
CorbFuzz: Checking Browser Security Policies with
Fuzzing

Chaofan Shou, İsmet Burak Kadron, Qi Su, and Tevfik Bultan
University of California, Santa Barbara

{shou, kadron, qisu, bultan}@cs.ucsb.edu

Abstract—Browsers use security policies to block malicious
behaviors. Cross-Origin Read Blocking (CORB) is a browser se-
curity policy for preventing side-channel attacks such as Spectre.
We propose a web browser security policy fuzzer called CorbFuzz
for checking CORB and similar policies. In implementing a
security policy, the browser only has access to HTTP requests and
responses, and takes policy actions based solely on those interac-
tions. In checking the browser security policies, CorbFuzz uses a
policy oracle that tracks the web application behavior and infers
the desired policy action based on the web application state. By
comparing the policy oracle with the browser behavior, CorbFuzz
detects weaknesses in browser security policies. CorbFuzz checks
the web browser policy by fuzzing a set of web applications where
the state-related queries are symbolically evaluated for increased
coverage and automation. CorbFuzz collects type information
from database queries and branch conditions in order to prevent
the generation of inconsistent data values during fuzzing. We
evaluated CorbFuzz on CORB implementations of Chromium
and Webkit, and Opaque Response Blocking (ORB) policy
implementation of Firefox using web applications collected from
GitHub. We found three classes of weaknesses in Chromium’s
implementation of CORB.

I. INTRODUCTION

Web browsers allow users to various things, such as

streaming videos or accessing bank accounts. A malicious

website should not be able to access sensitive information

about a web application user, for example a bank account

page. Unfortunately, due to vulnerabilities like cross-site script

inclusion [1], cross-site scripting [2], Spectre [3], and Melt-

down [4], malicious websites can access sensitive informa-

tion that they should not have access to. Because of the

aforementioned threats, browsers have adopted an increasing

number of security policies like Cross-Origin Read Blocking

(CORB) policy [5] that they use to protect sensitive data. The

goal of the CORB policy is to prevent cross-origin access to

confidential data.

In order to determine if a behavior is malicious or not, a

browser security policy has to infer properties about the web

application that is being used. Yet, given that a browser does

not have access to web applications’ internal state, nor its

codebase, it cannot precisely determine the properties of the

web applications. Instead, security policy implementations use

the information browsers have access to, like HTTP responses

This material is based on research supported by NSF under Grants CCF-
1901098 and CCF-1817242.

and requests, to infer properties of web applications and decide

to take a policy action according to those properties.

In this paper, we focus on CORB as a browser security

policy because it is one of the most important policies for

protecting cross-origin resources. CORB aims to identify and

block all cross-origin loads of confidential response content.

However, browsers can not determine whether a specific

response is confidential without inspecting the state of the

web application. Since the browser cannot do that, the CORB

policy implementations examine the responses instead and

use information inside responses and heuristics that reflect

the expected behavior to determine whether the content is

confidential.

These heuristic approaches need to be tested comprehen-

sively in order to look for scenarios where they fail to protect

sensitive information. A fully automated testing approach

would enable browser security policy developers to identify

weaknesses in existing policies and to quickly evaluate policy

modifications.

We developed a fuzzing technique to check browser security

policies. Given a browser and a security policy, we use a set

of open-source web applications to look for weaknesses in

the security policy implementation of that browser. We use

the open-source web applications as fuzzing targets, and our

fuzzer creates requests for each of them, intending to achieve

as much coverage as possible. By exploring a variety of web

applications and covering as many behaviors as possible for

each web application, our fuzzer tests a large set of scenarios

for the browser security policy implementation.

In order to identify weaknesses in the browser policy

implementation, we define a reference implementation of the

security policy by tracking the web application states and

utilize it as an oracle. The oracle is more accurate than the

browser policy implementation since during fuzzing, the oracle

has access to all internal information of the web application

and properties of each response. Our fuzzer compares the deci-

sions made by the oracle to the security policy implementation

of the browser and reports any differences, which correspond

to a weakness in the browser security policy implementation.

Most web applications typically access session data, cook-

ies, and data store [6]. These web applications are called data-

dependent. Fuzzing a data-dependent web application requires

manually setting up these data sources (e.g., populating a

database [7], [8]). However, given that we need to use a

215

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

DOI 10.1109/ASE51524.2021.00029

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

86
36

978-1-6654-0337-5/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

set of web applications during fuzzing, it is not practical

to manually set up the data store and session values for

each web application. Thus, we propose a runtime for data-

dependent web applications that enables us to automate the

process. Instead of manually setting up data sources for all

fuzzing targets, our runtime automatically synthesizes data

store, sessions and cookies. This approach not only removes

the requirement for manually setting up an environment for a

web application, but also allows our fuzzer to easily mutate

the data store, leading to higher coverage.
The runtime we propose generates SMT constraints for

database queries and sessions or cookies usage. The SMT

constraints for a database query encode the SQL statement,

and we use an SMT solver to generate data values consistent

with the query. The SMT constraints generated for sessions

and cookies are used to check the feasibility of execution paths

of the web application.
Using this approach, we have implemented a fuzzer focus-

ing on the CORB policy, which we call CorbFuzz. While

CorbFuzz is optimized for CORB analysis, it can be easily

extended to support other policies by defining correspond-

ing oracles. Additionally, for our prototype, we restrict our

scope to PHP applications. Our approach can be extended to

support web applications developed in different programming

languages, including Python or NodeJS, by providing simple

instrumentation for the target language as discussed in Sec-

tion IV.
We evaluate the implementation of CORB policy in both

Chromium and Webkit. CorbFuzz did not find any policy

violations in Webkit and shows that CORB implementation in

Webkit is robust. In Chromium, on the other hand, CorbFuzz

identifies three types of code patterns that can enable attack-

ers to bypass CORB protection. Furthermore, we modified

CorbFuzz to check a sibling policy by Firefox called Opaque

Response Blocking (ORB).
In this paper we present the following research contribu-

tions:

• Browser Policy Fuzzer: We propose a new fuzzer, Corb-

Fuzz, for checking browser security policies. CorbFuzz

is guided by web application code coverage and uses a

policy oracle to identify weaknesses in browser security

policies. It is fully automated and can be easily applied

after each change in policy implementation.

• Data Synthesis: To tackle fuzzing environment setup

for data-dependent applications, we propose a runtime

that synthesizes and mutates the data when required.

Our data synthesis approach uses SMT encoding and

constraint solving to ensure consistency of data generated

for database queries and sessions or cookies usage.

• Empirical Evaluation: We used CorbFuzz to check the

CORB implementation of Chromium and Webkit. We

also checked a sibling policy ORB for Firefox. We fuzzed

these policies using responses of PHP web applications

that we obtained from GitHub. Using CorbFuzz, we

discovered three code patterns that expose weaknesses in

the CORB implementation of Chromium. One of these

code patterns has been previously documented, and the

Chromium team patched the policy weakness caused by

another code pattern we discovered after our report.

The paper is structured as follows. In Section II, we present

the background on browser precautions. In Section III, we

present our fuzzing framework. In Section IV, we discuss

how we synthesize the data and bypass authentication for web

applications. In Section V, we evaluate CorbFuzz and describe

the detected CORB weaknesses by our tool. In Section VI,

we present the related work. In Section VII, we conclude the

paper.

