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Abstract: In this article, we consider a class of optimal control problems governed by state equations of
Kobayashi-Warren-Carter-type. The control is given by physical temperature. The focus is on problems in
dimensions less than or equal to 4. The results are divided into four Main Theorems, concerned with:
solvability and parameter dependence of state equations and optimal control problems; the first-order
necessary optimality conditions for these regularized optimal control problems. Subsequently, we derive
the limiting systems and optimality conditions and study their well-posedness.
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1 Introduction

Let ( )T0, be a time interval with a constant < < ∞T0 , and let { }∈N 2, 3, 4 denote the spatial dimension.
Let �⊂Ω N be a bounded domain with a Lipschitz boundary ≔ ∂Γ Ω, and let nΓ be the unit outer normal on
Γ. Besides, we set ( )≔ ×Q T0, Ω and ( )≔ ×TΣ 0, Γ, and we define ( )≔H L Ω2 with norm ∣ ∣⋅ H , ( )≔V H Ω1 ,

( )≔V H Ω0 0
1 , andH ( ( ))≔ L T L0, ; Ω2 2 , as the base spaces for this work. Moreover, we set:

H[[ ]] { ∣ } [ ]≔ ∈ ≤ ≤ ⟶ −∞ ∞

ℓ =

ℓκ κ u κ u κ Q κ Q, ˜ ˜ a.e. in , for arbitrary measurable obstacles : , ,
0, 1,

0 1 0 1

and define a family of functional classes HK ⊂ 2 , as follows:
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In this article, we consider a class of optimal control problems, denoted by ( )OP ε
K , which are labeled by

constants ≥ε 0 and functional classes K[[ ]]= ∈K κ κ,0 1 , with the obstacles [ ]⟶ −∞ ∞
ℓκ Q: , , ℓ = 0, 1.

For every ≥ε 0 and K[[ ]]= ∈K κ κ,0 1 , the optimal control problem ( )OP ε
K is described as follows:

( )OP ε
K
find a pair of functions H[ ] [ ]∈

∗ ∗u v, 2, called the optimal control, such that

U H U� �[ ] [ ] [ ] ∣ ( ) ( ) ∣ [ ]∈ ≔ { ∈ ∈ } = { ∈ }
∗ ∗ ∗ ∗u v u v u K u v u v u v, ˜, ˜ ˜ and , min , , ,K

ε ε
K

ad
2

ad

where � � ( )= u v,ε ε is a cost functional on H[ ]2, defined as follows:
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with H[ ] [ ]∈η θ, 2 solving the state system, denoted by ( )S ε:
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The state system ( )S ε is based on a phase field model of planar grain boundary motion, known as
Kobayashi-Warren-Carter system (cf. [1,2]). So, for the spatial domain �⊂Ω N , the case when =N 2 is a
reasonable setting in physics, and other cases when =N 3, 4 are just generalized ones in mathematics. In
this context, the unknowns H∈η and H∈θ are order parameters that indicate the orientation order and
orientation angle of the polycrystal body, respectively. Besides, [ ] ∈ ×η θ V V,0 0 0 is an initial pair, i.e., a pair

of initial data of [ ]η θ, . The forcing pair H[ ] [ ]∈u v, 2 denotes the control variables that can control the
profile of solution H[ ] [ ]∈η θ, 2 to ( )S ε. Additionally, ( )< ∈

∞α W Q0 0
1, and �( )< ∈α C0 2 are given func-

tions to reproduce the mobilities of grain boundary motions. Finally, �( )∈
∞g Wloc

1, is a perturbation for the
orientation order η, and >ν 0 is a fixed constant to relax the diffusion of the orientation angle θ.

The first part (3) of the state system ( )S ε is the initial-boundary value problem of an Allen-Cahn-type
equation, so that the forcing term u can be regarded as a temperature control of the grain boundary
formation. Also, the second problem (4) is the initial-boundary value problem to reproduce crystalline
micro-structure of polycrystal, and the case of =ε 0 is the closest to the original setting adopted by
Kobayashi et al. [1,2]. Indeed, when =ε 0, the quasi-linear diffusion as in (4) is described in a singular

form ( )
∣ ∣( )− + ∇
∇

∇

α η ν θdiv θ
θ

2 , and it is known that this type of singularity is effective to reproduce the facet,

i.e., the locally uniform (constant) phase in each oriented grain (cf. [1]). Hence, the systems ( )S ε, for positive
ε, can be regarded as regularized approximating systems, that are to approach to the physically realistic
situation ( )S 0, in the limit ↓ε 0.

Meanwhile, in the optimal control problem ( )OP ε
K, the class K[[ ]]= ∈K κ κ,0 1 is to constrain the range of

temperature control u, and the obstacles [ ]⟶ −∞ ∞
ℓκ Q: , , ℓ = 0, 1, indicate the control bounds of the

temperature. The pair of functions H[ ] [ ]∈η θ,ad ad
2 is a given admissible target profile of H[ ] [ ]∈η θ, 2.

Moreover, ≥M 0η , ≥M 0θ , ≥M 0u , and ≥M 0v are fixed constants.
The objective of this article is to significantly extend the results of our previous work [15], which

dealt with:
♯1) Key properties of the state systems ( )S ε with one-dimensional domain ( )=Ω 0, 1 ;
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♯2) Mathematical analysis of the optimal control problem ( )OP ε
K, for ≥ε 0, but with one-dimensional

domain ( )⊂Ω 0, 1 without any control constraints, i.e., K[[ ]]= ∈K κ κ,0 1 ( H= ).

In light of this, the novelty of this work is in:
♯3) The development of a mathematical analysis to obtain optimal controls of grain boundaries under

the higher dimensional setting { }∈N 2, 3, 4 of the spatial domain, and the temperature constraint
K[[ ]]= ∈K κ κ,0 1 .

In addition, the presence of constraints K[[ ]]= ∈K κ κ,0 1 makes the mathematical analysis further
challenging. Notice that such constraints are meaningful from a practical point of view. We further empha-
size that in the main part of this work, the ∞L -boundedness of η will be essential, and the main results will
be valid under the following assumption on the data:

(r.s.0) >ε 0, [ ] ( ( ))∈ ≔ ∩ ×
∞η θ D V L V, Ω0 0 0 0, and K∈K 0, where

K K K∣ [[ ]] ( )( )
≔ ∩ = { = ∈ ∈ ℓ = }

ℓ ∞
∞

K K κ κ κ L Q2 , such that , 0, 1 .L Q
0 0 1 (5)

Hence, in general cases of constraints K∈K (including no constraint case), we will be forced to adopt some
limiting (approximating) approach on the basis of the results under the restricted situation (r.s.0).

Now, in view of ♯1)–♯3), we set the goal of this article to prove four Main theorems, summarized as
follows.
Main Theorem 1: Mathematical results concerning the following items.
(I-A) (Solvability of state systems): Existence and uniqueness for the state system ( )S ε, for every ≥ε 0,
initial pair [ ]= ∈ ×w η θ V V,0 0 0 0, and forcing pair H[ ] [ ]∈u v, 2.
(I-B) (Continuous dependence on data among state systems): Continuous dependence of solutions to the
systems ( )S ε, with respect to the constant ≥ε 0, initial pair [ ] ∈ ×η θ V V,0 0 0, and forcing pair H[ ] [ ]∈u v, 2.

Main Theorem 2: Mathematical results concerning the following items.

(II-A) (Solvability of optimal control problems): Existence for the optimal control problem ( )OP ε
K , for every

constant ≥ε 0, initial pair [ ] ∈ ×η θ V V,0 0 0, and constraint K[[ ]]= ∈K κ κ,0 1 .
(II-B) (Parameter dependence of optimal controls): Some semi-continuous dependence of the optimal
controls, with respect to the constant ≥ε 0, initial pair [ ] ∈ ×η θ V V,0 0 0, and constraint K[[ ]]= ∈K κ κ,0 1 .

Main Theorem 3: Mathematical results concerning the following items.
(III-A) (Necessary optimality conditions under (r.s.0)): Derivation of first-order necessary optimality con-
ditions for ( )OP ε

K , via adjoint method, under the restricted situation (r.s.0).
(III-B) (Specific parameter dependence under (r.s.0)): Strong parameter dependence of optimal controls,
which is specifically obtained under (r.s.0).

Main Theorem 4: (Limiting optimality conditions): The optimality conditions which are obtained as
approximation limits of the necessary conditions under (r.s.0)

This article is organized as follows. The Main Theorems are stated in Section 3, after the preliminaries
in Section 1, and the auxiliary lemmas in the Appendix. The part after Section 3 will be divided into
Sections 4–7, and these four sections will be devoted to the proofs of the respective four Main Theorems 1–4.

2 Preliminaries

We begin by prescribing the notations used throughout this article.
Basic notations. For arbitrary r0, [ ]∈ −∞ ∞s ,0 , we define

{ } { }∨ ≔ ∧ ≔r s r s r s r smax , and min , ,0 0 0 0 0 0 0 0
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and in particular, we set

�[ ] [ ] ( )≔ ∨ ≔ − ∧ ∈
+ −r r r r r0 and 0 , for any .

For any dimension �∈d , we denote by �d the d-dimensional Lebesgue measure. The measure theo-
retical phrases, such as “a.e.,” “ td ,” “ xd ,” and so on, are all with respect to the Lebesgue measure in each
corresponding dimension.
Abstract notations. For an abstract Banach space X , we denote by ∣ ∣⋅ X the norm of X , and denote by ⟨⋅ ⋅⟩, X
the duality pairing between X and its dual ∗X . In particular, when X is a Hilbert space, we denote by ( )⋅ ⋅, X
the inner product of X . Moreover, when there is no possibility of confusion, we uniformly denote by ∣ ∣⋅ the
norm of Euclidean spaces, and for any dimension �∈d , we write the inner product (scalar product) of �d,
as follows:

�[ ] [ ]∑⋅ = = … = … ∈

=

y y yy y y y y y y˜ ˜ , for all , , , ˜ ˜ , , ˜ .
i

d

i i d d
d

1
1 1

For any subset A of a Banach space X , let { }⟶χ X: 0, 1A be the characteristic function of A, i.e.,

( ) ⎧
⎨⎩

∈ ↦ ≔
∈χ w X χ w w A: 1, if ,

0, otherwise .A A

For two Banach spaces X and Y , we denote byL( )X Y; the Banach space of bounded linear operators
from X into Y , and in particular, we letL L( ) ( )≔X X X; .

For Banach spaces …X X, , d1 , with �< ∈d1 , let ×⋯×X Xd1 be the product Banach space endowed with
the norm ∣ ∣ ∣ ∣ ∣ ∣⋅ ≔ ⋅ +⋯+ ⋅×⋯×X X X Xd d1 1 . However, when all …X X, , d1 are Hilbert spaces, ×⋯×X Xd1 denotes
the product Hilbert space endowed with the inner product ( ) ( ) ( )⋅ ⋅ ≔ ⋅ ⋅ +⋯+ ⋅ ⋅×⋯×, , ,X X X Xd d1 1 and the norm

∣ ∣ (∣ ∣ ∣ ∣ )⋅ ≔ ⋅ +⋯+ ⋅×⋯×X X X X
2 2

d d1 1

1
2 . In particular, when all …X X, , d1 coincide with a Banach space Y , we write:

  
[ ] ≔ × ⋯×Y Y Y .d

dtimes

Additionally, for any transform (operator) � ⟶X Y: , we let:

� � �[ ] [ ] [ ] [ ] [ ]… ≔ … … ∈w w w w Y w w X, , , , in , for any , , .d d
d

d
d

1 1 1

Specific notations of this article. As is mentioned in the previous section, let �( ) ⊂T0, be a bounded

time interval with a finite constant >T 0, and let { }∈N 2, 3, 4 be a constant of spatial dimension. Let �⊂Ω N

be a fixed spatial bounded domain with a smooth boundary ≔ ∂Γ Ω. We denote by nΓ the unit outward
normal vector on Γ. Besides, we set ( )≔ ×Q T0, Ω and ( )≔ ×TΣ 0, Γ. In particular, we denote by ∂t, ∇,
and div the distributional time derivative, the distributional gradient, and distributional divergence,
respectively.

