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Abstract
Health monitoring of structures and people requires the integration of sensors and devices on
various 3D curvilinear, hierarchically structured, and even dynamically changing surfaces.
Therefore, it is highly desirable to explore conformal manufacturing techniques to fabricate and
integrate soft deformable devices on complex 3D curvilinear surfaces. Although planar
fabrication methods are not directly suitable to manufacture conformal devices on 3D
curvilinear surfaces, they can be combined with stretchable structures and the use of transfer
printing or assembly methods to enable the device integration on 3D surfaces. Combined with
functional nanomaterials, various direct printing and writing methods have also been developed
to fabricate conformal electronics on curved surfaces with intimate contact even over a large
area. After a brief summary of the recent advancement of the recent conformal manufacturing

8 These authors contributed equally to this work.
∗

Author to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 3.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT
2631-7990/21/042001+21$33.00 1

https://doi.org/10.1088/2631-7990/ac1158
https://orcid.org/0000-0003-4054-5219
https://orcid.org/0000-0001-6075-4208
mailto:Huanyu.Cheng@psu.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/2631-7990/ac1158&domain=pdf&date_stamp=2021-7-16
https://creativecommons.org/licenses/by/3.0/


Int. J. Extrem. Manuf. 3 (2021) 042001 Topical Review

techniques, we also discuss the challenges and potential opportunities for future development in
this burgeoning field of conformal electronics on complex 3D surfaces.

Keywords: conformal manufacturing, soft deformable sensors, curved surfaces, transfer printing,
direct printing and writing methods

1. Introduction

Though most sensors and electronics are fabricated on 2D
planar substrates (e.g. silicon wafers [1] or glass plates [2]),
the integration of electronic systems on 3D curvilinear sur-
faces starts to gain momentum in bio-integrated devices [3–6],
health monitoring of various structures [7, 8], and 3D mul-
tifunctional electronics [9]. In addition to the 3D complex
shapes, the soft, hierarchically structured, dynamically chan-
ging biological surface [10] presents significant challenges
for the device fabrication and integration. Efforts to address
these challenges lead to the rapid development of various
stretchable structures with advanced fabrication approaches
to integrate the devices on the 3D curved surfaces. The
exploration of novel nanomaterials and their composites fur-
ther expands the functionality and capability of the result-
ing devices. The ever-growing repertoire of these 3D con-
formal electronics opens up opportunities in 3D antenna and
RF devices [9, 11–16], conformal epidermal electronics [17],
stretchable gas sensors [18–23] and biodevices [24–26], soft
robotics [27], human–machine interfaces [28–31], energy har-
vesters and self-powered systems [32–34], among others.

The stretchable structures for conformal electronics have
been extensively discussed in many reviews; thus, we will
only briefly highlight a few representatives commonly used
strategies. Because reduced thickness in the device effectively
decreases the bending rigidity and the bending strain, it is
of high interest to explore various functional nanomaterials
(e.g. nanowires [36] or nanomembranes [37]/films [38]). The
demonstrated applications range from infrared photodetectors
[39] and stretchable gas sensors [40] to earthworm soft robots
with deformable sensors [41] for environmental exploration
and agricultural automation. The commonly used stretchable
structures include wavy geometries [42], strain isolation [43],
filamentary serpentine [44] or mesh designs [45] (with fractal
shapes [46]), helical coils [47], and origami/kirigami [48].
The representative island-bridge design with deformable ser-
pentine metal bridges between device islands can be stretched
without breaking the intrinsically brittle devices due to the
unfolding of the serpentine bridges [45]. Compared to serpent-
ine shapes, fractal geometries can provide enhanced stretch-
ability and support different deformation modes (e.g. biaxial
and radial) within a given dimension for use in advanced
stretchable electronics [46, 49]. Reducing the size of the island
leads to the development of stretchable mesh designs. The
filamentary serpentine can also be replaced by other stretch-
able mesh patterns such as honeycomb. As one example, the
thin-film transistor array can be built on the polyimide-based
honeycomb to conformally cover a baseball [50]. Similarly,
a polyhedral edge unfolding algorithm can be used to unfold

arbitrary surfaces into 2D surfaces [51]. Without a large sep-
aration distance between pixels to limit the resolution of
the device, the photodiodes based on single-crystalline Si
nanomembrane can be used to fabricate the origami opto-
electronics in truncated icosahedron (Archimedean solids with
multiple pentagonal and hexagonal faces) on a hemispherical
convex/concave mold [48]. The structural design of the com-
posite substrate with different stretchable networks (e.g. tri-
angular/honeycomb/kagome or with self-similar designs) can
yield a wide range of mechanical properties to match those of
biological tissues for a mechanically invisible device [52, 53].

As discussed above, various functional nanomaterials have
been extensively used for conformal electronics (e.g. elec-
trodes, sensors, and other functional devices) to interface
with complex geometric surfaces because of their remark-
able bendability and stretchability. The representative nan-
omaterials include metal nanowires [54], carbon nanotubes
(CNTs), graphene [55, 56], liquid metal alloy, organic films,
and their composites [57, 58]. In particular, the composite
materials can exploit the advantages of multiple constituents
in the composite. For instance, the inorganic-organic thermo-
electric composites with high-performance whisker-like semi-
conductor Ta4SiTe4 mixed with chain-like polyvinylidene flu-
oride (PVDF) can simultaneously achieve high thermoelectric
performance and mechanical flexibility [59]. An electrically
conductive network of Ta4SiTe4 whiskers coherently inter-
facedwith PVDF also contributes to the robust electromechan-
ical performance (e.g. almost unchanged up to 5000 bending
cycles over the curvature of 0.22mm−1). The results are prom-
ising for self-powered conformal thermoelectrics to poten-
tially harvest heat from the human body or environment.

Diverse fabrication methods have been widely used to pre-
pare small-scale functional devices on planar rigid substrates.
The representative inherently planar methods include contact
printing [60], nanoimprint lithography [61], beam lithography
[62]. Though these methods are not directly suitable to man-
ufacture conformal devices on 3D curvilinear surfaces due
to the limitation in planar fabrication, they can be combined
with the method of transfer printing [63] or assembly [55]
to enable the device integration on 3D surfaces. By using
either mechanical stress or noncontact stimuli (e.g. temperat-
ure, light, magnetism, or electricity), the planar surface can be
directly deformed into a curved surface via various assembly
techniques (e.g. pre-stretching bucking [64], microfluidic [65],
magnetic [66], and thermal [67]). As for transfer printing, it
has been widely explored to integrate micro/nanoscale thin
film devices prepared on a planar growth substrate onto the
surface of the target substrate. Compared to the technique of
transfer printing, direct printing methods can be more efficient
and avoid pattern distortions. The direct fabrication methods
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Figure 1. Conformal manufacturing of soft deformable sensors on curved surfaces. Combined with stretchable structures and functional
nanomaterials, various transfer printing (reproduced with permission from [35, 72–74]) and direct printing/writing techniques (reproduced
with permission from [17, 75–77]) are capable of integrating conformal sensors/devices on 3D curvilinear and even dynamically changing
surfaces.

range from curved lithography [68] and laser direct writing
[69] to inkjet [70] and aerosol jet printing [71].

