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Abstract
A deterministic pathogen transmission model based on high-fidelity physics has been developed. The model combines

omputational fluid dynamics and computational crowd dynamics in order to be able to provide accurate tracing of viral matter
hat is exhaled, transmitted and inhaled via aerosols. The examples shown indicate that even with modest computing resources,
he propagation and transmission of viral matter can be simulated for relatively large areas with thousands of square meters,
undreds of pedestrians and several minutes of physical time. The results obtained and insights gained from these simulations
an be used to inform global pandemic propagation models, increasing substantially their accuracy.
2022 Elsevier B.V. All rights reserved.

eywords: Pathogen transmission; Viral transmission; Pathogen mitigation; Finite elements; Computational fluid dynamics; Computational crowd
ynamics

1. Introduction

Many public health decisions are being made based on results from global pandemic simulation models as shown
chematically in Fig. 1.1. The whereabouts of people – and hence their proximity – during a typical day can be
btained from a variety of sources such as telephone locator records and transactional records. The accuracy of
his data is relatively high, allowing to place individuals within a few meters. Advances in both compute power
s well as algorithms and optimal data structures have enabled to track and compute the interaction of billions
f individuals during several days on desktop workstations in a matter of hours. Thus, statistical runs are easy to
erform on larger clusters.

The highest uncertainty of these types of models is the transmission rate in given settings. It is easy to see that
limate (heating, cooling, ventilation), customs (hugging, kissing, proximity) and population behavior (masking)
an lead to vastly different transmission rates for the same setting (public office, classroom, meeting room, factory,
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Fig. 1.1. Global pandemic simulation codes.

irport, train station, cinema, theater, stadium, restaurant, etc.). Particularly for those pathogens that are very
ransmissible via the aerosol route (e.g. measles, Covid-19) the variability can be so large that the accuracy of
hese global pandemic simulation models can be called into question.

It is here that simulations based on high-fidelity physics of flows with aerosols together with pedestrian/crowd
ynamics can be used to achieve a higher accuracy in the transmission rates, thus improving the accuracy of global
imulation models.

This would no doubt entail a formidable undertaking. In principle, every venue would have to be analyzed. And
his implies knowing the outlay and dimensions of the place, the heating, ventilation and air conditioning (HVAC)
nformation, the possible external climate factors, the flow of people, etc. Given the variability of any of these
actors, each one of these venues would in turn require a number of runs. However, the insight gained could be
sed to a) improve the airflow and ventilation so as to minimize pathogen transmission, b) modify the movement of
eople so as to minimize pathogen transmission, and c) increase the awareness of people frequenting these venues
ia visualization of pathogen movement.

On the other hand, the variability in the number of places frequented is also not infinite. Many crowded places
elong to chains or franchises, and are therefore ‘standardized’ in their outlay. Typical venues that fall under
his category are fast-food restaurants. The flow here is predominantly from the customer/public area towards the
itchen/cooking area in order avoid odours. This implies that the placement (e.g. queuing) and movement of people
re key factors that will affect transmission rates. Similar places that also have a ‘standardized outlay’ are office
nd government buildings.

The present paper presents first steps in this direction. As stated before, an obvious necessity is the development
f a reliable, accurate and scalable deterministic high-fidelity pathogen transmission model that incorporates the
roper physics of flows, pedestrian motion and the ex/inhalation of pathogens.

. Modeling pathogen transmission and infection

Pathogen, or more generally, disease transmission models have a long history in both health sciences and applied
athematical modeling since the seminal work of Wells [1]. The probability of a person getting infected through

he airborne route depends on

- That person’s exposure to the pathogen/virus (the dose) [2,3] and
- The probability of getting infected given that level of exposure [4].

he first term depends on a variety of factors such as pathogens shed by infective persons, exposure time, air
irculation patterns, etc. [4–13,13–24]. In aggregate models, which include the vast majority of models, the specific
ocations of susceptible persons are not explicitly considered. Rather, one makes assumptions so that these locations
o not have to be specified. For example, the viral particles may be assumed to be uniformly distributed, in
hich case the specific locations of persons are not required. More sophisticated models can account for spatial

eterogeneity by dividing the space into multiple zones with different distributions of viral particles in each

2
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one [25]. This requires knowing only the exposure times of persons in each zone, and not their specific positions. In
ndividualized models, which are relatively rare, the specific positions of persons are required. For example, Gupta
t al. [13] and Löhner et al. [26] consider specific seats in which passengers in a plane are seated and examine their
xposure using Computational Fluid Dynamics (CFD) simulations.

