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Abstract: We theoretically investigate the wavelength-dependent pulse self-compression dy-
namics of intense femtosecond laser pulses in gas-filled capillaries. Simulations with A =1,2, 3
and 4 um using the multimode carrier-resolved unidirectional pulse propagation equation reveal
pulse self-compression or pulse broadening depending on plasma and modal dispersion. Our
study shows that the pulse at 1 um exhibits better pulse self-compression compared with longer
wavelengths due to smaller group velocity mismatch between fundamental and higher-order
capillary modes.
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1. Introduction

Gas-filled capillaries have provided an excellent and robust tool for demonstrating high-intensity
nonlinear optics such as high-order harmonic generation (HHG) [1] due to their extended lengths
and good mode profiles. Furthermore, they have been used for novel nonlinear optics experiments
[2,3] such as demonstration of multidimensional soliton states [4—6], ultraviolet generation
through soliton dynamics [7], and spatiotemporal mode-locked lasers [8].

In addition, gas-filled capillaries have been used for pulse compression. Self-phase modulation
and/or rotational and vibrational Raman effects [9-15] induce spectral broadening, which is
followed by post pulse compression schemes such as a pair of gratings or chirped mirrors [16—18].
However, these schemes are generally limited to lower intensities (i.e., below ionization threshold)
and thus requires long capillaries. In contrast, pulse self-compression can occur above the gas
ionization threshold due to plasma defocusing even in short (i.e., a few cm) capillaries and there
have been various studies of pulse propagation and resulting pulse self-compression in gas-filled
capillaries [19-25]. For instance, pulse self-compression by a factor of ~ 2.3 has been observed
in low-pressure Ar filled capillary through ionization-induced spatio-temporal reshaping [20].
Recently, Gao et al. [25] have reported spatio-temporal localization in a multiply ionized Ar gas
in capillaries and have also shown that UV wavelengths and smaller capillary radii are preferred
for better mode confinement. However, to the best of our knowledge, there has been no systematic
study or detailed analysis of wavelength-dependent pulse propagation in gas-filled capillaries, in
particular, ionization-induced pulse self-compression with mid-infrared (IR) wavelengths in the
weak ionization regime. Although pulse self-compression can also occur in laser filamentation
that is self-guidance of a high power laser pulse [26-30], gas-filled capillaries are preferred over
filamentation due to better mode quality and higher intensity [31].

In this Article, we numerically investigate the wavelength-dependent pulse self-compression
dynamics during nonlinear pulse propagation in gas-filled capillaries spanning near and mid-IR
for the weak ionization regime in which nonlinear optics experiments such as HHG are frequently
performed. In particular, mid-IR pulses have received significant attention because of favorable
scalability in nonlinear optics. For instance, the HHG cut-off scales with A2, where A is the driver
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wavelength [1]. For laser filamentation [32—42], the power-contained in a single filament also
scales with A2 so that higher powers can be transported in laser filaments with mid IR than near IR
or visible light [43-52]. In our work, pulse propagation is modeled using the multimodal carrier-
resolved unidirectional pulse propagation equation (UPPE) [53]. We investigate the nonlinear
spatio-temporal dynamics of laser pulses via plasma and wavelength-dependent modal dispersion.
We consider four laser wavelengths covering near and mid IR (1, 2, 3 and 4 um). We find that
plasma defocusing and rapid excitation of high-order transverse capillary modes produce complex
spatio-temporal dynamics. In contrast to laser filamentation where pulse self-compression can
be more efficient for long wavelengths [44], pulse self-compression in gas-filled capillaries
due to plasma is more efficient for short wavelengths, for instance, compression by a factor of
maximum 3.3 for 4 = 1 um. Our finding is explained by larger group velocity mismatch (GVM)
between fundamental and higher-order modes at longer wavelengths. In addition, for pulse
self-compression with long wavelengths, we find that large input pulse powers and capillary radii
are required for long wavelengths to enhance self-focusing induced plasma effects and minimize
GVM among different modes. Since long wavelengths are intensively studied and frequently used
in many areas of laser matter-interactions, it is critical to understand the wavelength-dependent
dynamics of nonlinear propagation.