On this basis, we define

H

V

V

X H

⎧

⎨

⎪

⎩
⎪

( ) ( )

( ) ( )

( ) ( )

( )

≔ ≔

≔ ≔

≔ ≔

≔ ×
∞

H L L T H
V H L T V
V H L T V

L Q

Ω and 0, ; ,
Ω and 0, ; ,
Ω and 0, ; ,

.

2 2

1 2

0 0
1

0
2

0

Also, we identify the Hilbert spaces H andH with their dual spaces. Based on the identifications, we have
the following relationships of continuous embeddings:

V H H V

V H H V
⎧
⎨⎩

⊂ = ⊂ ⊂ = ⊂

⊂ = ⊂ ⊂ = ⊂

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

V H H V
V H H V

and ,
and ,0 0 0 0

among the Hilbert spaces H , V , V0,H,V, andV0, and the respective dual spaces ∗H , ∗V , ∗V0,H∗,V∗, and
V∗

0. Additionally, in this article, we define the topology of the Hilbert spaceV0 by using the following inner
product:

( ) ( )[ ]≔ ∇ ∇ ∈w w w w w w V, ˜ , ˜ , for all , ˜ .V H 0N0
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Remark 1. (cf. [16, Remark 3]) Due to the restriction { }∈N 2, 3, 4 of spatial dimension, we can suppose the
continuous embedding ( )⊂V L Ω4 , and we can easily check that:

(i) If ≤ ∈μ H0 ˇ and ∈p Vˇ , then ∈μ p Hˇ ˇ , ∈
∗μp Vˇ ˇ , and

⎧

⎨
⎩

( ) ∣ ∣ ∣ ∣ ∣ ∣

( ) ∣ ∣ ∣ ∣ ∣ ∣( )

≤ ∈

⟨ ⟩ = ≤ ∈

μ p ψ C μ p ψ ψ H

μp ψ μ p μ ψ C μ p ψ ψ V

ˇ ˇ , ˇ ˇ , for any ,

ˇ ˇ , ˇ ˇ ˇ , ˇ ˇ ˇ ˇ ˇ , for any ˇ ;

H V
L

H V H

V H V
L

H V V

1
2

2

4

4

(ii) if ( )≤ ∈
∞μ L T H0 ˆ 0, ; and V∈p̂ , then H∈μ pˆ ˆ , V∈

∗μpˆ ˆ , and

H

V

H V H

V H V V

⎧

⎨

⎩

( ) ∣ ∣ ∣ ∣ ∣ ∣

( ) ∣ ∣ ∣ ∣ ∣ ∣

( )

( )( )

≤ ∈

⟨ ⟩ = ≤ ∈

∞

∞

μ p φ C μ p φ φ

μp φ μ p μ φ C μ p φ φ

ˆ ˆ , ˆ ˆ , for any ,

ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ ˆ ˆ , for any ˆ ;

V
L

L T H

V
L

L T H

0, ;

1
2

2
0, ;

4

4

where >C 0V
L4

is the constant of embedding ( )⊂V L Ω4 .

Finally, we define:

( ( ))≔ × ≔ ∩ ×
∞D V V D V L Vand Ω ,0 0 0

as the notations to specify the range of the initial pair [ ]η θ,0 0 in the state system.
( [ ])Notations in convex analysis cf 6 Chapter II. . , Let X be an abstract Hilbert space X . Then, any

closed and convex set ⊂K X defines a single-valued operator ⟶X Kproj :K , which maps any ∈w X to
a point ( ) ∈w KprojK , satisfying:

∣ ( ) ∣ ∣ ∣ ∣− = { − ∈ }w w w w w Kproj min ˜ ˜ .K X X

The operator projK is called the orthogonal projection (or projection in short) onto K .

Remark 2. (Key properties of the projection) Let K be a closed and convex set in a Hilbert space X . Then, the
following facts hold.
(Fact 1) The projection ⟶X Kproj :K is a nonexpansive operator from X into itself, i.e.,

∣ ( ) ( )∣ ∣ ∣− ≤ − ∈ ℓ =
ℓw w w w w Xproj proj , for all , 1, 2.K K X X

1 2 1 2

(Fact 2) ( )=
⊥w wprojK K in X , iff. ( )− − ≤

⊥ ⊥w w w w, ˜ 0K K X , for any ∈w K˜ .

Remark 3. (Examples of projections) Based on Remark 2, we can also see the following facts.
(Fact 3) If −∞ < ≤ < ∞

ℓ ℓr s , ℓ = 1, 2, then the projections � [ ][ ] ⟶
ℓ ℓ

ℓ ℓ r sproj : ,r s, onto compact intervals

�[ ] ⊂
ℓ ℓr s, fulfills that:

�∣ ( ) ( )∣ ∣ ∣ ∣ ∣[ ] [ ]− ≤ − ∨ − ∈ξ ξ r r s s ξproj proj , for any .r s r s, ,
1 2 1 21 1 2 2

(Fact 4) Let K be the class of constraints defined in (1), and let K[[ ]]= ∈K κ κ,0 1 be the constraint with the
obstacles [ ]⟶ −∞ ∞

ℓκ Q: , , ℓ = 0, 1. Then, for the projection H ⟶ Kproj :K , it holds that:

H

�[ ( )]( ) ( ( ))

( ( ))( )
⎧

⎨

⎩

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

[ ( ) ( )]=

= ∨ ∧ =

>

≤ ≤

<

∈

∈

∩
u t x u t x

κ κ u t x
κ t x u t x κ t x
u t x κ t x u t x κ t x
κ t x u t x κ t x

t x Q

u

proj , proj ,

,
, , if , , ,

, , if , , , ,
, , if , , ,

a.e. , ,

for any .

K κ t x κ t x, , ,

0 1

1 1

0 1

0 0

0 1

For a proper, lower semi-continuous (l.s.c.), and convex function ( ]→ −∞ ∞XΨ : , on a Hilbert space
X , we denote by ( )D Ψ the effective domain of Ψ. Also, we denote by ∂Ψ the subdifferential of Ψ. The
subdifferential ∂Ψ corresponds to a weak differential of convex function Ψ, and it is known as a maximal
monotone graph in the product space ×X X . The set ( ) { ∣ ( ) }∂ ≔ ∈ ∂ ≠ ∅D z X zΨ Ψ is called the domain of ∂Ψ.
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We often use the notation “[ ] ∈ ∂
∗w w, Ψ0 0 in ×X X ,” to mean that “ ( )∈ ∂

∗w wΨ0 0 in X for ( )∈ ∂w D Ψ0 ,”
by identifying the operator ∂Ψ with its graph in ×X X .

Next, for Hilbert spaces …X X, , d1 , with �< ∈d1 , let us consider a proper, l.s.c., and convex function on
the product space ×⋯×X Xd1 :

  [ ] ( ) ( ) ( ]= … ∈ ×⋯× ↦ = … ∈ −∞ ∞w w w X X w w wΨ : , , Ψ Ψ , , , .d d d1 1 1

Besides, for any { }∈ …i d1, , , we denote by 
∂ ×⋯× →X X XΨ :w d i1i a set-valued operator, which maps any

[ ]= … … ∈ ×⋯× ×⋯×w w w w X X X, , , ,i d i d1 1 to a subset ( )∂ ⊂w XΨw ii described as follows:

 



( ) ( )

⎧

⎨
⎩

( ) ( )

( )

⎫

⎬
⎭

∂ = ∂ … … ≔ ∈

− ≤ … …

− … … ∈

∗

∗

w w w w w X
w w w w w w

w w w w X
Ψ Ψ , , , , ˜

˜ , ˜ Ψ , , ˜ , ,
Ψ , , , , , for any ˜

.w w i d i
i X d

i d i
1

1

1
i i

i

As is easily checked,

  [ ] [ ]∂ ⊂ ∂ ×⋯×∂ ×⋯×X XΨ Ψ Ψ in ,w w d1
2

d1 (6)

where  [ ]∂ ×⋯×∂ ×⋯× ⟶
×⋯×X XΨ Ψ : 2w w d

X X
1d

d
1

1 is a set-valued operator, defined as:

   

   
[ ]( ) ( ) ( )

[ ] ([ ]) ( ) ( )

∂ ×⋯×∂ ≔ ∂ ×⋯×∂ ×⋯×

= … ∈ ∂ ×⋯×∂ ≔ ∂ ∩⋯∩ ∂

w w w X X
w w w D D D
Ψ Ψ Ψ Ψ in ,

for any , , Ψ Ψ Ψ Ψ .
w w w w d

d w w w w

1

1

d d

d d

1 1

1 1

But, it should be noted that the converse inclusion of (6) is not true, in general.

Example 1. (Examples of the subdifferential) As one of the representatives of the subdifferentials, we

exemplify the following set-valued signal function � �
→Sgn : 2d d d

, with �∈d , which is defined as:

�

�

[ ] ( ) ( )

⎧

⎨

⎪

⎩
⎪

∣ ∣

[ ]

= … ∈ ↦ = … ≔

=

…

+⋯+

≠

ξ ξ ξ ξ ξ ξ
ξ
ξ

ξ ξ

ξ ξ
ξ

, , Sgn Sgn , ,

, ,
, if 0,

, otherwise ,
d

d d d
d

d

d
d

1 1

1

1
2 2 (7)

where � d denotes the closed unit ball in �d centered at the origin. Indeed, the set-valued function Sgnd

coincides with the subdifferential of the Euclidean norm �∣ ∣ ∣ ∣ [ )⋅ ∈ ↦ = +⋯+ ∈ ∞ξ ξ ξ ξ: 0,d
d1

2 2 , i.e.,

�∣ ∣( ) ( ) ( ∣ ∣)∂ ⋅ = ∈ ∂ ⋅ =ξ ξ ξ DSgn , for any ,d d

and furthermore, it is observed that

�∣ ∣( ) [ ] [ ∣ ∣ ∣ ∣]( )∂ ⋅ = ⊊ − = ∂ ⋅ ×⋯×∂ ⋅0 1, 1 0 .d d
ξ ξd1

Example 2. Let �∈d be the constant of dimension. For any ≥ε 0, let � [ )⟶ ∞f : 0,ε
d be a continuous

and convex function, defined as:

� ( ) ∣ ∣ [ )∈ ↦ ≔ + ∈ ∞f y f y ε y: 0, .ε
d

ε
2 2 (8)

When =ε 0, the convex function f0 of this case coincides with the d-dimensional Euclidean norm ∣ ∣⋅ ,

and hence, the subdifferential ∂f0 coincides with the set valued signal function � �
⟶Sgn : 2d d d

, defined
in (7).