The second term – the relationship between exposure and infection probability – can be deterministic or
robabilistic [4,13], with the latter being much more common. In a deterministic model, a person is considered
nfected if that person inhales more viral particles than a limit, called that person’s tolerance dose. In a probabilistic

odel, on the other hand, the infection probability depends on the extent of exposure. Models typically use variants
f one of the following two approaches. In both approaches, infection probability is given by

p = 1 − e−c·em , (2.1)

where c is a constant and em the so-called exposure metric. In the Wells–Riley approach [1], the exposure is
expressed in terms of an abstract ‘quantum’ of infection, whose relative values can be computed for different
scenarios, and model parameters determined by fitting against empirical data. In a dose–response model, on the
other hand, the exposure metric reflects the actual number of viral particles inhaled by the susceptible person, with
detailed mechanisms for computing this value.

2.1. Relationship to previous work

Conventional models are aggregate, and do not consider the specific locations of individuals. Consequently, they
cannot account for fine-scaled spatial heterogeneity. Individual models, such as [13,27], do consider positions of
individuals. However, they mostly consider situations where the positions of persons are fixed. This is inadequate for
understanding risk associated when people move in a crowd. Namilae et al. [28] consider movement of people in a
plane using pedestrian dynamics. However, that work does not account for movement of viral particles through the
air. Instead, it considers infection risk based on contacts between persons in the crowd. Löhner et al. [27] consider
movement of people in a fully coupled setting.

3. Requirements for modeling pathogen propagation, transmission and mitigation

Taking into account all the information stated before, one can see that in order to arrive at advanced numerical
models to compute with high fidelity pathogen propagation, transmission and mitigation, the following capabilities
are required:

- Physical modeling of sneezing/coughing (exit velocities and temperature, number and distribution of particles,
etc.);

- Physical modeling of aerosol propagation (flows with particles in an environment with moving pedestrians,
geometric fidelity of the built environment, HVAC boundary conditions, etc.);

- Modeling of pedestrian motion (movement, proximity, etc.);
- Monitoring of pathogens exhaled and inhaled.

These in turn will enable the generation of the four essential pieces of information required:

- The generation of pathogen (e.g. viral) loads;
- The movement (advection, diffusion) of pathogen loads;
- The location and movement of pedestrians exhaling pathogens;
- The location and movement of pedestrians inhaling pathogens.

In the sequel, we will consider each one of these in turn. One should state from the outset that all of these quantities
can vary greatly, so that any kind of model will have to be run repeatedly in order to obtain proper statistics.

4. Physical modeling of aerosol propagation

The question often arises whether for pathogen transmission the motion of individual droplets needs to be
computed. The larger droplets of diameters O(1.0 mm) tend to fall ballistically. The smaller ones, with diameters

< O(0.1 mm), tend to slow down immediately and adjust to the velocity of the surrounding air. Furthermore,
3
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Table 1
Distance and time to rest for water particles in air with an initial
velocity of 1 m/s.

Diameter [mm] Distance to rest [m] Time to rest [s]

1.00E−01 2.27E−02 1.20E−01
1.00E−02 2.79E−04 1.34E−03
1.00E−03 2.94E−06 1.40E−05

they also evaporate quickly. If one considers the motion of a water particle with an initial velocity of vi = 1 m/s
into quiescent air, and the usual values of ρp = 1000 kg/m3, ρair = 1.2 kg/m3, µair = 1.85 · 10−5 kg/m/s, one
can obtain the distance and time to rest, where ‘rest’ in this case is assumed as vr = 0.01 vi . These values have
been tabulated in Table 1. One can see that for diameters below O(0.1 mm) the time and distance required for a
particle to adjust to the velocity of the surrounding air is so low that for these aerosol particles one can neglect
the air–particle interaction. Therefore, one can treat these aerosol particles via a transport equation that advects and
diffuses the particle concentration in space and time.

4.1. Equations describing the motion of the air

As seen from the experimental evidence, the velocities of air encountered during coughing and sneezing never
exceed a Mach-number of Ma = 0.1. Therefore, the air may be assumed as a Newtonian, incompressible liquid,
where buoyancy effects are modeled via the Boussinesq approximation. The equations describing the conservation
of momentum, mass and energy for incompressible, Newtonian flows may be written as

ρv,t + ρv · ∇v + ∇ p = ∇ · µ∇v + ρg + βρg(T − T0) + sv , (4.1.1)

∇ · v = 0 , (4.1.2)

ρcpT,t + ρcpv · ∇T = ∇ · k∇T + se . (4.1.3)

Here ρ, v, p, µ, g, β, T, T0, cp, k denote the density, velocity vector, pressure, viscosity, gravity vector, coefficient
of thermal expansion, temperature, reference temperature, specific heat coefficient and conductivity respectively,
and sv, se momentum and energy source terms (e.g. due to particles or external forces/heat sources). For turbulent
flows both the viscosity and the conductivity are obtained either from additional equations or directly via a large
eddy simulation (LES) assumption through monotonicity induced LES (MILES) [29–34].