II. BACKGROUND

In this section, we provide the background information on

Site Isolation and Cross-Origin Read Blocking policy.

A. Site Isolation and Information Leakage

Browser information leakage has gained increasing expo-

sure in the last few years. According to the Same-Origin Policy

(SOP) [9], one of the fundamental rules in browsers, docu-

ments from different origins cannot interact with each other.

However, many exploits have been discovered to conduct

cross-origin content leak [10]–[15]. Additionally, the discovery

of cache-related side-channel vulnerabilities like Spectre [16]

and Meltdown [4] worsen the information leaks.

Site Isolation policy [17], [18] has been proposed to counter

cross-origin content leaks. Such a policy is also known as

“one site per process” policy. Namely, a browser should

ensure that documents from different origins are rendered and

executed in their own respective sandbox. Such an effort re-

duces the chance of success of cache side-channel attacks and

makes most cross-origin information leakage vulnerabilities in

browsers no longer exploitable.

B. Cross-Origin Read Blocking

While Site Isolation policy removes the possibility of docu-

ments in different origins interacting with each other directly,

there are still ways to inject documents from different origins

via interfaces provided by browsers. A possible approach is

to include the documents from different origins as resources

required by the webpage. Some examples have been provided

below, for which the first line is to load an endpoint as an

image, and the second line is to load it as a script.

<script src="//a.com/secret"></script>

In addition, other browser JavaScript interfaces could be

used to pass partial sensitive information from one origin

to another. A famous example is CVE-2020-6442 [19]. The

vulnerability is that by loading two cross-origin documents

into the cache, it is possible to calculate the difference of

sizes between two documents by calculating the increase in the

size of the cache. The size leakage technique could be easily

exploited to deduce the preference and the visiting history of

users.

All these interactions make Site Isolation policy no longer

effective. While blocking all cross-origin requests could solve

216

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

the issue, existing websites legitimately utilizing cross-origin

resources would similarly be affected by such an approach.

Thus, Cross-Origin Read Blocking (CORB) policy has been

proposed. It aims to prevent HTTP responses from being

loaded into contexts at different origins if the information

is deemed confidential. The authors have claimed that this

could effectively reduce potential dubious cross-origin re-

source fetches. Previous examples of XSSI attacks or the CVE-

2020-6442 vulnerability become ineffective when a browser

implements the CORB policy [20].

A simplified version of the CORB policy implementation in

Chromium is shown in Procedure 1. This code is executed as

soon as a response is received by the browser. It performs a

few initial checks, including whether the scheme is HTTP(S).

If these checks are not violated, the response is allowed to be

loaded into a context in a different origin (i.e., not blocked).

The procedure returns NULL if the response is blocked.

The CORB policy authors defined a set of response MIME

types likely related to secrets, namely protected MIME types.

The response having Content Type header value as a protected

MIME type is blocked. For instance, responses with Content

Type headers related to images would not be blocked, yet

responses with Content Type headers related to JSON are

blocked because web developers commonly use JSON seri-

alized responses to conduct communication between frontend

and backend.

Chromium team took a different approach to implement

CORB. Instead of strictly following the policy documented

at W3C [21], the team added extra measures to confirm the

MIME types by inspecting the response content [22]. This

measure is known as “confirmation sniffing”. They claimed

that this could effectively reduce false positives (i.e., re-

duce the cases when a legitimate response is blocked), thus

increasing the compatibility of Chromium with more web

applications [5]. For instance, as seen in Lines 6 and 7 in

Procedure 1, if the response MIME type is related to JSON,

which is in the protected MIME type list, but the content

in the response is an image, not a JSON, then Chromium

follows the property of the content and does not block. On

the other hand, Webkit strictly follows the policy and blocks

the response since it does not have such a measure [23].

III. BROWSER POLICY FUZZING

In this section we present CorbFuzz, which is a fuzzing

technique for checking browser security policies.

A. Fuzzing Algorithm

We present the architecture of CorbFuzz in Figure 1 and its

algorithm in Procedure 2. CorbFuzz is a distributed and multi-

threaded fuzzer that loops over all given web applications and

calls CORBFUZZTESTONE, which conducts coverage-guided

fuzzing for the given web application individually.

Initially, CORBFUZZTESTONE creates multiple instances

of the application runtime instrumented with data synthesis

discussed in Section-IV. We define the runtime to be a

function P : (URL, Seed) → {Metrics,R,M}, where Seed

Procedure 1 Partial CORB Implementation in Chromium

1: procedure CORBCHECK(Response)

2: if Response.Scheme /∈ {HTTP, HTTPS} then
3: return Response

4: mime ← Response.ContentType

5: if mime ∈ ProtectedMimeTypes then
6: if mime ∈ JSON ∧¬ IsJSON(Response) then
7: return Response

8: if mime ∈ XML ∧¬ IsXML(Response) then
9: return Response

10: else
11: return NULL

12: return Response

PHP Runtime
PHP Runtime

PHP RuntimePHP Runtime

Data Synthesis
Coverage

BitmapCorpus

Mutator Requestor
& Monitor

Coverage Guided Fuzzer

HTTP
Req/Resp

Coverage
Stream

Result Sink

Application Hosting Env.Oracle

Policy Oracle

Browser CORB
Impl.

Fig. 1. CorbFuzz Architecture

is an identifier mapping to a state of the web application

(i.e., database, cookies, and sessions), Metrics represents the

coverage metrics, R represents the resource queried by the

web application, and M maps each CORB implementation to

its decision on whether to block the response. Analogous to

a pipeline, the HTTP requests are first passed to the runtime

hosting web application and HTTP responses generated are

then served as inputs for different CORB implementations.

In CORBFUZZTESTONE, a bitmap is created so as to record

the coverage (Procedure 2, Line 6). CORBFUZZTESTONE

additionally declares a result sink (Line 7) for storing the

information required by the oracle. The details of the oracle

are elaborated in the following sections. A corpus (Line 8)

is also defined as a list of pairs, where each pair contains

the URL of the request and the seed. Additionally, a list

is declared (Line 9) for storing the URLs extracted from

the HTTP response (e.g., href values and API calls). During

fuzzing in CORBFUZZTESTONE, it randomly selects an input

from either corpus or unvisited links extracted (Line 9). The

input contains a request URL and potentially a seed mapping

to a state. Then, CORBFUZZTESTONE mutates and sends the

corresponding HTTP request and seed to the runtime (Lines

10, 12). If the input leads to increased coverage, it is added

to the corpus (Lines 14-15).

After the fuzzing terminates (i.e., ShouldTerminate() returns

true), the oracle aggregates the information in result sink and

provides a decision for each HTTP response. These decisions

217

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

Procedure 2 CorbFuzz Algorithm

1: procedure CORBFUZZ(TestBench)

2: for WebApplication ∈ TestBench do
3: CORBFUZZTESTONE(WebApplication)

4: procedure CORBFUZZTESTONE(WebApplication)

5: P ← DataSynthesis(WebApplication)
6: CovBitMap ← BitMap()

7: ResultSink ← HashTable()

8: Corpus ← List[Pair]()

9: NewURL ← List()

10: Visited ← Set()

11: for ¬ShouldTerminate() do
12: U, Seed ← (Corpus ∪ (NewURL - Visited)).Pop()

13: U, Seed ← Mutate(U, Seed)

14: Visited
+← U

15: Metrics, R, M ← P (U, Seed)

16: NewURL
+← ExtractLinks()

17: if IsNewCoverage(CovBitMap, Metrics) then
18: Corpus

+← U, Seed

19: CovBitMap
+← Metrics

20: if IsUniqueResponse() then
21: ResultSink

+← (R, M)

22: RunOracle(ResultSink)

are compared with the browser decisions to identify potential

weaknesses.