In the meantime, when >ε 0, the convex function fε belongs to ∞C -class, and the subdifferential ∂fε is
identified with the (single-valued) usual gradient:

� �( )
∣ ∣

∇ ∈ ↦ ∇ =

+

∈f y f y y
ε y

: .ε
d

ε
d

2 2

Moreover, since:

�

�

� �( ) ∣[ ]∣ ∣[ ]∣ [ ] [ ]

[ ]

= = … = … ∈

≥ = … ∈

+
+ +f y ε y ε y y ε y ε y y

ε y y y
, , , , , for all , , , , ,

with 0 and , , ,
ε d d

d

d
d

1 1
1

1

d d1 1
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it will be estimated that

�� �∣ ( ) ( )∣ ∣[ ] [ ]∣ ∣ ∣ ∣ ∣− ≤ − ≤ − + − ≥ ∈+f y f y ε y ε y ε ε y y ε ε y y˜ , ˜, ˜ ˜ ˜ , for all , ˜ 0 and , ˜ ,ε ε
d

˜ d d1 (9a)

�

�
� � � �

�
� � �

�

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

∣ ( )∣
∣[ ]∣

[ ]

∣[ ]∣

∣ ( ) ( )∣
[ ]

∣[ ]∣

[ ]

∣[ ]∣

(∣ ∣ ∣ ∣ )

∇ = ≤ =

∇ − ∇ ≤ −

≤

∧

− + − > ∈

+ +
+

+ +
+

f y y
ε y

ε y
ε y

f y f y ε y
ε y

ε y
ε y

ε ε
ε ε y y ε ε y y

,
,

,
1,

˜ ,
,

˜, ˜
˜, ˜

2
˜

˜ ˜ , for all , ˜ 0 and , ˜ ,

ε

ε ε

d

˜

d
d d d d

d
d d d

d

1 1 1

1 1 1

(9b)

and

�

� � �

� � � �

�

⎧

⎨

⎪
⎪

⎩

⎪
⎪

∣ ( )∣ ∣ [∣ ∣ ]([ ])∣

∣ ( ) ( )∣ ∣ [∣ ∣ ]([ ]) [∣ ∣ ]([ ])∣

( )

( )
(∣ ∣ ∣ ∣ )

( ) ( )

( ) ( )

∇ ≤ ∇ ⋅ ≤
+

∇ − ∇ ≤ ∇ ⋅ − ∇ ⋅

≤
+

∧

− + − > ∈

× + + × +

× + + + × +

f y ε y d
ε

f y f y ε y ε y
d

ε ε
ε ε y y ε ε y y

, 1 ,

˜ , ˜, ˜
3 1

˜
˜ ˜ , for all , ˜ 0 and , ˜ .

ε

ε ε

d

2 2

2 2
˜

2 2

2

2

d d d d d

d d d d d d

d

1 1 1

1 1 1 1 (9c)

Finally, we mention about a notion of functional convergence, known as “Mosco-convergence.”

Definition 1. (Mosco-convergence: cf. [17]) Let X be an abstract Hilbert space. Let ( ]→ −∞ ∞XΨ : , be a
proper, l.s.c., and convex function, and let { }

=

∞Ψn n 1 be a sequence of proper, l.s.c., and convex functions
( ]→ −∞ ∞XΨ : ,n , = …n 1, 2, 3, . Then, it is said that →Ψ Ψn on X , in the sense of Mosco, as → ∞n , iff.

the following two conditions are fulfilled:
(M1) The condition of lower-bound: ( ) ( )≥→∞ w wlim Ψ ˇ Ψ ˇn n n , if ∈w Xˇ , { } ⊂

=

∞w Xˇn n 1 , and →w wˇ ˇn weakly in
X , as → ∞n .

(M2) The condition of optimality: For any ( )∈w Dˆ Ψ , there exists a sequence { } ⊂
=

∞w Xˆn n 1 such that →w wˆ ˆn

in X and ( ) ( )→w wΨ ˆ Ψ ˆn n , as → ∞n .

As well as, if the sequence of convex functions { } ∈Ψε ε Ξ is labeled by a continuous argument ∈ε Ξ with a

range �⊂Ξ , then for any ∈ε Ξ0 , the Mosco-convergence of { } ∈Ψε ε Ξ, as →ε ε0, is defined by those of

subsequences { } =

∞Ψε n 1n , for all sequences { } ⊂
=

∞ε Ξn n 1 , satisfying →ε εn 0 as → ∞n .

Remark 4. Let X , Ψ, and { }
=

∞Ψn n 1 be as in Definition 1. Then, the following hold.
(Fact 5) (cf. [18, Theorem 3.66] and [19, Chapter 2]) Let us assume that

→ → ∞X nΨ Ψ on , in the sense of Mosco, as ,n (10)

and

�⎧
⎨⎩

[ ] [ ]∈ × ∈ ∂ × ∈

→ → → ∞

∗ ∗

∗ ∗

w w X X w w X X n
w w X w w X n

, , , Ψ in , ,
in and weakly in , as .

n n n

n n

Then, it holds that:

[ ] ( ) ( )∈ ∂ × → → ∞
∗w w X X w w n, Ψ in , and Ψ Ψ , as .n n

(Fact 6) (cf. [20, Lemma 4.1] and [21, Appendix]) Let �∈d denote dimension constant, and let �⊂S d be a

bounded open set. Then, under the Mosco-convergence as in (10), a sequence { }
=

∞Ψn
S

n 1 of proper,

l.s.c., and convex functions on ( )L S X;2 , defined as:

( ) ( )

⎧

⎨

⎪

⎩
⎪

( ( )) ( ) ( )∫
∈ ↦ ≔

∈

∞

= …w L S X w
w t t w L S

n; Ψ
Ψ d , if Ψ ,

, otherwise ,
for 1, 2, 3, ;n

S
S

n n
2

1
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converges to a proper, l.s.c., and convex function ΨS
on ( )L S X;2 , defined as:

( ) ( )

⎧

⎨

⎪

⎩
⎪

( ( )) ( ) ( )∫
∈ ↦ ≔

∈

∞

z L S X z
z t t z L S

; Ψ
Ψ d , if Ψ ,

, otherwise ;

S
S

2
1

on ( )L S X;2 , in the sense of Mosco, as → ∞n .

Example 3. (Example of Mosco-convergence) Let �∈d be the constant of dimension, and let �{ } ( )⊂≥f Cε ε
d

0

be the sequence of nonexpansive convex functions, as in (8) and (9). Then, the uniform estimate (9a)
immediately leads to:

�→ → ≥f f ε ε εon , in the sense of Mosco, as , for any 0.ε ε
d

0 00

3 Main theorems

We begin by setting up the assumptions needed in our Main theorems. All Main theorems are discussed
under the following assumptions.
(A1) Let >ν 0 be a fixed constant. Let H[ ] [ ]∈η θ,ad ad

2 be a fixed pair of the admissible target profile.

(A2) For any ≥ε 0, let � [ )⟶ ∞f : 0,ε
N be the convex function, defined in (8).

(A3) Let � �⟶g : be a C1-function, which is Lipschitz continuous on � . Also, g has a nonnegative

primitive �( )≤ ∈G C0 2 , i.e., the derivative ′ =G G
η

d
d coincides with g on � . Moreover, g satisfies that:

( ) ( )= −∞ = ∞

↓−∞
↑∞

g ξ g ξliminf and limsup .
ξ ξ

(A4) Let � ( )⟶ ∞α : 0, and ( )⟶ ∞α Q: 0,0 be Lipschitz continuous functions, such that:

– �( )∈α C2 , with the first derivative ′ =α α
η

d
d and the second one ″ =α d α

ηd

2

2 ;
– ( )′ =α 0 0, ″ ≥α 0 on �, and ′αα is Lipschitz continuous on �;
– ≥ ∗α δ on �, and ≥ ∗α δ0 on Q , for some constant ( )∈∗δ 0, 1 .

(A5) Let K and K0 be the classes of constraints given in (1) and (5), respectively, and for any constraint

K[[ ]]= ∈K κ κ,0 1 , with the measurable obstacles [ ]⟶ −∞ ∞
ℓκ Q: , , ℓ = 0, 1, let U H[ ]⊂

K
ad

2 be a
class of admissible controls [ ]u v, , which is defined as

U H H[ ] [ ] ∣ [ ] [ ] ∣≔ { ∈ ∈ } = { ∈ ≤ ≤ }u v u K u v κ u κ Q˜, ˜ ˜ ˜, ˜ ˜ a.e. in .K
ad

2 2 0 1

Moreover, the following extra assumption will be adopted to verify the dependence of optimal controls with
respect to the constraint K[[ ]]= ∈K κ κ,0 1 .
(A6) The constraint K[[ ]]= ∈K κ κ,0 1 satisfies that:

( ∣ ∣ ( )) ∣ ∣ ( ) ( ) ∣ ∣ ∣( )∈ ⧹ ∞ ∞ ≔ { ∈ = ∞} ℓ =
ℓ ℓ − ℓ − ℓκ L Q κ κ t x Q κ t x, with , , , for 0, 1,1 1 1

and K{ } {[[ ]]}= ⊂
=

∞

=

∞K κ κ,n n n n n1
0 1

1 is a sequence of constraints such that:

( ) ( )( [ ]) ( )→ ∈ −∞ ∞ → ∞ ∈ ℓ =
ℓ ℓκ t x κ t x n t x Q, , , as , for a.e. , , and 0, 1,n

∣ ∣

∣ ∣ ( )

∫ − → → ∞ ℓ =

⧹ ∞

ℓ ℓ

ℓ −

κ κ x t nd d 0 as , for 0, 1,
Q κ

n
1

and moreover, ⋂ ≠ ∅
=

∞ Kn n1 , i.e., there exists H∈κ̄ satisfying

⎧
⎨
⎩

≤ ≤ = …

≤ ≤

κ κ κ Q n
κ κ κ Q

¯ a.e. in , for 1, 2, 3, ,
¯ a.e. in .

n n
0 1

0 1
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Remark 5. The assumption (A4) leads to the boundedness of the second derivative ″α of α. In fact, from the
Lipschitz continuity of α and ′αα , one can see that

�

�

�∣ ( )∣
⎛

⎝
⎜

( ) ∣ ∣
⎞

⎠
⎟

( )

( )″ ≤ ′ + ′ < ∞ ∈

∗ ∞

∞α η
δ η

αα α η1 d
d

, for any .
L

L
2

Remark 6. The assumption (A6) prescribes general settings of the constraint K[[ ]]= ∈K κ κ,0 1 and the
approaching sequence of constraints K{ } {[[ ]]}= ⊂

=

∞

=

∞K κ κ,n n n n n1
0 1

1 to K[[ ]]= ∈K κ κ,0 1 , as in Main Theorems 2
and 3, and as a special case, it contains the invariant (constant) setting { ∣ }= = …K K n 1, 2, 3,n . In partic-
ular, we note that the result of Main Theorem 2 (II-B) will be enhanced in Main theorem 3 (III-B), under an
additional assumption labeled by (23).

Now, the Main Theorems of this article are stated as follows.