The pathogen concentration is given by an advection–diffusion equation of the form:

c,t + v · ∇c = ∇ · kc∇c + sc , (4.1.4)

where c, kc denote the concentration (pathogens/volume) and diffusivity of the pathogen, and sc is the source (or
sink) term (due to exhalation or inhalation). In addition, a series of additional ‘diagnostics’ equations may be
required. One of them is the ‘age of air’ τ (a good measure for ventilation efficiency), given by:

τ,t + v · ∇τ = 1 . (4.1.5)

.2. Numerical integration of the motion of the air

The last six decades have seen a large number of schemes that may be used to solve numerically the
ncompressible Navier–Stokes equations given by Eqs.(4.1.1–4.1.3). In the present case, the following design criteria
ere implemented:

- Spatial discretization using unstructured grids (in order to allow for arbitrary geometries and adaptive
refinement);

- Spatial approximation of unknowns with simple linear finite elements (in order to have a simple input/output
and code structure);
4
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- Edge-based data structures (for reduced access to memory and indirect addressing);
- Temporal approximation using implicit integration of viscous terms and pressure (the interesting scales are

the ones associated with advection);
- Temporal approximation using explicit, high-order integration of advective terms;
- Low-storage, iterative solvers for the resulting systems of equations (in order to solve large 3-D problems);

and
- Steady results that are independent from the timestep chosen (in order to have confidence in convergence

studies).

The resulting discretization in time is given by the following projection scheme [35–37]:

- Advective–Diffusive Prediction: vn, pn
→ v∗

s′
= −∇ pn

+ ρg + βρg(T n
− T0) + sv , (4.2.1)

ρvi
= ρvn

+ αiγ∆t
(
−ρvi−1

· ∇vi−1
+ ∇ · µ∇vi−1

+ s′
)

; i = 1, k − 1 ; (4.2.2)[ ρ

∆t
− θ∇ · µ∇

] (
vk

− vn)
+ ρvk−1

· ∇vk−1
= ∇ · µ∇vk−1

+ s′ . (4.2.3)

- Pressure Correction: pn
→ pn+1

∇ · vn+1
= 0 ; (4.2.4)

ρ
vn+1

− v∗

∆t
+ ∇(pn+1

− pn) = 0 ; (4.2.5)

which results in

∇ ·
∆t
ρ

∇(pn+1
− pn) = ∇ · v∗

; (4.2.6)

- Velocity Correction: v∗
→ vn+1

vn+1
= v∗

−
∆t
ρ

∇(pn+1
− pn) . (4.2.7)

denotes the implicitness-factor for the viscous terms (θ = 1: 1st order, fully implicit, θ = 0.5: 2nd order,
rank–Nicholson). αi are the standard low-storage Runge–Kutta coefficients αi

= 1/(k + 1 − i). The k − 1 stages
f Eq.(4.2.2) may be seen as a predictor (or replacement) of vn by vk−1. The original right-hand side has not been
odified, so that at steady-state vn

= vk−1, preserving the requirement that the steady-state be independent of the
imestep ∆t . The factor γ denotes the local ratio of the stability limit for explicit timestepping for the viscous terms
ersus the timestep chosen. Given that the advective and viscous timestep limits are proportional to:

∆ta ≈
h
|v|

; ∆tv ≈
ρh2

µ
, (4.2.8)

we immediately obtain

γ =
∆tv

∆ta
≈

ρ|v|h
µ

≈ Reh , (4.2.9)

or, in its final form:

γ = min(1, Reh) . (4.2.10)

In regions away from boundary layers, this factor is O(1), implying that a high-order Runge–Kutta scheme is
recovered. Conversely, for regions where Reh = O(0), the scheme reverts back to the usual 1-stage Crank–Nicholson
scheme. Besides higher accuracy, an important benefit of explicit multistage advection schemes is the larger timestep
one can employ. The increase in allowable timestep is roughly proportional to the number of stages used (and has
been exploited extensively for compressible flow simulations [38]). Given that for an incompressible solver of the
5
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rojection type given by Eqs.(4.2.1–4.2.7) most of the CPU time is spent solving the pressure-Poisson system
q.(4.2.6), the speedup achieved is also roughly proportional to the number of stages used.

At steady state, v∗
= vn

= vn+1 and the residuals of the pressure correction vanish, implying that the result does
ot depend on the timestep ∆t .

The spatial discretization of these equations is carried out via linear finite elements. The resulting matrix system
is re-written as an edge-based solver, allowing the use of consistent numerical fluxes to stabilize the advection and
divergence operators [37].