The recent advancement of conformal manufacturing of
soft deformable devices on curved surfaces is reviewed with
the sections arranged as follows (figure 1). This review
first summarizes the various advanced transfer printing tech-
niques in section 2 and direct conformal printing tech-
niques in section 3. After reviewing representative transfer
printing and direct printing techniques, their applications
to fabricate sensors and devices in conformal manufac-
turing are discussed. Following the discussion of recent
advances in conformal electronics, we highlight the existing
challenges and a small fraction of opportunities for future
development.

2. Advanced transfer printing techniques

In the typical transfer printing process [78–80],
micro/nanoscale thin film devices are initially prepared on
a planar donor (or growth) substrate. Next, a soft, elasto-
meric stamp is used to pick up the device from the donor
substrate, followed by a delivery step to transfer the device
from the stamp to a target receiving substrate. As the pickup
(or delivery) step depends on the relative adhesion strength
at the device/stamp and stamp/donor (or stamp/receiver)
interfaces, the modulation of the interfacial adhesion is key to

the successful and reliable transfer printing process. Several
advanced transfer printing techniques have been developed
to modulate the interfacial adhesion strength, including kin-
etically controlled [81, 82], thermal actuated [83–85], water-
assisted [86, 87], surface relief structure-assisted [88–90],
shear-assisted [91, 92], magnetic-assisted [63, 92, 93], and
shape memory polymer based [93–96].

In addition to a planar receiving substrate, the technique
of transfer printing can also enable the integration of thin-
film devices on various curvilinear 3D surfaces that involve
large variations in Gaussian curvature. The key is to explore
the soft molding substrate that is first cast and cured on the
complex 3D surface. Following, this soft molding substrate
is axially stretched (or strained) into a relatively flat shape,
onto which the planar stretchable device can be transfer prin-
ted. The planar stretchable device can be prepared by standard
photolithographic processes or other fabrication approaches.
After a strong bonding is secured between the device and the
soft molding substrate, the release of the pre-strain results in
the recovery of the soft molding substrate into the initial 3D
shape, causing the stretchable device to integrate on the sur-
face. As one example, the array of inorganic light-emitting
diodes has been successfully integrated on various 3D shapes
with different substrate materials (e.g. glass, plastic, or rub-
ber) [97]. This integration method provides a route to create
conformable displays, lighting systems, and other stretchable
electronics [98].
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Figure 2. Transfer printing combined with high-resolution patterning and post assembly for multiscale adhesion-free metallic
nanostructures with ultrasmall nanogaps, reproduced with permission from [99]. (a) Schematic of the process flow for patterning and
transfer printing of multiscale gold structures. (b) Optical micrographs of gold photonic sieve array at different steps. (c) Photoluminescence
enhancement of MoS2 monolayer enabled by the ultrasmall plasmonic nanogap (5 nm gap in the post-assembled gold nanodimer).
(d) Short-channel MoS2 transistor with transferred gold nanogap electrode. [100] John Wiley & Sons. © 2020 WILEY-VCH Verlag GmbH
& Co. KGaA, Weinheim.

The transfer printing technique can also be combined with
an advanced patterningmethod and post-mechanical assembly
to fabricate multiscale adhesion-free metallic nanostructures
(figure 2) [99] for nanoelectronics, flexible optoelectronics,
and nanoplasmonics [100]. Because of the poor adhesion at
the metal/substrate interface [101], electron-beam lithography
is first used to prepare the adhesion-free gold multiscale struc-
tures, which avoids the need for sacrificial underlayer.With the
help of a self-assembly monolayer, a thicker PDMS rubber is
used to detach the film from the donor substrate and then print
onto the acceptor substrate with mild heating (figure 2(a)).
The optical micrographs of gold photonic sieve array that con-
sists of various sized disks with the concentric arrangement
at the different steps (figure 2(b)) show a 100%-yield transfer
printing of metallic nanostructure as small as 60 nm. With the
use of a pre-strained strategy, the release of the elastomeric
substrate allows the nanogap between metallic structures to
shrink significantly from 120 nm to 5 nm (figure 2(c)). The
post-assembled gold nanodimer with 5 nm gap further res-
ults in the photoluminescence enhancement of MoS2 mono-
layer with a factor of more than 3 compared to that of pristine
MoS2 flake (figure 2(c)). The transferred nanogap gold elec-
trodes with a 70 nm channel length can also be post assembled
onto the MoS2 monolayer to yield short-channel transistors
(figure 2(d)).

Compared to the conventional planar stamps, the use of
a pneumatically inflated elastomeric balloon as a conformal
additive stamp can directly fabricate various 3D curvy elec-
tronics [35] (figure 3(a)). The conformal additive stamp is pre-
pared by coating a thin layer (271 µm) of Clearflex on the

surface of a commercially available latex balloon for tunable
adhesion. After pickup of the fabricated ink on a 2D surface
with the balloon stamp, the balloon stamp with ink is brought
to contact the target 3D surface. The excellent deformability of
the balloon allows it to form intimate contact with complex 3D
surfaces, which plays a key role in printing onto arbitrary 3D
surfaces. Serpentine-shaped metal meshes can be printed on
curvilinear 3D surfaces (e.g. convex edge, concave edge, pyr-
amid, and uneven surfaces) (figure 3(b)). As another demon-
stration, a Si pellet array of 39 × 39 with 100 × 100 µm in
each pellet can be first picked up by the balloon and then prin-
ted onto a hemispherical shell (figure 3(c)). The strain in all
of the Si pellets is smaller than 0.01%, which is much smaller
than the fracture strain of Si (2%–3%) [102]. Without cracks
or damage, a high yield of over 99% can be achieved. During
contact with the array, the deformation in the balloon stamp
increases from the initial contact region to the outer areas (or
from central to the peripheral area of the array). Therefore, the
position distortion is mainly observed in the peripheral area
with an average of 0.234mm. The distortion can be reduced by
improved shape control of the balloon stamp and hemispher-
ical shell or the use of a high-accuracy camera for improved
alignment.