2. Numerical simulations

We simulate the pulse propagation in gas-filled capillaries using the carrier-resolved, radially
symmetric unidirectional pulse propagation (UPPE) including modal expansion in the transverse
direction. The propagation equation to calculate the evolution of each modal component is
written as [25,41,54-56]
dE, w — i w?Ppn I w J 5NL n
= ik - — +iB,E, + —- - —,
0z ilkzn(w) Vg PBlEn 2k n(w) 2 & 2k, u(w) ¢ ¢ 2
where the terms with ~represent the ones in the spectral domain. We decompose Fourier
transform of the carrier-resolved electric field into the discrete modal components written as
E =3, E Jo(yar/ap), where Jo(y,r/agp) is the normalized zeroth-order Bessel function with 1y,

ey

being the n™ root of Jy and ag being the radius of the capillary. k., = \/k*(w) — kin is the wave

number in the propagation direction, where k(w) = n(w)w/c, n(w) is the Ar refractive index [57],
w is the angular frequency, c is the speed of light and k, , = ¥, /ap. The propagation equation
(Eq. (1)) is solved in the pulse frame moving with the group velocity of the fundamental mode
(vg = (dkz,1 /dw lw=wy) 1), Where wy is the central frequency of the laser. Under the condition of
k(wo)ao > ¥y [58], the loss coefficient is given by £, = [0.5(1 + n2)/(n2 - 1)'/2](7,,/1/27r)2/a
where n, is the refractive index of cladding. PNL » is the modal component [i.e., PNL =
> PNL,,,JO()/,, r/agp)] of Fourier transform of the nonlinear polarization (Pyz) which is given by
Pyi(1) = ey E3. Here ¢ is the free space permittivity and y® is the third-order susceptibility.
The ionization effects such as plasma defocusing and absorption are incorporated by calculating
the free charge-induced current (J). J, is the modal component [i.e., J = 3, J,Jo(ynr/ao)] of
Fourier transform of J which is given by J(t) = (€?/m.)(ve + iw)/ (ve + w?)p(t)E(t), where m,
and e are the electron mass and charge, respectively, v, is the electron collision frequency, and
p is the free electron density. ang, is the modal component [i.e., an. = X, @nraJo(Ynr/ao)]
of Fourier transform of the absorption due to optical field ionization (e ), which is given by
ani(t) = "OW+)UE, where pg is the neutral gas density, W([) is the optical field ionization (OFI)
rate, U is the ionization energy and / is the intensity of the pulse.

In order to calculate free electron densities, Eq. (1) is coupled with the following plasma
equation:

0 ol
a’j = WI)(po - p) + 7/», ©))
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where p is the plasma density, W(/) is the OFI rate by the Perelemov-Popov-Terentev (PPT)
ionization model [59], 0 = w{t/[n(wo)cp (1 + wiT?)] is the cross section for collisional
ionization, where 7, is the electron collision time and p, is the critical plasma density for the
driver laser.

We use 5-cm long Ar-filled capillaries [1] with 1 bar pressure in our simulations. For our
simulation parameters, various temporal phenomena such as pulse self-compression, pulse
splitting, etc. are clearly observed within the 5-cm propagation distance. The number of modes
in the simulations is 23, which is large enough based on our modal contribution analysis. The
input central wavelengths are 1, 2, 3 and 4 um. The first set of simulations is performed with
the following parameters: The input spatio-temporal Gaussian pulse intensity is / = 1.5 x 104
Wem™2 with transform-limited, full width half maximum pulse duration (1p) of 100 fs and 1/¢?
beam radius (w) of 0.645a( with ap =200 um, which provides optimal coupling into a capillary.
We maintain the same input intensity/energy for all the wavelengths, which means that the input
powers in terms of critical power are different for different wavelengths: 2.5P.,, 0.63P,,, 0.28P,,
and 0.16P., for 1 =1, 2, 3 and 4 pm, respectively. The zero dispersion wavelength for the
fundamental mode occurs at A = 1.24 pm and therefore, all the considered wavelengths belong
to the anomalous group-velocity dispersion (GVD) regime except A = 1 pm. The dispersion
lengths of the fundamental mode in Ar-filled capillaries for 7, =100 fs are 565 m, 112 m, 29
m and 12 m for 4 = 1, 2, 3 and 4 pm, respectively, which are much longer than the simulated
propagation distance (5 cm). We also perform simulations with different capillary radii, laser
intensities, pressure, pulse-width and Ne gas and discuss the results in Sec. 4.

