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This article continues the program initiated by the authors in [1] with an eventual goal to
replace the existing chemistry software packages by Deep Neural Networks (DNNs). Chemically
reacting flows are common in engineering, such as hypersonic flow, combustion, explosions,
manufacturing processes and environmental assessments. For combustion, the number of
reactions can be significant (over 100) and due to the very large CPU requirements of chemical
reactions (over 99%) a large number of flow and combustion problems are presently beyond the
capabilities of even the largest supercomputers.

Motivated by this, novel DNNs are introduced. At first, approximation capabilities of
these DNNs are established on trigonometric functions. Visualization of the neuron functions
has been carried out. These simple illustrations clearly show connections with finite element
functions and are believed to be the first steps towards understanding of largely black-box DNN
approaches.

Next, these DNNs are applied to multiple species and reactions common in chemically
reacting flows, such as H2-O2 and methane-O2 reactions. Experimental results show that it is
helpful to account for the physical properties of species while designing DNNs. The proposed
approach is shown to generalize well.

I. Introduction
This article continues the program initiated by the authors in [1] with an eventual goal to replace the existing

chemistry software packages by Deep Neural Networks (DNNs). Chemically reacting flows are common in many
fields of engineering, such as hypersonic flow, combustion, explosions, manufacturing processes, and environmental
assessments [2–5]. For hydrocarbon combustion and explosions the numbers of species and reactions can reach into
hundreds and thousands respectively. Even with so-called reduced models [6–11], which try to keep the main species
and reactions while neglecting those that are not important, typically over 100 reactions need to be updated. An
expedient (and widely used) way to compute flows with chemical reactions is to separate the advection and diffusion of
species from the actual reactions. In this way, the vastly different timescales of the reactants can be treated in a separate,
stiff ODE solver. Such chemical reaction solvers take the given species 𝑢𝑛−1 at the 𝑛 − 1th time step and desired timestep
𝛿𝑡 and update the species to 𝑢𝑛. In terms of a ‘black box solver’ this implies:

𝑢𝑛 = 𝐶ℎ𝑒𝑚(𝛿𝑡, 𝑢𝑛−1) , (1)

where 𝐶ℎ𝑒𝑚 stands for the ODE integrator of chemical reactions. Compared to a typical ‘cold’ flow case, the presence
of these chemical reactions implies an increase of computing requirements that can exceed factors of 1:100, i.e. 2
orders of magnitude. This makes many of these flow simulations so expensive that entire classes of problems have been
sidelined, waiting for faster computers to be developed in years to come. The goal here is to replace the ‘black box’
solver given in (1) by novel, robust Deep Neural Networks (DNNs) without sacrificing accuracy.
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The list of references on using DNNs in computational fluid dynamics (CFD) is growing fast, see for example,
[12, 13]. However, the results on using DNNs in chemical kinetics are scarce. A popular approach to solve PDEs and
ODEs is through the use of so-called Physics-Informed Neural Networks (PINNs) [14, 15]. The goal of PINNs is to
minimize the PDE/ODE residual by using a neural network as a PDE/ODE solution Ansatz. The inputs to the network
are space-time variables (𝑥, 𝑡) and all the derivatives are computed using automatic differentiation. See [16] for an
example of a PINN for stiff ODE systems where the only input is time.

The approach presented here fundamentally differs from the aforementioned approaches. Instead of Physics-
Informed-Neural-Networks, the goal is to pursue Learn-from-Physics/Chemistry. For instance in (1), DNNs will be used
to learn 𝐶ℎ𝑒𝑚 from a given dataset coming from physics/chemistry simulations. Such an approach to learn 𝐶ℎ𝑒𝑚 has
also been considered recently in [17–19] where the authors employ an architecture that is motivated by standard feed
forward networks. The authors of [20] consider a similar problem, but use an autoencoder, which is a type of DNN
used to reduce the dimension of the system. Notice that the proposed approach will allow for the chemical reactions
described by (1) to start at any point in time without knowing a reference time. The latter is crucial for the application
under consideration.

