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Wearable pressure sensors have drawn significant attention because of their extensive applications in motion detection, tactile
sensing, and health monitoring. However, the complex manufacturing process and high cost of active materials make low-cost,
large-scale production elusive. In this work, we report a flexible piezoresistive pressure sensor assembled with two 3D laser-
induced graphene (LIG) foam electrodes on a polyimide thin film from a simple laser scribing process in the ambient en-
vironment. The design of the air gap between the two foam electrodes allows the sensor to showcase a low limit of detection of
0.274 Pa, which provides favorable sensing performance in motion detection and wrist pulse monitoring. The addition of
spherical MoS2 nanoparticles between the two foam electrodes further enhances the sensitivity to 88 kPa−1 and increases the
sensing range to significantly outperform the previous literature reports. The demonstrated LIG pressure sensors also exhibit fast
response/recovery rates and excellent durability/repeatability.
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1 Introduction

The emerging soft, stretchable, bio-integrated electronics
start to gain popularity due to their unique advantage to
continuously monitor the clinically relevant physiological
parameters from the skin surface to inform health conditions
[1–3]. In particular, wearable pressure sensors have been
extensively studied for motion detection [4], tactile sensing
[5], human-computer interface [6], and health monitoring
[7,8]. Various novel materials and nanostructures have been
exploited in wearable pressure sensors [9–13]. Compared
with capacitive [14], piezoelectric [15], and triboelectric
[16], the piezoresistive [17] pressure sensors are most widely

used because of their simple data acquisition setup and low-
cost characteristic. However, piezoresistance pressure sen-
sors often suffer from low sensitivity and slow response/
recovery rates because of the high modulus and viscoelas-
ticity in the pressure-sensing active materials [18]. The ef-
forts to enhance the sensitivity have resulted in the
exploration of various structures for rapid changes in con-
ductive pathways. The commonly used micro-/nano-struc-
tures include pyramids [19–22], microdomes [11,21],
micropillars [23], multilayered structures [24], or porous
structures [25]. However, the preparation of these structures
is often associated with increased complexity and high cost.
Moreover, the sensing range is relatively small because the
conductive pathways quickly saturate with the increasing
applied pressure.
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In addition to the innovative structural designs, advanced
novel materials with excellent electrical performance and
microstructure (e.g., wrinkled graphene film [24], nanowire
[26], and nanoparticles such as a sea-urchin shape [27]) have
also been reported to be beneficial for constituting the con-
ductive network under pressing and improving sensitivity.
Among these materials, graphene has been regarded as the
ideal material for the piezoresistive pressure sensor due to its
remarkable mechanical strength, flexibility, and electrical
conductivity. Interestingly, the laser-induced graphene (LIG)
foam from commercially available polyimide (PI) thin film
[28] combines the few-layered graphene materials with the
3D porous foam structures, creating applications in micro-
supercapacitors [29,30], stretchable gas sensors [31], and
antennas/rectennas [32]. In addition to PI [33,34], graphene
oxide (GO) [35,36] and polydimethylsiloxane (PDMS) [37]
can also be converted into LIG foam. Although LIG foam
transferred to elastic PDMS [33] or polyurethane (PU) [34]
has been explored to improve the flexibility and the sensi-
tivity (i.e., changes in the resistance) upon pressure loading,
the transfer process often damages the surface microstructure
of the LIG, compromising its capability to sense the small
pressure.
In this work, we directly assemble two LIG foam elec-

trodes on the flexible PI thin films that are separated to
provide an air gap for achieving a lower limit of detection of
0.274 Pa. Because the deformation of soft materials results in
quick saturation of the conductive pathways, the pressure
sensor with high sensitivity is often associated with a small
sensing range [12,38,39]. To address this challenge, we
further explore spherical MoS2 nanoparticles (NPs) between
two LIG foam electrodes to increase the mechanical ro-
bustness of the pressure sensor for increased sensing range.
Because of the spherical shape of the MoS2 NPs, their rolling
and lateral motions upon pressure loading also allow the
sensor to exhibit a high sensitivity of 88 kPa−1 for simulta-
neously improved sensitivity and sensing range. Moreover,
the flexible LIG pressure sensor also showcases fast re-
sponse/recovery rates and high stability over 9000 loading/
unloading cycles.