Main Theorem 1. Under the assumptions (A1)–(A4), let us fix a constant ≥ε 0, an initial pair [ ] ∈η θ D,0 0 ,
and a forcing pair H[ ] [ ]∈u v, 2. Then, the following hold.
(I-A) The state system ( )S ε admits a unique solution H[ ] [ ]∈η θ, 2, in the sense that:

⎧
⎨
⎩

( ) ( ) ( ( )) ([ ] )

( ) ( ) ([ ] )

∈ ∩ ∩ ⊂

∈ ∩ ⊂

∞

∞

η W T H L T V L T H C T H
θ W T H L T V C T H

0, ; 0, ; 0, ; Ω 0, ; ,
0, ; 0, ; 0, ; ,

1,2 2 2

1,2
0

(11)

( ( ) ) ( ( ) ) ( ( ( )) ) ( ( ( )) ( ( )) )

( ( ) ) ( ) ( )

[ ]∂ + ∇ ∇ + + ′ ∇

= ∈ ∈ =

η t φ η t φ g η t φ α η t f θ t φ

M u t φ for any φ V a.e. t T subject to η η in H

, , , ,

, , , 0, , 0 ;
t H H H ε H

u H 0

N

(12)

and

( ( ) ( ) ( ) ) ( ( ) ( ( ) )) ( ( )) ( ( ))

( ( )) ( ) ( ( ) ( ) ) ( )

( )

[ ] ∫

∫

∂ − + ∇ ∇ − + ∇

≤ ∇ + − ∈ ∈

=

α t θ t θ t ψ ν θ t θ t ψ α η t f θ t x

α η t f ψ x M v t θ t ψ for any ψ V a.e. t T

subject to θ θ in H

, , d

d , , , 0, ,

0 .

t H H ε

ε v H

0
2

Ω

Ω

0

0

N

(13)

In particular, if ( )∈
∞η L Ω0 and ( )∈

∞u L Q , then ( )∈
∞η L Q .

(I-B) Let { } [ )⊂ ∞
=

∞ε 0,n n 1 , {[ ]} ⊂
=

∞η θ D,n n n0, 0, 1 , and H{[ ]} [ ]⊂
=

∞u v,n n n 1
2 be given sequences such that:

[ ] [ ]→ → ×ε ε η θ η θ weakly in V V, , , ,n n n0, 0, 0 0 0 (14)

H[ ] [ ] [ ]→ → ∞and M u M v M u M v weakly in as n, , , .u n v n u v
2 (15)

In addition, let [ ]η θ, be the unique solution to ( )S ε, for the initial pair [ ]η θ,0 0 and forcing pair [ ]u v, . Also,
for any �∈n , let [ ]η θ,n n be the unique solution to ( )S εn, for the initial pair [ ]η θ,n n0, 0, and forcing pair

[ ]u v,n n . Then, it holds that:

Y[ ] [ ] [ ([ ] )] [ ( )]

( ) ( )

→

− ∗ × → ∞
∞ ∞

η θ η θ in C T H in weakly in W T H
and weakly in L T V L T V as n
, , 0, ; , , 0, ; ,

0, ; 0, ; , .
n n

2 1,2 2

0
(16)

In particular, if:

� �

⎧

⎨
⎩

{ } ( ) { } ( )

∣ ∣ ∣ ∣( ) ( )

⊂ ⊂

∨ < ∞

=

∞ ∞

=

∞ ∞

∈ ∈

∞ ∞

η L u L Q
η u

Ω , ,
sup sup ,

n n n n

n
n L

n
n L Q

0, 1 1

0, Ω
(17)

then

( )→ ∗ → ∞
∞η η weakly in L Q as n– , .n (18)
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Remark 7. As a consequence of (16) and Remark 5, we further find a subsequence { } { }⊂
=

∞n ni i 1 , such that:

[ ] [ ][ ] [ ]→ ∇ ∇ → ∇ ∇η θ η θ η θ η θ Q, , , , , , in the pointwise sense a.e. in ,n n n ni i i i

( ) ( ) ( )( ) ( )″ ∇ → ″ ∇ − ∗
∞α η f θ α η f θ L T H Qweakly in 0, ; , and in the pointwise sense a.e. in ,n ε n εi ni i

and

( ) ( ) [ ( ) ( )] ( ) ( )

( ( )) ( ( )) ( )

[ ] ( ) ( )→ × ″ ∇

→ ″ ∇ ∈ → ∞

η t θ t η t θ t V V α η t f θ t

α η t f θ t H t T i

, , in , and

in , for a.e. 0, , as .
n n n ε n

ε

0i i i ni i

Main Theorem 2. Let us assume (A1)–(A5). Let us fix any constant ≥ε 0, any initial data [ ] ∈η θ D,0 0 , and
any constraint K[[ ]]= ∈K κ κ,0 1 . Then, the following two items hold.

(II-A) The problem ( )OP ε
K has at least one optimal control U[ ] ∈

∗ ∗u v, K
ad, so that:

U� �( ) ( ) ∣ [ ]= { ∈ }
∗ ∗u v u v u v, min , , .ε ε

K
ad

(II-B) Let us assume the extra assumption (A6), for the sequence of constraints K{ } {[[ ]]}= ⊂
=

∞

=

∞K κ κ,n n n n n1
0 1

1 ,
and let us take the sequences { } [ )⊂ ∞

=

∞ε 0,n n 1 and {[ ]} ⊂
=

∞η θ D,n n n0, 0, 1 as in (14). In addition, for any

�∈n , let U[ ] ∈
∗ ∗u v,n n

K
ad

n be the optimal control of ( )OP ε
K

n
n in the case when the initial pair of corre-

sponding state system ( )S εn is given by [ ]η θ,n n0, 0, . Then, there exist a subsequence { } { }⊂
=

∞n ni i 1 and a

pair of functions U[ ] ∈
∗∗ ∗∗u v, K

ad, such that:

H⎧

⎨
⎩

[ ] [ ]

[ ] ( )

[ ] → → ∞
∗ ∗ ∗∗ ∗∗

∗∗ ∗∗

M u M v M u M v weakly in as i

u v is an optimal control of

– , , , ,

– , OP .
u n v n u v

ε
K

2
i i

Main Theorem 3. In addition to the assumptions (A1)–(A5), let us suppose the restricted situation (r.s.0)
as in the Introduction, i.e.,

(r.s.0) >ε 0, [ ] ∈η θ D,0 0 0, and K K[[ ]] ( )
( )= ∈ = ∩

∞K κ κ, 2L Q0 1
0 .

Let U[ ] ∈
∗ ∗u v, K

ad be an optimal control of ( )OP ε
K, and let [ ]∗ ∗η θ,ε ε be the solution to ( )S ε, for the initial pair

[ ]η θ,0 0 and forcing pair [ ]∗ ∗u v, . Then, the following two items hold.

(III-A) (Necessary condition for ( )OP ε
K under >ε 0 and K∈K 0) For the optimal control U[ ] ∈

∗ ∗u v, K
ad of ( )OP ε

K,
it holds that

H( ( ))− − =
∗ ∗M u p inproj 0, ,u K ε (19a)

H( )+ =
∗ ∗M v z in0 .v ε (19b)

In this context, [ ]∗ ∗p z,ε ε is a unique solution to the following variational system:

( ) ( ( ) ) [ ( ) ( )]( ) ( ) ( ( ( )) ( ) )

([ ( ) ( )]( ) ( ) )

( ( )( ) ) ( )

[ ]−⟨∂ ⟩ + ∇ ∇ + ⟨ ″ ∇ ⟩ + ′

+ ′ ∇ ∇ ⋅∇

= − ∈ ∈

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

∗

p t φ p t φ α η f θ t p t φ g η t p t φ

α η f θ t z t φ
M η η t φ for any φ V and a.e. t T

, , , ,

,
, , , 0, ;

t ε V ε H ε ε ε ε V ε ε H

ε ε ε ε H

η ε Had

N

(20)

and

( )( ) ([ ( ) ( )]( ) ( ) ( ) ) ( ( )[ ( ) ( )]( ) )

( ( )( ) ) ( )

[ ] [ ]−⟨∂ ⟩ + ∇ ∇ ∇ + ∇ ∇ + ′ ∇ ∇ ∇

= − ∈ ∈

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

α z t ψ α η f θ t z t ν z t ψ p t α η f θ t ψ
M θ θ t ψ for any ψ V and a.e. t T

, , ,
, , , 0, ;

t ε V ε ε ε ε ε H ε ε ε ε H

θ ε H

0
2 2

ad 0

N N0 (21)

subject to the terminal condition:

[ ( ) ( )] [ ] [ ]=
∗ ∗p T z T in H, 0, 0 .ε ε

2 (22)

1258  Harbir Antil et al.



(III-B) Let { } [ )⊂ ∞
=

∞ε 0,n n 1 and {[ ]} ⊂
=

∞η θ D,n n n0, 0, 1 be sequences as in (14). Also, let K{ } {[[ ]]}= ⊂
=

∞

=

∞K κ κ,n n n n n1
0 1

1

be a sequence of constraints, fulfilling (A6). In addition, let us assume

K K

�

⎧

⎨

⎪

⎩
⎪

{ } {[[ ]]} ( )

{[ ]} ( ( ( )) )

{∣ ∣ ∣ ∣ ∣ ∣ }

( )

( ) ( ) ( )

= ⊂ = ∩

⊂ = ∩ ×

∨ ∨ < ∞

=

∞

=

∞

=

∞ ∞

∈

∞

∞ ∞ ∞

K κ κ
η θ D V L V

η κ κ

– , 2 ,
– , Ω ,

–sup .

n n n n n
L Q

n n n

n
n L n L Q n L Q

1
0 1

1 0

0, 0, 1 0 0

0, Ω
0 1

(23)

Then, the subsequence { } { }⊂
=

∞n ni i 1 and the limiting optimal control U[ ] ∈
∗∗ ∗∗u v, K

ad as in Main
Theorem 2 (II-B) fulfill that

( ) ( ) ( ) ([ ] )∈ ∈ ∩ ⊂
∗∗ ∞ ∗∗ ∗ ∞u L Q M v W T V L T V C T H, 0, ; 0, ; 0, ; ,v

1,2
0 0 (24a)

H⎧

⎨
⎩

( )

→

→ − ∗

→ ∞

∗ ∗∗

∗ ∗∗ ∞

M u M u in
u u weakly in L Q

as i
,

,
,

u n u

n

i

i

(24b)

and

V([ ] ) ( )→ → ∞
∗ ∗∗ ∗M v M v in C T H weakly in W T V as i0, ; , in , 0, ; , .v n v 0

1,2
0i (24c)

Remark 8. Note that the conclusion (24) of Main Theorem 3(III-B) is an enhanced version of that of Main
Theorem 2(II-B).

Remark 9. Let L H� ( )∈T be an isomorphism defined as

�( )( ) ( ) ( )≔ − ∈φ t φ T t H t Tin , for a.e. 0, .T

Also, let us fix >ε 0, and define a bounded linear operator H Z� [ ] ⟶
∗ :ε

2 as the restriction Y� ∣{[ ]}× ∗0,0 of
the linear isomorphism Y Z� �( ) [ ]= × ⟶

∗a b μ λ ω A H, , , , , : 2 , as in Proposition 5, in the case when:

�

�

�

�

�

⎧

⎨

⎪
⎪

⎩

⎪
⎪

[ ] [ ] ( ) ( )

[ ( ) ( )] ( )

[ ( )] ( )

[ ( ) ( )] [ ( )]

[ ( ) ( )] [ ( )]

= −∂ ×

= ″ ∇

= ′

= ′ ∇ ∇

= ∇ ∇

∞ ∞

∗ ∗ ∞

∗ ∞

∗ ∗ ∞

∗ ∗ ∞ ×

a b α α W Q L Q
μ α η f θ L T H
λ g η L Q
ω α η f θ L Q
A α η f θ L Q

, , in ,
in 0, ; ,

in ,
in ,
in .