The DNNs used in this paper have been motivated by the Residual Neural Network (ResNet) architecture. ResNets
have been introduced in [21–23] in the context of data/image classification, see also [24] for parameterized PDEs and
[25] where the (related) so-called Neural ODE Nets [26] have been used to solve stiff ODEs. The ResNet architecture is
known to overcome the vanishing gradient problem, which has been further analyzed using fractional order derivatives
in [23]. The key feature of a ResNet is that in the continuum limit, it becomes an optimization problem constrained by
an ODE. Such a continuous representation further enables the analysis of the stability of the network using nonlinear
ODE theory. In addition, standard approaches from optimization, such as the Lagrangian approach can be used to derive
the sensitivities with respect to the unknown weights and biases.

This paper considers the following aspects:
• It illustrates the approximation capabilities of the proposed DNNs on trigonometric functions. Visualization of the

neuron functions has also been carried out. These simple illustrations clearly show connections with finite element
functions and are believed to be the first steps towards understanding of largely black-box DNN approaches.

• Motivated by chemically reacting flows, the goal is to create networks that can learn multiple reactions propagating
multiple species. To achieve this, parallel ResNets are constructed where the data corresponding to multiple
quantities is used as input for each network but the output is only a single species. Similar approaches for chemical
kinetics can be found in [17, 18], where the authors use standard feed forward networks.

• The novel DNNs are applied to non-trivial chemically reacting flows. Experimental results show that it is helpful
to know the underlying properties of the species while designing the networks.

• A study to compare various initializations for DNN training for the application under consideration. The ‘box
initialization’ introduced in [27] appears to have better generalization / prediction properties over the existing
approaches.

The remainder of the paper is organized as follows: In Section II, the DNNs used to approximate systems of type (1)
are introduced, and training strategies are discussed. In section III, the approximation capabilities of ResNets are tested
on trigonometric functions. Comparison between various initializations, while training of H2-O2 reactions are also
discussed. Various scenarios (varying temperatures, equivalence ratios etc.) have been considered. Finally, details on a
more challenging case of methane-O2 chemical reaction have been provided.

II. Deep Residual Neural Networks

A. Problem Formulation
Consider an input-to-output map

𝑢 ↦→ 𝑆(𝑢),

where 𝑆 could be 𝐶ℎ𝑒𝑚 in (1). The goal is to learn an approximation 𝑆 of 𝑆 using Deep Neural Networks (DNNs). In
particular, the proposed DNNs are motivated by Deep Residual Neural Networks (ResNets). See [22, 23] for examples
of ResNets for classification problems, [24] for an application to parameterized PDEs, and [1] for previous work on
chemically reacting flows.

Given a training dataset {(𝑢𝑛, 𝑆(𝑢𝑛))}𝑁−1
𝑛=0 , the DNN approximation 𝑆 of 𝑆 is given by the output of the DNN
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(ResNet) {
𝑦ℓ = 𝑃ℓ−1𝑦ℓ−1 + 𝜏𝜎(𝐾ℓ−1𝑦ℓ−1 + 𝑏ℓ−1), 1 ≤ ℓ ≤ 𝐿 − 1,
𝑦𝐿 = 𝐾𝐿−1𝑦𝐿−1,

(2)

i.e., 𝑆(𝑢) = 𝑦𝐿 . Here 𝑦0 ∈ R𝑛0 represents the input vector, so that during training, 𝑦0 is taken to be from the training
data set {𝑢𝑛}𝑁−1

𝑛=0 . The scalar 𝜏 > 0 is a given parameter called the skip connection parameter. The number of layers
(depth of the network) is denoted by 𝐿. Layer 0 is referred to as the input layer, layers 1 through 𝐿 − 1 as hidden layers
and layer 𝐿 as the output layer.

The nonlinear function 𝜎 denotes an activation function. The networks in this work are trained using the framework
of PDE constrained optimization. This framework requires that the activation function be differentiable. In order to
have a globally differentiable activation function, in this study 𝜎 is taken to be a smooth quadratic approximation of the
ReLU function, i.e.,

𝜎(𝑥) =
{

max{0, 𝑥} |𝑥 | > Y,
1

4Y 𝑥
2 + 1

2𝑥 +
Y
4 |𝑥 | ≤ Y.