2 Results and discussion

2.1 Fabrication of the LIG pressure sensor

The fabrication of the LIG pressure sensor combines the 3D
LIG foam with the spherical MoS2 NPs (Figure 1(a)).
Briefly, the PI film with a thickness of 25 µm on the glass

Figure 1 (Color online) Schematic of the fabrication process and the photograph of the resulting LIG pressure sensor. (a) Schematic to show the fabrication
process of the LIG pressure sensor; (b) the schematic diagram of the LIG pressure sensor with the layout information; (c) photograph of the LIG pressure
sensor pliably conformed on the skin surface of the hand.
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slide is patterned into sensing and bonding regions designed
by CorelDRAW. The profile of the sensor is scribed by a CO2

laser system with low power (8%) and high speed (90%), and
the sensing area is sintered by the same CO2 laser system
with 35% power and 40% speed to yield 3D porous LIG
foam; then, the fabricated sensing unit is connected to copper
electrodes by Ag paster. Next, the MoS2 NP solution syn-
thesized by a solvothermal method [40] is drop-cast in the
sensing region, followed by solvent evaporation in the oven
at a temperature of 60°C for 1 h. The MoS2 NP solution is
successively added onto the surface of LIG in a step of 1 µL
to avoid accumulation (Figure S1). After applying the dou-
ble-sided tape with a thickness of 40 μm at the bonding re-
gion, flipping over one LIG foam to assemble onto the other
LIG foam completes the fabrication of the piezoresistive LIG
pressure sensor. Though the manual assembly process in-
troduces slight variations in device performance, the issue
could be addressed by exploring the motorized equipment to
aid the alignment and assembly. The resulting flexible LIG

pressure sensor (Figure 1(b)) can easily attach to the skin
surface through an adhesive layer, which demonstrates a
robust adhesion strengthen even upon mechanical deforma-
tions (e.g., holding a fist, Figure 1(c)).

2.2 Demonstration of the LIG pressure sensors without
MoS2

The few-layered [31,32], 3D porous LIG foams (Figure 2(a))
with thorn-like structures (Figure 2(b)) provide the con-
ductive pathway between the top and bottom layers in the
piezoresistance LIG pressure sensor. The initial relative po-
sition of the two electrodes separated by a small gap is
provided by the double-sided adhesive tape changes upon the
pressure loading to result in more conductive pathways and
then increased conductance of the LIG sensor (Figure 2(c)).
The LIG pressure sensor with the air gap has fewer con-
ductive pathways, allowing the sensor to more sensitively
detect the tiny pressure change. Consequently, the LIG

Figure 2 (Color online) The application demonstration of the LIG pressure sensor. (a) Scanning electron microscopy (SEM) images of the LIG with the
area in the dashed box enlarged in (b) to show the thorn-like structures (marked); (c) schematic to show the LIG sensor for small pressure measurement; (d)
repeated tiny pressure loading with PI film; (e) and (f) LIG pressure sensor to detect (e) finger and (f) hand movements; (g) real-time responses of the LIG
pressure sensor for pulse monitoring; (h) the enlarged view of the dashed box in (g) shows the three characteristic peaks with the time difference between the
first two peaks labeled; (i) schematic to show the principle that uses the pulse profile and ECG for blood pressure measurements.
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pressure sensor with the air gap exhibits a low limit of de-
tection to be capable of detecting a pressure of 0.274 Pa (or a
force of 0.7 mg) when a PI film is placed on the surface of
the sensor (Figure 2(d)). The demonstrated low limit of de-
tection with a stable and repeatable sensor response is
smaller than the previously reported LIG and other nanos-
tructured pressure sensors [24,34,36–38,41].
Because the thin LIG pressure sensor features favorable

mechanics, which allows it to be attached to various curvi-
linear surfaces (e.g., finger and back of the hand) of the
human body for human motion detection. For instance, the
attachment of the LIG pressure sensor on the index finger
easily detects the bending motions (Figure 2(e)). The bend-
ing deformation brings the lower LIG foam electrode closer
to the upper one to increase the conductive pathways and
increase the conductance. When the flexible LIG pressure
sensor is attached to the back of the hand, holding a fist
stretches the lower LIG foam electrode to increase the gap
between two LIG electrodes to result in decreased resistance
(Figure 2(f)). The above results indicate that the flexible LIG
pressure sensor can distinguish the bending from stretching
motion, as the conductance increases in the former but de-
creases in the latter.
As another representative demonstration, the flexible LIG

pressure sensor attached to the wrist by a transparent medical
tape measures the pulse that generates pressure on the sensor
in real-time. The pulse measurements from a healthy human
subject show a resting heart rate of ca. 68 beats min−1

(Figure 2(g)), which agrees with the value from manual
counting. Moreover, the measured pulse profiles clearly
identify three distinct characteristic peaks, i.e., percussion
wave (P1), tidal wave (P2), and diastolic wave (P3) (Figure 2(h)).

These characteristic peaks are lost in the measurements from
many pressure sensors reported previously [12,42–44]. The
ratio (i.e., augmentation index of radial artery) [45] and time
difference (ΔTDVP) [46] of P1 and P2 waves that are related to
arterial stiffness could provide significant insights into car-
diac health. Additionally, the pulse profiles can be combined
with the simultaneous electrocardiogram (ECG) measure-
ments (Figure 2(i)) to yield cuffless measurements of the
arterial blood pressure using a pulse transit time method, as
another essential physiological parameter for health mon-
itoring.