B. Policy Oracle

To define a policy oracle (i.e., RunOracle function in Pro-

cedure 2, Line 22), we need to categorize the response as con-

fidential or non-confidential by evaluating resource accesses.

We limit the scope of resources to be only provided by the

database for this work. We use a method similar to Pellegrino

et al. [24] which deduces confidentiality of a resource by

observing resource access frequency. After fuzzing terminates

for each web application, we aggregate and count the number

of resources accessed by each database query executed while

handling each request. In our implementation, we use the

average number of accesses as our threshold. If any query

uses resources that have a frequency below the threshold, the

oracle infers that the query is accessing a confidential resource,

of which the response should be blocked, and checks whether

the CORB implementation blocked it.

The granularity of the resource impacts the result of the

oracle. For example, if each resource is considered as a table,

oracle is more likely to decide to block the response than if

each individual resource is considered as a row in the table.

Hence, using a coarse-grain resource definition is more likely

to produce false positives. We designed two types of oracles

with different resource granularity. To reduce false positives,

one oracle considers each unique row (i.e., query constraints)

to be a resource, and to reduce false negatives, the other oracle

considers each table to be a resource.

C. Coverage Metrics

In CORBFUZZTESTONE, rather than focusing on test cov-

erage for the CORB function of the browser implementation,

fuzzing is guided by test coverage for the given web appli-

cation. While the coverage information of CORB function

may enhance the fuzzing in regards to efficiency, it would

not be useful since CORB function is a small piece of code

in both WebKit and Chromium. Thus, it is easy to achieve

high test coverage for the CORB function while focusing on

achieving high test coverage for the given web application.

Additionally, we are evaluating the policy for different code

patterns. Focusing on what CORB is able to handle would

not lead to identifications of potential weaknesses in the

implementation.

IV. DATA SYNTHESIS

In this section, we discuss our data synthesis techniques

that enable us to handle data-dependent web applications

automatically during fuzzing (i.e., during the execution of

CORBFUZZTESTONE), without the need for manual set up

of fuzzing targets. Instead of querying the database, the data

synthesis approach translates the query to constraints and

generates the respective data. Additionally, the data synthesis

approach generates results for comparisons involving sessions

or cookies so as to achieve higher test coverage and bypass

authentication.

The data synthesis workflow depends on a seed that is gener-

ated and tracked by CORBFUZZTESTONE, first mentioned in

Procedure 2, Line 13. A seed is a 32-bit integer sampled from

a uniform distribution over [0, 232 − 1]. There is a bijection

between the seed and the state of the database and a weak

bijection between the seed and the cookies or sessions.

A. Query Constraint Extraction

We first discuss the handling of database queries. The results

generated for a specific database query are constrained by three

measures: row count, table architecture, and constraint that

describes the resulting rows and columns from the query. Most

open-source web applications either do not include a table

schema or require laborious work to set up the tables. Thus, we

assume that the table schema is not given, and the generation

of the database query result is run without the knowledge of

the table architecture. For these, we respectively define three

functions: MAXROW, FIELDS, CONSTRAINT. The input of

all these functions is a relational algebra expression translated

from the query.

MAXROW provides an estimation of the maximum rows

of the query result. It is implemented by considering the set

operators and LIMIT.

To reconstruct the table schema, the data synthesis approach

learns from the query by observing the field names used inside

it. We define the FIELDS function, which produces a set of

pairs representing fields returned by the query. The first part

of the pair indicates the table name, and the second part is the

name of the field. The function is implemented by tracking

the rename, projection, and select operators. In the case that

218

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

1 <?php
2 $conn = mysqli_connect(...);
3
4 $res = $conn->query(
5 "SELECT * FROM A WHERE A.c = 1"
6);
7
8 $x = $res->fetch_assoc();
9

10 $a = $x["a"];
11
12 if ($a == 0) echo 1;

Fig. 2. Example of PHP Application Database Call

a wildcard projection (i.e., asterisk) is used, the function

only returns the fields used throughout the relational algebra

expression, which could be a subset of fields returned if the

query is executed on the correct table schema. The missing

fields are addressed by FIELD procedure in Procedure 3.

To ensure that the response generated using data synthesis

can be reproduced in the web application with real database

settings, we additionally extract the constraints from the query

and generate a consistent result that conforms to these con-

straints. For this, we define CONSTRAINTS function, which

outputs all the row-based and column-based constraints in the

relational algebra expression for the SMT solver. We utilize

a subset of translation rules proposed by Veanes et al. [25].

Note that this function also assigns types to fields if the field

is compared with a concrete value in the select operator or

returned by set functions like COUNT.

We provide an example for the query in Line 5 of Figure 2

as input. The relational algebra expression for the query is

SELECTA.c = 1(A). Since there is no LIMIT operation inside

the query, the MAXROW outputs that the maximum line is

infinite. The FIELDS function produces a set with one pair:

{〈A, c〉}. The CONSTRAINTS function translates the condition

in the select operator to the SMT formula: (= A#c 1) and

assigns 〈A, c〉 to be of integer type.

The crucial procedures for the generation workflow are pre-

sented in Procedure 3. Before fuzzing starts in CORBFUZZTE-

STONE (Line 5, Procedure 2), the INITIALIZATION procedure

is executed. This procedure initiates three global hashtables for

caching. These are preserved throughout the runtime lifecycle

and synchronized throughout all runtimes (since we use multi-

threaded distributed fuzzing, this is necessary).

When a query is sent to the database, and the web applica-

tion is waiting for the response, ADD procedure replaces the

original code for sending the query and receiving the response

from the database. ADD procedure takes two arguments: the

query and the seed. If the cache contains the previous solution

for the query and the seed, the cached result is returned.

Otherwise, the query is parsed into relational algebra to extract

constraints, fields, and maximum length (as mentioned before),

and an empty hashtable is returned. The hashtable, regardless

of whether there is a cache hit, is tracked and used by the web

application as the output of the database query.