Figure 1 (left) shows that 𝜎(𝑥) is a good approximation of ReLU. Here, Y is taken to be 10−4. This is not the only
choice for activation function. In fact, some experiments (not included in this brief report) have been conducted using
hyperbolic tangent as the activation function.

Fig. 1 Left: Smooth ReLU and its derivative for Y = 10−4. Right: Example of a typical Deep ResNet used in the
experiments.

The quantities {𝐾ℓ }𝐿−1
ℓ=0 , {𝑏ℓ }

𝐿−2
ℓ=0 denote the weights and biases, i.e. the parameters that need to be determined.

In this setting 𝐾ℓ is a matrix and 𝑏ℓ is a vector, together they introduce an affine transformation. If 𝑦ℓ ∈ R𝑛ℓ for
ℓ = 0, . . . , 𝐿, then 𝐾ℓ ∈ R𝑛ℓ+1×𝑛ℓ and 𝑏ℓ ∈ R𝑛ℓ+1 . The dimension 𝑛ℓ is also referred to as the width of the ℓ-th layer.
The quantities 𝑃ℓ represent operators, which for this application are either taken to be the zero operator (for 𝑃0) or
the identity operator (for 𝑃ℓ , ℓ > 0). Notice that for 0 < ℓ < 𝐿 using the identity for 𝑃ℓ means that 𝑛ℓ = 𝑛ℓ+1, i.e., the
hidden layers of the network have uniform width. This is not the only choice for 𝑃ℓ and can be easily generalized, see
[22]. Nevertheless, in the current setup the dimension of the input 𝑦0 and output 𝑦𝐿 can be different.

An example of a typical DNN is shown in Figure 1 (right) with depth 5, width 15, input dimension 2, and output
dimension 1. The values of the weights are given by the color of the lines connecting the neurons, the values of the
biases are given by the color of the neurons, and the color of the input layer has been set to zero.

The question remains of how to compute the weights {𝐾ℓ }𝐿−1
ℓ=0 and biases {𝑏ℓ }𝐿−2

ℓ=0 in order to obtain a good
approximation 𝑆 of 𝑆. Following [22, 23], these weights are computed by solving

min
{𝐾ℓ }𝐿−1

ℓ=1 , {𝑏ℓ }
𝐿−2
ℓ=0

{
𝐽 (𝐾ℓ , 𝑏ℓ) :=

1
2𝑁

𝑁−1∑︁
𝑛=0

‖𝑦𝑛𝐿 − 𝑆(𝑢𝑛)‖2

}
subject to constraints (2), (3)

where 𝑦𝑛
𝐿
= 𝑆(𝑢𝑛), that is, 𝑦0 in (2) is taken to be the training data {𝑢𝑛}𝑁−1

𝑛=0 . The problem (3) is a constrained
optimization problem. To solve this problem, the gradient of 𝐽 with respect to 𝐾ℓ and 𝑏ℓ needs to be evaluated. This
requires introducing the so-called adjoint equation (also known as back-propagation in machine learning literature). See
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[22–24] for complete details. Having obtained the gradient, an approximate Hessian is computed via the BFGS routine.
Both the gradient and the approximate Hessian are used to solve the minimization problem.

In the definition given in (2), taking the operators 𝑃ℓ all to be zero and 𝜏 = 1 results in the standard feedforward
deep neural network (FFDNN). In section III some results are presented comparing ResNets with FFDNNs.

Scaling. The training data in the examples below has been computed using CHEMKIN [28]. Before training the
networks, the data is scaled in the following manner: For a data set {𝑥 𝑗 }𝑁𝑗=0, each entry 𝑥𝑖 is scaled as

�̂�𝑖 :=
𝑥𝑖 − min 𝑗 𝑥 𝑗

max 𝑗 𝑥 𝑗 − min 𝑗 𝑥 𝑗
, (4)

so that the resulting data set {�̂� 𝑗 }𝑁𝑗=1 lies in the interval [0, 1]. Given that chemical reactions follow an exponential
Arrhenius-type law, a logarithmic scaling was also tried. This implies performing the above scaling on the dataset
{log 𝑥 𝑗 } instead of {𝑥 𝑗 }.