3. Results and discussion

The evolution of peak intensities and plasma densities (global maxima) as a function of propagation
distance are shown in Fig. 1 for 4 = 1 um (red solid line), 2 um (black dashed line), 3 um (magenta
dotted line) and 4 pm (blue dashed-dotted line). Since the input intensities and wavelengths
belong to the tunneling ionization regime, plasma densities are similar (~ 10'® cm™) at the
capillary input. As shown, plasma defocuses laser pulses resulting in lower intensities for all the
wavelengths. However, the pulse for 4 = 1 um quickly recovers from plasma defocusing and
reaches high intensities again as it propagates. This can be explained by two mechanisms: It is
due to 1) less plasma defocusing at shorter wavelengths for a given plasma density and 2) larger
optical Kerr effect at shorter wavelengths induced by higher input power in terms of P.,. As a
comparison, the 2-um and 3-um pulses exhibit intensity increase later (e.g., at z ~4 cm for 4 =2
um and at z = 3 and 4 cm for A = 3 um), which is due to spatio-temporal reshaping which will be
discussed soon. In contrast, although intensity increase occurs at z =~ 2 cm for A = 4 um, it is not
strong compared with A =2 and 3 pm.
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Fig. 1. (a) Peak intensities and (b) peak plasma densities versus propagation distance for
A =1 pm (red solid line), 2 um (black dashed line), 3 pm (magenta dotted line) and 4 um
(blue dashed-dotted line).
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In our simulations, we find that the spatio-temporal dynamics change drastically for different
wavelengths even with the same input intensity as shown in Fig. 2 (see Visualization 1,
Visualization 2, Visualization 3 and Visualization 4). Here each spatio-temporal profile is
proportional to the square of the carrier-resolved electric field and its envelope represents the laser
intensity. It is evident that when ionization occurs, intensities at the trailing parts decrease due to
plasma defocusing [Fig. 2(a,e,i,m)], which results in pulse self-compression near the capillary
input. However, for further propagation, the trailing parts of the pulses start to exhibit on-axis
(r = 0) high intensities for some wavelengths [see Fig. 2(h) for 2 um, Fig. 2(k) for 3 um and
Fig. 2(o) for 4 um]. Since the input powers are less than P, for 4 = 2, 3 and 4 pm, it is not clear
whether this intensity increase at later times occurs due to Kerr-induced self-focusing. Therefore,
we perform additional calculations by removing the optical Kerr effect (n,7), which shows that
the intensity increase still occurs even without n,1. For instance, Fig. 3 shows the spatio-temporal
profiles with (a) and without (b) ny/ for A = 4 pm at z =2.8 cm, which shows similar trailing
pulses. We think that these trailing pulses are mainly due to excitation of higher-order modes via
plasma. The role of n,/ in pulse self-compression is discussed later. To quantify, we calculate
the spectrally-integrated contribution from each mode as the laser pulses propagate. Figure 4
shows the normalized modal contribution of the five lowest modes versus propagation distance
for different wavelengths. For A = 1 um, the contribution from the fundamental mode decreases
monotonically with propagation distance and reaches down to 50 % at the end of propagation.
As a comparison, the contributions from the fundamental mode suddenly drop to 38 % at z ~
4 cm for A = 2 pm and 50 % at z ~ 3 cm for A = 3 um. This excitation of higher-order modes
is closely related to the peak intensity increase shown in Fig. 1(a). In contrast, the 4-um pulse
maintains almost 75 % of the total energy in the fundamental mode till the end of propagation.
Excitation of higher-order modes and resulting modal interference can produce off-axis intensity
maxima [see, for instance, Fig. 2(a and e)], which leads to off-axis maximum plasma generation
and resulting plasma-induced focusing [60].

