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Abstract. For any given neural network architecture a permutation of weights
and biases results in the same functional network. This implies that optimiza-

tion algorithms used to ‘train’ or ‘learn’ the network are faced with a very

large number (in the millions even for small networks) of equivalent optimal
solutions in the parameter space. To the best of our knowledge, this observa-

tion is absent in the literature. In order to narrow down the parameter search

space, a novel technique is introduced in order to fix the bias vector configura-
tions to be monotonically increasing. This is achieved by augmenting a typical

learning problem with inequality constraints on the bias vectors in each lay-
er. A Moreau-Yosida regularization based algorithm is proposed to handle

these inequality constraints and a theoretical convergence of this algorithm is

established. Applications of the proposed approach to standard trigonomet-
ric functions and more challenging stiff ordinary differential equations arising

in chemically reacting flows clearly illustrate the benefits of the proposed ap-

proach. Further application of the approach on the MNIST dataset within
TensorFlow, illustrate that the presented approach can be incorporated in any

of the existing machine learning libraries.
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1. Introduction.
Background. A typical neural network can be represented as a function F : Rn0 →
RnL that consists of the composition of layer functions {f`}L−1`=0 and can written as

F = fL−1 ◦ fL−2 ◦ · · · ◦ f0 . (1)

Each layer function is parameterized by a weight matrix W` ∈ Rn`×n`+1 , a bias
vector b` ∈ Rn`+1 , and incorporates a nonlinear activation function σ, for instance,
ReLU [6].

The weights W` and biases b` are determined in a process known as training the
network. Training a neural network can be written in the framework of constrained
optimization as follows: for training data {ui, S(ui)}Ni=1 (input/output pairs), solve

min
{W`}L−1

`=0 ,{b`}
L−2
`=0

J({(yiL, S(ui))}i, {W`}`, {b`}`)

subject to yiL = F(ui; ({W`}, {b`})) i = 1, . . . , N,
(2)

where the function J , known as the loss function, measures the error of the approx-
imation of S(ui) by the network output yiL in some way.

Figure 1. A neural network with 2 hidden layers of width 10.
Switching the bias values and edges connected to node A (in red)
with the those of node B (in magenta) results in a different ordering
of the parameters, but the same neural network function.

It is easy to see that there are many permutations of the parameters that result
in the same network. This is illustrated in Figure 1 where a network is represented
graphically with the nodes of the graph representing the biases and the edges of the
graph representing the weights. Switching the bias values A (red) and B (magenta)
results in the same network as long as the corresponding weights (also in red and
magenta) are also switched. This implies that it is possible to change the order of
the parameters without changing the action of the function F . In fact, for networks

where each layer consists of n` neurons, there are
∑L−2
`=1 n`! ways to rearrange

the parameters and obtain the same network. For the relatively small network
displayed in Figure 1 there are 7,257,600 different ways to permute the parameters
and still obtain the same network. In the context of training, this means that for
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this particular example there are 7,257,600 different solutions to the optimization
problem (2) that will result in the same neural network function F . This level
of non-uniqueness is troubling and highly unsatisfactory. Apparently, this simple
looking observation has not received any attention so far.

Problem formulation. The parameter search space may be narrowed down by
fixing the bias vector configurations to be monotonically increasing. This is achieved
by augmenting the learning problem (2) with inequality constraints on the bias
vectors in each layer. The resulting optimization problem that describes the training
of the network is

min
{W`}L−1

`=0 ,{b`}
L−2
`=0

J({(yiL, S(ui))}i, {W`}`, {b`}`) (3a)

subject to yiL = F(ui; ({W`}, {b`})) , i = 1, . . . , N, (3b)

bj` ≤ b
j+1
` , j = 1, . . . , n`+1 − 1, ` = 0, . . . , L− 2, (3c)

where for a fixed `, the quantities bj` are the entries of the bias vector b`. The added
inequality constraints fix the configuration of the network, so that any permutation
of the parameters (excluding the case when two adjacent bias values are equal)
either violates the constraints or results in a different neural network.

Outline of the paper. Section 2 introduces a Moreau-Yosida regularization based
algorithm to handle inequality constraints given in (3c). This is followed by a con-
vergence result of the Moreau-Yosida regularized problem to the original problem in
Section 3. Section 4 describes the ResNets used for the examples shown in Section 5.
In the first example the proposed algorithm is applied to a standard trigonometric
function. This is followed by an application to a realistic application in chemically
reacting flows, which are governed by stiff ordinary differential equations. The final
example on the MNIST dataset within TensorFlow, illustrates that the presented
approach can be incorporated in any of the existing machine learning libraries.