The energy (temperature) equation (Eq.(4.1.3)) is integrated in a manner similar to the advective-diffusive
prediction (Eq.(4.2.2)), i.e. with an explicit, high order Runge–Kutta scheme for the advective parts and an implicit,
2nd order Crank–Nicholson scheme for the conductivity.

4.3. Immersed body techniques

The information required from computational crowd dynamics (CCD) codes consists of the pedestrians in the
flowfield, i.e. their position, velocity, temperature, as well inhalation and exhalation. As the CCD codes describe
the pedestrians as points, circles or ellipses, a way has to be found to transform this data into 3-D objects. Two
possibilities have been pursued here:

- (a) Transform each pedestrian into a set of (overlapping) spheres that approximate the body with maximum
fidelity with the minimum amount of spheres;

- (b) Transform each pedestrian into a set of tetrahedra that approximate the body with maximum fidelity with
the minimum amount of tetrahedra.

The reason for choosing spheres or tetrahedra is that due to their geometric simplicity one can perform the required
interpolation/ information transfer much faster than with other polyhedra or geometric shapes.

In order to ‘impose’ on the flow the presence of a pedestrian the immersed boundary methodology is used.
The key idea is to prescribe at every CFD point covered by a pedestrian the velocity and temperature of the
pedestrian. For the CFD code, this translates into an extra set of boundary conditions that vary in time and space
as the pedestrians move. This is by now a mature technology (see, e.g. chapter 18 in [37] and the references cited
therein). Fast search techniques as well as extensions to higher order boundary conditions may be found in [37,39].
Nevertheless, as the pedestrians potentially change location at every timestep, the search for and the imposition of
new boundary conditions can add a considerable amount of CPU as compared to ‘flow-only’ runs.

5. Modeling of pedestrian motion

The modeling of pedestrian motion has been the focus of research and development for more than two
decades [40–42]. If one is only interested in average quantities (average density, velocity), continuum models [43]
are an option. For problems requiring more realism, approaches that model each individual are required [44]. Among
these, discrete space models (such as cellular automata [45–53]), force-based models (such as the social force
model [54–59]) and agent-based techniques [60–67] have been explored extensively. Together with insights from
psychology and neuroscience (e.g. [66,68]) it has become clear that any pedestrian motion algorithm that attempts
to model reality should be able to mirror the following empirically known facts and behaviors:

- Newton’s laws of motion apply to humans as well: from one instant to another, we can only move within
certain bounds of acceleration, velocity and space;

- Contact between individuals occurs for high densities; these forces have to be taken into account;
- Humans have a mental map and plan on how they desire to move globally (e.g. first go here, then there, etc.);
- Human motion is therefore governed by strategic (long term, long distance), tactical (medium term, medium

distance) and operational (immediate) decisions;
- In even moderately crowded situations of one person per square meter (i.e. O(1 p/m2)), humans have a visual

horizon of O(2.5–5.0 m), and a perception range of 120 degrees; thus, the influence of other humans beyond
these thresholds is minimal;

- Humans have a ‘personal comfort zone’; it is dependent on culture and varies from individual to individual,

but it cannot be ignored;

6
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- Humans walk comfortably at roughly 2 paces per second (frequency: ν = 2 Hz); they are able to change the
frequency for short periods of time, but will return to 2 Hz whenever possible.

e remark that many of the important and groundbreaking work cited previously took place within the gam-
ng/visualization community, where the emphasis is on ‘looking right’. Here, the aim is to answer civil engineering
r safety questions such as maximum capacity, egress times under emergency, or comfort. Therefore, comparisons
ith experiments and actual data are seen as essential [59,69,70].

.1. The PEDFLOW model

The PEDFLOW model [59] incorporates these requirements as follows: individuals move according to Newton’s
aws of motion; they follow (via will forces) ‘global movement targets’; at the local movement level, the motion
lso considers the presence of other individuals or obstacles via avoidance forces (also a type of will force) and, if
pplicable, contact forces. Newton’s laws:

m
dv
dt

= f ,
dx
dt

= v , (5.1.1)

where m, v, x, f, t denote, respectively, mass, velocity, position, force and time, are integrated in time using a 2nd
order explicit timestepping technique. The main modeling effort is centered on f. In the present case the forces are
eparated into internal (or will) forces [I would like to move here or there] and external forces [I collided with
nother pedestrian or an obstacle]. For the sake of completeness, we briefly review the main forces used. For more
nformation, as well as verification and validation studies, see [59,69–75].