The conventional transfer printing can also be combined
with the concept of Cartan development to transfer substrate-
free, large-area electrodes onto 3D curvilinear skin surfaces
without distortion or wrinkles [72] (figure 4). As the sphere
rolls along a planar path, the 3D curve from the contact
provides the transformation of the curve from the planar sur-
face to the sphere (figure 4(a)). As a result, the cm-long
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Figure 3. Additive stamp printing with a pneumatically inflated elastomeric balloon as a conformal stamp to fabricate various 3D curvy
electronics, reproduced with permission from [35]. (a) Schematic to show the use of a pneumatically inflated elastomeric balloon as a
conformal additive stamp. (b) The serpentine metal mesh on convex edge, concave edge, pyramid, and uneven surfaces. (c) The retrieved
39 × 39 Si pellet array (each pellet of 100 × 100 µm) on a balloon stamp and printed on a hemispherical shell, with high yield (>99%) and
small strain (0.01%) in all the Si pellets. Reprinted by permission from Springer Nature [72] Copyright © 2019, The Author(s), under
exclusive licence to Springer Nature Limited.

serpentine filaments with a thickness of 1.2 µm and a width
of 300 µm can be conformally printed onto a spherical sur-
face. Similarly, complicated 2D patterns with serpentine fil-
amentary elements can be transfer printed onto the spherical
surface with slight deformation due to the finite width. Since
the Cartan curve does not need to be extensible, a bendable
and inextensible cloth donor substrate can be further used to
reduce the tensile strain in the filamentary elements during
transfer printing. As a demonstration, the 2D cross patternwith
four branches on the wet cloth substrate can be transferred to a
liquid adhesive hemispherical shell by sequentially laminating
and printing only one branch (while avoiding contact with the
other) at a time (figure 4(b)). Compared to direct transfer print-
ing, the Cartan transfer printing can conformally print large-
area tattoo-like electrodes onto developable skin surfaces (e.g.
arms and male chests) and the nondevelopable neck region
with little distortion or detachment (figure 4(c)).

Instead of improving the integrationmethod to achieve con-
formal manufacturing, the flexibility of nanomaterials can be
exploited for integration. The unique advantages of functional
nano-membranes/materials in conformal electronics and nan-
otransfer printing is particularly important for the integra-
tion of nanomaterials on unconventional substrates. By using
a wet-responsive and biocompatible smart hydrogel adhes-
ive, a nanoscale crack sensor can be transfer printed onto a
bovine eye [73] (figure 5). The stimuli-responsive and recon-
figurable adhesive is fabricated by a replica molding tech-
nique using poly (ethylene glycol) dimethacrylate (PEGDMA)
as a base material (figure 5(a)). The adhesive exhibits a
controllable and switchable adhesion with a high adhesion

strength of ca. 191 kPa in a dry state and ca. 0.3 kPa in the
swollen state (figures 5(b) and (c)). Its performance can also
be maintained under repeated cycles of swelling and deswell-
ing, demonstrating the capability in nanotransfer printing. The
fabrication of the nanocrack sensor starts with the forma-
tion on a Si wafer, followed by the transfer onto the PEG-
DMA hydrogel with strong adhesion in a dry state. After
bringing the hydrogel with the nanocrack sensor into con-
tact with the bovine eye, saline solution is applied to induce
low adhesion in the hydrogel for printing onto the spherical
surface of the bovine eye. The transferred nanocrack sensor
(of 100 nm wide and 35 nm thick) consists of a 20 nm-
thick Pt nanomembrane on a 2 µm thick SU-8 micromem-
brane in a honeycomb shape (figure 5(d)). The changes in
conductive pathways and the resistance of the crack sensor
in response to intraocular pressure (IOP) results in the meas-
urement of IOP for the evaluation of patients at risk of glauc-
oma. The characterizations of the sensor show high sensitivity
for a sweeping speed of 0.4 mmHg s−1 during loading and
unloading at different IOPs (i.e. 10, 20, 30, and 40 mmHg)
(figure 5(e)). The transferred sensor also remains conformally
attached to the substrate without delamination even after the
repeated cycling loads. Different from PEGDMA, the poly
(2-hydroxyethylmethacrylate) (PHEMA) hydrogel adhesive
exhibits even stronger adhesion and higher reversibility (adhe-
sion strength of 2.3 GPa/180 kPa in dry/hydrated state) [103],
which can also conform to flat and rough target surfaces.

In addition to trigger the response in the above example,
the water (vapor or moisture) can also assist the transfer print-
ing process to rapidly fabricate silk antennas onto curved
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Figure 4. Cartan transfer printing (CTP) to transfer large-area tattoo-like electrodes from a bendable cloth donor substrate to the
non-developable neck skin region, reproduced with permission from [72]. (a) Schematic of the CTP and (b) its step-by-step processes.
(c) Patterns transfer printed by CTP and direct transfer printing (DTP). (d) Large-area tattoo-like electrodes laminated on the neck through
CTP with Gaussian curvature map of the neck, and large-area epidermal electrodes with/without substrate attached on forearm under
180-degree rotation. From [72]. Reprinted with permission from AAAS.

Figure 5. Nanotransfer printing with a smart hydrogel adhesive to fabricate a nanoscale crack sensor onto a bovine eye for detecting
intraocular pressure, reproduced with permission from [73]. (a) The fabricated wet-responsive and reconfigurable poly(ethylene glycol)
dimethacrylate (PEGDMA) adhesive, where the inset is an SEM image of the PEGDMA nanostructure array of the adhesive. (b) The
reversible hydration and dehydration processes of the PEGDMA array. (c) The hydration-induced spontaneous bending of the PEGDMA
adhesive film and re-flattening of the adhesive during dehydration. (d) The fabrication of the nanoscale crack sensor and its subsequent
transfer printing onto a bovine eye using the PEGDMA adhesive with saline solution. (e) Normalized resistance variation showing the
reversible loading-unloading behavior at different pressures. [74] John Wiley & Sons. © (2018) WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim.
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Figure 6. Water-assisted transfer printing. (a) Transfer printing with water vapor to rapidly fabricate silk antennas on curved substrates.
(b) Experimentally measured time-dependent resonant frequencies of the silk antenna while the banana ripened over 9 d. (a) and (b) [105]
John Wiley & Sons. Copyright © (2012) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Water-assisted transfer printing to
fabricate AgNW-PDMS electrode on a polyvinylpyrrolidone (PVP) sacrificial layer onto curves surfaces without sliding or detachment. (d)
Relative change in the resistance of ITO on PET, AgNW on PET, and the AgNW-PDMS electrode using this printing method as functions of
the bending radius (left) and bending cycles for a bending radius of 4 mm (right). (e) The stretchable conductive electrode can be transferred
to various non-conventional substrates, including the skin, a balloon, a round-bottomed flask, and an elastomeric textile. (c)–(e) Reproduced
from [106] with permission of The Royal Society of Chemistry.

substrates [104] (figure 6(a)). After exposing the back surface
of non-crystalline functionalized silk films to water vapor, the
film is partially melted and the glass transition temperature of
the silk is also lowered. By using gentle pressure, the partially
melted and softened adhesive silk film with the Au antenna
can be conformally attached to various target surfaces, includ-
ing eggs, tomatoes, and apples. The antenna transferred on
fruits such as bananas can monitor the ripening process. As
bananas go from all green at day 0 to fully ripened by day 9,
the resonance frequency of the antenna shifts from 36.1 MHz
to 42.6 MHz, which results from the geometric deformation
and the change in the dielectric properties during ripening
(figure 6(b)). By using a water-soluble silk film as the support-
ing layer for the fabrication of a 32-electrode array, the dissol-
ution of the silk film allows the electrode array to conformally
wrap around the highly convoluted surface of the brain cortex
(gyri and sulci) for electrocorticogram measurements [37].