2. Regularized problem. The inequality constraints in (3c) can in principle be
handled by a typical nonlinear programming solver. However, we are interested
in an approach that allows us to implement these constraints in existing machine
learning softwares which are built to tackle (3a)-(3b). Motivated by the optimiza-
tion problems with partial differential equations as constraints, see [10, 14, 9, 1],
we propose to handle (3c) using a penalty based method. Similarly to the afore-
mentioned references, we call this penalty method as Moreau-Yosida regularization
approach. We emphasize that we are only considering Moreau-Yosida regularization
of the constraint (3c).

Before introducing the loss function with bias order regularization, a more precise
definition of the loss function is given. For training data {ui, S(ui)}Ni=1, consider

J :=
1

2N

N∑
i=1

‖yiL − S(ui)‖22 +
λ

2

L−1∑
`=0

(
‖W`‖1 + ‖b`‖1 + ‖W`‖22 + ‖b`‖22

)
, (4)

where λ > 0 is a regularization parameter. In order to fit J into the framework
introduced above, bL−1 is taken to be the zero vector in RnL . Even though a mean
squared error term is used above to measure the approximation error of the neural
network, this is easily generalizable to other terms such as cross-entropy, likelihood,
etc. [6].
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Using the notation above to represent the entries of each bias vector, namely
b` = (bj`)

n`+1

j=1 ∈ Rn`+1 , the new loss function is defined as

Jγ := J +
γ

2

L−2∑
`=0

n`+1−1∑
j=1

‖min{bj+1
` − bj` , 0}‖

2
2, (5)

where γ is the so-called penalization parameter. The regularized optimization prob-
lem can now be written as

min
{W`}L−1

`=0 ,{b`}
L−2
`=0

Jγ({(yiL, S(ui))}i, {W`}`, {b`}`) (6a)

subject to yiL = F(ui; ({W`}, {b`})) i = 1, . . . , N. (6b)

Note that, even though it is not explicitly written in the formulation above, all of
the variables W`, b`, and yiL depend on the parameter γ.

In Appendix A the first order optimality conditions for this problem are derived
where the DNN used is a Deep Residual Neural Net (ResNet).

3. Convergence of Jγ. In order to show that as γ →∞, the minimum value of Jγ
converges to the minimum value of J and the constraints (3c) are also satisfied, let
θ represent the concatenation of all of the parameters which are being minimized,
i.e. θ contains all of the entries of {W`} and {b`}. Furthermore, assume that a
fixed set of training data is being used and so the loss function J given in (4) can
be rewritten as

J(θ) :=
1

2N

N∑
i=1

‖F(ui; θ)− S(ui)‖22 +
λ

2

L−1∑
`=0

(
‖θ‖1 + ‖θ‖22

)
.

Introducing the notation

g(θ) :=

L−2∑
`=0

n`+1−1∑
j=1

‖min(bj+1
` − bj` , 0)‖22 ,

the regularized loss function in (5) may be rewritten as

Jγ(θγ) := J(θγ) +
γ

2
g(θγ).

Now, the framework of [13, Section 10.11] can be used to show the following con-
vergence results. The proof follows exactly as in [13] after a transformation of
notation.

Proposition 1. Let J0 be the minimum value attained from solving (3). For each
γ, let θγ be a minimizer of Jγ . The following hold

(a) Jγ(θγ) ≥ Jγ̃(θγ̃), for γ ≥ γ̃;
(b) J0 ≥ Jγ(θγ) for each γ;
(c) limγ→∞

γ
2 g(θγ) = 0.

In particular, part (c) shows that as γ →∞ the inequalities in (3c) are satisfied.
As pointed out in [13], the above result does not require any continuity, convergence,
or convexity assumptions. To establish a convergence of the sequence {θγ} to a
limit point, additional assumptions are needed. In particular, we need J and g to
be lower semicontinuous. See [13, Section 10.11 (Theorem 1)] for the details. It
is unclear if these assumptions hold for the highly nonconvex J . In view of this,
the Proposition 1 maybe of limited scope in practice. We further emphasize that
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Lemma 2 and Theorem 2 in [13] are not applicable in our setting, as they require
convexity of J , which we may not have.