.1.1. Will force
Given a desired velocity vd and the current velocity v, this force will be of the form

fwill = gw (vd − v) . (5.1.1.1)

he modeling aspect is included in the function gw, which, in the non-linear case, may itself be a function of vd −v.
uppose gw is constant, and that only the will force is acting. Furthermore, consider a pedestrian at rest. In this
ase, we have:

m
dv
dt

= gw (vd − v) , v(0) = 0 , (5.1.1.2)

which implies:

v = vd
(
1 − e−αt) , α =

gw

m
=

1
tr

, (5.1.1.3)

and
dv
dt

(t = 0) = αvd =
vd

tr
. (5.1.1.4)

One can see that the crucial parameter here is the ‘relaxation time’ tr which governs the initial acceleration and
‘time to desired velocity’. Typical values are vd = 1.35 m/s and tr = O(0.5 s). The ‘relaxation time’ tr is clearly

ependent on the fitness of the individual, the current state of stress, desire to reach a goal, climate, signals, noise,
tc. Slim, strong individuals will have low values for tr , whereas obese or weak individuals will have high values
or tr . Furthermore, dividing by the mass of the individual allows all other forces (obstacle and pedestrian collision
voidance, contact, etc.) to be scaled by the ‘relaxation time’ as well, simplifying the modeling effort considerably.
he direction of the desired velocity

s =
vd

|vd |
(5.1.1.5)

will depend on the type of pedestrian and the cases considered. A single individual will have as its goal a desired
position xd (td ) that he/she would like to reach at a certain time td . If there are no time constraints, td is simply set
to a large number. Given the current position x, the direction of the velocity is given by

s =
xd (td ) − x

, (5.1.1.6)

|xd (td ) − x|

7
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here xd (td ) denotes the desired position (location, goal) of the pedestrian at the desired time of arrival td . For
members of groups, the goal is always to stay close to the leader. Thus, xg(tg) becomes the position of the leader.
In the case of an evacuation simulation, the direction is given by the gradient of the perceived time to exit τe to the
closest perceived exit:

s =
∇τe

|∇τe|
. (5.1.1.7)

The magnitude of the desired velocity |vd | depends on the fitness of the individual, and the motivation/urgency to
reach a certain place at a certain time. Pedestrians typically stroll leisurely at 0.6–0.8 m/s, walk at 0.8–1.0 m/s,
jog at 1.0–3.0 m/s, and run at 3.0–10.0 m/s.

5.1.2. Pedestrian avoidance forces
The desire to avoid collisions with other individuals is modeled by first checking if a collision will occur. If so,

forces are applied in the direction normal and tangential to the intended motion. The forces are of the form:

fi = fmax/(1 + ρ p) ; ρ = |xi − x j |/ri , (5.1.2.1)

here xi , x j denote the positions of individuals i, j , ri the radius of individual i , and fmax = O(4) fmax (will). Note
hat the forces weaken with increasing non-dimensional distance ρ. For years we have used p = 2, but, obviously,
his can (and probably will) be a matter of debate and speculation (perhaps a future experimental campaign will
ettle this issue). In the far range, the forces are mainly orthogonal to the direction of intended motion: humans tend
o move slightly sideways without decelerating. In the close range, the forces are also in the direction of intended

otion, in order to model the slowdown required to avoid a collision.

.1.3. Wall avoidance forces
Any pedestrian modeling software requires a way to input geographical information such as walls, entrances,

tairs, escalators, etc. In the present case, this is accomplished via a triangulation (the so-called background mesh).
distance to walls map (i.e. a function dw(x) is constructed using fast marching techniques on unstructured grids),

nd this allows to define a wall avoidance force as follows:

f = − fmax
1

1 + ( dw

r )p
· ∇dw , p = 2 (5.1.3.1)

ote that |∇dw| = 1. The default for the maximum wall avoidance force is fmax = O(8) fmax (will). The desire to
e far/close to a wall also depends on cultural background.

.1.4. Contact forces
When contact occurs, the forces can increase markedly. Unlike will forces, contact forces are symmetric. Defining

ρi j = |xi − x j |/(ri + r j ) , (5.1.4.1)

hese forces are modeled as follows:

ρi j < 1 : f = −[ fmax/(1 + ρ
p
i j )] ; p = 2 (5.1.4.2a)

ρi j > 1 : f = −[2 fmax/(1 + ρ
p
i j )] ; p = 2 (5.1.4.2b)

nd fmax = O(8) fmax (will).