Architecture. For the DNNs implemented below, the input dimension will often be given by

𝑛0 = 1 + 𝑀 + 1 = 𝑀 + 2.
(temperature) (# of species) (time increment, 𝛿𝑡)

Rather than using a single DNN to approximate the entire solution map 𝑆, a parallel ResNet architecture is implemented
in which a separate ResNet is created to correspond to each one or more desired output. For many of the results, a
ResNet is built for each desired output, and therefore the output dimension for each ResNet is 1, but there are 𝑀 + 1
ResNets implemented in parallel. The inputs to all of the parallel ResNets are the same, and so the parallel architecture
can also be thought of as a single large ResNet (with 𝑛𝐿 = 𝑀 + 1) that is not fully connected.

The choice to use parallel ResNets was motivated by the work reported in [17, 18]. Previous results coming from a
single ResNet had difficulties learning the different species, suggesting that larger, more robust networks were needed.
Rather than attempt to train a large single network, the choice was made to use parallel networks. There is a further
advantage in using smaller parallel networks over a larger single network, as the parallel networks can be (and are)
trained in parallel.

Initialization. Before training the networks, the weights and biases must be initialized. In the experiments presented
in Section III, two different methods are used to initialize the parameters. The first method is the Xavier or Glorot
initialization method (see [29]). The Box initialization of Cyr et al., [27], is also implemented. Experiments comparing
these two initializations are presented below in Section III.

Loss Function and Training. In the case of a parallel ResNet architecture, each parallel network is associated to
a separate loss function. The same form of the loss function is used for each network. Letting \ (𝑖) represent the
concatenation of all weight and bias parameters associated to the 𝑖-th parallel network, the loss function takes the form

1
2𝑁

𝑁−1∑︁
𝑛=0

‖𝑦 (𝑖)
𝐿

− 𝑆(𝑢𝑛) (𝑖) ‖2
2 +

_

2

(
‖\ (𝑖) ‖1 + ‖\ (𝑖) ‖2

2

)
, 𝑖 = 1, . . . , 𝑀 + 1. (5)

In other words, the process of training each network is the process of finding the parameters \ (𝑖) which minimize the
mean squared error between the network output and the training data, while also using both ℓ1 and ℓ2 regularizations to
penalize the size of the parameters. As indicated in section II, a gradient based method (BFGS in particular) is used to
solve the constrained optimization problem.

Validation. DNNs are trained with validation data in order to overcome the overfitting issue. The validation data is a
subset of the training data that is not used to update the weights and biases. Instead, a separate loss function is formed
that computes the mean squared error between the ResNet output and the validation data, without regularization terms.
This is a way to test how the ResNet performs on unseen data during the training process itself. If the validation error
increases, the training continues for a certain number of additional iterations, called the patience. During this time, if
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the validation error decreases to a new minimum, the patience resets to zero and training continues. If the validation
error does not attain a new minimum and the full number of patience iterations is reached, then the training process is
terminated.

Testing. After training and validation comes the testing phase in which the DNN approximations are used to carry out
time marching. Given a known initial condition, 𝑢0, the parallel ResNets are used to compute all subsequent values, that
is

�̂�𝑛 = 𝑆(�̂�𝑛−1) 𝑛 > 0.

Applications. The above methods are applied separately to two systems of ODEs that model different chemical
reactions. The first system of ODEs model a hydrogen-oxygen reaction. In particular, the reduced hydrogen-air reaction
model with 8 species and 18 reactions [30] is used. This model is simpler than the hydrocarbon reaction model
mentioned in section I. However, it can still capture several essential key features. The second system is a reduced
methane-O2 reaction model comprising of 15 species and 66 reactions. This model has been reduced from a model with
53 species and 325 reactions for the purpose of training the neural networks. This is a first step in using the parallel
ResNet architecture to capture these reactions. Increasing the number of species and reactions will be part of future
work.