Another example is the water-assisted transfer printing
method, which allows the fabrication of transparent AgNW-
PDMS electrodes onto various arbitrary surfaces without the
sliding and detachment at the interface [105] (figure 6(c)). The
fabrication process starts with spin-coating of PDMS on the
sacrificial hydrophilic polyvinylpyrrolidone (PVP) layer, fol-
lowed by the plasma treatment and spraying of AgNW on
the PDMS. Wrapping the composite layer around the pre-
humidified target surface dissolves the PVP. The exposed
PDMS layer not only provides strong adhesion to either pol-
ished smooth surfaces or rough surfaces, but also helps to

maintain the electrical property of the AgNW-PDMS electrode
after transfer. Compared with the solvent etchable organic
transfer process, this is a green chemical transfer process using
deionized water and the fabrication process is rapid (3–4 s
for electrode being separated from a donor substrate in the
water at room temperature). The AgNW-PDMS electrodes
in the resulting semitransparent and wearable LEDs show-
case a low sheet resistance of 9 Ω sq−1 and high transmit-
tance of 82%. Compared to the significantly increased res-
istance of ITO on PET (8 folds after 30 bending cycles) and
AgNW on PET (2 folds after 450 bending cycles), the AgNW-
PDMS electrode only shows a resistance increase of 1.5%
after 1500 bending cycles with a 4 mm radius, demonstrat-
ing improved electromechanical characteristics (figure 6(d)).
This rapid water-assisted transfer printing approach can also
integrate thin-film devices to textiles, round-bottomed flasks,
balloons, and skin (figure 6(e)).

Though the thickness of nanomaterials is small, the sub-
strate is often much thicker. As a result, the bending stiffness
of the composite structure is significantly increased, leading
to reduced flexibility and poor contact quality between the
device and the 3D surface in the nanotransfer printing. Efforts
to address this challenge have resulted in the development of
a water transfer printing (WTP) method to fabricate an array
of metallic patterned layers on curved dielectric surfaces [74]
(figure 7(a)). A periodic array structure with a unit cell of
7.2 × 7.2 mm is first fabricated on polyvinyl alcohol (PVA)
substrate by screen printing as a frequency selective surface
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Figure 7. Water transfer printing. (a) Water transfer printing to fabricate an array of frequency selective surface (FSS) metallic pattern layers
on curved dielectric surfaces. (b) The fabricated 3D FSS on the complex structures, including a donut-shaped object and a semi-spherical
object. (a) and (b) reproduced from [104]. CC BY 4.0. (c) Adapted water transfer printing with rigid film guides on the edges of the
substrate to avoid folds. (d) PVA dissolution behavior with unlined aluminum patterns designed in a star configuration. When the PVA is
dissolved, each line composing the star can move and the pattern is deformed (top). When an additional layer of SU8 is printed on
aluminum and designed in a square mesh configuration, lines cannot move and the patterns are not deformed (middle). Due to the additional
added film guides in the periphery of the PVA substrate, radial forces are drastically reduced to ensure pattern accuracy (bottom). (c), (d)
reprinted with permission from [107]. Copyright © (2017) American Chemical Society.

(FSS) metallic pattern. The WTP process starts with gentle
placement of the FSS/PVA composite structure on the water.
After the PVA substrate is dissolved, the thin metallic patterns
can still float on the water surface due to the water surface
tension. Next, a slow dipping process of 3D structures trans-
fers complicated 2D FSS patterns onto the surface of the 3D
structure. In the dipping process, the liquid provides proper
resistance to ensure the pattern is successfully transferred and
conformed to the 3D structural surface. The dissolution of
the PVA substrate removes the planar substrate, which allows
the FSS unit cells on the water surface to conform onto the
non-developable surfaces (e.g. donut-shaped or semi-spherical
objects) (figure 6(b)). In contrast, the conventional thermo-
forming process with the FSS patterns on a polyethylene tere-
phthalate (PET) substrate often results in wrinkles and folds
due to the transformation from the developable planar surface
to the non-developable ones. Since the simple WTP method
can effectively transfer the FSS elements onto the complex
surfaces at low cost, it likewise has the potential to fabricate
large-scale 3D electronic devices such as massive multiple-
input multiple-output (MIMO) antenna arrays.

When the surface of the 3D object is dipped perpendicu-
larly into the liquid, the Stokes flow occurs to result in subtle
pattern distortions in the transferred patterns on complex sur-
faces. For unconnected patterns, the dissolution first started
at the PVA edges creates a radial force and leads to pattern
deformation. While the SU8 polymer mesh can be used on
the unconnected patterns to avoid the pattern movement, the

increased bending stiffness of the multilayer structure reduces
the level of conformal wrapping with increased folds. As an
alternative, the issue can be addressed by using a rigid film
guide on the edges of the PVA substrate in the WTP process
[106] (figure 7(c)). Because the rigid film guides on the edge of
the PVA substrate ensure a comparable dissolution in the PVA
to reduce the radial forces, pattern deformation is drastically
reduced. Without using an additional mesh layer, this adapted
WTP process is particularly helpful to maintain the unlinked
patterns while avoiding folds (figure 7(d)). During the dissol-
ution step, a three-axis machine coupled with a visualization
system is also used to improve the alignment accuracy between
the patterns and target 3D object to millimeter (maximum dis-
tortion of 9%).

3. Direct conformal printing techniques

The commonly used direct printing methods include curved
lithography, direct laser printing, conformal inkjet printing,
and direct ink writing. The representative curved lithography
techniques applicable to 3D surfaces with high patterning res-
olution include holographic lithography (with hologram mask
or optically functional prism) and soft lithography (e.g. micro-
contact printing, nanoimprint, and micromolding in capillar-
ies). However, this class of techniques is challenging for the
curved surface over a large area [107]. In direct laser print-
ing [108], laser printing and laser ablation are two commonly
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Figure 8. 3D conformal aerosol jet printing and electrohydrodynamic direct writing with a programmable control process. (a) 3D conformal
aerosol jet printing with rapid photonic sintering to fabricate thermoelectric films using Bi2Te2.7Se0.3 nanoplate inks on 2D paper, polyimide,
and 3D glass tube. (b) The as-printed films with designed patterns can be printed on various planar and 3D substrates. (c) Electrical
conductivity (left) and power factor (right) as a function of the number of pulses for the samples sintered under optimized power density of
5.1 kW cm−2, pulse duration of 1.5 ms, and two different pulse delay times of 1000 and 362 ms. (a)–(c) [117] John Wiley & Sons. © (2019)
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Electrohydrodynamic direct writing with a programmable control process to
fabricate conformable metal-network electrodes in both linear and serpentine patterns on a spherical surface with a radius of 2 mm. (e)
Linear and serpentine photoresist pattern and corresponding network electrodes on the spheroid surface. (f) Fingertip touch mouse based on
the flexible and transparent electrodes. (d)–(f) [124] John Wiley & Sons. © (2018) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

used methods to produce patterns on 3D substrates. As for the
conformal inkjet printing that dispenses ink droplets onto 3D
surfaces, it also includes a broad range of printing techniques,
including piezoelectric inkjet printing, aerosol jet printing,
thermal bubble jet printing, and electrohydrodynamic print-
ing. In addition to printing 3D self-supporting Ag intercon-
nects/electrodes [109], the direct ink writing can also dispense
concentrated Ag nanoparticle inks to fabricate 3D electrically
small antennas on curvilinear surfaces for improved gain, effi-
ciency, and bandwidth [110]. Similarly, direct ink printing can
also be used to fabricate a broad array of 3D radiofrequency
passive components (e.g. inductors, capacitors, interconnec-
tions, resonant networks, and metamaterials) for chip-scale
radio-frequency electronics [111]. Furthermore, various addit-
ive (or layered) manufacturing (or freeform fabrication) tech-
niques [112] have been explored to fabricate thin-film devices
on complex 3D geometries (e.g. material extrusion [113] with
sintering [114]).