T t

T ε ε ε

T ε

T ε ε ε
N

T ε ε ε
N N

0 0
1,

2

(25)

On this basis, let us define

L H Z� � � � ([ ] )≔ ∘ ∘
∗ ∗ in ; .ε T ε T

2 (26)

Then, since the embedding ( )⊂V L Ω0
4 and ( )∈

∞α W Q0
1, guarantee

V( ) ( )∂ = ∂ + ∂ ∈
∗ ∗α z α z z α z W T V˜ ˜ ˜ in , for any ˜ 0, ; ,t t t0 0 0 0

1,2
0 (27)

we can obtain the unique solution H[ ] [ ]∈
∗ ∗p z,ε ε

2 to the variational system (20)–(22) as follows:

Z�[ ] [ ( ) ( )]= − −
∗ ∗ ∗ ∗ ∗p z M η η M θ θ, , in .ε ε ε η ε θ εad ad

Main Theorem 4. Let us assume (A1)–(A5), and let us assume that the situation is not under (r.s.0), i.e., it is
under:

(r.s.0) either =ε 0, or [ ] ∈ ⧹η θ D D,0 0 0, or K K[[ ]]= ∈ ⧹K κ κ,0 1
0 is satisfied.

Also, let us define a Hilbert spaceW0 as follows:

W V( ) ∣ ( )≔ { ∈ ∩ = }ψ W T H ψ in H0, ; 0 0 .0 1,2
0
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Then, there exists an optimal control U[ ] ∈
∘ ∘u v, K

ad of the problem ( )OP ε
K , together with the solution [ ]∘ ∘η θ,

to the system ( )S ε, for the initial pair [ ]η θ,0 0 and forcing pair U[ ] ∈
∘ ∘u v, K

ad, and moreover, there exist pairs of

functions Y[ ] ∈
∘ ∘p z, , H[ ] [ ( )]∈ ×

∘ ∘ ∞ξ σ L Q, N , and a distribution W∈
∘ ∗ζ 0, such that:

H( ( ))− − =
∘ ∘M u p inproj 0, ,u K (28a)

H( )+ =
∘ ∘M v z in0 ,v (28b)

V( ) ([ ] )∈ ∩ ⊂
∘ ∗p W T V C T H0, ; 0, ; ,1,2 (29a)

( )∈ ∂ ∇
∘ ∘σ f θ a.e. in Q, ;ε (29b)

V

V V H

H

( ) ( ) ( ) ( ( ) ( ) )

( ( ) ) ( )

( [ ] )⟨−∂ ⟩ + ∇ ∇ + ⟨ ″ ∇ ⟩ + ′ + ′

= − ∈ =

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

∘ ∘

p φ p φ α η f θ p φ g η p α η ξ φ
M η η φ for any φ subject to p T in H
, , , ,

, , , 0 ;
t L T H ε

η

0, ;

ad

N2
(30)

and

W

H W

H

( ) ( ( ) )

( ( ) )

( [ ] )∂ + ⟨ ⟩ + ∇ + ′ ∇

= − ∈

∘ ∘ ∘ ∘ ∘ ∘

∘

α z ψ ζ ψ ν z α η σ p ψ
M θ θ ψ for any ψ
, , ,

, , .
t L T H

θ

0
2

0, ;

ad 0

N0 2
(31)

In particular, if >ε 0, i.e., the situation is under:
(r.s.1) >ε 0, while either [ ] ∈ ⧹η θ D D,0 0 0 or K K[[ ]]= ∈ ⧹K κ κ,0 1

0 is satisfied;

then:

H

W

⎧

⎨

⎩

( )

( )

( ( ) ( ) )

= ∇ ∇

= ⋅∇ = ∇ ∇ ⋅∇

= − ∇ ∇ ∇

∘ ∘

∘ ∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∗

σ f θ a.e. in Q
ξ σ z f θ z in
ζ α η f θ z in

, ,
,

div .

ε

ε

ε
2

0

(32)

Remark 10. When =ε 0, the inclusion (29b) is equivalent to:

( )∈ ∇
∘ ∘σ θ QSgn , a.e. in .N

In the meantime, when >ε 0, (29)–(32) imply that the pair of functions [ ]∘ ∘p z, solves the following system:

⎧

⎨
⎩

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ( ) ( ) ( ) ( )) ( )

−∂ − + ″ ∇ + ′ + ′ ∇ ∇ ⋅∇ = −

−∂ − ∇ ∇ ∇ + ∇ + ′ ∇ ∇ = −

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

p p α η f θ p g η p α η f θ z M η η
α z α η f θ z ν z p α η f θ M θ θ

Δ ,
div ,

t ε ε η

t ε ε θ

ad

0
2 2

ad

in the sense of distribution on Q. Note that the above system corresponds to the distributional form of the
variational system (20)–(22), as in Main Theorem 3(III-A).

Remark 11. In the light of (19a), (28a), and Remark 3 (Fact 4), we will observe that

⎧

⎨
⎩

( ) [ ( )]( ) ( ( ( )))( )

( ) [ ( )]( ) ( ( ( )))( )
( )

= − = ∨ ∧ −

= − = ∨ ∧ −

∈

∗ ∗ ∗

∘ ∘ ∘

M u t x M p t x M κ κ p t x
M u t x M p t x M κ κ p t x

t x Q
, proj , , ,
, proj , , ,

for a.e. , .u u K ε u ε

u u K u

0 1

0 1

4 Proof of Main Theorem 1

In this section, we give the proof of the first Main Theorem 1. Before the proof, we refer to the reformulation
method as in [22], and consider to reduce the state system ( )S ε to an evolution equation in the Hilbert
space [ ]H 2.
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Let us fix any ≥ε 0. Besides, for any ≥R 0, let us define a proper functional [ ] [ ]⟶ ∞HΦ : 0,ε
R 2 , by

setting:

[ ] [ ] ( ) ( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

∣ ∣ ∣ ∣ ⎛
⎝

( ) ( )⎞
⎠

[ ]

∫ ∫ ∫

= ∈ ↦ =

≔

∇ + + ∇ +

∈ ×

∞

w η θ H w η θ

η x R η x νf θ
ν

α η x

η θ V V

Φ : , Φ Φ ,

1
2

d
2

d 1
2

1 d ,

if , ,

, otherwise.

ε
R

ε
R

ε
R

ε

2

Ω

2

Ω

2

Ω

2

0

(33)

Note that the assumptions (A2) and (A4) guarantee the lower semi-continuity and convexity of Φε
R on [ ]H 2.

Remark 12. As consequences of standard variational methods, we easily check the following facts.

(Fact 7) For the operator [ ]∂ ⟶HΦ : 2η ε
R H2 ,

( ) [ ] ∣ ( ) ( ){ }∂ = ∈ ∈ ∇ ⋅ =D η θ D η H η n HΦ ˜, ˜ ˜ Ω subject to 0 in Γ ,η ε
R 2

Γ
1
2

independent of ≥R 0, and ∂ Φη ε
R is a single-valued operator such that:

( ) ( ) ( ) ( ) ( ) ( )∂ = ∂ = − + + ′ ∇ + ′w η θ η Rη α η f θ
ν

α η α η HΦ Φ , Δ 1 in ,η ε
R

η ε ε 2

for all [ ] ( )= ∈ ∂w η θ D, Φη ε
R , and ≥R 0.

(Fact 8) [ ]∂ ⟶HΦ : 2θ ε
R H2 is independent of ≥R 0, and ( )∈ ∂θ D Φθ ε

R , and ( ) ( )∈ ∂ = ∂
∗θ w η θΦ Φ ,θ ε

R
θ ε

R ,
iff. ∈θ V0, and

( ) ( ) ( ) ( ) ( ) ( ( ))[ ]∫ ∫− ≥ ∇ − ∇ + ∇ ∇ − ∈ ≥
∗θ θ ψ α η f θ x α η f ψ x ν θ θ ψ ψ V R, d d , , for all , and 0.H ε ε H

Ω Ω

2
0N

In addition, let us define time-dependent operators L�( ) ([ ] )∈t H 2 , for [ ]∈t T0, , nonlinear operators
	 [ ] [ ]⟶H H:R 2 2, for ≥R 0, by setting:

� �( ) [ ] [ ] ( ) [ ( ) ] [ ] [ ]= ∈ ↦ ≔ ∈ ∈t w η θ H t w η α t θ H t T: , , , for 0, ,2
0

2 (34)

	 	[ ] [ ] ( ) [ ( ) ( ) ( ) ] [ ]= ∈ ↦ ≔ − − ′ ∈ ≥
−w η θ H w g η Rη ν α η α η H R: , , 0 , for 0,R R2 2 2 (35)

respectively. Then, based on (Fact 7) and (Fact 8), it is verified that the state system ( )S ε is equivalent to the
following Cauchy problem.

f� 	⎧

⎨
⎩

( ) ( ) [ ]( ( )) ( ( )) ( ) [ ] ( )

( ) [ ]

′ + ∂ × ∂ + ∋ ∈

=

t w t w t w t t H t T

w w H

Φ Φ in , a.e. 0, ,

0 in .
η ε

R
θ ε

R R 2

0
2

In the context, “′” is the time derivative, and

Hf

⎧

⎨
⎩

[ ] [ ]

[ ] [ ]

≔ ∈ =

≔ ∈

w η θ D w η θ
M u M v

– , is the initial data of , ,
– , is the forcing term of the Cauchy problem .u v

0 0 0
2 (36)

Now, before the proof of Main Theorem 1, we prepare the following Key Lemma and its Corollary.

Key-Lemma 1. Let us assume (A1)–(A4). Then, there exists a positive constant >R 00 such that:

[ ] [ ] [ ]∂ = ∂ × ∂ ×in H HΦ Φ Φ .ε
R

η ε
R

θ ε
R 2 20 0 0

Proof. We set:

�∣ ∣ ( )≔ + ∞R
ν

α1 2 ,L0 2
2 (37)

and prove that R0 is the required constant.

Constrained optimization  1261



In the light of (6), it is immediately verified that

[ ] [ ] [ ]∂ ⊂ ∂ × ∂ ×H HΦ Φ Φ in .ε
R

η ε
R

θ ε
R 2 20 0 0

Hence, having in mind the maximality of the monotone graph ∂Φε
R0 in [ ] [ ]×H H2 2, we can reduce our task to

show the monotonicity of [ ]∂ × ∂Φ Φη ε
R

θ ε
R0 0 in [ ] [ ]×H H2 2. Let us assume

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

∈ ∂ × ∂ ∈ ∂ × ∂ ×

= ∈ = ∈

= ∈ = ∈

∗ ∗

∗ ∗ ∗

∗ ∗
∗

w w w w H H
w η θ H w η θ H

w η θ H w η θ H

, Φ Φ and ˜ , ˜ Φ Φ in ,
with , , , ,

˜ ˜, ˜ , and ˜ ˜ , ˜ , respectively .