III. Results
In this section a variety of results are presented that represent different approaches and architectures. The DNN

implementation used in this paper was carried out in MATLAB and a BFGS routine with an Armijo line-search was
used to solve the training (optimization) problem. Unlike many neural network software packages, this code uses the
framework and closely resembles code that is used to solve optimal control problems [31]. The first set of results compare
a feedforward deep neural network and a Deep ResNet that were trained to learn the function sin(𝑥) sin(𝑦) on the
domain [0, 2𝜋]2. Next, parallel ResNet approximations of a system that models H2-O2 reactions are presented. Different
experiments were performed for these results using Xavier initialization and box initialization, and a comparison between
the two is made. The final set of results pertain to the more difficult problem of modeling methane-O2 reactions.

In all of the experiments, the loss function is as given in (5) with _ = 1𝑒 − 7, the skip connection parameter (in (2))
𝜏 = 2/(𝐿 − 1), where 𝐿 is the depth of the network, and a constant time increment of 𝛿𝑡 = 1𝑒 − 7. Unless otherwise
specified, all training data was scaled by the method outlined in (4). All of the results presented below were achieved by
using the MATLAB implementation of the ResNets described above. The blue curves in the plots below represent ‘true
solution’ (data generated using CHEMKIN), while the dashed red curves represent DNN output.

A. Comparison between feedforward DNNs and ResNets.
The first results compare feedforward DNN and ResNet approximations of the function sin(𝑥) sin(𝑦). Note that for

this set of results, only a single neural network is used for each approximation. The reason for the inclusion of this is
example is to illustrate approximation capabilities of DNNs and to compare the neuron functions with finite element
bases. A grid of 10,000 points was generated in the square [0, 2𝜋]2 by taking the Cartesian product of 100 evenly
spaced points in both the 𝑥− and 𝑦− directions. These 10,000 points and their image under the function sin(𝑥) sin(𝑦)
were then randomly split into training data (4,000 points), validation data (2,000 points), and testing data (4,000 points).
The patience used for the validation data was 400 iterations.

Using the 4,000 training points and 2,000 validation points a ResNet and feed forward DNN (FFDNN) were trained
to approximate the function sin(𝑥) sin(𝑦). Each network had a depth of 5 and the hidden layers for each network had a
width of 15. The ResNet trained for 9,895 BFGS iterations, and the FFDNN for 13,977 iterations. In Figure 2, the
results of the trained networks on the 4,000 test points is shown with the ResNet approximation on the left and the
FFDNN approximation on the right. The exact values are in blue and the neural network approximations are in red. In
order to get a better picture of the approximations, eight side views of the approximation are also shown. While the
ResNet trained for fewer iterations, the approximation produced is more accurate as can be seen using from the error
shown in the first panels, respectively.

In Figure 3 the neuron functions in the last hidden layer are presented for each network. These are the functions
prior to being weighted, and added together, by the weight matrix in the final layer. To produce these images, 50 evenly
spaced points were generated in the interval [0, 2𝜋]. Two copies of these points were then used to create grid of 2500
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Fig. 2 Results (upper left plots) and rotated side views of the results for the ResNet (left) and FFDNN (right)
approximations. The ResNet outperforms the FFDNN in terms of the accuracy.

points by Cartesian product. This grid of 2500 points was then propagated through each network to produce the images
in Figure 3. The functions produced by the ResNet are more global, i.e., have larger support, in comparison to those
produced by FFDNN. This is expected and is a result of the skip connections employed in the ResNet architecture.
Additionally it can be seen that several of the neurons are inactive in the entire domain (identically zero) for the FFDNN,
while this is not the case for the ResNet. The could further explain the higher accuracy of ResNets.

Fig. 3 Neuron functions for the fourth layer of each network (neurons 46-60). Plots of functions produced by
the ResNet are grouped on the left and those for functions produced by the FFDNN are on the right.

B. H2-O2 reaction model using data with fixed equivalence ratio and varying initial temperature.
For the first application to chemical kinetics, parallel ResNets were trained on data sets that had initial conditions

with the same equivalence ratio, but different initial temperatures. Specifically, the entire data set consists of 13 subsets
with each subset having 499 points and an equivalence ratio of 1. Each subset has a different initial temperature
beginning with 1,200K and increasing by increments of 100K to 2,400K. For the experiment shown in Figure 4, the
ResNets were trained with the sets corresponding to initial temperatures 1,200K, 1,500K, 1,800K, 2,100K, and 2,400K.

