncertainty after
the two-day prediction. One can see that the uncertainties have grown
as a result of the atmospheric dynamics and external forcing by solar
activity.

To demonstrate the accuracy of the density and uncertainty pre-
diction over our conjunction epoch, we compared the predicted
density and uncertainty along CHAMP’s orbit with CHAMP accel-
erometer-derived densities. Figure 3 shows the two-day predicted
density along CHAMP’s orbit (at about a 415 km altitude) together
with NRLMSISE-00, JB2008, and accelerometer-derived densities.
The densities predicted using the RODM are accurate, with a maxi-
mum orbit-averaged density error of 12%; see Fig. 3d. On the other
hand, Figs. 3a and 3c show that the density according to the
NRLMSISE-00 model is significantly biased in this time window.
The RODM-estimated density and 3-¢ uncertainty are shown in
Fig. 3b. In the two-day window, 56% of the accelerometer-derived
densities are within the 3-¢ bounds. This means that the true error in
local density is larger than estimated. The uncertainty in the local
density is probably underestimated because the short-term fluctua-
tions in density cannot be detected from TLE data, which are gen-
erated from multiday observation data.

T'Data available online at http://tinyurl.com/densitysets [retrieved 10 May
2022].

B. Gaussianity

For accurate estimation of the P, using Alfano’s method [22], the
position covariance needs to be Gaussian. We performed a Monte
Carlo analysis to assess the Gaussianity of one of the position PDFsin
test case SO. For this, we sampled 1000 initial conditions from the
initial Gaussian distributions for the state, ballistic coefficients, and
reduced-order density; propagated them for two days; and compared
the final position with the position uncertainty according to the
propagated covariance matrix. Figure 4 shows the 1-, 2-, and 3-¢
ellipsoids computed using the propagated position covariance matrix
and 1000 Monte Carlo samples. The 3-¢ ellipsoid in this figure
corresponds to the P, ellipsoid in Figs. 5b and Sc. The Gaussian
PDF provided by the covariance matrix seems to be a good approxi-
mation of the true PDF. This is confirmed by Table 4, which shows the
fraction of Monte Carlo samples within the o bounds and the
expected fraction for a three-dimensional Gaussian distribution.
The expected and true fractions differ by a maximum of 1.3%, and
so the Gaussian assumption for the position PDF is valid. In future
work, other multivariate normality tests will be employed to assess
the Gaussianity of the PDFs [25].

C. Probability of Collision Including Density Uncertainty

Using the propagated covariance for the position, we computed P,
with density uncertainty. Figure 5 shows the 3-¢ ellipsoids depicting
the position covariance for objects 1 and 2 and the combined covari-
ance at the TCA for test case SO. Figure 5a shows the covariance
without considering density uncertainty, whereas Figs. 5b and 5S¢
include density uncertainty. In addition, the combined covariance in
Fig. 5c accounts for cross correlation, whereas the combined covari-
ance in Fig. 5b does not. As expected, the covariance gets inflated
when uncertainties due to density are included (note the different
scales of the axes in Figs. 5a—5c). Furthermore, Fig. 5S¢ shows that
accounting for the cross correlation can have a large effect on the
combined covariance (i.e., the covariance of the miss distance) by
making it less diffuse.

Table 5 shows the P. computed for the different conjunction
scenarios, with and without considering uncertainties in density.
Let us first consider the fourth and fifth columns, which show P,
in the case of ignoring and including the density uncertainty without
considering cross correlation. We can see that, due to the larger
covariance when including density uncertainties, P, including den-

sity errors P? is smaller than P, without density errors P2/° for very

close approaches (see cases SO and DO) and P is larger than P""/° for
more distant approaches (see cases S1,S2, D1, and D2). This effect of
density uncertainty on P, is as expected; see, e.g., Ref. [11].

D. Effect of Cross Correlation

The position covariances of the two objects are correlated because
they fly through the same atmosphere. Therefore, we computed the
P_ that accounts for the effect of cross correlation P2“", as described
in Sec. ILF. The resulting P,. is shown in the sixth column in Table 5.
P2°™ is larger than P. for very close approaches (see cases SO and
DO0) and smaller than P?. for distant approaches. This is as expected
because accounting for the cross correlation results in a smaller
covariance.