.1.5. Motion inhibition
A key requirement for humans to move is the ability to put one foot in front of the other. This requires space.

iven the comfortable walking frequency of ν = 2 Hz, one is able to limit the comfortable walking velocity by
omputing the distance to nearest neighbors and seeing which one of these is the most ‘inhibiting’.
8
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R. Löhner, H. Antil, J.M. Gimenez et al. Computer Methods in Applied Mechanics and Engineering xxx (xxxx) xxx

5

t

5

O

.1.6. Psychological factors
The present pedestrian motion model also incorporates a number of psychological factors that, among the many

ried over the years, have emerged as important for realistic simulations. Among these, we mention:

- Determination/Pushiness: it is an everyday experience that in crowds, some people exhibit a more polite
behavior than others. This is modeled in PEDFLOW by reducing the collision avoidance forces of more
determined or ‘pushier’ individuals. Defining a determination or pushiness parameter p̃, the avoidance forces
are reduced by (1 − p̃). Usual ranges for p̃ are 0.2 ≤ p̃ ≤ 0.8.

- Comfort zone: in some cultures (northern Europeans are a good example) pedestrians want to remain at some
minimum distance from contacting others. This comfort zone is an input parameter in PEDFLOW, and is
added to the radii of the pedestrians when computing collisions avoidance and pre-contact forces.

- Right/Left Avoidance and Overtaking: in many western countries pedestrians tend to avoid incoming pedestri-
ans by stepping towards their right, and overtake others on the left. However, this is not the norm everywhere,
and one has to account for it.

.2. Numerical integration of the motion of pedestrians

The equations describing the position and velocity of a pedestrian may be formulated as a system of nonlinear
rdinary Differential Equations of the form:

dup

dt
= r(up, x, u f ) , (5.2.1)

where up denote the variables of the pedestrians (positions, velocities, etc.) and r a right-hand-size that depends on
up, the position of the pedestrian (e.g. geographical obstacles) and the variables interpolated from the flow domain
(e.g. smoke) u f . These ODEs are integrated with explicit Runge–Kutta schemes, typically of order 2.

The geographic information required, such as terrain data (inclination, soil/water, escalators, obstacles, etc.),
climate data (temperature, humidity, sun/rain, visibility), signs, the location and accessibility of guidance personnel,
as well as doors, entrances and emergency exits is stored in a so-called background grid consisting of triangular
elements. This background grid is used to define the geometry of the problem. At every instance, a pedestrian will
be located in one of the elements of the background grid. Given this ‘host element’ the geographic data, stored
at the nodes of the background grid, is interpolated linearly to the pedestrian. The closest distance to a wall δw

or exit(s) for any given point of the background grid evaluated via a fast (O(N ln(N ))) nearest neighbor/heap list
technique [37,59]. For cases with visual or smoke impediments, the closest distance to exit(s) is recomputed every
few seconds of simulation time.

5.3. Linkage to CFD codes

The information required from CFD codes such as FEFLO [76–78] consists of the spatial distribution of
temperature, smoke, other toxic or movement impairing substances in space, as well as pathogen distribution. This
information is interpolated to the (topologically 2-D) background mesh at every timestep in order to calculate
properly the visibility/ reachability of exits, routing possibilities, smoke, toxic substance or pathogen inhalation,
and any other flowfield variable required by the pedestrians. As the tetrahedral grid used for the CFD code and
the triangular background grid of the CCD code do not change in time, the interpolation coefficients need to be
computed just once at the beginning of the coupled run. While the transfer of information from CFD to CCD is
voluminous, it is very fast, adding an insignificant amount to the total run-times.

6. Coupling methodology

The coupling methodology used is shown in Fig. 6.1. The CFD code computes the flowfield, providing such
information as temperature, smoke, toxic substance and pathogen concentration, and any other flow quantity that may
affect the movement of pedestrians. These variables are then interpolated to the position where the pedestrians are,
and are used with all other pertinent information (e.g. will-forces, targets, exits, signs, etc.) to update the position,
velocity, inhalation of smoke, toxic substances or pathogens, state of exhaustion or intoxication, and any other
pertinent quantity that is evaluated for the pedestrians. The position, velocity and temperature of the pedestrians,
9
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Fig. 6.1. Coupling CFD and CCD codes.

ogether with information such as sneezing or exhaling air, is then transferred to the CFD code and used to modify
nd update the boundary conditions of the flowfield, particles and pathogen concentrations in the regions where
edestrians are present.

Of the many possible coupling options (see e.g. [79–81]), we have implemented the simplest one: loose coupling
ith sequential timestepping [82–84]. This is justified, as the timesteps of both the flow and pedestrian solvers

re very small, so that possible coupling errors are negligible. PEDFLOW typically runs with fixed timesteps of
tp = 0.05 s, while the timestep chosen by FEFLO depends on mesh size and velocity. Should the timestep of

EFLO be less than the default value for PEDFLOW, then PEDFLOW automatically reduces its timestep to be the
ame as FEFLO. During the course of many cases run, we have never encountered any stability problems with this
oose coupling and timestepping strategy.