Remark 1. Typically, when a Moreau-Yosida regularization is implemented, a
path-following technique is used to increase the size of γ gradually. This means
that a sequence of optimization problems is solved for subsequently larger values of
γ. The initial γ value is taken to be small, and the solution to the problem, θγ , is
used as the initial guess for the next optimization problem with a larger value of γ.
This path-following process continues until γ is sufficiently large. For the numerical
examples presented below, we first tested the path-following strategy and also ran
the experiment for a fixed γ. For these examples, the results were almost identical
and therefore we chose to present results for a fixed γ. Nevertheless, we emphasize
that this choice is problem dependent and one may have to apply a path-following
strategy.

4. ResNets. As some of the examples shown below are obtained for Deep Residual
Neural Networks (ResNets), a small description follows. Recall the definition of F
in (1). In the sequel, the layer functions will be denoted as f` = f`(y`; (W`, b`)) :
Rn` → Rn`+1 , where the dependence of f` on σ is not explicitly written. With
this representation the neural network can be viewed as an iterative progression of
updating the output of each layer as

y`+1 = f`(y`; (W`, b`)) ` = 0, . . . , L− 1,

with initial input y0 and final output yL. As before, in order to preserve consistency,
bL−1 is taken to be the zero vector. One way to define the layer functions is

f0(y0) := σ(W0y0 + b0),

f`(y`) := P`y` + τσ(W`y` + b`) ` = 1, . . . , L− 2,

fL−1 := WL−1yL−1,

for matrices P` ∈ Rn`×n`+1 and a scalar τ > 0. With this definition and for L > 2,
F is termed as a Deep Residual Neural Network (ResNet). If each P` is taken to
be the identity matrix, which requires that the hidden layers have a uniform width,
then this network can be viewed as a forward Euler discretization of an ODE. For
more on these kinds of networks see [8, 17, 3, 2, 7], among others. Notice that if

τ = 1 and {P`}L−1`=0 contains only zero entries, then F is a standard feedforward
deep neural network [6].

5. Numerical Results. In this section several examples are given that not only
show the efficacy of this method, but also the advantages of using the method.
In Section 5.1, a first example compares a single ResNet to learn the function
sin(x) with and without bias ordering. This simple example shows that the method
performs as desired, and in fact outperforms the same network trained without bias
ordering. Following this, Section 5.2, a more complicated experiment is reported
that use parallel ResNets to learn a model related to chemically reacting flows [5].
This example shows that the proposed method is a useful technique for practical
problems in machine learning. Finally, in Section 5.3, an example is described where
the bias ordering regularization is applied to a classification problem using MNIST
data and implemented in Keras. This example shows that the proposed method is
also suitable for Convolutional Neural Networks.
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Figure 2. The panel shows the mean squared error corresponding
to the the first term in the definition of J (cf. (4)) as a function of
the number of optimization iterations during the training process.
We clearly notice that the standard ResNet stalls, but the bias
order (B.O.) approach leads to a much better reduction.

In the first two examples, we have taken a fixed parameter λ = 10−7, in the
definition of loss function J and λ is set to zero in the final example. For the first
two examples, the choice choice of λ was made after a careful experimental study,
in the non-bias ordering setting, i.e., γ = 0. We observed almost no change in
the training and testing accuracies for λ in the range of 10−6 to 10−10. Since this
paper is about ‘bias-ordering’ and its subsequent effects, therefore we have taken λ
to be fixed in these experiments. Notice that it maybe possible to also choose λ via
traditional approaches such as validation.

In Sections 5.1 and 5.2 a BFGS optimization routine with Armijo line search is
used during training to solve the optimization problem with or without bias order-
ing. In order to avoid overfitting, validation data is used with a patience of 400
iterations. This means that the training data is separated into two sets: training
and validation data. The validation data is not used to update the weights and
biases, rather it is used to measure the error of the network on unseen data (the
validation data) during training. If the validation error increases, the patience iter-
ations provide a buffer during which training continues. If during these iterations,
the validation error reaches a new minimum, then training continues as before,
otherwise the training routine is terminated.

5.1. ResNet to learn sin(x). For the first example a simple ResNet with 2 hidden
layers of width 50 is used to learn the function sin(x). The skip parameter τ is taken
to be 1. For data, 1000 evenly spaced points from the interval [0, 2π] are generated
and then randomly split into training data (400 points), testing data (400 points),
and validation data (200 points).