111

I

_02 X101 ; x10%3 : 3 um x10%3
-8 . = i) | = |
i o o L
g 0 11\' e g 0 HH g 00 \w f 3 Ml
20 (i 2o il 2 o L 3 i
« z=1cm « 0.2 z=1cm « 0.2 z:lr‘n « z=1¢cm

0 Time x1013 Co100 100 a0 COT100 2 x10%3

—0.2 e (fs) L, 02 Zo02 e (fs)
oo ‘ 2 01K , £ 2E
E & BE . BE < BE v
2 | “MU\‘W 2. il MW\\‘\ 2 o1 Wl 3
« . z=3cm « X z=3cm « 0.2 « z=3cm

o © Timg (fs) X100 100 10 o0 o2 X101 -

-0.1

C) wmllii‘i:“

z=4.cm

” Fﬁ?ﬂtlm

00
k)

\\Hklllm "y

”“h\l

z=5cm

0 0 1
Time (fs)

Radius (mm)
Radius (mm)
Radius (mm)
Radius (mm)

z=4

0) | ::C:’n)?hmnm

|
o o
NN

) 1000 2 ) |
s
I b

z=5

-

z=5cm

0 0
Time (fs)

Radius (mm)
Radius (mm)
Radius (mm)
Radius (mm)

w

0 1
Time (fs)

© o 9o
)

o ¢
N
o ¢
N

—100 —100

100

0
Time (fs)

Fig. 2. Spatio-temporal profiles at various propagation distances for (a-d) 4 = 1 ym, (e-h)
A =2pum, (i-1) A = 3 ym and (m-p) 4 = 4 um. The profile is proportional to the square of
the carrier-resolved electric field and its envelope represents the laser intensity. The color

bars indicate intensity in Wem 2.,

We investigate the effect of higher-order modes on the pulse temporal dynamics. Figure 5
shows the on-axis temporal profiles versus propagation distance for different wavelengths. As
the pulses propagate, the pulse duration for 4 = 1 um becomes the minimum (~ 28.4 fs) at 7 ~
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Fig. 3. Spatio-temporal profiles for A = 4 um at z =2.8 cm (a) with np/ and (b) without n1I.
The profile is proportional to the square of the carrier-resolved electric field and its envelope
represents the laser intensity. The color bars indicate intensity in Wem 2.
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3 cm [see Fig. 5(e)] and remains almost the same till z ~ 4 cm whereas pulse splitting and
mainly pulse broadening occur for other wavelengths. We also perform spatially-averaged pulse
duration analysis within a 100-um diameter at z ~ 3 cm for 4 = 1 pm, which shows compression
by a factor of ~ 2 with 45-fs pulse duration [Fig. 5(f)]. At the end of propagation, the pulse
duration for A = 1 pm is ~ 42.3 fs whereas the pulse duration for 4 = 4 pm increases to ~ 118
fs. Furthermore, to investigate the role of Kerr effect in pulse self-compression, we perform
additional calculations by removing the optical Kerr effect (n,7). Figure 6 shows the calculated
on-axis temporal profiles versus propagation distance without 7,/ term. For 4 = 1 um whose
input power is greater than P, [Fig. 6(a)], pulse self-compression does not occur without n,/ for
z > 3 cm, which is in contrast to the simulation with n,/ [Fig. 5(a)]. Our calculations confirm
that self-focusing induced plasma is the key parameter for pulse self-compression.

To understand the pulse self-compression for 4 = 1 pm and pulse broadening for other
wavelengths, we investigate the group velocities of various modes. The wavelength-dependent

group velocities are calculated using [vg, = (dkzn/dw |w=w,) '], Where k., = \[k*(w) — k2,
is the modal-dependent wave number. The group velocities of the four lowest modes for an
Ar-filled capillary with 1 bar pressure and without plasma are shown in Fig. 7(a). To investigate
the effect of plasma, we also calculate group velocities using the plasma-dependent refractive
index given by n,(w) = [n(w) — 1](po — p)/po + 1 — p/2p., where n(w) is the neutral medium
refractive index based on the Sellmeier equation, pg is the neutral density of Ar, p is the plasma
density, and p. is the critical plasma density. Here we assume a constant plasma density of 1
x10'7 ¢cm™3, which is similar to our numerical simulation results [Fig. 1(b)]. Although the group
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velocities decreases with plasma as shown in Fig. 7(b), the difference between group velocities
of different modes remain almost the same for our simulated wavelengths. In further detail, we
calculate group velocity mismatch (GVM) between two capillary modes using Taylor expansion
ken ~ k(w) = k3 ,/2k(w). Since vg, = (dkop/dw)™ ~ (dk/dw) ' [1 + yZ/2alk*(w)]™', GVM
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between two (m'" and n'") modes can be written as,