As a high-resolution method with feature size down to
10 µm, 3D conformal aerosol jet printing can precisely print
thermoelectric patterns using Bi2Te2.7Se0.3 nanoplate inks on
planar and 3D surfaces [115] (figures 8(a) and (b)). The prin-
ted film thickness can be precisely controlled by the mass flow
rate of the ink and the number of printing passes. Though
it is simple compared to other complex fabrication methods
(e.g. vacuum filtration [116] and spin/spray coating [117]),

the printed film with nanoparticles/plates has reduced density
and needs to be sintered. As a high sintering temperature
of >400 ◦C is often required [118], the flexible and stretch-
able plastic and elastomeric substrates with a low melting
point (e.g. 370 ◦C for PET and 230 ◦C for PVC) would be
damaged. The rapid photonic sintering from intense pulsed
light can facilitate densification and grain growth of nano-
particles to significantly enhance the electrical conductivity to
2.7× 104 S m−1 within seconds while localizing the energy
without damaging the underneath substrates [119]. The result-
ing thermoelectric device exhibits an improved power factor
of 730 µW m−1 K−2 within seconds, compared to the screen
printed Bi2Te2.8Se0.2 of 560 µW m−1 K−2 [120] and the dis-
pensed Bi2Te3 + Epoxy, 280 µW m−1 K−2 [121]. The rapid
process is also compatible with highly scalable roll-to-roll
printing of thermoelectric devices on low-temperature sub-
strates in 3D curved shapes such as a glass tube. The small
increase of 10% in the electrical resistance for a bending radius
as small as 1.5 mm indicates mechanical flexibility and robust-
ness of printed thermoelectric films for thermal energy har-
vesting on curved surfaces (output voltage of 25 mV for a tem-
perature difference of 50 K) (figure 8(c)).

The electrohydrodynamic direct writing can also be
combined with a programmable control process as pro-
grammable electrohydrodynamic lithography to fabricate
conformable metal-network electrodes [122] (figure 8(d)).
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Figure 9. Five-axis printing systems for conformal microstrip antenna fabrication. (a) Schematic of a five-axis printing system. (b) The
conversion of the 3D surface into a polarity of 2D triangular patches. (c) Five-axis inkjet printing system with arrayed nozzles. (d) A
schematic to show the air drift from the airflow. (e) The fabricated conformal microstrip antenna array with four units. (c)–(e) reproduced
from [76]. CC BY 4.0. © (2020) by the authors.

The electrohydrodynamic direct writing with a three-axis
simultaneous-motioned technique can precisely print a
photoresist network pattern on top of the Au/Cr layer on
the curved PET substrate with µm resolution. The position-
ing of printed linear photoresist patterns can be enhanced by
using short nozzle-to-substrate distance via a high-speed mov-
ing stage [123]. Serpentine patterns with various amplitudes
and wavelengths can be printed directly by using the ‘whip-
ping/buckling’ phenomenon of the electrospinning jet [42]
(figure 8(e)). Annealing the printed photoresist patterns for
10 min at 40 ◦C improves adhesion to the metal layer. Com-
pared to the linear pattern with a strain of >2.5% in most areas
(exceeding the yield strain of 2%) on a spherical surface with
a radius of 2 mm, only a negligibly small area in the serpentine
pattern has a strain exceeding the yield stain (50 nm-thick Au
and 1.5 µm-think PET). These metal-network electrodes can
conformally attach to finger touch mouse and the skin due to
van der Waals force (figure 8(f)).

By transforming the 3D surfaces into a plurality of 2D
triangular patches, a five-axis printing system with a single
nozzle can print Ag inks on the 3D surface. Similar 2D printing
fabricates conformal array microstrip antenna, which avoids
the problem of undried conductive flow [12] (figure 9(a)).
After each 2D triangular patch is rotated to horizontal based
on its normal vector (figure 9(b)), microdroplet inkjet print-
ing [68] on the 2D patch easily reduces printing complexity
while preventing the flow of undried ink for improved printing
accuracy. By adjusting and optimizing the spacing between
circular ink-droplets in the motion command, a boundary-
alignment-optimization algorithm can further enhance the uni-
formity of the printed conductive pattern boundaries. With an

energy density of 17.9 J cm−2 and a frequency of 3 Hz in the
flashlight, the rapid and low-temperature sintering provides
a highly conductive trace (69 870 S cm−1) for microwave
applications. A 2 × 4 microstrip antenna array in the experi-
ment shows a return loss of−23.03 dB at 23 GHz with a band-
width from 12.37 to 13.11 GHz (<−15 dB), consistent with
simulation results. This rapid and low-cost printing method to
fabricate microstrip antennas on the sphere compares favor-
ably with the holographic lithography technique [124].

Comparing the single nozzle employment in planar print-
ing [125], a simultaneously operated nozzle array with over
300 integrated nozzles can enhance the printing efficiency
about 100 times while maintaining the same level of accuracy.
The five-axis inkjet printing system can also integrate arrayed
piezoelectric nozzles to enhance the printing efficiency on
the curved surface [75] (figure 9(c)). The inkjet printing with
an arrayed nozzle on complex surfaces is still challenging
because of air drift/flow and varied height between the nozzle
and the landing point on the 3D surface. The result, in fact,
indicates that the effect from the airflow and air drift is large if
the height is over 3.4 mm (figure 9(d)). The maximum spread-
ing diameter of the droplet on the 3D surface is also larger
than that on a flat surface, though it can be calculated based
on the weber number and static contact angle. Nevertheless,
a maximum fall height of 3.4 mm and a maximum spread-
ing radius of 80 µm can be selected to minimize the negat-
ive effect. A conformal microstrip antenna array with 4 units
(12.4 × 10 mm for each) can be rapidly printed on a curved
dielectric substrate within 5 s (figure 9(e)), which shows a
return loss of −15.6 at 6 GHz and a bandwidth of [5.85, 6.1]
GHz (−10 dB).
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Figure 10. Direct printing on freely moving objects in real-time. (a) A hybrid manufacturing process that combines surface-mounted
electronic components with directly printed electrical interconnects on freely moving hands. (b) Fiducial markers placed around the
automatically pick-and-placed LED on a human hand (left). The adaptive 3D printing of the wireless device on a human hand that can move
freely in the workspace (right). (a) and (b) [77] John Wiley & Sons. © (2018) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) An
in-situ 3D printing system to directly fabricate an electrical impedance tomography (EIT) sensor. (d) The layered design of the
hydrogel-based EIT sensor. (e) In situ 3D printing of hydrogel ink on a porcine lung, with the tracking error as a function of time (mean of
0.657 mm). (c)–(e) from [128]. Reprinted with permission from AAAS.