.1. Placement of pathogen loads in space

A background grid is used for the placement of geographical information in PEDFLOW. The same grid can be
sed to track pathogen concentrations. As infected pedestrians move through this grid, they exhale pathogen loads

either through sneezing, coughing, shouting or talking. These pathogen loads are added to the concentration c
n the background grid.

.2. Generation of pathogen loads

Pathogen loads are generated whenever an infected pedestrian exhales, either violently in bursts (e.g. sneezing,
oughing, shouting), or continuously (e.g. loud talking). The amount of viral load can vary widely depending on the
odel [5–12,14–24], the state of infection of the pedestrian, and many other factors (the term ‘superspreaders’ has

een used in the medical literature). The position, velocity and orientation of pedestrians, as well as their behavior
hile sneezing or coughing is transmitted from the pedestrian code to the flow code. The flow code then generates

he proper boundary conditions for the exhalation. In order to simulate a sneeze/cough of duration Ts , the velocity,
emperature and pathogen concentration in a spherical region of radius (r = 5 cm) near the pedestrian mouth is
eset at the beginning of each timestep according to the following triangular function:

f (t) =

⎧⎪⎨⎪⎩
2t
Ts

i f : 0 ≤ t ≤ Ts/2
2 −

2t
Ts

i f : T2/2 ≤ t ≤ Ts

0 i f : Ts ≤ t

, (37)

v(t) = vmax f (t) , T (t) = Ta + f (t)(Tb − Ta) , c(t) = cmax f (t) , (38)

here Ts = 1 [sec], vmax = O(5) [m/sec], Ta = 20 [oC], Tb = 37 [oC], and cmax an estimated concentration
f virons exhaled that depends on the health of the pedestrian (in the present case simply set to c = 1 in
max

10
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rbitrary units). The direction of the velocity is set from the orientation of the pedestrian. The walking velocity of
he pedestrian is then added in order to obtain the final value. We remark that this simplified model represents a
ross-section of experimental data [85–87], but that this is an active area of research [88].

.3. Inhalation of pathogen loads

As pedestrians walk or run through the clouds of viral loads, they inhale a certain amount of viruses. Given
he local concentration of viral load c and the breathing rate of a pedestrian, the total number of viruses inhaled

can be integrated in time. The assumption is made that once the inhaled viral load reaches the infectious dose, the
pedestrian is considered infected.

7. Examples

In the sequel, we show examples of different situations. We remark that these are by no means exhaustive or
unique: the simulation of aerosol transmission via high-fidelity CFD techniques has received considerable attention
in recent years, and has been carried out with commercial and open source software worldwide (see, e.g. [27,89–
97]). The CFD code used is FEFLO, which was validated for the class of problems considered here over many
years [36,98–103].

7.1. Fast food restaurant

This case considers a typical fast food restaurant. The floorplan, geometry and general outlay are shown in
Fig. 7.1a. Pedestrians enter the door at a rate of 0.1 p/sec, line up in the queue, order the food that can be seen
behind the counter, and then pay at the cashier. The (random) ‘loiter times’ at each of the stations along the counter
with the food ranged from tloi t =20–40 s.

The air in the room is refreshed via two HVAC inflow ducts close to the ceiling and two large exhaust surfaces
ocated above the cooking surfaces. The initial airflow was considered at rest, and the room temperature was assumed
o be T0 = 20 ◦C. The air coming in from the two HVAC inflow ducts has a velocity of vH V AC = 2 m/s and a
emperature of TH V AC = 18 ◦C. The heat released by the cooking surfaces was modeled via a volumetric source
hat occupied 20 cm above the cooking surfaces with a specific strength of q = 104 W/m3. At the beginning,
ll pedestrians are considered healthy. Thereafter, 70% of the pedestrians entering are assigned as healthy, 10%
s infected but asymptomatic (i.e. not infecting) and 20% as infected and infecting. For the infecting pedestrians,
he average time between sneezing is set to ∆ts = 30 s with a variation of δts = 5 s and a sneeze duration of

Ts = 1 s. The mesh size in the region of the pedestrians was set to h = 0.05 m, which implies approximately 10
ow points per pedestrian cross-section of dp = 0.50 m, sufficient in order to obtain the vortical motion due to

Fig. 7.1a. Fast food restaurant: Floorplan.
11
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Fig. 7.1b. Fast food restaurant: Velocity and viral load at t = 30.00 s.

Fig. 7.1c. Fast food restaurant: Velocity and viral load at t = 65.00 s.