1 1 dk\ va-v: dk\ yi-v: [
ovMm= | L _ 1| (_) Y zn _ (_) Y= Yo (L) 3)
Ve Vegn dw | 2agk?*(w) dw | 8n°n*(w) \ ag
In the above equation,
dk n(w) A dn
_=— ] - —— . 4
dw c ( n(w) d/l) “)

However, | Adn/n(w)dA| < 107> for A > 1 um and 1-bar Ar and thus GVM scales as A% /a3. This
is confirmed by Fig. 7(a) where GVM is larger at longer wavelengths, resulting in larger delays
between the fundamental mode and higher-order mode at longer wavelengths. Our calculations
shows that the delays between the fundamental (n = 1) and the 4™ mode are ~ 7, ~ 28, ~ 63,
and ~ 113 fs for 4 = 1, 2, 3 and 4 pm, respectively for 5-cm propagation. Likewise, the delay
between the fundamental and other higher-order modes increases at longer wavelengths. This
GVM analysis clearly explains the correlation between excitation of higher-order modes and
pulse splitting. For example, the contributions from higher-order modes suddenly increase at z ~
4 cm for A = 2 um [see Fig. 4(b)] resulting in pulse elongation and eventually splitting at z = 5
cm [see Fig. 5(b)]. Similarly for A = 3 pm, the contributions from higher-order modes abruptly
increase at z ~ 3 cm [see Fig. 4(c)] and pulse splitting starts to occur at z = 4 cm and becomes
significant at z = 5 cm [see Fig. 5(c)].
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Fig. 7. Group velocities versus wavelength for the four lowest mode; n = 1 (black solid
line), n = 2 (red dashed line), n = 3 (blue dashed dotted line) and n = 4 (magenta dotted
line), (a) in neutral medium and (b) with plasma.

In addition, we calculate the time-dependent modal contributions at the positions of significant
pulse splitting, for instance, atz =4.9 cm for 4 =2 and 3 ym and at z = 4.1 cm for 4 = 4 pm as
shown in Fig. 8(a,c,e). Due to pulse splitting, there are two pulses: main and trailing pulses and
we analyze the modal contributions in each pulse. In each pulse, we average over 50 fs in time
centered at the local intensity peaks. As shown in Fig. 8(b,d,f), in the main pulses (red solid
circle), the fundamental mode dominates for all three wavelengths whereas in the trailing pulses
(blue solid triangle), the contributions from higher-order modes are significant. For instance, the
45t and 6™ modes contain most of the energy in the trailing pulse for A = 2 um. Similarly, ~
55 % energy is contained in the 3™ mode for A = 3 um and ~ 90 % energy is contained in the 2"
mode for A =4 um. This confirms that for 4 = 2, 3 and 4 um, excited higher-order modes lag
behind the fundamental mode due to smaller group velocities, which results in pulse splitting. In
contrast, since GVM between modes is smaller for 4 = 1 ym, higher-order modes mostly overlap
with the fundamental mode temporally and thus pulse broadening and/or splitting is minimal.
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4. More results
4.1. Capillary radius dependent pulse self-compression

We also investigate the role of capillary radius on the spatio-temporal dynamics via simulations,
in particular, to confirm the l/a(z) scaling of capillary dispersion which has been discussed in
previous work (see, for instance, Ref. [7,61,62]). Simulations are performed for two more
radii ag = 100 um and 250 um with the input intensity of / = 1.5 x 10'* Wem™. To have the
same intensity for both radii, the input powers with ag = 100 pm are 0.63P,,, 0.16P,, 0.07P,
and 0.04P,, for A = 1, 2, 3 and 4 um, respectively, and those with gy = 250 um are 3.93P,,,
0.99P,,, 0.44P,, and 0.25P., for A = 1, 2, 3 and 4 pum, respectively. Pulse spatio-temporal
dynamics, particularly pulse self-compression with ap = 100 um is different from that with ay =
200 um (Sec. 3). The normalized on-axis temporal profiles versus propagation distance for
ap = 100 ym are shown in Fig. 9(a-d) for 2 = 1, 2, 3 and 4 pum, respectively. Although pulse
self-compression occurs for 4 = 1 pm, it happens with pulse splitting. Overall, compared to
ap = 200 um (see Fig. 5), pulse splitting and broadening are more significant with ay = 100 pm
for all the wavelengths. It is consistent with the fact that GVM is inversely proportional to the
square of capillary radius (GVM o« A2/ a(z)) and therefore the delays between the fundamental
and higher-order modes for smaller capillary radius increase. The group velocities as a function
of wavelength for the four lowest modes with ay =100 um are shown in Fig. 9(e), which shows
larger GVM than that with ag = 200 um shown in Fig. 7(a). For instance, the delay between the
fundamental and the 4™ mode for A = 1 um is ~ 7 fs with g = 200 um but it increases to ~ 28 fs
with ag = 100 pm for 5-cm propagation resulting in pulse splitting.