Because of the dependence on the open-loop, calibrate-
then-print operation process, most 3D printing methods are
limited to static target surfaces (e.g. 3D printed tactile sensor
on a model hand [126] and microfluidic device on whole organ
models [127]). By exploring computer-vision-based closed-
loop feedback control, real-time estimation of the rigid-body
motion of the target surface can be combined with the sampled
geometric information as feedback to a motion controller
for printing on freely moving surfaces [76] (figure 10(a)).
The multifunctional devices can be autonomously fabric-
ated with 3D printed electrical interconnects and automatic
pick-and-placing of surface-mounted electronic components
(figure 10(b)). This real-time tracking of rigid-bodymotions of
the target surface is effective for moving objects without sur-
face deformations. However, it does not consider the dynam-
ically complex deformation of the surface. Efforts to address
this challenge have led to the development of an AI-powered
printing system that can adapt to the deformation and motion
of the target surface in real-time [128] (figure 10(c)). The core
concept is to implement offline shape learning and online com-
puter vision-based tracking in the 3D printer integrated with
a visual sensing system for tracking the dynamic 3D geo-
metry. The in situ 3D printing system can directly fabricate
an electrical impedance tomography sensor (figure 10(d)) on
soft surfaces such as a deformable porcine lung in real-time.
An ionic hydrogel is also incorporated in the sensor to increase
the mechanical compliance for interfacing with the tissue sur-
face. In order to maintain a stable hydrogel–electrode inter-
face under repeated lung expansion and contraction, copper
electrodes are embedded in a soft silicone ring that forms
chemical bonds with the hydrogel. Though the porcine lung
undergoes continuous deformation with a respiration rate of
12 beats min−1, the mean printing error is only 0.657 mm,

which provides a continuous spatial mapping of the deforma-
tion (figure 10(e)).

The conformal direct printing can also be combined with
a layer-by-layer soft molding process to fabricate stretchable
multilayered tactile sensors [129] (figure 11(a)). Direct print-
ing can print low to highly viscous materials [130] as the
elastic body structure and then piezoresistive nanocompos-
ites can be fabricated layer by layer for embedding as the
sensing elements for the tactile sensor. By using a conformal
printing algorithm, the nozzle can print uniform filaments on
inclined flat and 3D surfaces (figure 11(b)). With the conform-
ally printedmultilayered tactile sensor consisting of two layers
of 8 × 8 orthogonally printed sensing elements (figure 11(c)),
the locations of the applied force on the 3D surface can be
detected after using a pressure mapping algorithm.

Though the projection stereolithography technique is com-
monly explored for polymers, it can also be applied to piezo-
electric boron nitride nanotubes (BNNTs) nanocomposites in
a micro 3D printing process to fabricate convex-shaped tactile
sensor array on uneven surfaces [77] (figure 11(d)). Because
BNNTs with high thermal and chemical stabilities exhibit
strong piezoelectricity, they are promising for force sensing
applications. The micro 3D printing system mainly consists
of a resin bath, sample stage, and a projection system with
near-ultraviolet light of 405 nm. With BNNTs in the photo-
curable polymer resin, the continuous exposure can solidify
the piezoelectric composite according to the sliced 2D images
generated from the 3D model. The strong covalent chem-
ical bonds and polymer networks formed between BNNTs
and polymer can effectively inhibit the interfacial slippage.
As a result, mechanical stress is efficiently funneled to the
piezoelectric inclusion for improved stress transfer efficiency
between the polymer matrix and piezoelectric BNNTs. The
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Figure 11. Direct printing using stereolithography. (a) Conformal direct printing with soft modeling for fabricating stretchable
multi-layered tactile piezoresistive sensors on freeform surfaces. (b) Filament width variations in upward and downward printing before
(top) and after (bottom) applying a conformal printing algorithm. (c) The proposed mechanically compliant, conformal, and multilayered
tactile sensor. (a)–(c) reprinted from [132], Copyright (2015), with permission from Elsevier. (d) Conformal 3D printing based on projection
stereolithography. (e) Comparison of relative sensitivity between the chemically functionalized BNNTs-based composite and other
piezoelectric/polymer composites. (f) The left shows a printed conformal device on the fingertip of a rubber hand model with SEM images
of the device surfaces and chemically functionalized BNNTs/resin composite. The right shows the tactile sensor array of 4 × 4 on the
curved surface of a beaker to capture force distribution. (d)–(f) reprinted from [78], Copyright (2020), with permission from Elsevier.

exposure intensity of 20 mJ cm−2 and time of 1 s are optimal
for curing a single layer of resin with a thickness of 20 µm.
The thickness of 20.19 ± 0.56 µm in the printed 20-layer
structure is quite close to the setpoint of 20 µm. Compared
to the flat composite with unmodified BNNTs, the micropat-
terned nanocomposite with 0.2 wt% chemically functional-
ized BNNTs (by 3-Trimethoxysiilylpropyl methacrylate and
HNO3) can increase the interfacial adhesion to improve stress
transfer between the polymer matrix and piezoelectric nano-
fillers. Hence, the achieved sensitivity of 120 mV/(kPa wt%)
shows a 10-folder increase (figure 11(e)). A convex-shaped
piezoelectric device can be conformally printed on the finger-
tip of a rubber hand model. Similarly, a curved tactile sensor
array of 4× 4 can be printed on the curved surface of a beaker
for detecting the spatial distribution of the force (figure 11(f)).

4. Other advanced fabrication methods

With good electrical and mechanical properties resulting from
its stable hexagonal honeycomb structure, graphene patterned
into the predesigned structures can be integrated on complex
curved surfaces for applications in flexible electronics, energy
conversion, plasmonic, and sensing [131–133]. Polydopamine
surface modification of the substrate with a mold, followed by
the graphene spraying (figure 12(a)) [134], presents a general
route to pattern graphene into complex geometries on vari-
ous curved substrates of different materials (e.g. polymers,

semiconductors, and metals). In brief, the PDMS substrate
covered with a PDMS flexible mold is dip-coated in dopam-
ine solution that flows through microfluidic channels in the
mold. After peeling off the PDMS mold, the spontaneously
deposited polydopamine thin film provides enhanced interfa-
cial adhesion to graphene oxide due to strong covalent attrac-
tion [135], which mitigates the performance degradation from
delamination at the interface. Next, the graphene oxide disper-
sion is sprayed on the substrate, resulting in selective depos-
ition on the modified region. After drying at room temperature
for 24 h, a chemical reduction to reduce graphene oxide in a
hydroiodic acid treatment results in the patterned conductive
film. Because this approach also works for complex curved
surfaces, various graphene patterns have been conformed onto
organ models such as lungs and hearts. The flexible strain
sensor array of 4× 4 that conformally covers the irregular lung
model shows tunable sensitivity (gauge factor of 100–2000 at
1% strain) and little hysteresis, which is capable of detecting
the strain distribution (figure 12(b)).