The results of an experiment using DNNs trained on this data can be seen in Figure 4. Both sets of 9 plots show
results from the same set of parallel ResNets with a depth of 6 and width of 30. On the left the ResNets were tested
using the initial condition with temperature 1,700K, while the results on the right were created by testing the ResNets
with the initial condition with temperature 2,200K. For both sets of plots, the 𝑥-axis is scaled logarithmically in order to
show the details in the HO2 curve which happen quickly at the beginning of the reaction. Notice that while the DNN
results (dotted red curves) on the right match the known data (solid blue curves) quite well, the results on the left barely
reacted at all. The discussion in the next section focuses on using a new initialization recently introduced in [27] instead
of the Xavier’s initialization. This will significantly improve the results for the 1,700K case.
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Fig. 4 Testing results from ResNets trained on data with variable initial temperatures. Left: Initial temperature
of 1,700K and Right: Initial temperature of 2,200K. Both these temperatures were not part of the training
data. All plots show the results of marching in time (known data in blue, ResNet results in red). The plots were
produced from ResNets with a depth of 6 and a width of 30, and were trained with validation data with patience
of 400 iterations.

C. Comparison using box initialization
The ResNets in the previous subsection were obtained using DNNs trained using Xavier initialization. For the next

set of results, the same data sets have been used to train parallel ResNets, but instead of Xavier, box initialization is used
to train the DNN. This new type of initialization has been recently introduced in [27]. Figure 5 shows the new testing
results as dotted yellow curves. The solid red curves are same as in Figure 4. The only difference between the ResNets
used to produce the results are the method of parameter initialization, all other hyperparameters are kept identical.
These results show that the networks initialized by box initialization are able to generalize better to unseen data. This is
even the case for the plots on the right, as the ResNets using box initialization have produced more accurate results.
See in particular the results for HO2 (middle plot). Unless otherwise specified, all remaining results in this work were
created by using box initialization to determine the initial parameters.

Fig. 5 Comparison of testing results where the training parameters were initialized by Xavier initialization
(dashed red curves) and by box initialization (dotted yellow curves). The left and right panels, respectively, show
results 1,700K and 2,200K (cf. Figure 4). A significant improvement can be seen in the 1,700K case, but even the
results for 2,200 case are better as can be seen in the HO2 panel on the right.

D. Grouping training data based on equivalence ratio.
The next set of results use a data set from the H2-O2 reaction model consisting of subsets with two initial conditions

and varying equivalence ratio. Experimental results showed that it was difficult for the ResNets to learn the data with a
wide range of equivalence ratios. In order to overcome this difficulty, the larger data set is split into three groups: fuel
lean (equivalence ratio ≤ 0.1), fuel balanced (equivalence ratio between 0.1 and 2), and fuel rich (equivalence ratio > 2).

These groupings are described in Table 1. This data was used to create the results shown in Figure 6. The ResNets
trained on fuel lean sets (top left set of 9 plots) were trained with subsets 1, 3, 4, 6, and 9, and then tested with the initial
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condition from set 8. The ResNets trained on the fuel balanced sets were trained on subsets 1, 3, 5, 7, 9, and 12, and
subsequently tested with the initial condition from set 2. Finally the networks trained on fuel rich sets were trained with
subsets 1, 2, 3, 5, and 7, and then tested with the initial condition from set 4. All of the hidden layers of the ResNets used
to produce the results have a width of 30. The depths of the ResNets were 6, 13, and 5 for the fuel lean, balanced, and
rich results respectively. Furthermore, these plots are presented with a logarithmically scaled 𝑥-axis, as for some of the
data the reactions happen very quickly. All of the plots in Figure 6 show results of marching in time given only an initial
condition from known data that was not seen by the networks during training. While these results are less accurate than
those shown in Figure 5, they are more accurate than those seen prior to employing the fuel-based grouping.