The same experiment was performed twice, once using the loss function J , and
once with the loss function Jγ with γ = 100. The least square training error
corresponding to the the first term in the definition of J (cf. (4)) is shown in Figure 2.
We notice that a standard ResNet stagnates, while the ResNet with bias ordering
continues to make progress. The resulting trained networks are shown in Figure 3,
where the bias values are represented by the neurons of the network, and the weights
are represented by the connections between neurons. The color for the input and
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output are set to zero. In the case where the network was trained with loss function
Jγ , the resulting biases were perfectly ordered and so the inequality constraints were
satisfied. This can also be seen in the bottom panel in Figure 3. Note that for the
network with unconstrained bias values, there are on the order of 1064 permutations
of the parameters that will give the same ResNet approximation. For the ResNet
with ordered bias values, however, any permutation of the parameters will either
result in a different ResNet approximation, or violate the bias ordering.

Figure 3. Network visualizations for the ResNets trained with
loss function J (top) and Jγ (bottom). The network consists of 2
hidden layers with 50 neurons in each layer to learn sin(x). It is
clear from the panels that the ordering of the bias values is only
enforced in the bottom panel.

In Figure 4 the output of the two networks is compared on the 400 test points,
with exact values in blue and ResNet output in red. The left plot of Figure 4
shows the results for a network trained with a standard loss function J , while the
plot on the right shows results from a network trained with the augmented loss
function Jγ which orders the biases. It is evident from the plots that the ResNet
that implements bias order produced more accurate results. This is quantified above
the plots with the relative error measured in the 2-norm.
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Figure 4. Results from training ResNets to learn the function
sin(x). Exact values in blue, ResNet output in red. The left panel
shows results for the standard ResNet with J and the right panel
shows results where bias ordering is enforced using Jγ . Both visual
inspection and quantitative inspection of the error confirms that
the proposed approach works better in this example.

5.2. Applications to chemically reacting flows. In this section experiments
are presented involving a ResNet approximation of a system of stiff ODEs that
model a reduced H2-O2 reaction. This reduced model (see [15]) tracks 8 species
and temperature as they interact over time and is completely separated from any
advection and diffusion in space. For more information on this problem and more
experiments using a parallel ResNet approximation see [5].

For the experiments included in this work, nine parallel ResNets with input
dimension 10 and output dimension 1 (9 total output quantities) and 8 hidden
layers of width 30 were trained on H2-O2 reaction data created by solving the stiff
ODE system using CHEMKIN [11]. Given an input vector representing the data at
time tk, each ResNet is trained to learn a single quantity (temperature, for example)
at time tk+1. More details can be found in [5]. The generated data used to train and
test these networks consists of thirteen subsets corresponding to initial conditions
with a fixed equivalence ratio of 1 and different temperatures varying from 1200K
to 2400K in increments of 100K. The parallel ResNets were trained on the data sets
corresponding to initial temperatures 1200K, 1500K, 1800K, 2100K, and 2400K.

The experiment above was performed twice, once with loss functions J (one
for each parallel ResNet) as described in Section 2, and once with regularized loss
functions Jγ with γ = 1000. All other network hyperparameters including the
initial values of the weights and biases prior to training are kept the same for the
two experiments. In Table 1 the number of BFGS iterations used in training the
parallel networks for both experiments described above is compared. The network
with Moreau-Yosida regularization to order the bias values used fewer iterations to
train in five of the nine networks. Nevertheless, the overall iteration count in case
of bias ordering approach is smaller.

Recall from Proposition 1, that the Moreau-Yosida regularization approach will
be enforcing the ordering (3c) approximately.

The loss functions Jγ penalize the violation of the ordering, but do not strictly
implement the order itself. Even so, the biases in eight of the nine parallel networks
were ordered perfectly for the networks that trained with the loss functions Jγ . The
only violation of the bias ordering occured in Network 9, the network used to learn
H2. In the first hidden layer of this network neurons six and seven were ordered
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Table 1. A comparision of the number of BFGS iterations used
during training for the two sets of parallel ResNets. The quantity
that the ResNet is learning (output) is written in parentheses.