Procedure 3 Database Query Result Generation Algorithm

1: procedure INITIALIZATION

2: ConcreteResults ← HashTable()

3: Types ← HashTable()

4: Cache ← HashTable()

5: procedure ADD(Query, Seed)

6: if Cache(Query) = NULL then
7: ra ← Parse(Query)

8: Cache(Query).L ← MAXROW(ra)

9: Cache(Query).F ← FIELDS(ra)

10: Cache(Query).C ← CONSTRAINTS(ra)

11: results ← ConcreteResults(Query, Seed)

12: return Tracked(results)

13: procedure FIELD(Query, Seed, Name)

14: cache ← Cache(Query)

15: r ← ConcreteResults(Query, Seed)

16: if Name /∈ cache.F then
17: Types(Query, Name) ← τ .AssignWeight(0)

18: r.F ← cache.F
+← Name

19: for field ∈ r.F do
20: if field.Type = NULL then
21: τ ← Types(Query, field)

22: field.Type ← Sample(τ)

23: len ← Seed % cache.L

24: r ← Solve(cache.C ∪¬ cache.Solved(r.F, len), len)

25: if r = UNSAT then return Abort()

26: cache.Solved(r.F, len)
+← r

27: return Tracked(r(Name))

28: procedure NOTIFY(Query, Name, IType)

29: τ ← Type(Query)(Name)

30: τ (IType) ← τ (IType) + Weight

If the tracked hashtable is searched in the later executions

of the web application and the searched key corresponds to

NULL value, the FIELD procedure is called. In addition to the

query and the seed, this procedure takes an additional argu-

ment: the name of the field (i.e., the key of the hashtable that

the application is searching for). FIELD procedure assumes

that the web application code is correct and the queried field

must exist. Under the circumstance that this specific field name

is not inferred from the SQL query statement (e.g., a wildcard

select), FIELD appends the field name to the global cache so

that in the future, for this query, this specific field would be

considered. Before solving the constraints generated from the

evaluation of the query, FIELD first probabilistically selects

a type from all possible data types for each field, which is

discussed in Section B. The number of rows is generated using

the seed value. To avoid generating an identical result, FIELD

appends constraints stating that the result to be solved should

not be equal to previously generated results under the same

condition (i.e., same type and same amount of row). If the

solver concludes these constraints could derive no result (i.e.,

UNSAT), the web application immediately returns an internal

219

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

error to abort the data synthesis workflow. However, this case

rarely happens in our experiments because constraints for SQL

queries are very permissive. The returned value of FIELD

procedure is also tracked for type inference purposes, which

is described in the following section.

We demonstrate an example for the workflow over the PHP

application code listed in Figure 2. Before the execution of

any code, as soon as the runtime starts, the INITIALIZA-

TION procedure is called. Then, on Line 2, the code calls

mysqli_connect to establish a connection to MySQL

database. Inside the runtime, this function is replaced with

a dummy method that always acts as if there is a successful

connection. Then, the code is executed to send a query to

MySQL database (Line 4) and wait for the response (Line

8). Instead of sending the query, the runtime calls the ADD

procedure. Suppose we are using a new seed, the procedure

would evaluate the query and return a traced empty hashtable.

On Line 10, the hashtable is searched with a key a. Since the

hashtable is empty, the key points to NULL value. Instead of

returning NULL, the FIELD procedure is called to solve for

all the fields, including the field searched by the application.

B. Type Inference

The knowledge of field names is not enough to generate the

data. Correct type of each field is also required for generating a

consistent result. Note that for types here, we are not referring

to the actual type of a concrete value. Instead, we are referring

to the inherent types. The inherent type is the same after type

juggling. Suppose an integer is cast as string in the application,

we do not record this as string but instead as integer. Indeed,

all fields in the result from the call mysqli_query are cast

as string, regardless of what the type is attributed to each of

them in the table schema. Yet, they are directly used as their

inherent type throughout the execution in web applications,

which is made possible by type juggling. Hence, for data

synthesis purposes, we need to infer the inherent types but

not the actual types.

We consider type information crucial because an inaccurate

type makes web applications prone to producing errors and

unrealistic responses. For instance, deserializing an integer or

integer-like object would inevitably lead to errors. Another

example is that using a string as an index for an integer-

indexed array does not lead to error but breaks the original

logic of the web application. This situation is unwanted in

this context because it produces a spurious response that is

not reproducible in an actual run of the web application using

the real table schema.

In the query, we could gain type information for fields when

the operations processing or generating the field are known and

the argument or return types are well-defined. This is because

type juggling in SQL would lead to an error or warning.

For instance, a comparison between a field and an integer

would help us conclude that the field type must be integer.

However, it is impossible to infer all types from evaluating

queries. Thus, we additionally infer the type of fields by the

information during the execution. Specifically, data synthesis

runtime collects type information via two methods. First, if

the field encounters the binary comparison operand, CorbFuzz

records the type of the concrete value it is comparing to.

Second, CorbFuzz tracks the internal functions that the field

is served as an argument. Internal functions typically have a

clear definition of the types of each argument. For simplicity,

CorbFuzz ignores corner cases like comparison between two

fields and passing to an internal function supporting all types.

Future work may leverage Hindley-Milner algorithm [26] to

construct a more fine-grained typing system.

Still, the runtime analysis is not enough for inferring types

of all fields. Some of them may not be passed to an internal

function or used in comparisons. Additionally, comparison

between variables of different types is allowed, and it is

impossible to deduce the inherent type of a concrete value.

These factors mean there is a possibility that a different type

is used against the compared variable. To accommodate these

cases, we define a domain of types (τ) for each field and assign

a weight to any type t ∈ τ . At initialization, each t is set with

an initial weight and increased whenever it matches inference

(e.g., passed to an internal function), which we refer to as a

type hint, after the generation of the result. If query analysis

has already assigned a type, then the type would have infinite

weight in τ . Before constraint solving is initiated, CorbFuzz

conducts a probabilistic sampling from τ for each field based

on weights assigned to types (the probability of a type to

be chosen is proportional to the weight of the type). Due to

probabilistic selection, a variety of types are explored during

fuzzing. Here, we assume that if a type for a variable is not

intended, then this incorrect type used would lead to either

errors or no effect on analysis. In general, CorbFuzz tries to

increase the likelihood that a correct type will be used.

In Procedure 3, FIELD procedure conducts a probabilistic

sampling over the τ for each field (Line 19-22). In our

implementation, we utilize A-res algorithm [27]. NOTIFY

procedure is called when the tracked value returned by FIELD

procedure is used in internal functions or for comparison. The

type hint is then used to increase the weight for that type

in τ . In our implementation, we only let τ include integers,

strings, and booleans. Type hints for types that are not in τ
are ignored.

In the example provided in Figure 2 Line 10, after the FIELD

procedure ends, $a is assigned the generated value that is

tracked. On Line 12, the tracked value is compared to an

integer. The NOTIFY procedure is called, adding weight for

the integer type for the field a in global hashtable Types.

C. Authentication Bypass Workflow

Cookies and sessions are commonly leveraged by web

applications to make HTTP requests stateful [6], [28], allowing

for the implementation of authentication. Both of them could

be represented as a hashtable. We observed that there could

be a significant increase in coverage for a web application

if cookies or sessions are properly set (e.g., an authentication

token presents for a specific field). It is because complex logic

inside web applications tends to be reached after the request

220

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

1 <?php
2 session_start();
3
4 if (isset($_SESSION["is_auth"]))
5 echo $_SESSION["welcome_message"];

Fig. 3. Example of PHP Application Session Usage

presents to be authenticated or authorized. Usually, cookies

or sessions keys and values are compared to a constant or a

result from the database. Therefore, using a fuzzer to explore

cookies and sessions is largely ineffective since there is a huge

search space for the keys and values.