Fuel Lean Sets
Set 1 2 3 4 5 6 7 8 9
Number of points 7,999 5,999 4,998 4,999 4,999 4,999 4,999 4,999 4,999
Equivalence ratio 0.01 0.05 0.1 0.01 0.02 0.04 0.06 0.08 0.1
Initial temperature 1,200 1,200 1,200 1,500 1,500 1,500 1,500 1,500 1,500

Fuel Balanced Sets
Set 1 2 3 4 5 6 7 8 9 10 11 12
Number of points 1,998 998 998 998 4,999 4,999 4,999 4,999 4,999 4,999 4,999 4,999
Equivalence ratio 0.25 0.5 1 2 0.2 0.4 0.5 0.75 0.9 1 1.5 2
Initial temperature 1,200 1,200 1,200 1,200 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500

Fuel Rich Sets
Set 1 2 3 4 5 6 7
Number of points 1,998 3,998 4,999 4,999 4,999 4,999 4,999
Equivalence ratio 5 10 2.5 3 3.5 4.5 5
Initial temperature 1,200 1,200 1,500 1,500 1,500 1,500 1,500
Table 1 Description of the training data with fuel-based grouping that was used for the results in Figure 6.

E. Methane-O2 reaction
For the next set of results, networks are trained with data generated from a methane-O2 reaction model with 15

species and temperature. The generated data contains 27 data subsets with a fixed equivalence ratio of 1 and initial
temperatures varying from 1,200K to 2,500K in increments of 50K. Table 2 contains information about the size of the
data subsets. For the results in Figure 7 16 parallel ResNets with depth 8 and width 30 were trained on data sets with
initial temperatures 1,200K, 1,350K, 1,500K, 1,650K, 1,800K, 1,950K, 2,100K, 2,250K, 2,400K, and 2,500K. For
this experiment only ℓ2 regularization was used in the loss function (refer to (5)). For the left set of plots the resulting
ResNets were tested with an initial condition with temperature 1,250K, while the plots on the right were produced from
an initial condition with temperature 2,350K. In the plots on the left, the approximations by parallel ResNets start the
reaction early. This is one of the challenges that has been observed from these experiments for data with lower initial
temperatures.

While training parallel networks is faster than training a single neural network, using a single network for each
species and temperature separately becomes increasingly expensive as the number of species involved in the reaction
grows. For instance, while the results involving the H2-O2 model utilized 9 parallel ResNets, the methane-O2 model
requires 16 parallel networks if trained in the same fashion. With future work including models with 30 species or more,
other methods must be investigated to learn these models.

One proposed method to reduce the number of parallel ResNets used is to combine the six minor species HO2,
H2O2, CH3, HCO, CH2O, and CH3O into a single quantity. For the results in Figures 8 and 9, 10 parallel ResNets were
trained on this modified methane-O2 reaction model data. The input dimension of each network was 12, corresponding
to temperature, the 9 major species, the sum of the 6 minor species, and the time increment 𝛿𝑡. The output dimension of
each ResNet remained 1, and separate networks were used to learn the temperature and the 9 major species.

After training, the temperature and major species are marched forward in time from a known initial condition just as
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Fig. 6 Testing results from marching initial conditions forward in time using ResNets trained on fuel lean data
(top left), fuel balanced (top right), and fuel rich (bottom) data sets.

with the other results presented above. A ResNet was not used to update the sum of the minor species. Instead, using
the property that the density of the 15 species in the data was fixed at 1, the sum of the minor species was updated by
subtracting the density of the updated major species from 1. In other words, let v𝑛 = (𝑣𝑛

𝑘
)9
𝑘=1 represent the value of the

9 major species at the 𝑛-th timestep. The sum of the minor species at the 𝑛-th timestep, 𝑤𝑛, is then updated as

𝑤𝑛 = 1 −
∑︁
𝑘

𝑣𝑛𝑘 .

Once updated, the sum of the minor species, 𝑤𝑛, along with the major species, temperature, and 𝛿𝑡 are input into the
parallel ResNets to predict the major species and temperature at the next timestep.