Summary of BFGS iterations used during training
with loss functions J with loss functions Jγ

Network 1 (temperature) 2638 786
Network 2 (O) 2506 5125
Network 3 (H) 2772 1123
Network 4 (OH) 5957 4444
Network 5 (HO2) 230 540
Network 6 (H2O2) 886 1738
Network 7 (H2O) 7267 583
Network 8 (O2) 8872 2547
Network 9 (H2) 3719 4570

incorrectly. In the trained network, the value of neuron 6 was approximately
-0.0175652 and the value of neuron 7 was approximately -0.0175660, and therefore
the size of the order violation was -8e-7, which is negligible. To reiterate, in each
of the 9 networks, there were 240 bias values (30 per hidden layer) for a total of
2,160 different biases. In all of these biases only a single pair (negligibly) violated
the monotonic ordering using the proposed method.

Figure 5 compares the results of the two sets of parallel ResNets tested with initial
conditions with initial temperature 1400K (left set of plots) and 2000K (right set of
plots). Note that the networks were not trained on this data. To test the networks
only the initial condition comes from the CHEMKIN data. The output of the
ResNets from the initial condition are then combined and used as the input to the
parallel ResNets for the next timestep. This process is repeated for the duration of
the reaction. To compare the results, the known CHEMKIN data are represented
in blue, the results from the networks trained with J are represented with dashed
red lines and the results for the networks trained with Jγ are represented with
dash/dotted black lines. It can clearly be seen that the results of the parallel
ResNets trained with Jγ match the data more closely. Furthermore, note that the
x−axis (time axis) is scaled logarithmically in order to display the details of H2O2

which happen quickly and early in the reaction. Therefore, while the results in
black anticipate the reaction, they only do so slightly, on the order of 10−6 seconds.

5.3. A Convolutional Neural Network classification problem. For this ex-
ample, a convolutional neural network is constructed using Keras to solve a classifi-
cation problem using the MNIST data set. The purpose of this example is to show
that the flexibility of the bias ordering technique and that it can be incorporated
into existing neural network software. Unlike the other examples presented, the
neural network is not a ResNet. Instead the network consists of 4 convolutional
layers followed by two dense layers. The diagram in Figure 1 can also be used to
describe a convolutional layer, where the nodes of the graph still represent the bias
value, but now the edges represent a convolutional filter or convolutional kernel. In
this way, the bias ordering technique easily applies to these networks as well.

The network used for this example consists of four convolutional layers followed
by two dense layers. The first two convolutional layers consist of 32 convolutional



10 H. ANTIL, T. S. BROWN, R. LÖHNER, F. TOGASHI, D. VERMA

Figure 5. Results from training parallel ResNets on a reduced
H2-O2 reaction model. Values from known data in blue, results
from ResNets trained with traditional loss functions in red, and
results from ResNets trained with loss functions with a Moreau-
Yosida penalization term to order the biases in black. Clearly, the
proposed approach outperforms the existing one.

filters of width 3. Convolutional layers three and four both consist of 64 convo-
lutional filters of width 3. The first dense layer consists of 512 neurons, and the
second dense layer (the output layer) consists of 10 neurons since there are 10 digits
(or classes) in the MNIST data. Unlike the other examples, bias values are included
on the output layer of this network. A softmax activation function is used for the
output layer, while a ReLU activation function is used for the other five layers. Max
pooling is used after layers 2 and 4. In order to avoid overfitting, dropout is used
in the network.

Two versions of the network described above are constructed using Keras with
a Tensorflow backend. Both of the networks use a categorical cross entropy loss
function, and the difference between the two is that one of the networks also im-
plements the Moreau-Yosida regularization term through a custom bias regularizer.
The regularizer is defined using the following lines in Python

def MY regular izer ( bias , gamma=100):

b i a s l e n g t h = t f . s i z e ( b i a s )

b i a s d i f f = b ia s [ 1 : b i a s l e n g t h ]− b ia s [ 0 : b i a s l eng th −1]

b ias min = t f . math . minimum( b i a s d i f f , 0 )

bias norm = t f . math . reduce sum ( t f . math . square ( b ias min ) )

return 0 .5∗gamma∗bias norm

In the above code , the value of the regularization parameter is taken to be 100, but
this is easily customized. Once the regularizer is defined, it can be implemented
into any layer with the bias regularizer option.