To better explore behaviors of web applications, we generate

decisions for comparison operations that involve sessions or

cookies. Still, we conduct concolic execution and record

the constraints for the decisions made to check whether all

decisions made are satisfiable. CorbFuzz treats each item in

session or cookie as a pair of symbolic variables: 〈φ, α〉, where

φ is the gated boolean symbolic variable that shows whether

the item is defined and α represents the symbolic variable

for the item. This method is inspired by hybrid fuzzing but

differs from it. The runtime only solves the constraint one

time when necessary. That is, if an item of cookies or sessions

has not been passed to an operation that does not have an

SMT formula translation available, the value would never be

generated.

The reason we do not generate the data as soon as it is used

is largely due to the use cases of sessions and cookies. They

are used in multiple or nested branches, but most of the time,

their concrete value would not be evaluated. Additionally, there

are very few internal functions that commonly use sessions

or cookies as arguments. We have implemented only basic

arithmetic and isset [29] internal call with the translation

of the SMT formula. Still, most requests in our experiment

do not require generating the concrete value of sessions and

cookies.

We have shown the crucial components for the workflow in

Procedure 4 for session, which is identical for cookie. Similar

to the previous workflow for database, there is also an initial-

ization procedure that creates a global hashtable for caching.

Specifically, GC is for storing the mapping between seed and

the sessions. Additionally, there is a START procedure, which

is called before each HTTP request is handled and the variable

declared only survives during the lifecycle of that request. The

procedure creates a copy of the seed and declares a hashtable

for saving the constraints for each session item used during

the request.

When an item of sessions is compared with a concrete value,

the DO procedure is used before evocation of the original

comparison handler. CorbFuzz first checks whether there is

already a cached item for the given seed (Line 7). If there is

a cache hit, then the item is assigned a concrete value, and

the internal implementation of the comparison operation is ex-

ecuted. Otherwise, CorbFuzz checks whether the comparison

Procedure 4 Session Generation Algorithm

1: procedure INITIALIZATION

2: GC ← HashTable()

3: procedure START

4: RCache ← HashTable()

5: NewSeed ← Copy(Seed)

6: procedure DO(Name, Opline)

7: if GC(Seed, Name) then
8: Session(Name) ← GC(Seed, Name)

9: return Next()

10: if Opline.Operand ∈ ImplementedOp then
11: decision ← NewSeed & 1

12: ShiftRight(NewSeed)

13: cons ← ToConstraint(Opline, decision)

14: if ¬ IsSAT(RCache(Name) ∪ cons) then
15: return DO(Name, Opline)

16: RCache(Name)
+← cons

17: return decision

18: else
19: solved ← Subset(GC(*, Name))

20: cons ← RCache(Name) ∪¬ solved

21: if ¬ IsSAT(cons) then return Abort()

22: GC(Seed, Name) ← Solve(cons)

23: return DO(Name, Opline)

operation is implemented (Line 10) so that it could convert the

decision of the operation to a constraint. If so, a decision is

generated from the seed, and the constraint for performing

this decision is appended to the constraints over that item

(Lines 11-13). An SMT solver is then used to check whether

the constraint is satisfiable (Line 14). If it is not satisfiable,

then the procedure recursively consumes the seed until there is

a decision that could be satisfied. Our implementation assumes

there are at most 32 decisions since we are using a 32-bit

seed. In our experiments, the maximum consumption is only

11 bits in a specific request. The decision is then returned, and

the internal implementation of the comparison is ignored. As

for the corner case that a session item is compared to another

session item, we treat this comparison as an unimplemented

operation for one side and then apply the workflow to the other

side. When the operation is not implemented, then a concrete

value is generated by solving the constraint for that item. To

ensure the uniqueness of the concrete value generated, the

solver tries to avoid generating already solved values stored

in the global cache for that field name. To reduce UNSAT

cases, DO only selects a random subset of the stored values

in the cache and removes them from consideration as the

result of solving (Line 19). Note that by doing so, we do not

create a strict bijection here between the seed and the sessions.

Same sessions may map to multiple seeds. This is because the

constraints here are not permissive.

For PHP code listed in Figure 3, when it executes until

Line 4, CorbFuzz first declares a pair of symbolic variables

〈φ0, α0〉 and makes a decision for the unary comparison

221

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

isset based on the seed. Suppose the seed indicates the

decision is to return true, then the constraint φ0 = true is added

to the set of constraints for the $_SESSION["is_auth"].

Note that this session item is not used later, so its concrete

value is never generated. Then, on Line 5, another session

item is used. We have not implemented echo function and

the value of $_SESSION["welcome_message"] is gen-

erated with respect to its constraints (i.e., no constraint in this

context).

In certain cases, the data stored in the cookies or sessions

may be subject to decryption or deserialization in web appli-

cations. Before a decryption or decoding function is executed

with input from cookies or sessions, the workflow must

synthesize the concrete value. This situation is undesirable

because authentication cannot be bypassed. A more general

version of this issue, which is that symbolic execution fails

to model a comprehensive list of syscalls, also plagues hybrid

fuzzing [30], and no solution has been proposed so far. We

discuss a potential ad-hoc solution and future work to address

this problem in Section V-B.

D. Adapting to Other Programming Languages

The aforementioned methods target PHP applications. How-

ever, they can be extended to other programming languages

that are widely used for web application development. Specif-

ically, the data synthesis workflows embedded with type

inference can be applied to other programming languages

supporting type juggling, like Perl or JavaScript/NodeJS, or

using a dynamic type system, like Ruby and Python. For

statically typed programming languages, like Golang or Java,

the type inference component would not be needed, but the

data synthesis workflows can similarly be adapted.

V. IMPLEMENTATION & EVALUATION

We have implemented the coverage-guided fuzzer and or-

acle for CorbFuzz in Python with 900 lines of code (LoC)

for fuzzing web applications written in PHP. Unlike existing

web application fuzzers that only consider responses related

to PHP, CorbFuzz considers all responses after a web page

is loaded, including images, CSS, and RPC communications.

The data synthesis workflow is implemented as an external

module with 500 LoC in C and 1200 LoC in NodeJs for

PHP. PHP 7.4 has been instrumented to support the workflow

and provide branching information for coverage evaluation. To

allow for fair evaluation on data synthesis effectiveness, we

implement two baseline workflows by removing components

inside CorbFuzz.

In the following subsections, we address the following

research questions;

RQ1. Is data synthesis workflow generating consistent data?

RQ2. Can data synthesis workflow increase test coverage?

RQ3. Can CorbFuzz detect bugs in implementation in existing

browsers?

LoC Range Number of Applications Average LoC
Less than 1K 15 476.9
Between 1K and 10K 15 3022.5
Between 10K and 100K 6 43075.5
More than 100K 3 250875.5

TABLE I
TOTAL LOC STATISTICS FOR FUZZING TARGETS

A. Experimental Setup

1) Environment: We evaluate CorbFuzz on two Intel Xeon

Phi 7210 (64 cores) nodes. Both nodes use Ubuntu 20.04 with

one node running NGINX [31] for serving web application on

the instrumented PHP environment and other node running the

coverage-guided fuzzer.

2) Targets: We evaluate CorbFuzz with two popular web

browsers: Chromium and WebKit (Safari). Chromium has

already added CORB into its current stable release. We im-

plement a test harness based on the Chromium shared library

containing the CORB implementation. For WebKit, the devel-

opers have created a pull request for CORB implementation

but it has not yet been merged into the main branch. Since its

implementation is relatively simple and straightforward, we

directly translate it into Python to implement a test harness

for CORB implementation of Webkit.