Fig. 7.1d. Fast food restaurant: Velocity and viral load at t = 100.00 s.

pedestrian movement or flow obstruction. The total mesh size was in excess of 1.8 · 107 elements. The two minutes
of simulated time took approximately 48 h using 32 cores. The results obtained are shown in Figs. 7.1b–7.1d. Note
the absence of viral matter at the beginning. However, after approximately two minutes (during which time two
sneezing events occured), a large area that is occupied by pedestrians shows the presence of viral matter, highlighting
the need for better ventilation close to the entrance. The fluid dynamic explanation is that the second ventilation
outlet ‘blocks’ the entrance region, producing a semi-stagnant region of recirculating flow where viral matter can
build up.

7.2. Long passage in train station

This case considers a typical rush hour scenario in a train station. The geometry and initial conditions are shown
in Fig. 7.2a. The central part of the passage is 82 m long, 10 m wide and 4 m high. Several open windows are located
along the passage. The inflow velocity of the windows on the right side was set to v = 1 m/s. A steady stream of
in

12
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R. Löhner, H. Antil, J.M. Gimenez et al. Computer Methods in Applied Mechanics and Engineering xxx (xxxx) xxx

p
2
d
7
2
w
w
N
s
1

Fig. 7.2a. Long passage: Initial conditions.

Fig. 7.2b. Long passage: Velocity and viral load at t = 30.00 s.

Fig. 7.2c. Long passage: Velocity and viral load at t = 60.00 s.

edestrians enters through both extremes and then moves towards the exit on the other side. The pedestrian flux is
p/s, i.e. 1 p/s per entrance. This leads to an average number of approximately 250 pedestrians in the simulation

omain at any given time during the simulation. At the beginning, all pedestrians are considered healthy. Thereafter,
0% of the pedestrians entering are assigned as healthy, 10% as infected but asymptomatic (i.e. not infecting) and
0% as infected and infecting. For the infecting pedestrians, the average time between sneezing is set to ∆ts = 30 s
ith a variation of δts = 5 s and a sneeze duration of Ts = 1 s. The mesh size in the region of the pedestrians
as set to h = 0.0625 m, which implies approximately 8 flow points per pedestrian cross-section of dp = 0.50 m.
ot very accurate, but sufficient in order to obtain the vortical motion due to pedestrian movement. The total mesh

ize was in excess of 1.2 · 108 elements. The two minutes of simulated time took approximately 8 hours using
,024 cores. The results obtained are shown in Figs. 7.2b–7.2e. Note the gradual buildup of viral matter, even
13
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Fig. 7.2d. Long passage: Velocity and viral load at t = 90.00 s.

Fig. 7.2e. Long passage: Velocity and viral load at t = 120.00 s.

Fig. 7.2f. Long passage: Number of pedestrians sneezing.

though fresh air is streaming in through the windows. The simulation clearly shows the need for better ventilation:
after a while, almost all pedestrians are wading through a ‘soup of viral matter’. The number of pedestrians sneezing
at any given moment has been recorded in Fig. 7.2f. For a given (albeit arbitrary) threshold of 10−4 units of viral

atter, the number of new infections is shown in Fig. 7.2g. The amount of viral load inhaled by the pedestrians in
he simulation at time T = 120 s may be discerned in Fig. 7.2h.
14
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Fig. 7.2g. Long passage: Number of new infections.

Fig. 7.2h. Long passage: Viral load statistics at t = 120.00 s
Blue curve: Number of pedestrians that inhaled a given viral load
Black curve: Cumulative number of pedestrians.

8. Conclusions and outlook

A deterministic pathogen transmission model based on high-fidelity physics has been developed. The model
combines computational fluid dynamics and computational crowd dynamics in order to be able to provide accurate
tracing of viral matter that is exhaled, transmitted and inhaled via aerosols. The examples shown indicate that even
with modest computing resources, the propagation and transmission of viral matter can be simulated for relatively
large areas with thousands of square meters, hundreds of pedestrians and several minutes of physical time. The
results obtained and insights gained from these simulations can be used to inform global pandemic propagation
models, increasing substantially their accuracy.

As with any technology, further advances are clearly possible. The list is long, and we just mention:

- Improved knowledge of the amount of virons in the droplets exhaled by infecting individuals;
- Improved knowledge of the infectious dose required to trigger infection/illness;
- Improved boundary conditions for HVAC exits;
- Improved modeling of particle retention and movement through cloths (e.g. for masks); and
- Improved knowledge of the effectivity of filters in HVAC systems that recirculate a percentage of the air in

rooms.
15
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urthermore, even though the basic physical phenomena and the partial and ordinary differential equations
escribing them have been known for over a century, and solvers have advanced considerably over the last four
ecades, a vigorous experimental program is needed to complement and validate the numerical methods, and to
stablish firm ‘best practice’ guidelines.
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