2.3 Enhanced LIG pressure sensors with MoS2 NPs

Although the above intrinsic flexible LIG or other nanos-
tructured pressure sensors can detect the pressure, the varied
conducting pathways quickly saturate because of the easy
deformation of the soft materials upon pressure loading.
Therefore, most of the previous nanostructured pressure
sensors exhibit a low sensitivity and narrow sensing range.
This study further introduces previously reported spherical
semiconducting MoS2 NPs [31] into the 3D porous LIG
foams to increase their mechanical strength against pressure
loading (Figures 3(a) and 4(a)). The spherical shape of the
non-conductive MoS2 NPs also allows them to displace upon
pressure loading for enhanced sensing range. The spherical
shape of the MoS2 NPs also allows them to displace upon
pressure loading for enhanced sensing range. Compared to
the intrinsic LIG pressure sensor, the LIG pressure sensor
with the spherical MoS2 NPs shows a much large increase in
the initial resistance from ca. 110 Ω to 10 kΩ. Because of the
rolling and lateral movements of the spherical MoS2 NPs, the

Figure 3 (Color online) The schematic and SEM images of the LIG pressure sensor with MoS2. (a) LIG pressure sensor with MoS2 fillers before and after
pressure loading; (b) SEM images of porous LIG foams filled with MoS2 (left) and thorns surrounded by MoS2 (right).
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large initial resistance rapidly reduces to result in increased
sensitivity in the pressure sensor.
The sensitivity (S) of the flexible LIG pressure sensor with

the spherical MoS2 NPs is calculated from the measured
relative conductance change (ΔG/G0 with G0 as the initial
conductance) versus the applied pressure (P) as S=(ΔG/G0)/P.
Because of the added MoS2 NPs, the sensitivity of 3.29 kPa

−1

is relatively small in the lower pressure range (i.e.,
<0.94 kPa) (Figure 4(a)). However, as the applied pressure
exceeds the critical value to displace the MoS2 NPs, the
pressure sensor exhibits a significantly higher sensitivity of
88 kPa−1 in the range from 0.94 to 1.44 kPa. As the increased
conductive pathways gradually saturate with the increasing
applied pressure, the sensitivity decreases to 6 kPa−1 in the
range from 1.44 to 6.25 kPa and then decreases to 0.29 kPa−1

for the pressure over 6.25 kPa, which is consistent with lit-
erature reports. Compared with the previously reported
graphene-based or nanostructured pressure sensors in the
range of [0.94, 6.25] kPa [12,41,47–56], the demonstrated
LIG pressure sensor with MoS2 NPs exhibits enhanced
sensitivity and linear range (Figure 4(d), Table S1). Because
the enhanced performance is attributed to spherical MoS2
NPs, the enhancement depends on the relative quantity of the
MoS2 NPs. The low concentration of MoS2 results in most of

the MoS2 NPs distributing inside porous LIG foams, whereas
the excess MoS2 would cover and compromise the porous
structure in the 3D LIG foams. Therefore, an optimal con-
centration of the MoS2 NP solution exists, which is found to
be 25 µL in the range from 0 to 40 µL for the LIG pressure
sensor with an area of 5 mm×5 mm (Figure S2).
The LIG pressure sensor with MoS2 NPs also exhibits

reasonably good repeatability, which confirmed over 9000
loadings and unloading cycles for an applied pressure of
1 kPa (Figure 4(b)). The almost identical relative resistance
changes (ΔG/G0) at the beginning ten cycles and the last ten
cycles showcase the excellent durability and reliability of the
sensor performance. Because real-time pressure monitoring
requires fast sensor response, fast response/recovery rates are
demonstrated with rapid finger pressure applied to the sen-
sor. Although the measured results indicate a response and
recovery time of ~60 ms for the LIG pressure sensor (Figure 4(c)),
the actual response/recovery rates could be even faster be-
cause the current measurements are limited by the sampling
rate of the equipment. Nevertheless, the response/recovery
rates are already more than three orders of magnitude faster
than several previous reports [4,24,51]. The fast rates are
likely attributed to the quick movements of the MoS2 NPs in
a spherical shape.

Figure 4 (Color online) Electromechanical characterization of the LIG pressure sensor with MoS2. (a) The change in the normalized relative conductance
with the applied pressure; (b) repeatability test for 9000 pressuring-releasing cycles; (c) response and recovery time of the LIG pressure sensor; (d)
comparison of the sensitivity and linear range between our work and previously reported pressure sensors.
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3 Conclusion

This work develops a low-cost fabrication of flexible pie-
zoresistive LIG pressure sensors for wearable applications.
The design of the air gap between two LIG foam electrodes
provides the sensor with a low limit of detection of 0.274 Pa,
which allows the sensor to measure human motions and
waist pulse in real-time. Furthermore, the addition of MoS2
NPs between the two LIG foam electrodes results in en-
hanced sensitivity and sensing range, which significantly
outperforms the previous literature reports. The demon-
strated flexible LIG pressure sensors have shown great po-
tential to complement existing wearable devices for
healthcare monitoring.
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