3) Web Applications: Web applications are fuzzed to pro-

vide responses as input for browser policy test harnesses. We

crawled 300 repositories containing PHP code from GitHub

between March 2nd, 2021 and April 10th, 2021. The reposi-

tories are filtered out if they do not contain index.php or

index.html. For simplicity, we do not consider applications

that require downloading dependencies with Composer [32],

a dependency management tool. The number of remaining

applications is 58 with varying LoCs. We fuzz the policies

with these 58 applications but for the sake of evaluation of

data synthesis effectiveness, we only use 39 of them, for

which CorbFuzz reports existence of branches and utilization

of databases. The statistics of these applications are presented

in Table I.

B. Data Synthesis Effectiveness

To evaluate the data synthesis approach and address RQ1,

we ran CorbFuzz with and without type inference for three

minutes1 with each web application. We compared the per-

centage of correct type generations by tracking whether the

generated value matches the type of (1) a concrete value when

compared to it; (2) the defined argument when used to call

internal function. Figures 4 and 5 demonstrate the percentage

of correct generations for comparison statements and internal

function calls respectively. Figure 4 shows that for 10 appli-

cations, CorbFuzz generates the correct type for comparisons

more often than CorbFuzz without type inference with 17%

more data generations with correct type on average. Figure 5

shows that for 11 applications, CorbFuzz generates the correct

type for internal function calls more often than CorbFuzz

1Due to the randomness feature of the fuzzer, we ran each experiment five
times and take maximum value (e.g., edge coverage).

222

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The percentage of correct type generation for comparison statements
for CorbFuzz and CorbFuzz without Type Inference for 3 minutes of fuzzing.
X axis denotes the web application ID.

Fig. 5. The percentage of correct type generation for internal function calls
for CorbFuzz and CorbFuzz without Type Inference for 3 minutes of fuzzing.
X axis denotes the web application ID.

without type inference with 5% more data generations with

correct type on average.

On some applications, CorbFuzz has little improvement on

the accuracy of type generation because in the results we show,

we consider all type violations. However, many of these type

violations are due to developers using type juggling and not

due to data synthesis. Therefore, these violations cannot be

removed by improving type inference in data synthesis.

We also evaluated the impact of data synthesis on fuzzing

effectiveness and address RQ2. Figure 6 demonstrates the

edge coverage difference, in terms of percentages, of edge

counts between CorbFuzz without any type inference and

authentication bypass, and CorbFuzz. For this evaluation, we

only chose applications containing more than one branch.

Figure 6 shows that for almost all applications, the inclusion of

type inference and authentication bypass improves coverage.

The average number of edges covered is 16.2 edges for

CorbFuzz without type inference and authentication bypass

Fig. 6. The percentage of edges covered for CorbFuzz without Type Inference
and Authentication Bypass in 3 minutes of fuzzing against edges covered by
CorbFuzz. X axis denotes the web application ID.

and 27.5 for CorbFuzz. These results demonstrate that with

the inclusion of type inference and authentication bypass, we

can cover on average 70% more edges, which shows the

effectiveness of our data synthesis approach.

The number of edges covered is low for some applications

because these applications (e.g., WordPress) save and use

structural, encrypted, or serialized data from the database

or cookie. The data synthesis workflow is unaware of the

structural property of any field. Therefore, it generates a large

amount of data that can not be deserialized or decrypted by

the web application, so CorbFuzz fails to explore these web

applications. However, we recognize that this can be prevented

by enlarging the domain of type τ defined. By considering the

common structural properties as types (e.g., JSON type) and

instrumenting deserialization libraries to provide type hints,

future work could implement an approach that is able to further

improve web application coverage.

C. Detected CORB Weaknesses

In evaluation of RQ3, we have discovered three common

classes of code patterns, which are discussed in following

sections, that cause the CORB implementation in Chromium to

not function as expected. One of the cases has been filed in the

Chromium bug tracker before our discovery by a Chromium

developer and is still in discussion2. We have reported another

case3, which has later been resolved by a patch in the CORB

component of Chromium4.

All the weaknesses discovered are due to the novel fuzzing

approach we present in this paper. The weaknesses are not

present in every web application but only in a few of them.

Fuzzing a single web application would likely not lead to the

discovery of any of the weaknesses, while fuzzing multiple

web applications without the data synthesis would require

2https://crbug.com/795470
3https://crbug.com/1148397
4https://chromium-review.googlesource.com/c/chromium/src/+/2596879/

223

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

Left Brace

Otherwise

Start Quotation

Otherwise

Left
Brace Control characters

Quotation

Left
Quote

Control characters

Escape

Whitespace

Not
JSON

Is
JSON

Otherwise

Right
Quote

whitespace

\

Whitespace
Otherwise

Colon

Fig. 7. Finite State Machine for Validating JSON

setting up the database and seeding the tables for numerous

web applications, which is infeasible. Data synthesis allows us

to effortlessly fuzz multiple web applications by symbolically

evaluating database queries. Additionally, all the web appli-

cation states that lead to the aforementioned weaknesses are

under some extent of authentication or authorization. Without

a manual definition of the login method for a web application,

the fuzzer would not discover these weaknesses. Yet, manually

defining authentication or authorization method for a consid-

erable number of applications is tedious and unrealistic. In

contrast to the manual approach, the data synthesis approach

we present automatically generates appropriate sessions and

cookies items, which allows exploration using authorized

requests.

Serialized Array as JSON Response. In Chromium, if the

response MIME type is related to JSON, CORB would check

the response content to learn whether it is indeed JSON. A

finite state machine (FSM) conducts such a check. As illus-

trated in Figure 7, the FSM does not comprehensively parse

the response content to perform the check. Instead, it only

checks whether the content has a left brace at the beginning

and has matching quotes for the first key to determine if the

content is JSON.

As permissive as it is, such a check would not identify a

serialized array in JSON format, which is considered a JSON

object inside the JavaScript runtime of Chromium. Indeed,

the latest JSON specification (RFC 8259 [33]) refers this

to be a different type from JSON object known as JSON

array. For instance, for a simple response as [1,2,3], a

JSON array, JSON check in CORB implementation would

first look for the left brace. Yet, the first character is left

bracket, which makes the FSM classify the content as not

JSON. However, fetch, XMLDocument, and JSON.parse
APIs in JavaScript runtime parse the content into a JavaScript

object without warning.

Sending JSON arrays as responses is commonly seen in web

application APIs. The responses of these APIs would likely

carry sensitive information. Thus, we consider catching JSON

array for JSON MIME type in CORB implementation to be a

reasonable patch.

Malformed JSON Response. It is not uncommon for web

application developer to adopt the following code pattern,

where $var represents any variable the attacker can control

(i.e., a tainted variable), which could be achieved through

methods including URL manipulation and security-unrelated

CSRF [34].

1 <?php
2 header(’Content-Type: application/json’);
3 echo "{\"$var\":\"$secret\"}";

This code pattern does not leverage the existing serialization

library. Instead, it produces serialized objects by direct string

concatenation and manipulation. If the attacker is able to

control at least one character in the first key of a JSON object,

they would be able to bypass the CORB check by making

that key contain a control character. According to JSON

specification, control characters (U+0000 through U+001F)

inside key and value of JSON object should be escaped

(i.e., append a reverse solidus before the control character).