Pulse self-compression with ay =250 um is similar to that with ag =200 um, as shown in
Fig. 10. Pulse self-compression is still most efficient for 4 = 1 pm and the minimum pulse
duration is ~ 20 fs, which occurs near z ~ 4.5 cm. The spatially-averaged pulse duration within a
100-um diameter is about 30 fs, yielding pulse self-compression by a factor of ~ 3.3. Furthermore,
pulse splitting is less with ag =250 um compared to ap =100 and 200 um because of the smaller
GVM among the modes [see Fig. 10(e)]. In summary, pulses at 4 = 1 um yield better pulse
self-compression than longer wavelengths (2, 3 and 4 um) irrespective of the capillary radius for
the weak ionization regime.
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dashed line), n = 3 (blue dashed dotted line) and n = 4 (magenta dotted line).

4.2. Intensity-dependent pulse self-compression

Since excitation of higher-order modes depends on the intensity during pulse propagation in
capillaries, we also investigate the effect of the intensity. Here we show simulation results
for two more intensities: / = 1 X 10" Wem™ and 7 = 2.5 x 10" Wem™. Note that all the
previous results are at / = 1.5 x 10'* Wem™2. The peak intensities versus propagation distance
for I = 1 x 10" Wem™ are shown in Fig. 11(a). Defocusing due to plasma occurs near the
input of the capillary for all the wavelengths but due to less ionization it is not strong compared
with 7 = 1.5 x 10" Wem™2 [Fig. 1(a)]. The contribution from the fundamental mode versus
propagation distance is shown in Fig. 11(b) for 2 = 1 um (red solid line), 2 pm (black dashed
line), 3 um (magenta dotted line), and 4 um (black dash-dot line). Due to low intensity and
weak ionization, excitement of higher-order modes are negligible for A = 2, 3 and 4 um and thus
pulse broadening and/or splitting does not occur during propagation as shown in Fig. 11(c-e).
However, since P,, scales with 12, the pulse for A = 1 um experiences more self-focusing and
thus maintains nearly constant intensities throughout the propagation, exhibiting plasma-induced
self-compression even at I = 1 x 10'* Wem™ [Fig. 11(f)]. The minimum pulse duration is ~
32 fs which occurs near z ~ 4.6 cm. To confirm the role of optical Kerr effect, we perform a
calculation without npI at I = 1 x 10'* Wem™ for A = 1 um. Comparison of normalized on-axis
temporal profiles with and without n,7 is shown in Figs. 11(f) and 11(g), which shows that there
is no pulse self-compression without n/. Therefore, we conclude that the optical nonlinearities
via Kerr effect and plasma are critical for pulse self-compression.

For input intensity of I = 2.5x 10'* Wem™2, spatio-temporal dynamics are much more complex
due to higher plasma density and resulting greater excitation of higher-order modes for all the
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wavelengths. For instance with 4 = 3 um, Fig. 12(a) shows the spatio-temporal profile at the
output of the capillary and Fig. 12(b) shows the on-axis temporal evolution with propagation
distance. Multiple pulse splitting occur, resulting in complex spatio-temporal profiles as shown
in Fig. 12(a). Therefore, pulse self-compression in capillaries is not easy to achieve with large
plasma densities (e.g., full ionization) though multiple ionization may produce self-compression
under appropriate conditions [25].