η ε
R

θ ε
R

η ε
R

θ ε
R 2 2

2 2

2 2

0 0 0 0

Then, by using (9a), (Fact 7), (Fact 8), (A4), and Young’s inequality, we compute that:

( )[ ]− − = + +
∗ ∗w w w w I I I˜ , ˜ ,H 1 2 32 (38a)

with

∣ ( )∣ ∣ ∣ ∣ ( )∣
[ ] [ ]

≔ ∇ − + − + ∇ −I η η R η η ν θ θ˜ ˜ ˜ ,H H H1 2 0
2 2 2

N N (38b)

�

⎜ ⎟

( ( ) ( ) ( ) ( ) ) ( ( ) ( ) ( ) ( ) )

( )( ( ) ( ))( ) ( )( ( ) ( ))( )

⎛

⎝
[ ]( ) [ ]( )⎞

⎠
( )

∣ ∣ ∣ ∣ ∣ ( )∣( ) [ ]

∫ ∫

∫

≔ ′ ∇ − ′ ∇ − + ′ − ′ −

= ∇ ′ − ′ − + ′ ∇ − ∇ −

+ − −

≥ − ′ − ∇ −∞

I α η f θ α η f θ η η
ν

α η α η α η α η η η

f θ α η α η η η x α η f θ f θ η η x

ν η
α η

η
α η η η x

α η η θ θ

˜ ˜ , ˜ 1 ˜ ˜ , ˜

˜ ˜ d ˜ ˜ ˜ d

1
2

d
d

d
d

˜ ˜ d

˜ ˜

ε ε H H

ε ε ε

L H H

2 2

Ω Ω

2
Ω

2 2

N

(38c)

�∣ ∣
∣ ∣ ∣ ( )∣

( )

[ ]
≥ −

′

− − ∇ −

∞α
ν

η η ν θ θ˜
4

˜ ,L
H H

2

2
2

2
2

N (38d)

and

�

�

( ( ) ( ))( ( ) ( ))

∣ ∣ ∣ ∣ ∣ ( )∣

∣ ∣
∣ ∣ ∣ ( )∣

( ) [ ]

( )

[ ]

∫≔ − ∇ − ∇

≥ − ′ − ∇ −

≥ −

′

− − ∇ −

∞

∞

I α η α η f θ f θ x

α η η θ θ
α

ν
η η ν θ θ

˜ ˜ d

˜ ˜

˜
4

˜ .

ε ε

L H H

L
H H

3

Ω

2

2
2

2
2

N

N

(38e)

Due to (37), the inequalities in (38) lead to

( ) ∣ ∣ ∣ ∣[ ]− − ≥ − + − ≥
∗ ∗w w w w η η ν θ θ˜ , ˜ ˜

2
˜ 0,H V V

2
2

22
0

(39)

which implies the (strict) monotonicity of the operator [ ]∂ × ∂Φ Φη ε
R

θ ε
R0 0 in [ ] [ ]×H H2 2. □

Corollary 1. Under the notations and assumptions as in the previous Key-Lemma 1, it further holds that

[ ] [ ] [ ]∂ = ∂ × ∂ × ≥in H H for any RΦ Φ Φ , 0.ε
R

η ε
R

θ ε
R 2 2

Proof. Let us take arbitrary two constants ≤ < ∞R R0 , ˜ . Then, from (Fact 7), [23, Theorem 2.10], and
[24, Corollary 2.11], we immediately have

( ) ( )∂ = ∂D D VΦ Φ in ,η ε
R

η ε
R̃ (40a)
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and for any [ ] ( ) ( )= ∈ ∂ = ∂w η θ D D, Φ Φη ε
R

η ε
R̃ ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∂ = − + + − + ′ ∇ + ′ = ∂ + −
−w η Rη R R η α η f θ ν α η α η w R R η HΦ Δ ˜ ˜ Φ ˜ in .η ε

R
ε η ε

R2 ˜ (40b)

Also, as a straightforward consequence of (Fact 8), it is seen that

∂ = ∂ ×H HΦ Φ in .θ ε
R

θ ε
R̃ (41)

In the meantime, invoking (33), [23, Theorem 2.10], and [24, Corollary 2.11], we will infer that

( ) ( )∂ = ∂D D DΦ Φ in ,ε
R

ε
R̃ (42a)

and

( ) ( ) ( )[ ] [ ]∂ = ∂ + −w w R R η HΦ Φ ˜ , 0 in .ε
R

ε
R̃ 2 (42b)

Now, let us take the constant >R 00 obtained in Key-Lemma 1. Then, owing to (40)–(42), and Key-Lemma 1,
we can compute that

[ ]( ) [ ]( ) ( )[ ]

( ) ( )[ ] ( ) [ ]

( ) ( ) ( )

∂ × ∂ = ∂ × ∂ + −

= ∂ + − = ∂

∈ ∂ × ∂ = ∂ ∩ ∂

w w R R η
w R R η w H

w D D D

Φ Φ Φ Φ , 0
Φ , 0 Φ in ,

for any Φ Φ Φ Φ .

η ε
R

θ ε
R

η ε
R

θ ε
R

ε
R

ε
R

η ε
R

θ ε
R

η ε
R

θ ε
R

0

0
2

0 0

0 (43)

In the light of (6), the above (43) is sufficient to conclude this Corollary. □

Lemma 1. Let us assume (A1)–(A4), and fix functions ( )∈
∞θ L T V¯ 0, ; 0 , ∈η V0 , and H∈u . Then, the initial-

boundary value problem:

⎧

⎨

⎩
⎪

( ) ( ) ( )

( ) ( )

∂ − + + ′ ∇ =

∇ ⋅ =

= ∈

η η g η α η f θ M u a.e. in Q
η n on

η x η x x

Δ ¯ ,
0 Σ,

0, , Ω;

t ε u

Γ

0

(44)

admits a unique solution ( ) ( ) ( ( ))∈ ∩ ∩
∞η W T H L T V L T H0, ; 0, ; 0, ; Ω1,2 2 2 , and in particular, if:

( ) ( )∈ ∈
∞ ∞η L and u L QΩ , ,0 (45)

then it holds that ( )∈
∞η L Q .

Proof. Let us fix ( )∈
∞θ L T V¯ 0, ; 0 , ∈η V0 , and H∈u . Then, referring to the general theories of nonlinear

evolution equations (e.g., [19,23,24]), we immediately find a solution ( ) ( )∈ ∩ ∩
∞η W T H L T V0, ; 0, ;1,2

( ( ))L T H0, ; Ω2 2 , in the variational sense:

( ( ) ) ( ( ) ) ( ( ( )) ( ( )) ( ( )) )

( ( ) ) ( )

[ ]∂ + ∇ ∇ + + ′ ∇

= ∈ ∈

η t φ η t φ g η t α η t f θ t φ
M u t φ φ V t T
, , ¯ ,

, , for any , a.e. 0, .
t H H ε H

u H

N
(46)

Next, we assume ( )∈ ∩
∞η V L Ω0 and ( )∈

∞u L Q and verify the ∞L -regularity of the solution η as in (45).
To this end, we invoke the assumption (A3) and take a large constant >L 00 , such that

∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣( ) ( ) ( )≥ ≥ − ≤ −∞ ∞ ∞L η g L M u g L M u, , and .L u L Q u L Q0 0 Ω 0 0 (47)

On this basis, we set our remaining task to show that

∣ ∣ ( ) ≤ − ≤ ≤∞η L L η L Q, i.e. a.e. in .L Q 0 0 0 (48)

Due to (47) and (A4), the constants L0 and −L0 fulfill that

( ) ( ) ( ) ( ) ( )∂ − + + ′ ∇ ≥ ∈L L g L α L f θ M u t x t x QΔ ¯ , , a.e. , ,t ε u0 0 0 0 (49a)
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and

( ) ( ) ( ) ( ) ( ) ( ) ( )∂ − − − + − + ′ − ∇ ≤ ∈L L g L α L f θ M u t x t x QΔ ¯ , , a.e. , ,t ε u0 0 0 0 (49b)

respectively, together with the initial values L0 and −L0, and the zero-Neumann boundary conditions.
Now, let us take the difference between partial differential equations in (44) and (49a) (resp. (49b) and

(44)), and multiply both the sides by [ ]−
+η L0 (resp. [ ]− −

+L η0 ). Then, from (A2)–(A4), it is inferred that:

�(∣[ ] ( )∣ ∣[ ] ( )∣ ) ∣ ∣ (∣[ ] ( )∣ ∣[ ] ( )∣ ) ( )( )− + − − ≤ ′ − + − − ∈
+ + + +

∞

t
η L t L η t g η L t L η t t T1

2
d
d

, a.e. 0, .H H L H H0
2

0
2

0
2

0
2

Applying Gronwall’s lemma, and invoking (47), we obtain

∣[ ] ( )∣ ∣[ ] ( )∣ ( )− + − − ≤ ∈
+ +η L t L η t t T0, a.e. 0, ,H H0

2
0

2

which implies the validity of (48). □

Remark 13. Let ≥ε 0 be arbitrary constant. Then, as a consequence of (Fact 7), (Fact 8), Key-Lemma 1,
Corollary 1, and Lemma 1, we can say that the state system ( )S ε is equivalent to the following Cauchy
problem of evolution equation, denoted by ( )E ε.

f� 	
( ) ⎧

⎨
⎩

( ) ( ) ( ( )) ( ( )) ( ) [ ] ( )

( ) [ ]

′ + ∂ + ∋ ∈

=

E t w t w t w t t H t T
w w H

: Φ in , a.e. 0, ,
0 in ,

ε
ε
R R 2

0
2

for any ≥R 0.

Now, we are ready to prove the Main Theorem 1.

Proof of Main Theorem 1 (I-A). Let us fix any >R 0. Then, under the setting (33)–(36), we immediately
check that

(ev.0) for any [ ]∈t T0, , L�( ) ([ ] )∈t H 2 is positive and self-adjoint, and

�( ( ) ) ∣ ∣ [ ][ ] [ ]
≥ ∈∗t w w δ w w H, , for any ,H H

2 22 2

with the constant ( )∈∗δ 0, 1 as in (A4);
(ev.1) L� ( ([ ] ))∈

∞W T H0, ;1, 2 , and

L L� �{ ∣ ( )∣ ∣ ( )∣ } ∣ ∣
( )

([ ] ) ([ ] ) ( ){ }≔ ′ ≤ + < ∞
∗

∈

∞A t t αesssup max , 1 ;
t T

H H W Q
0,

02 2 1,

(ev.2) 	 [ ] [ ]⟶H H:R 2 2 is a Lipschitz continuous operator with a Lipschitz constant:

�

�

	( ) ∣ ∣ ( )( )

( )

≔ + ′ + ′
−

∞

∞

R g ν
η

ααLip d
d

,L
L

2

and 	 R has a C1-potential functional

  �	 	 ⎜ ⎟[ ] [ ] ( ) ⎛

⎝
( )

( ) ⎞

⎠
∫= ∈ ↦ ≔ − − ∈w η θ H w G η Rη α η

ν
x: ,

2 2
d ;R R2

Ω

2 2

2

(ev.3) ≥Φ 0ε
R on [ ]H 2, and the sublevel set { [ ] ∣ ( ) }∈ ≤w H w r˜ Φ ˜ε

R2 is contained in a compact set ( )K rν
R in

[ ]H 2, defined as

( ) ⎧
⎨⎩

[ ] ∣ ∣ ∣ ∣ ∣ ⎫
⎬⎭

≔ = ∈ + ≤

∧ ∧

K r w η θ D η θ r
R ν

˜ ˜, ˜ ˜ ˜ 2
1

,ν
R

V V
2 2

20

for any ≥r 0.
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On account of (33)–(36) and (ev.0)–(ev.3), we can apply Proposition 1, as the case when:

L

Hf f

� �

	 	

[ ] ( ([ ] ))

[ ] [ ] [ ]

= =

= = =

∞X H W T H
H H

, in 0, ; ,
on , Ψ Φ on , and in ,R

ε
R

2
0

1, 2

0
2

0
2

0
2

and we can find a solution H[ ] [ ]= ∈w η θ, 2 to the Cauchy problem ( )E ε. In the light of Proposition 1 and
Remark 13, finding this [ ]=w η θ, directly leads to the existence and uniqueness of solution to the state
system ( )S ε.