Similarly, the JSON verifier inside CORB implementation in

Chromium follows this pattern and rejects all JSON objects

with unescaped control characters on the first key.

Consider the PHP code shown above. If we set $var to be

the control character \u0017, the resulting response becomes

{"\u0017": "[SECRET]",[MORE SECRETS]}. The

JSON checker FSM enters the state “Left Quote” after

encountering the first and second characters. It then compares

character \u0017 to control character range and identifies it

as an unescaped control character, misclassifying the response

as not JSON.

We consider this weakness should be addressed as the

existence of such a code pattern is not negligible. We have

reported this to the Chromium team, and it has been fixed

by removing the check for control character inside the JSON

checker.

The discovery of this weakness is only possible if the

fuzzer can mutate the database state efficiently. In all the cases

that lead to this malformed JSON response, the variable as

the key of the JSON array is retrieved from the database.

CorbFuzz symbolically evaluates the database queries and

synthesizes the concrete value for that variable, which allows

the efficient exploration of the domain of this variable (i.e.,

exploring interesting values for UTF-8 character). In contrast,

a conventional fuzzing approach has to mutate the database

state by sending requests to the web application or by resetting

the database, leading to significantly larger search spaces and

high timing overhead for mutating the content of the variable

derived from the database.

Confirmation Sniffing. In most web applications, warnings

and errors in plaintext or HTML are directly prepended to the

response. For PHP, a warning in HTML is generated whenever

an undefined behavior happens. If a malicious actor is able to

trigger an undefined behavior in responses that are checked

with confirmation sniffing, then CORB in Chromium could

224

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

be bypassed since the responses start with data that is not of

their MIME type.

This weakness, including all previous weaknesses, could

be considered as the side effect of increase in permissiveness

caused by confirmation sniffing. We consider that confirmation

sniffing is harming the effectiveness of the CORB implemen-

tation in Chromium. Future work, on the other hand, could

work on testing the contribution of confirmation sniffing on

compatibility and conclude whether confirmation sniffing is

indeed redundant.

D. Fuzzer Flexibility

We have constructed an oracle for ORB and test the

proposed implementation. Our fuzzer is unable to discover

any weakness of ORB. It is because ORB applies a whitelist

approach to block requests yet CORB uses a blacklist, which

means ORB is much less permissive than CORB. Future work

could apply similar approach to evaluate its compatibility.

VI. RELATED WORK

Coverage-guided Fuzzing. Coverage-guided fuzzing has

been used to find bugs in different types of programs, such as

virtual machines [35], web browsers [36], [37], network func-

tions [38], [39], and operating systems [40], [41]. The state-

of-the-art implementations are AFL [42] and libFuzzer [43].

In this paper, we leveraged coverage-guided fuzzing to explore

responses from web applications for browser security policy

checking. Yet, our approach is not using the coverage of the

browser but is instead guided by the coverage of the web

applications. Our approach also conducts a series of coverage-

guided fuzzing with different targets instead of fuzzing an

individual program.

Browser Fuzzing. Domato [44], Dharma [45], and Free-

Dom [36] are all specialized fuzzers used to discover memory-

related vulnerabilities and assertion violations in DOM im-

plementation of browsers. They generate structural data that

contain valid HTML, CSS, and DOM-related JavaScript for

browsers to render. Fuzzilli [37] and Jsfunfuzz [46] are fuzzers

for discovering vulnerabilities in JavaScript engines, which

utilize a similar approach to generating structural data. Our

work is different from all these approaches since the oracle

of CorbFuzz is defined based on the property of the web

applications, and CorbFuzz does not generate the test cases

but instead utilizes web applications’ responses. Roy et al. [47]

fuzzes web applications and supplies responses to browsers to

detect visual inconsistencies between browsers. It is similar to

our work in the sense that both works treat web applications

and browsers together as a black box. Unlike their work which

focuses on testing web applications, our work focuses on

testing security policies in browsers. We also do not cross-

reference between browsers but use an oracle instead.

Web Application Testing. Alshahswan et al. [7] and Biagi-

ola et al. [8] propose search-based approaches to testing web

applications. Both works use metaheuristic approaches such

as genetic algorithms to explore and generate different inputs

to extensively test web applications. Different from our work,

[7] requires the input types and login information. [8] requires

Page Objects to be provided to test the web application. Our

work instead avoids manual analysis through data synthesis.

Elbaum et al. [48] proposes that web application testing should

mutate the sessions and provides a few mutation techniques

that could help achieve better coverage. Data synthesis in our

work is different than the work of Elbaum et al. since we do

not mutate the sessions but instead symbolically evaluate or

generate them. Apollo [49] and Wassermann et al. [50] lever-

age concolic testing to increase coverage of web applications

and to discover vulnerabilities. Session generation workflow

in our data synthesis approach is utilizing concolic execution,

but it is fundamentally different than the concept of concolic

testing.

VII. CONCLUSION

We have created a browser policy fuzzer CorbFuzz which

uses web application responses to fuzz the browser security

policies. To avoid setting up the web applications manually, we

proposed a web application runtime that synthesizes data. The

resources queried by the web application are either generated

or symbolically represented. We have shown that the data

synthesis approach not only generates consistent data but also

increases test coverage for web applications. We have evalu-

ated CorbFuzz on CORB implementations of Chromium and

WebKit as well as ORB proposal for Firefox. By fuzzing with

58 applications, we discovered three classes of weaknesses in

CORB implementation of Chromium.

REFERENCES

[1] V. Hailperin, “Cross-Site Script Inclusion.” [Online]. Available:
https://www.scip.ch/en/?labs.20160414

[2] J. Grossman, S. Fogie, R. Hansen, A. Rager, and P. D. Petkov, XSS
attacks: cross site scripting exploits and defense. Syngress, 2007.

[3] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018., 2018, pp. 973–990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[5] “Cross-Origin Read Blocking (CORB).” [Online].
Available: https://chromium.googlesource.com/chromium/src/+/master/
services/network/cross origin read blocking explainer.md

[6] Y.-F. Li, P. K. Das, and D. L. Dowe, “Two decades of web
application testing—a survey of recent advances,” Information
Systems, vol. 43, pp. 20–54, 2014. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0306437914000271

[7] N. Alshahwan and M. Harman, “Automated web application testing
using search based software engineering,” in 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2011). IEEE, 2011, pp. 3–12.

[8] M. Biagiola, F. Ricca, and P. Tonella, “Search based path and input data
generation for web application testing,” in International Symposium on
Search Based Software Engineering. Springer, 2017, pp. 18–32.

[9] J. Schwenk, M. Niemietz, and C. Mainka, “Same-origin policy:
Evaluation in modern browsers,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association,
Aug. 2017, pp. 713–727. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/schwenk

225

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

[10] B. Gulmezoglu, A. Zankl, T. Eisenbarth, and B. Sunar, “Perfweb: How
to violate web privacy with hardware performance events,” Computer
Security – ESORICS 2017, p. 80–97, 2017.

[11] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” 2012 IEEE Symposium on Security and Privacy, 2012.

[12] H. Kim, S. Lee, and J. Kim, “Inferring browser activity and status
through remote monitoring of storage usage,” Proceedings of the 32nd
Annual Conference on Computer Security Applications, 2016.