4.3. Pressure-dependent pulse self-compression

We also perform simulations by varying the pressure inside the capillary. Since properties such as
refractive index, gas density and nonlinearities change with pressure, it is important to optimize it
for pulse self-compression. Simulations are performed for two more pressures, 0.5 bar and 2 bar
with the input intensity of I = 1.5 x 10'* Wem™ (the results in Sec. 3 are with 1 bar pressure).
The normalized on-axis temporal profiles versus propagation are shown in Fig. 13(a-d) with 0.5
bar and Fig. 13(e-f) with 2 bar for 4 = 1, 2, 3 and 4 um, respectively. As shown in Fig. 13(a-d),
pulse self-compression is still most efficient for 4 = 1 um. However, it is not efficient as with 1
bar, compression down to ~ 50 fs at the end of the capillary. For A = 2, 3 and 4 um with 0.5 bar,
pulse-splitting is less pronounced compared with 1 bar because of smaller nonlinearities at lower
pressure and resulting less excitation of higher-order modes. In contrast, with 2 bar, the pulse
self-compresses down to ~ 18 fs near z ~ 3.5 cm for A = um but with more pulse-splitting. For
A =2,3 and 4 ym with 2 bar, pulse-splitting is more pronounced because of greater excitation of
higher-order modes and GVM among capillary modes.
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Simulations with the same number of cycles for different wavelengths

We perform simulations with the same number of optical cycles for all the wavelengths. We
choose pulse durations of 50, 100, 150 and 200 fs for A = 1, 2, 3 and 4 um, respectively, with
the same input intensity of 1.5 x 10'* Wem™2. To have the same input intensity, we change the
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input powers accordingly for all the wavelengths. The normalized on-axis temporal profiles are
shown in Fig. 14(a-d) for A = 1, 2, 3 and 4 um, respectively. Spatio-temporal dynamics with
the same number of cycles are similar to those with the constant pulse duration so that pulse
self-compression only occurs for A = 1 um.
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Fig. 14. Normalized on-axis temporal profiles versus propagation distance with the same
number of cycle in a pulse for (a) A = 1 um, (b) A =2 um, (¢) A = 3 um and (d) 4 =4 pm.
Note that x-axes are not same.
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4.5. Ne-gas simulations

Since neon is another frequently-used atomic gas medium for capillary nonlinear optics, we
also perform simulations with Ne-filled capillaries. The nonlinear index coefficient of Ne at 1
bar is 0.074 x 107! cm?W~! which is much smaller than that of Ar (1 x 10~!? em?W~1) [63].
Since the ionization energy of Ne (21.56 eV) is higher than that of Ar (15.76 eV) [37], we use
a higher input intensity at 4 x 10'* Wem™2 with 100-fs pulse duration for all the wavelengths
to see the plasma effects. We use the ADK ionization model [64] due to high intensity for Ne
simulations. The input powers in terms of critical power are 0.52P,,, 0.13P,,, 0.058P,, and
0.033P,, for A = 1, 2, 3 and 4 um, respectively. The evolution of peak intensities and plasma
densities versus propagation distance are shown in Fig. 15(a-b). Plasma at the input quickly
defocuses laser pulses resulting in intensity decrease like the Ar simulations. However, unlike Ar,
only longer wavelengths reach higher intensities for further propagation [shown in Fig. 15(a)].
Since the input powers are smaller than the critical powers, these intensity increases for longer
wavelengths are mainly due to complicated plasma-induced spatio-temporal localization. Most
notably, in contrast to Ar, pulse self-compression does not occur for any of the wavelengths
[Fig. 15(c-f)]. This comparison between Ar and Ne confirms the role of self-focusing for efficient
pulse self-compression.
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Fig. 15. Simulation results with Ne-filled capillaries: (a) Peak intensities and (b) peak
plasma densities versus propagation distance for 4 = 1 um (red solid line), 2 um (black
dashed line), 3 um (magenta dotted line) and 4 um (blue dashed-dotted line). Normalized
on-axis temporal profiles versus propagation distance for (¢) 4 = 1 um, (d) 4 =2 um, (e)
A =3 pmand (f) 4 =4 pm.