Moreover, if ( )∈
∞η L Ω0 and ( )∈

∞u L Q , then the regularity ( )∈
∞η L Q will be immediately seen from

Lemma 1. □

Proof of Main Theorem 1 (I-B). Under the assumptions and notations as in Main Theorem 1, we first fix a
constant >R 0, and invoke Remark 13 to confirm that the solution H[ ] [ ]≔ ∈w η θ, 2 to ( )S ε coincides with
the solution to the Cauchy problem ( )E ε, and as well as, the solutions H[ ] [ ]≔ ∈w η θ,n n n

2 to ( )S εn,
= …n 1, 2, 3, , coincide with the solutions to the Cauchy problems ( )E εn for the initial data ≔w n0,

[ ] ∈η θ D,n n0, 0, , and forcing terms Hf [ ] [ ]= ∈ = …M u M v n, , 1, 2, 3,n u n v n
2 , respectively.

On this basis, we next verify

(ev.4) ≥Φ 0ε
R

n
on [ ]H , for = …n 1, 2, 3, , and the union [ ] ∣ ( ){ }⋃ ∈ ≤

=

∞ w H w r˜ Φ ˜n ε
R

1
2

n
of sublevel sets is

contained in the compact set ( ) [ ]⊂K r Hν
R 2, as in (ev.3), for any >r 0;

(ev.5) →Φ Φε
R

ε
R

n
on [ ]H 2, in the sense of Mosco, as → ∞n , more precisely, the uniform estimate (9a)

will lead to the corresponding lower bound condition and optimality condition, in the Mosco-convergence
of { } =

∞Φε
R

n 1n
;

(ev.6) � ( ) < ∞∈ wsup Φn ε
R

n0,n
, and →w wn0, 0 in [ ]H 2, as → ∞n , more precisely, it follows from (14), (A1),

and (A4) that

� �

�( ) ⎛
⎝

∣ ∣ ( ) ∣ ∣ ∣ ( )∣ ⎞
⎠

( )≤
+

+ + + < ∞

∈ ∈

w R η ν θ
ν

α ηsup Φ sup 1
2

Ω 1 ,
n

ε
R

n
n

n V
N

n V n H0, 0,
2 2

0,
2

2 0,
2

n 0

and the weak convergence of { }
=

∞w n n0, 1 in = ×D V V0 and the compactness of embedding [ ]⊂D H 2

imply the strong convergence of { }
=

∞w n n0, 1 in [ ]H 2.

On account of (14) and (ev.0)–(ev.6), we can apply Proposition 2, to show that:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

([ ] [ ] ) ( [ ([ ] )] )

( [ ] ) ( [ ( )] )

( ( )) ( ( ))∫ ∫

→

→

→ ∞

w w C T H C T H
W T H W T H

w t t w t t
n

in 0, ; i.e., in 0, ; ,
weakly in 0, ; i.e., weakly in 0, ; ,

Φ d Φ d ,
as ,

n

T

ε
R

n

T

ε
R

2 2

1,2 2 1,2 2

0 0
n

(50a)

� � �

∣ ∣ ∣ ∣ ∣ ( )∣( ) ( ) ( ) ( )≤ ≤

∧ ∧

< ∞

∈

×

∈

×

∈

∞ ∞ ∞ ∞w w
ν R

wsup 4 sup 8
1

sup Φ ,
n

n L T V L T V
n

n L T V V
n

ε
R

n L T0, ; 0, ;
2

0, ;
2

2 0,n0 0

and hence,

( ) ( )→ − ∗ × → ∞
∞ ∞w w L T V L T V nweakly in 0, ; 0, ; , as .n 0 (50b)

Furthermore, from (8), (9a), (50), and the assumptions (A2) and (A4), one can observe that

H H H H

V V H H

⎧

⎨

⎪

⎩
⎪

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ( )∣ ∣ ( )∣

[ ] [ ]
∇ ≥ ∇ ≥

≥ =

→∞ →∞

→∞ →∞

η η R η R η

ν θ ν θ
ν

α η
ν

α η

lim 1
2

1
2

, lim
2 2

,

lim
2 2

, lim 1
2

1
2

,

n
n

n
n

n
n

n n

2 2 2 2

2
2

2
2

2
2

2
2

N N

0 0

(51a)
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and

H V
�

�

∣ ( ) ( )∣ ( ( )) ( ( ))

( ( )) ( ( )) ∣ ( )

( )∣ ( ( ) ∣ ∣ )

( ( )) ( ( )) ∣ ( )∣ ∣ ∣

( ( )) ( ( )) ∣ ( ) ( )∣

( )

( )

( )

∫∫

∫∫

∫∫

∫∫

∇ = ∇

≥ ∇ −

− ⋅ +

≥ ∇ − ⋅ −

≥ ∇ = ∇

→∞ →∞

→∞ →∞

∈

+

→∞ →∞

α η f θ α η t f θ t x t

α η t f θ t x t α η

α η Q ε θ

α η t f θ t x t α η ε ε

α η t f θ t x t α η f θ

lim lim d d

lim d d lim

sup

lim d d lim

d d .

n
n ε n L Q

n

T

n ε n

n

T

ε n
n n

n

N
n n

n

T

ε n L Q
n

n

T

ε ε L Q

0 Ω

0 Ω
1

0 Ω

0 Ω

n n

n

1

0

1

1

(51b)

Here, from (33), it is seen that

Y

H H V H

�

( ( )) ( ( ) ( ))

∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) ( )∣ ∣ ( )∣

( ) [ ]

[ ] ( )

∫ ∫=

= ∇ + + + ∇ +

+ ≥ = ∈
+

w t t η t θ t t

η R η ν θ α η f θ
ν

α η

ν ε Q ε w η θ

Φ ˜ d Φ ˜ , ˜ d

1
2

˜
2

˜
2

˜ ˜ ˜ 1
2

˜

˜
2

, for all ˜ 0 and ˜ ˜, ˜ .

T

ε
R

T

ε
R

ε L Q

N

0

˜

0

˜

2 2
2

2
˜ 2

2

2 2
1

N 0
1

(52)

Taking into account (50a), (51), and (52), we deduce that

H H V H H V

Y Y

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣[ ]∣ ∣[ ]∣

[ ] [ ]
∇ + + → ∇ + +

→ → ∞

η R η ν θ η R η ν θ

η θ η θ n

,

and hence, , , , as .
n n n

n n

2 2 2 2 2 2 2 2
N N0 0 (53)

Since the norm of Hilbert space Y V V≔ × 0 is uniformly convex, the convergences (50b) and (53)
imply the strong convergence:

Y→ → ∞w w nin , as ,n (54a)

and furthermore, it follows from (9a) and (54a) that

H H H

V �

∣ ( ) ( )∣ ∣ ( ) ( )∣ ∣ ( ) ( )∣

∣ ∣ ( ) ∣ ∣

∇ − ∇ ≤ ∇ − ∇ + ∇ − ∇

≤ − + − → → ∞
+

f θ f θ f θ f θ f θ f θ

θ θ Q ε ε n0, as .
ε n ε ε n ε ε ε

n
N

n
1

n n n n

0

(54b)

The convergences (50) and (54) are sufficient to obtain the convergence (16) as in Main Theorem 1 (I-B).
Finally, let us assume (17) to verify (18). In the light of (A3), we can take a large constant >∗L 0, indepen-
dent of n, such that

� � �

∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣( ) ( ) ( )≥ ≥ − ≤ −∗

∈

∗

∈

∗

∈

∞ ∞ ∞L η g L M u g L M usup , sup , and sup .
n

n L u
n

n L Q u
n

n L Q0, Ω

Then, just as in the derivation of (48), we can show that

�

∣ ∣ ( ) ≤ − ≤ ≤ = …

∈

∗ ∗ ∗
∞η L L η L Q nsup , i.e. a.e. in , 1, 2, 3, .

n
n L Q n (55)

The convergence (16), and the ∞L -weak-∗ compactness brought by (55) lead to the convergence (18). □
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5 Proof of Main Theorem 2

In this section, we prove the second Main Theorem 2. Before the proof, we prepare the following lemma.

Lemma 2. Let us assume (A5) and (A6), and let us fix the function ∈ ⋂
=

∞κ K¯ n n1 as in (A6). Besides, let us take
any function ∈u K , and define a sequence H{ } ⊂

=

∞un n 1 , by setting:

H( ) ( )≔ = ∨ ∧ ∈ = …u u κ κ u K in for nproj , 1, 2, 3, .n K n n n
0 1

n

Then, it holds that:

H→ → ∞u u in as n .n (56)

Proof. As is easily seen,

( )

⎧

⎨

⎪

⎩
⎪

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )=

>

≤ ≤

<

∈ = …u t x
κ t x u t x κ t x
u t x κ t x u t x κ t x
κ t x u t x κ t x

t x Q n,
, , if , , ,

, , if , , , ,
, , if , , ,

a.e. , , 1, 2, 3, ,n

n n

n n

n n

1 1

0 1

0 0

(57)

so that:

∣ ∣− → → ∞u u Q n0, in the pointwise sense, a.e. in , as .n (58)

Also, owing to the presence of ∈ ⋂
=

∞κ K¯ n n1 , as in (A6),

[ ] [ ]

∣ ∣ [ ] [ ] ∣ ∣

− − ≤ − ≤ −

− ≤ − + − = −

− +

+ −

u κ u κ u κ Q
u κ u κ u κ u κ Q

¯ ¯ ¯ , a.e. in ,
i.e. ¯ ¯ ¯ ¯ , a.e. in ,

n

n

which leads to:

H∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣− ≤ − + − ≤ − − ∈u u u κ u κ u κ Q u κ¯ ¯ 2 ¯ a.e. in , with ¯ .n n (59)

The convergence (56) will be deduced as a straightforward consequence of (58), (59), and the dominated
convergence theorem [25, Theorem 10 on page 36]. □

Now, let [ ] ∈η θ D,0 0 be the initial pair, and any constraint K[[ ]]= ∈K κ κ,0 1 . Also, let us fix arbitrary

forcing pair U[ ] ∈u v¯, ¯ K
ad, and let us invoke the definition of the cost function �ε, defined in (2), to estimate

that:

U� �( ) ( )≤ ≔ ≤ ≔ < ∞ ≥J J u v ε0 inf ¯, ¯ , for all 0.ε ε
K

ε εad (60)

Also, for any ≥ε 0, we denote by [ ]η θ¯, ¯ the solution to ( )S ε, for the initial pair [ ]η θ,0 0 and forcing pair [ ]u v¯, ¯ .
Based on these, the Main Theorem 2 is proved as follows.