[13] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered on
your browser by exploiting gpu vulnerabilities,” 2014 IEEE Symposium
on Security and Privacy, 2014.

[14] R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard, “Exploiting
data-usage statistics for website fingerprinting attacks on android,”
Proceedings of the 9th ACM Conference on Security &; Privacy in
Wireless and Mobile Networks, 2016.

[15] S. Karami, P. Ilia, and J. Polakis, “Awakening the web’s sleeper
agents: Misusing service workers for privacy leakage,” Proceedings 2021
Network and Distributed System Security Symposium, 2021.

[16] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” CoRR, vol. abs/1801.01203, 2018.
[Online]. Available: http://arxiv.org/abs/1801.01203

[17] C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: Process separation
for web sites within the browser,” in Proceedings of the 28th USENIX
Conference on Security Symposium, ser. SEC’19. USA: USENIX
Association, 2019, p. 1661–1678.

[18] “Site Isolation - The Chromium Projects.” [Online]. Available:
https://www.chromium.org/Home/chromium-security/site-isolation

[19] “CVE - CVE-2020-6442.” [Online]. Available: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2020-6442

[20] “Issue 1013906: Security: expose stored (in cache) cross-site
response’s size.” [Online]. Available: https://bugs.chromium.org/p/
chromium/issues/detail?id=1013906

[21] “Fetch Standard.” [Online]. Available: https://fetch.spec.whatwg.org/
#corb

[22] “MIME Sniffing Standard.” [Online]. Available: https://
mimesniff.spec.whatwg.org/

[23] “185331 – Cross-Origin Read Blocking (CORB).” [Online]. Available:
https://bugs.webkit.org/show bug.cgi?id=185331

[24] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow, “Deemon:
Detecting csrf with dynamic analysis and property graphs,” 2017.

[25] M. Veanes, J. d. Halleux, N. Tillmann, and P. de Halleux,
“Qex: Symbolic sql query explorer,” Tech. Rep. MSR-TR-
2009-2015, October 2009, updated January 2010. [Online].
Available: https://www.microsoft.com/en-us/research/publication/qex-
symbolic-sql-query-explorer/

[26] R. Milner, “A theory of type polymorphism in programming,” Journal
of Computer and System Sciences, vol. 17, no. 3, pp. 348–375, Dec.
1978. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
0022000078900144

[27] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software, vol. 11, no. 1, pp. 37–57, Mar. 1985. [Online].
Available: https://dl.acm.org/doi/10.1145/3147.3165

[28] M. Johns, S. Lekies, B. Braun, and B. Flesch, “Betterauth: Web
authentication revisited,” in Proceedings of the 28th Annual Computer
Security Applications Conference, ser. ACSAC ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 169–178.
[Online]. Available: https://doi.org/10.1145/2420950.2420977

[29] “isset - php manual.” [Online]. Available: https://www.php.net/manual/
en/function.isset.php

[30] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, 2016,
pp. 1–16.

[31] “NGINX | High Performance Load Balancer, Web Server, & Reverse
Proxy.” [Online]. Available: https://www.nginx.com/

[32] “Composer.” [Online]. Available: https://getcomposer.org/
[33] “The javascript object notation (json) data interchange format.”

[Online]. Available: https://tools.ietf.org/html/rfc8259
[34] A. Shankar (D1r3Wolf), “Chaining No impact(N/A) Bugs to get

High impact.” [Online]. Available: https://blog.d1r3wolf.com/2020/04/
chaning-no-impactna-bugs-to-get-high.html

[35] T. Brennan, S. Saha, and T. Bultan, “Jvm fuzzing for jit-induced side-
channel detection,” in Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1011–1023.
[Online]. Available: https://doi.org/10.1145/3377811.3380432

[36] W. Xu, S. Park, and T. Kim, “FREEDOM: Engineering a State-of-
the-Art DOM Fuzzer,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. Virtual
Event USA: ACM, Oct. 2020, pp. 971–986. [Online]. Available:
https://dl.acm.org/doi/10.1145/3372297.3423340

[37] “Fuzzilli - A JavaScript Engine Fuzzer,” Apr. 2021, original-
date: 2019-03-20T15:32:47Z. [Online]. Available: https://github.com/
googleprojectzero/fuzzilli

[38] A. Shukla, K. N. Hudemann, A. Hecker, and S. Schmid, “Runtime
verification of p4 switches with reinforcement learning,” in Proceedings
of the 2019 Workshop on Network Meets AI & ML, ser. NetAI’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
1–7. [Online]. Available: https://doi.org/10.1145/3341216.3342206

[39] C. Shou, “Porkfuzz: Testing stateful software-defined network
applications with property graphs,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1660–1662. [Online]. Available:
https://doi.org/10.1145/3468264.3473487

[40] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding
semantic bugs in file systems with an extensible fuzzing framework,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles. Huntsville Ontario Canada: ACM, Oct. 2019, pp. 147–161.
[Online]. Available: https://dl.acm.org/doi/10.1145/3341301.3359662

[41] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee,
“HFL: Hybrid Fuzzing on the Linux Kernel,” in Proceedings
2020 Network and Distributed System Security Symposium. San
Diego, CA: Internet Society, 2020. [Online]. Available: https:
//www.ndss-symposium.org/wp-content/uploads/2020/02/24018.pdf

[42] lcamtuf, “American Fuzzy Lop.” [Online]. Available: http:
//lcamtuf.coredump.cx/afl/

[43] K. Serebryany, “libFuzzer, a library for coverage-guided fuzz testing,”
LLVM project, 2015.

[44] “Domato - DOM fuzzer,” Apr. 2021, original-date:
2017-09-21T15:28:59Z. [Online]. Available: https://github.com/
googleprojectzero/domato

[45] “Dharma - Generation-based, context-free grammar fuzzer.” Apr.
2021, original-date: 2015-03-25T17:56:23Z. [Online]. Available: https:
//github.com/MozillaSecurity/dharma

[46] “A collection of fuzzers in a harness for testing the SpiderMonkey
JavaScript engine.” Apr. 2021, original-date: 2015-07-08T01:05:26Z.
[Online]. Available: https://github.com/MozillaSecurity/funfuzz

[47] S. Roy Choudhary, M. R. Prasad, and A. Orso, “X-pert: a web
application testing tool for cross-browser inconsistency detection,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, 2014, pp. 417–420.

[48] S. Elbaum, S. Karre, and G. Rothermel, “Improving web application
testing with user session data,” in 25th International Conference on
Software Engineering, 2003. Proceedings., 2003, pp. 49–59.

[49] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M. D. Ernst, “Finding bugs in dynamic web applications,” in
Proceedings of the 2008 International Symposium on Software Testing
and Analysis, ser. ISSTA ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 261–272. [Online]. Available:
https://doi.org/10.1145/1390630.1390662

[50] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and
Z. Su, “Dynamic test input generation for web applications,” in
Proceedings of the 2008 International Symposium on Software Testing
and Analysis, ser. ISSTA ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 249–260. [Online]. Available:
https://doi.org/10.1145/1390630.1390661

226

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on August 02,2022 at 01:51:05 UTC from IEEE Xplore. Restrictions apply.