4.6. Simulations with pressure gradients

Since experimentalists sometimes use pressure (density) gradients at the input and output of
a capillary [1] to maximize the coupling efficiency at the input and/or minimize harmonic
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absorption at the output, we perform additional simulations with density gradient at the input and

output. The density gradient at the input is defined as, n(z) = \/nfi + (z)(n% - nfi) /L, where ny is
the neutral density at 1 bar, ny = 0.2n¢ is the density at the entrance, L = 0.5 cm is the gradient
length at the input and z is the propagation distance [1]. The same density gradient profile is also
defined at the output so that there are 0.5-cm density gradient region at the input, 4-cm constant
density region, and 0.5-cm density gradient region at the output. As shown in Fig. 16 which
should be compared with Fig. 5 (without density gradient), overall there is not much difference
in the pulse self-compression and temporal dynamics.
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Fig. 16. Simulation results with pressure gradients: (a) Peak intensities and (b) peak plasma
densities versus propagation distance for 4 = 1 pm (red solid line), 2 um (black dashed
line), 3 pum (magenta dotted line) and 4 pm (blue dashed-dotted line). Normalized on-axis
temporal profiles versus propagation distance for (c) 4 = 1 um, (d) A =2 pm, (¢) 4 = 3 pm
and (f) A =4 ym.

4.7. Simulations with the same power in terms of critical power

As we have discussed, the optical Kerr effect plays an important role in pulse self-compression.
Therefore, we perform simulations with the same laser input power in terms of critical power
which scales with A%. The input power is 2.5P,, with 100-fs pulse duration for all the wavelengths.
We use the same input intensity (1.5 x 10'* Wem™2) for all the wavelengths and thus we use
different capillary radii: 200, 400, 600, and 800 pum for A = 1, 2, 3 and 4 um, respectively. This
is also important because GVM among different modes scales A2/ a% [Eq. (3)] and is thus the
same for all the wavelengths. The evolution of peak intensities and plasma densities versus
propagation distance are shown in Fig. 17(a-b). Overall, higher intensities are maintained for
shorter wavelengths. It is due to larger plasma defocusing at longer wavelengths. Note that it is
not due to capillary modal loss since the loss coefficient scales with 12 /ag and is thus smaller
at longer wavelengths. The normalized on-axis temporal profiles as a function of propagation
distance are shown in Fig. 17(c-f). Pulse self-compression occurs even for long wavelengths with
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minimal pulse-splitting because of nonlinearities via plasma and optical Kerr effect as well as
the same GVM among different capillary modes. These results also confirm the critical role of
self-focusing for pulse self-compression. In summary, if high laser powers (energies) for plasma
generation and self-focusing are available at long wavelengths, large-radius capillaries should
be used for pulse self-compression for long wavelengths to minimize GVM among different

capillary modes.
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Fig. 17. Simulation results with the same input power in terms of critical power: (a) Peak
intensities and (b) peak plasma densities versus propagation distance for 4 = 1 um (red solid
line), 2 pm (black dashed line), 3 um (magenta dotted line) and 4 pm (blue dashed-dotted
line). Normalized on-axis temporal profiles versus propagation distance for (¢) 4 = 1 um,
(d)A=2pm, () A =3 pm and (f) 2 =4 um.

5. Conclusion

In summary, we numerically study the wavelength-dependent dynamics of high intensity fem-
tosecond pulse propagation in gas-filled capillaries by solving the carrier-resolved unidirectional
pulse propagation equation. Our simulations reveal complex spatio-temporal dynamics such as
plasma-defocusing, excitement of higher-order modes and self-focusing. It is shown that pulse
self-compression due to plasma is more efficient for 4 = 1 um compared to longer wavelengths
(A =2, 3 and 4 um) for the weak ionization regime in which nonlinear optics experiments such as
HHG are frequently performed. Our finding is explained by the wavelength dependence of group
velocity mismatch among capillary modes which is proportional to the square of wavelength.
We also examine the role of capillary radius for pulse self-compression since group velocity
mismatch is inversely proportional to the square of capillary radius. Furthermore, we investigate
the intensity dependence of pulse self-compression, revealing that shorter wavelengths can
exhibit self-compression even at low intensities because of self-focusing-induced plasma. At high
intensities, spatio-temporal dynamics are much more complex due to greater contributions from
higher-order modes. We also investigate the effect of parameters such as pressure, pulse-width
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and Ne gas on pulse self-compression, which confirms that pulse self-compression is more
efficient for shorter wavelengths. Furthermore, for pulse self-compression with long wavelengths,
we find that large input pulse powers and capillary radii are required for long wavelengths to
enhance self-focusing induced plasma effects and minimize GVM among different modes.
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