Both of the networks were trained on 60,000 samples from the MNIST data set.
The loss functions were minimized using stochastic gradient descent with a learning
rate of 0.01. Batch normalization was used during training with a batch size of
32. Each network trained for 5 epochs before the networks were tested on 10,000
MNIST samples. In Figure 6 the bias values for each layer of the two networks
are plotted. It can clearly be seen that the regularization resulted in successfully
ordering the bias values in each layer. The accuracy of the two trained networks
were comparable. For the networks corresponding to the plots in Figure 6, the
network with the bias regularization had an accuracy of 98.71% and the network
without regularization had an accuracy of 98.56%. The plot in Figure 7 represents
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the bias values from the same two networks described above, and shown in Figure 6,
except now the bias values for the unregularized network have also been ordered for
comparison. From these plots, one can easily see that not only is the Moreau-Yosida
regularization term ordering the bias values during training, it is also causing the
magnitudes of the biases to have a smaller range. Since the focus of this current
work is the implementation and efficacy of the bias ordering, the study of this other
effect is saved for future investigations.

Figure 6. The bias values by layer for the two neural networks
described in Section 5.3. These plots show the successful imple-
mentation of the Moreau-Yosida bias order regularization in Keras
with a Tensorflow backend.

6. Conclusions. A method to reduce the very large search space of equivalently
optimal neural nets has been introduced. The key idea is to try to enforce the biases
to be monotonically increasing in each layer of neurons. This is accomplished by
a Moreau-Yosida regularization-based approach to solve the resulting optimization
problem. The convergence of the regularized problem has been proven. The benefit
of this new approach has been demonstrated not only on simple approximation cases
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Figure 7. The bias values by layer for the two neural networks
described in Section 5.3 and shown in Figure 6. The bias values
for the unregularized network have been ordered after training for
comparison.

but also on a realistic problem arising in chemically reacting flows. The numerical
experiments presented also show that the regularization technique is effective for
relatively small values of the penalization parameter γ.

Appendix A. Derivation of the first order optimality conditions. In the
context of constrained optimization, the problem (6) is typically solved by using
a gradient based method [16, 12, 18, 4, 16]. Indeed this is the approach taken in
the numerical experiments. Each evaluation of the gradient requires solving the
state equation or forward problem and solving the adjoint equation problem. In
what follows, the state and adjoint equations will be derived for the problem in (6)
where the neural network being used is a Deep Residual Neural Network (ResNet),
as introduced in Section 4.

The state and adjoint equations as well as the gradient will be derived by using
the Lagrangian approach. For brevity, the following will be written for a single input
u, rather than for a set of training data. Similar to Section 3, θ is used to represent
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the concatenation of the weights and bias, i.e., the parameters being optimized. For
appropriate adjoint variables ψ = (ψj)

L
j=1 the Lagrangian functional corresponding

to (6) is

L(u, θ, ψ) := Jγ(θ) + 〈y1 − τσ(W0u+ b0), ψ1〉

+

L−1∑
j=2

〈
yj − Pj−1yj−1 − τσ(Wj−1yj−1 + bj−1), ψj

〉
+ 〈yL −WL−1yL−1, ψL〉,

From here, the state and adjoint equations result from evaluating the derivatives
of the Lagrangian with respect to yj and ψj at a stationary point. Furthermore,
the gradient is derived by taking the derivatives of the Lagrangian with respect to
θ.

(i) State Equation.

y1 = τσ(W0u+ b0),

yj = Pj−1yj−1 + τσ(Wj−1yj−1 + bj−1), 2 ≤ j ≤ L− 1,

yL = WL−1yL−1.

(7a)

(ii) Adjoint Equation.

ψj = PTj ψj+1 − τ
[
−WT

j (ψj+1 � σ′ (Wjyj+1 + bj))
]

j = L− 2, . . . , 1

ψL−1 = −WT
L−1ψL,

ψL = −∂yLJγ(θ).

(7b)

(iii) Derivative with respect to θ.

∂WL−1
L =− ψL yTL−1 + ∂WL−1

Jγ(θ)

=∂yLJγ(θ) yTL−1 + ∂WL−1
Jγ(θ),

∂WjL =− yj (ψj+1 � σ′(Wjyj + bj))
T

+ ∂WjJγ(θ) j = 0, ..., L− 2,

∂bjL =− ψTj+1 σ
′(Wjyj + bj) + ∂bjJγ(θ) j = 0, ..., L− 2 .

(7c)

In the jargon of machine learning the equations in (7b) are called back propaga-
tion. The gradient is represented by the right hand side of (7c), where the contri-
butions from the Moreau-Yosida regularization terms enter in the term ∂bjJγ(θ).
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