By dispersing functional liquid inks with a modified ball-
point pen through a stencil mask, customizable and deform-
able electronics can be fabricated draw-on-skin (DoS) with
strong adhesion and ultra-conformality [137] (figure 13(a)).
After applying the Kapton stencil mask with clear tape on
the skin, a modified ballpoint pen with a tip diameter of
1 mm can help draw functional liquid inks at a manual speed
of 10 nm s−1. The explored functional liquid inks include
conductive Ag-PEDOT:PSS ink, semiconductive P3HT-NK
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Figure 12. Patterning of graphene on the curved surface, reproduced with permission from [134]. (a) The graphene patterning process for
highly sensitive strain sensing on curved surfaces. (b) The top shows relatively small hysteresis characteristic of the sensor in the range of
strain 0%–1%, whereas the bottom indicates that different pre-stretch conditions result in varied sensitivities (Gauge factors) of the sensor.
Reproduced from [136]. CC BY 4.0. © (2020) The Authors. Nano Select published by Wiley-VCH [137].

Figure 13. Fabrication of draw-on-skin electronics. (a) Draw-on-skin electronics with functional inks. The line width of the
Ag-PEDOT:PSS ink can be controlled by varying the pen tip diameter, where the line widths are 0.3 mm, 0.5 mm, and 1 mm from left to
right. (b) DoS EP sensors, gel electrodes, and mesh electrodes with ECG signal recorded upon the skin deformation. (a) and (b) reproduced
from [139]. CC BY 4.0. Copyright © (2020), The Author(s). (c) Draw-on-skin electronics by using a 9B sketching pencil on office copy
papers. (d) Peel-adhesion test of pristine papers (blue) and papers with spray-coated Silbione (red) on the human forearm, where the
stickiness of the resulting on-skin electronic devices can be drastically improved from ∼0.01 to ∼0.85 N after Silbione coating (top). The
sheet resistance of the pencil-drawn graphite on papers reduces from ∼10 kΩ sq−1–160 Ω sq−1 as the writing cycle increases from the 1st
to 15th cycle (bottom). (e) Pencil-paper on-skin bioelectronic devices.
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Figure 14. Direct sensor fabrication on the skin, reproduced with permission from [17]. (a) The simple process of preparing the directly
printed on-body sensors sintered at room temperature. (b) Impedance measurements as a function of frequency from two Ag electrodes of
the same size separated by a given distance of 10 cm directly printed and room temperature-sintered on the human skin (left). ECG signals
collected using the Ag electrodes on the sintering aid layer with 15 wt% PVA paste (blue) with a larger SNR than those from the
commercial electrodes (red) (right). (c) The soft body area sensor network consisting of various on-body sensors (e.g. electrodes and
temperature/hydration sensors) and an FPCB. (d) The on-body sensing film can be conveniently removed with negligible effects on the skin
by peeling off (top) or washing hands in warm water flow (bottom). Reprinted with permission from [17]. Copyright (2020) American
Chemical Society.

ink, and dielectric ion gel ink. Because of the formed men-
iscus, the tip of the pen does not need to be in contact with
the skin. By using a pen with a finer tip, the line width
of the ink pattern can be reduced from 1 mm to 300 µm
(with a line space of 200 µm without overlapping by using
a stencil). After solvent evaporation for 5 min at room tem-
perature, removal of the stencil leaves the dried sensor pat-
tern on the skin. The resulting electrodes as electrophysiolo-
gical sensors can still capture high-quality ECG waveform
even upon stretching and compression. In contrast, for gel
electrodes and mesh electrodes, the mechanical deformation
results in sliding (between gel electrodes and skin [136])
and inconsistent adhesion (between mesh electrodes and skin
[138]). As a result, the signal-to-noise ratio of 50 dB from
the DoS electrodes is much higher than that of gel (20 dB)
and mesh (12 dB) electrodes, indicating a small sensitivity to
motion artifact on the skin (figure 13(b)).

Without formulating the functional liquid inks, a 9B sketch-
ing pencil (93% graphite content by weight) can be used to
draw electronics on office copy paper, followed by a back
coating of Silbione adhesive for skin contact in a disposable
and cost-effective manner [139] (figure 13(c)). Pencil-drawn
graphite patterns transferred from the pencil lead to the paper

substrate are used as conductive traces and sensing electrodes.
For a small weight ratio of 5:100 in Silbione:paper, the adhe-
sion of the on-skin devices is drastically improved from 0.01
to 0.85 N, which allows the devices to stay on arms for more
than 3 d. The sheet resistance of pencil-drawn graphite reduces
with the number of writing cycles from 10 kΩ sq−1 after the
1st cycle to 160Ω sq−1 after the 15th cycle (figure 13(d)). The
fabricated electronics (e.g. temperature, electrophysical, sweat
electrochemical sensors, and humidity energy harvesters) in
open-mesh and serpentine layouts can monitor a range of vital
biophysical and biochemical signals with performance com-
parable to their conventional counterparts (figure 13(e)).

Although electronics can be drawn on the skin by the pre-
viously discussed methods, there still exist application oppor-
tunities to explore highly conductive inks for skin-interfaced
electronic devices and soft body area sensor networks that con-
sist of on-body sensors and flexible printed circuit boards. Dif-
ferent from various sophisticated fabrication approaches from
lithography and transfer printing [140, 141] to direct print-
ing [142–146], a simple yet universal method has been used
to realize the soft body area sensor network (figure 14) [17].
The sintering aid layer consisting of PVA paste and func-
tional nanoadditives (e.g. TiO2, CaCO3) reduces the substrate
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Table 1. Comparison of different conformal manufacturing techniques.