The results in Figures 8 and 9 were produced by 10 parallel ResNets trained on the same data sets as the results
presented in Figure 7, except with the minor species added together as described above. In Figure 8 Xavier initialization
was used to produce the initial weights and bias, whereas box initialization was used to produce the results in Figure 9.
In both sets of results, the loss function employed both ℓ1 and ℓ2 regularization on the paramters. The ResNets used to
produce the results in Figure 8 have a depth of 4 and width of 35. After training, the networks were tested by marching
forward in time known initial conditions with temperatures of 1,750K and 2,200K. The behavior of the minor species
was accurately captured by the networks. In the results corresponding to 1,750K the predicted reaction occurs earlier
than the known data. This remains a challenge for the results using the methane-O2 model. For the results in Figure 9
the ResNets used have a depth of 4 for the results in the left panel and a depth of 6 for the results in the right panel. All
hidden layers in both sets of results have a width of 35. After training, the networks were tested by marching forward in
time known initial conditions with temperatures of 1,850K for the results on the left and 2,200K for those on the right.

IV. Conclusions and Future Directions
A number of ResNet based approaches to approximate the stiff ODEs arising in chemical kinetics were developed.

The experiments presented for the H2-O2 model indicate that when the equivalence ratio is fixed and initial temperature
is varied (this case has been considered in [18, 19]), the proposed DNNs can (almost) perfectly generalize to unseen data.
This capacity for generalization deteriorates, however, when the initial temperature is kept fixed and the equivalence
ratio is varied. In order to overcome this issue, the training data was separated into fuel lean, fuel balanced, and fuel
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Init. temp. Number of points Init. temp. Number of points Init. temp. Number of points
1,200 30,000 1,650 4,999 2,100 399
1,250 30,000 1,700 4,999 2,150 199
1,300 30,000 1,750 999 2,200 199
1,350 30,000 1,800 999 2,250 199
1,400 10,000 1,850 999 2,300 399
1,450 4,999 1,900 399 2,350 199
1,500 4,999 1,950 399 2,400 199
1,550 4,999 2,000 399 2,450 199
1,600 4,999 2,050 399 2,500 199

Table 2 Description of the training data for the methane-O2 reaction model that was used for the results in
Figures 7 and 8.

Fig. 7 Testing results from ResNets trained on data that varies the initial temperature. The ResNets used
have width of 30, a depth of 8. The plots show the results of marching in time from an initial condition with
temperature 1,250K (left plots) and 2,350K (right plots).

rich based on the equivalence ratio. This approach has led to encouraging results. Additionally, the networks can be
improved by using the box method to initialize the weights and biases at the beginning of the training procedure.

Experiments representing a first step in using DNNs to capture the more complicated problem of a reduced
methane-O2 reaction model are also presented. This model presents additional challenges due to the increased number
of species and complexity of the reactions trying to be captured. The experiments show that updating the minor species
by using the fixed density of the species rather than using separate neural networks leads to comparably accurate results
with the advantage of reduced training costs.

There are several questions that are currently being investigated:
• All DNNs are dependent on the quality of training data. The data used for experiments reported here were

generated using CHEMKIN. In view of the high dimensionality of the data, and the nature of chemical reactions
(large periods of inactivity followed by a sudden reaction followed by a convergence to a steady state), quality
criteria need to be developed to make sure redundant data is avoided.

• In the case of the H2-O2 model, it will be interesting to see if further dividing the training data based on equivalence
ratio is helpful.

• The usefulness of training with noisy data is also being explored. For some classification problems, this approach
is known to increase the robustness of ResNets.

• For both models considered above, it is of interest to see how the proposed approach generalizes to more reactions
and species.
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Fig. 8 Testing results from ResNets trained on data that combines the minor species in the methane-O2 reaction
model. The ResNets used have width of 35 and a depth of 4. The plots show the results of marching in time from
an initial condition with temperature 1,750K (left plots) and 2,200K (right plots).

Fig. 9 Testing results from ResNets trained on data that combines the minor species in the methane-O2 reaction
model. The ResNets used have width of 35 and a depths of 4 (left plots) and 6 (right plots). The plots show the
results of marching in time from an initial condition with temperature 1,850K (left plots) and 2,200K (right plots).
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