To verify the calculation of the P, considering cross correlation,
we performed a Monte Carlo analysis to compute the expected P,
with atmospheric density uncertainty. Note that 10,000 random initial
density states were sampled from the initial density PDF; and for each
sample, the P, considering only initial state errors was computed.
The mean P,. value has converged after 10,000 Monte Carlo runs and
shows minimal variations after 10,000 runs. Figure 6 shows the
probability distribution of P. for test case SO. The mean P, was
found to be 2.35 x 1073. For the same test case, P72 " computed by
considering density uncertainty and cross correlation is 1.72 x 1073;
whereas P, without considering cross correlation due to density
uncertainty is 9.33 X 107>, and Pz’/ ? without considering uncertainty
in the density is 4.03 x 1073. Clearly, correcting for cross correlation
improves the P, estimate. In particular, for such a high P, case, it is
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Table4 Fraction of Monte Carlo samples inside 1-6, 2-6, and
3-6 ranges according to unscented covariance propagation®

Expected fraction of Fraction of MC

Range samples inside range samples inside range
l-o 0.1987 0.200
2-0 0.7385 0.748
3-0 0.9707 0.979

*MC using 1000 samples that were sampled from normal distributions in MEE,
p, and reduced-order states.

important to take cross correlation into account because P, without
considering cross correlation is severely underestimating the realistic
P..Onthe other hand, for the larger miss distances (cases S2 and D2),
accounting for cross correlation results in a lower P because of a
smaller combined covariance. These findings are in agreement with
Casali et al. [13], who showed that accounting for cross correlation
can both increase or decrease the P, depending on the geometry.
For the conjunction scenarios where the two objects have different
P, the effect of cross correlation on P, is much smaller. This is
because the effect of drag on object 2 is smaller due to a smaller /.
The smaller f reduces the effect of density errors on P, and thus
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Table 5 Probability of collision P, for two f scenarios and for different distances of close approach computed
with and without considering density uncertainties and cross correlation, as well as by using Monte Carlo analysis

Probability of collision P,

With density uncertainty

No density e
Scenario  Testcase DCA,km uncertainty P*/° No correlation P.  Cross correlation P¢*"  MC: mean P’
Same SO 0.00031 4.03x 1073 9.33x 107 1.72x 1073 2.35x 1073
S1 0.92375 1.03 x 1077 7.12x 107 2.68 x 107 9.58 x 1077
S2 1.84755  2.32x1072 3.16 X 107 6.60 x 107! 4.13x107"7
Different DO 0.00015 5.33x 1073 1.67 x 10~ 2.00x 10~ 2.05x107*
D1 0.92412 2.04x 107° 1.02 x 107 1.11x 107 1L.11x 107
D2 1.84792 0.0 2.35%x 107 1.89x 1073 1.97 x 1073
0121 0.6
o
0.1 0 g
. St S
=
T 0.08 — 04
= Z
g 0.06 g 0.3
o s
e <
o 0.04f o 0.2r
oL N — ]
0 0.001 0.002 0.003 0.004 107 10 108 107 1073
3) PC bl b) Pe 1]

Fig. 6 Probability distribution function of P, as a result of uncertainties in the atmospheric density for test case S0: a) linear scale, and b) log scale.

results in a smaller cross correlation. Still, for the high P, (case DO0),

the cross-correlation correction improves the collision probability

estimate; P2 is closer to the estimated true P, (given by P2™MC)

than P7. In all cases, accounting for cross correlation results in a

better estimate of P, (i.e., closer to P‘C"MC). These results show the
following:

1) One should compensate for the cross correlation due to density
errors.

2) Our approach to account for the effect of cross correlation
provides improved P, estimates.

V. Conclusions

This Note has demonstrated how atmospheric density uncertain-
ties can be estimated and included for conjunction assessment. The
recently developed dynamic reduced-order density model was used
to estimate the density using TLE data, and the uncertainty in the
estimates was quantified by using a Kalman filter. The benefit of this
approach is 1) the uncertainty in the density can be quantified, 2) the
uncertainty forward can be propagated, and 3) the uncertainty is
location (i.e., latitude, longitude, and altitude) and time (i.e., solar
activity) dependent. The estimated uncertainties in the density were
considered for collision probability calculation by propagating the
state and density uncertainties simultaneously to obtain the position
covariance at the TCA. In addition, because the position covariances
of two objects flying through the same atmosphere are correlated, the
effect of cross correlation due to density errors on the P, was
accounted for.

The density uncertainty was shown to have a significant effect on
P for well-tracked space objects where the contributions of density
uncertainty to position uncertainty are dominant. Including density
uncertainty increases the position covariances and results in lower P,.
for very close approaches and higher P, for more distant approaches
as compared to ignoring errors due to density. Moreover, the results
showed that it is important to consider the effect of cross correlation

on P, especially when the effect of density errors on the orbit is
similar for both objects. In particular, for very close approaches,
ignoring the cross correlation can result in severe underestimation
of the collision probability. The presented approach provides the
distinctive capability to quantify the uncertainty in atmospheric
density and to include this uncertainty for conjunction assessment
while taking into account the dependence of the density model errors
on location and time.
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