Method Feature Representative work Advantage Limitation

Transfer printing With stamp Hybrid transfer printing
[99]

Simple process with a
relatively high yield

Relatively inefficient
operation; Possible
deformationAdditive stamp printing

[35]
Cartan transfer printing
[72]
Nanotransfer printing
[73]

No stamp, but using a
sacrificial layer

Water-assisted transfer
printing [104, 105]

Simple process and low
cost

Water transfer printing
[74, 106]

Direct printing Using functional inks 3D conformal aerosol jet
printing [115]

High precision; Rapid
fabrication; High
flexibility

Possible thermal damage;
Droplet deviation/undried
flowElectrohydrodynamic

direct writing [122]
Five-axis printing system
[12, 75]
Rea-time direct printing
system [76, 128]
Projection
stereolithography based
direct printing [77, 129]

Other fabrication methods Spray coating Graphene pattern
fabrication [134]

Enhanced interfacial
adhesion; Easy operation

Limited spatial resolution
and pattern accuracy

Novel writing tool Draw-on-skin electronics
[137, 139]

Sintering aid layer Soft body area sensor
networks [17]

roughness and the sintering temperature of the stamp-printed
metal nanoparticles to lower and even room temperature. The
sintered submicron-thick metal patterns using an air blower
also show improved electromechanical performance again,
bending and folding, which also results in the creation of flex-
ible paper-/textile-based printed circuit boards. Because of the
enhanced contact quality between the sintering aid layer and
the skin, the sintered Ag electrodes on the skin exhibit lower
contact impedance and higher signal-to-noise ratio by ∼20%
in the measured EMG/ECG signals when compared to their
commercial counterparts (figure 14(b)). In addition to various
on-body sensors directly sintered on the skin surface at room
temperature, the fabrication approach can also prepare a flex-
ible printed circuit board for signal conditioning/readout and
wireless transmission (figure 14(c)). Because of the low mam-
malian cytotoxicity and good biodegradability, the soft body
area sensor network can be easily removed and disposed in
warm water flow (figure 14(d)).

5. Conclusion and future perspective

This mini review briefly summarizes the recent advance-
ment of conformal fabrication techniques for soft
deformable sensors and devices on complex curved sur-
faces (table 1). Combined with stretchable structures and
functional nanomaterials, various transfer printing and dir-
ect printing techniques are capable of integrating conformal

sensors/devices on 3D curvilinear and even dynamically chan-
ging surfaces. Advanced transfer printing methods include
stamp-based printing, Cartan transfer printing, adhesive-based
nanotransfer printing, and water-assisted transfer printing.
However, transfer printing techniques have limited efficiency
due to multiple transfer steps and the unavoidable pattern
distortions during the fabrication process. As an effective
alternative to addressing these challenges, advanced direct
printing and writing methods have been extensively studied,
including inkjet and aerosol jet printing, electrodynamic direct
printing, five-axis printing systems, direct ink writing, stere-
olithography, and DoS electronics. Despite the fact that great
strides have been made, many challenges still exist to repres-
ent a small fraction for future development in this burgeoning
field of conformal electronics on complex 3D surfaces, which
is briefly discussed in the following.

(a) Although it is still challenging to correlate the designed
pattern on the 2D surface with that on the curved sur-
face during transfer printing, the computing framework
based on the topology method and conformal mapping
theory for free-form periodic metasurfaces [147] may be
explored. In such a study, after a metamaterial unit cell
is designed with tailored, effective properties by using
the level-set-based topology optimization, the conformal
mapping (or shape-preserving scalingmapping) from each
3D quad mesh surface to the 2D planar unit cell can be
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Figure 15. Possible directions for future conformal manufacturing. (a) Conformal metasurfaces can conform to a 3D human face, reprinted
from [151], Copyright (2018), with permission from Elsevier. (b) Stable and biocompatible carbon nanotube ink mediated by silk
protein—sericin, [153] John Wiley & Sons. © (2020) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Highly skin-conformal
microhairy sensor with microhair arrays, [153] John Wiley & Sons. © (2014) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
(d) Calcium-modified silk with strong adhesion induced by calcium reaction, [18] John Wiley & Sons. © (2018) WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim. (e) A wireless bioresorbable electronic device for nonpharmacological neuroregenerative therapy,
reprinted by permission from Springer Nature Customer Service Centre GmbH. [169] Copyright © (2018), The Author(s), under exclusive
licence to Springer Nature America, Inc. (f) Fabrication of thermotherapy patch based on fractal-like leaf skeletons (i) using Ag nanowire
(ii), reproduced with permission from [36].

calculated. For example, the conformal metasurfaces with
different resolutions can be designed and fabricated to
conform to a 3D human face (figure 15(a)). The analytical
models may also be combined with numerical simulations
to study manufacturing variations or help design device
parameters (e.g. element spacing in a conformalmicrostrip
antenna array [148]).

(b) Though a variety of ink has been applied for direct print-
ing of conformal electronics, there is still a wide range of
nanomaterials that are challenging to use in fabrication and
application. The suspicious cytotoxicity and low dispersity
of CNTs in most solvents can be addressed by forming
a hybrid with silk sericin that exhibits high biocompat-
ibility, enhanced cell attachment, and good solubility in
water [149] (figure 15(b)). The coexistence of hydrophilic
and hydrophobic groups within sericin [150] reduces the
surface energy and stabilizes the dispersion of CNTs in
water, resulting in conductive inks with high stability and
biocompatibility. The hybrid ink is compatible with sev-
eral fabrication methods (e.g. inkjet printing, direct writ-
ing, stencil-printing, and dyeing), which has already been
explored to fabricate various sensors (ECG electrodes,
breath sensors, and electrochemical sensors) on textile,
paper, and plastic films.

(c) It is still challenging to achieve strong and robust adhe-
sion between the soft deformable sensors and the curved
surfaces [151, 152]. Inspired by the ‘microhair structures’
in nature, the bandage-like capacitive pressure sensor
with microhair structures mounted on human skin shows
a 12 times increase in the signal-to-noise ratio due to
the enhanced effective contact area and force transfer
between the sensor and the skin [153] (figure 15(c)).
Another effective strategy exploits a calcium-modified silk
fibroin (figure 15(d)) as a strong, biocompatible adhesive
(>800 Nm−1) even upon mechanical deformations (e.g.
stretching, compressive, and twisting) [18], which results
from the increased viscoelastic property and mechanical
interlocking through the incorporation of Ca ions. The
reusable, stretchable, and conductive Ca-modified silk can
also be used for sensing and hydrogel-based drug delivery.

(d) There is also an opportunity to explore a set of func-
tional degradable materials [154–159] for conformal tran-
sient electronics, including semiconducting [160–163],
conducting [164], dielectric materials [165], and substrate
and encapsulations [166, 167]. With careful selection of
the thickness and materials in the encapsulation strategy,
the lifetime of the transient electronics can be programmed
before functional degradation [165, 168]. Because of their
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unique capabilities to safely dissolve after the functional
operation, the conformal transient electronics can be used
as implantable devices to obviate the additional surgery
operations for removal [169] (figure 15(e)). The applica-
tion opportunities also go beyond the bioimplants to green
electronics for sustainable environmental and destruct-
ible devices to provide the ultimate device security. It is
also worth pointing out that transient electronics can also
include those with main constituents to be degradable. As
one example, encasing the Ag nanowire-based heater elec-
trode in a biodegradable transparent tape can be conform-
ally mounted on human skin (e.g. wrist, cubital fossa area,
and elbow) to allow for visualization of treatment effects
without pad removal in thermotherapy applications [36]
(figure 15(f)). The fractal heaters with hierarchical archi-
tectures maximize the surface area at the microscale for
rapid and uniform heating while maintaining high optical
transmittance.
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