Proof of Main Theorem 2 (II-A). Let us fix any ≥ε 0. Then, from the estimate (60), we immediately find a

sequence of forcing pairs U{[ ]} ⊂
=

∞u v,n n n
K

1 ad, such that

� ( )↓ → ∞u v J n, , as ,ε n n ε (61a)

and

H
�

�∣[ ]∣ ( )
[ ]

≤ < ∞

∈

M u M v u v1
2

sup , ¯, ¯ .
n

u n v n ε2
2 (61b)

Also, the estimate (61b) and the assumption (A5) enable us to take a subsequence of U{[ ]} ⊂
=

∞u v,n n n
K

1 ad (not
relabeled), and to find a pair of functions U[ ] ∈

∗ ∗u v, K
ad, such that

H[ ] [ ] [ ]→ → ∞
∗ ∗M u M v M u M v n, , weakly in , as ,u n v n u v

2 (62)
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Let H[ ] [ ]∈
∗ ∗η θ, 2 be the solution to ( )S ε, for the initial pair [ ]η θ,0 0 and forcing pair [ ]∗ ∗u v, . Also, for any

�∈n , let H[ ] [ ]∈η θ,n n
2 be the solution to ( )S εn, for the forcing pair [ ]u v,n n . Then, having in mind (14), (62),

and the initial condition

[ ( ) ( )] [ ( ) ( )] [ ] [ ]= = = …
∗ ∗η θ η θ η θ H n0 , 0 0 , 0 , in , for 1, 2, 3, ,n n 0 0

2

we can apply Main Theorem 1(I-B), to see that

[ ] [ ] [ ([ ] )]→ → ∞
∗ ∗η θ η θ C T H n, , in 0, ; , as .n n

2 (63)

On account of (61a), (62), and (63), it is computed that:

H H

H H

�

� �

( ) ∣[ ( ) ( )]∣ ∣[ ]∣

∣[ ( ) ( )]∣ ∣[ ]∣

( ) ( ( ))

[ ] [ ]

[ ] [ ]

= − − +

≤ − − +

= = ≤

∗ ∗ ∗ ∗ ∗ ∗

→∞ →∞

→∞

∗ ∗

u v M η η M θ θ M u M v

M η η M θ θ M u M v

u v J u v

, 1
2

, 1
2

,

1
2

lim , 1
2

lim ,

lim , , ,

ε η θ u v

n
η n θ n

n
u n v n

n
ε n n ε ε

ad ad 2 2

ad ad 2 2

2 2

2 2

and this leads to

U
� �( ) ( )

[ ]
=

∗ ∗

∈

u v u v, min , .ε
u v

ε
, K

ad

Thus, we conclude the item (II-A). □

Proof of Main Theorem 2 (II-B). Let us take ≥ε 0, { } [ )⊂ ∞
=

∞ε 0,n n 1 , and {[ ]} ⊂
=

∞η θ D,n n n0, 0, 1 as in (14).
Besides, for the pair of functions 
[ ] ∈u v¯, ¯ K

ad as in (60), let us define

( ) ( )≔ = ∨ ∧ ∈ = …u u κ κ u K n¯ proj ¯ ¯ , 1, 2, 3, .n K n n n
0 1

n

Then, from Lemma 2, it immediately follows that

H→ → ∞u u n¯ ¯ in , as .n (64)

Here, let H[ ] [ ]∈η θ¯, ¯ 2 be the solution to ( )S ε, for the initial pair [ ]η θ,0 0 and forcing pair [ ]u v¯, ¯ , and let
H[ ] [ ]∈η θ¯ , ¯

n n
2, = …n 1, 2, 3, , be solutions to ( )S εn, for the initial pairs [ ]η θ,n n0, 0, , and forcing pairs [ ]u v¯ , ¯n ,

= …n 1, 2, 3, , respectively. Then, invoking (14) and (64), we can apply Main Theorem 1 (I-B) to these
solutions, and we can see that

[ ] [ ] [ ([ ] )]→η θ η θ C T H¯ , ¯ ¯, ¯ in 0, ; ,n n
2 (65a)

and in particular,

[ ] [ ( ) ( )] [ ] [ ( ) ( )] [ ]= → = → ∞η θ η θ η θ η θ H n, ¯ 0 , ¯ 0 , ¯ 0 , ¯ 0 in , as .n n n n0, 0, 0 0
2 (65b)

The convergences (64) and (65) enable us to estimate

�

� ( )≔ < ∞

∈

J u vsup ¯ , ¯ .
n

ε nsup n (66)

Next, for any �∈n , let us denote by H[ ] [ ]∈
∗ ∗η θ,n n

2 the solution to ( )S εn, for the initial pair [ ]η θ,n n0, 0, ,

and forcing pair [ ]∗ ∗u v,n n of the optimal control of ( )OP ε
K

n
n. Then, in the light of (60) and (66), it is observed

that

H
∣[ ]∣

[ ]
≤ ≤ ≤ < ∞ = …

∗ ∗M u M v J J n0 1
2

, , 1, 2, 3, .u n v n ε
2 supn2

Therefore, one can find a subsequence { } { }⊂
=

∞n ni i 1 , together with a limiting pair of functions [ ] ∈
∗∗ ∗∗u v,

H[ ]2, such that

H

H

[ ] [ ]

[ ] [ ]

[ ]

[ ]

→ → ∞

→ → ∞

∗ ∗ ∗∗ ∗∗

∗ ∗ ∗∗ ∗∗

M u M v M u M v i

M u M v M u M v i

, , weakly in , as ,

and as well as , , weakly in , as .
u n v n u v

u n v n u v

2

2
i i

i i

(67)
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Additionally, for every ℓ = 0, 1, the convex functionals on ( ∣ ∣ ( ))⧹ ∞
ℓ −L Q κ1 1 , defined as:

( ∣ ∣ ( )) [ ] [ )

∣ ∣ ( )

∫∈ ⧹ ∞ ↦ ∈ ∞ ℓ =
ℓ −

⧹ ∞

+

ℓ −

u L Q κ u x t˜ ˜ d d 0, , 0, 1,
Q κ

1 1

1

are weakly lower semi-continuous. Therefore, we can observe from (67) and (A6) that:

H

H
⎧
⎨⎩

[ ] [ ] ( )

[ ] [ ] ( )

− ≤ − ∈ ⊂

− ≤ − ∈ ⊂

∗∗ + ∗∗ +

∗∗ + ∗∗ +

κ u κ u L Q
u κ u κ L Q

¯ ,
¯ ,

0 1

1 1

∣ [ ] ∣ [ ( )]( )

∣ ∣ ( ) ∣ ∣ ( )

∫ ∫ [ ( )]− = − ≤ − =
∗∗ +

⧹ ∞

∗∗ +

→∞

⧹ ∞

∗ +

− −

M κ u M κ u x t M κ u x td d lim d d 0,u L Q

Q κ

u
i

Q κ

u ε n
0 0 0

ni i
1

0 1 0 1
(68a)

and

∣ [ ] ∣ [ ( )]( )

∣ ∣ ( ) ∣ ∣ ( )

∫ ∫ [ ( )]− = − ≤ − =
∗∗ +

⧹ ∞

∗∗ +

→∞

⧹ ∞

∗ +

− −

M u κ M u κ x t M u κ x td d lim d d 0.u L Q

Q κ

u
i

Q κ

u n ε
1 1 1

i ni
1

1 1 1 1
(68b)

Since the limit ∗∗u , when =M 0u , can be taken arbitrary, the estimates as in (68) enable us to suppose that

U[ ]≤ ≤ ∈
∗∗ ∗∗ ∗∗κ u κ Q u va.e. in , i.e. , .K0 1

ad

Now, let us denote by H[ ] [ ]∈
∗∗ ∗∗η θ, 2 the solution to ( )S ε, for the initial pair [ ]η θ,0 0 and forcing pair

[ ]∗∗ ∗∗u v, . Then, applying Main Theorem 1 (I-B), again, to the solutions [ ]∗∗ ∗∗η θ, and[ ]
∗ ∗η θ,n ni i

, = …i 1, 2, 3, ,
one can see that

Y[ ] [ ([ ] )] [ ( )]

( ) ( )

[ ]→

− ∗ × → ∞

∗ ∗ ∗∗ ∗∗

∞ ∞

η θ η θ C T H W T H

L T V L T V i

, , in 0, ; , in , weakly in 0, ; , and

weakly in 0, ; 0, ; , as .
n n

2 1,2 2

0

i i (69)

As a consequence of (64), (65), (67), and (69), it is verified that:

H H

H H

H H

�

� �

�

( ) ∣[ ( ) ( )]∣ ∣[ ]∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( )

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ( ) ( )] [ ]

( ) ( )

[ ( ) ( )] [ ]

= − − +

≤ − − +

= ≤

= − − +

=

∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

→∞

∗ ∗

→∞

∗ ∗

→∞

∗ ∗

→∞

→∞ →∞

u v M η η M θ θ M u M v

M η η M θ θ M u M v

u v u v

M η η M θ θ M u M v

u v

, 1
2

, 1
2

,

1
2

lim , 1
2

lim ,

lim , lim ¯ , ¯

1
2

lim ¯ , ¯ 1
2

lim ¯ , ¯

¯, ¯ .

ε η θ u v

i
η n θ n

i
u n v n

i
ε n n

i
ε n

i
η n θ n

i
u n v

ε

ad ad 2 2

ad ad 2 2

ad ad 2 2

i i i i

ni i i ni i

i i i

2 2

2 2

2 2

Since the choice of U[ ] ∈u v¯, ¯ K
ad is arbitrary, we conclude that

U
� �( ) ( )

[ ]
=

∗∗ ∗∗

∈

u v u v, min , ,ε
u v

ε
, K

ad

and complete the proof of Main Theorem 2(II-B). □

6 Proof of Main Theorem 3

Throughout this section, we suppose the situation (r.s.0). Let >ε 0 be a fixed constant, and let [ ] ∈η θ D,0 0 0

be the initial pair. Let us take any forcing pair X[ ] ∈u v, ( H( )= ×
∞L Q ), and consider the unique solution

H[ ] [ ]∈η θ, 2 to the state system ( )S ε. Also, let us take any constant ( )∈δ 0, 1 and any pair of functions

X[ ] ∈h k, , and consider another solution H[ ] [ ]∈η θ,δ δ 2 to the system ( )S ε, for the initial pair [ ]η θ,0 0 and a
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perturbed forcing pair [ ]+ +u δh v δk, . On this basis, we consider a sequence of pairs of functions
H{[ ]} [ ]( ) ⊂∈χ γ,δ δ

δ 0,1
2, defined as

H[ ] ⎡

⎣
⎢

⎤

⎦
⎥

[ ] ( )≔

− −
∈ ∈χ γ η η

δ
θ θ

δ
δ, , , for 0, 1 .δ δ

δ δ
2 (70)

This sequence acts a key role in the computation of Gâteaux differential of the cost function �ε, for >ε 0.

Remark 14.Note that for any ( )∈δ 0, 1 , the pair of functions H[ ] [ ]∈χ γ,δ δ 2 fulfills the following variational
forms:

( ( ) ) ( ( ) )
⎛

⎝

⎜⎜
( ( ) ( ))

⎞

⎠

⎟⎟
( )

⎛

⎝

⎜⎜
( ( )) ( ( ) ( ))

⎞

⎠

⎟⎟
( )

⎛

⎝

⎜⎜
( ( )) ( ( ) ( ))

⎞

⎠

⎟⎟
( )

( ( ) ) ( ) ( )

[ ] ∫ ∫

∫ ∫ ∫ ∫

∂ + ∇ ∇ + ′ +

+ ∇ ″ + + ′ ∇ ∇ + ∇ ⋅∇

= ∈ ∈ =

χ t φ χ t φ g η t ςδχ t ς χ t φ x

f θ t α η t ςδχ t ς χ t φ x α η t f θ t ςδ γ t ς γ t φ x

M h t φ φ V t T χ H

, , d d

d d d d

, , for any , a.e. 0, , subject to 0 0 in ,

t
δ

H
δ

H
δ δ

ε
δ δ δ

ε
δ δ

u H
δ

Ω 0

1

Ω 0

1

Ω 0

1

N

and

( ( ) ( ) ) ( ( ) )
⎛

⎝

⎜⎜
( ( )) ( ( ) ( ))

⎞

⎠

⎟⎟
( )

⎛

⎝

⎜
⎜

⎛

⎝

⎜⎜
( ( ) ( ))

⎞

⎠

⎟⎟
( )

⎞

⎠

⎟
⎟

( ( ))

( ( ) ) ( ) ( )

[ ] ∫ ∫

∫ ∫

∂ + ∇ ∇ + ∇ ∇ + ∇ ∇ ⋅∇

+ ′ + ∇ ∇ ⋅∇

= ∈ ∈ =

α t γ t ψ ν γ t ψ α η t f θ t ςδ γ t ς γ t ψ x

α η t ςδχ t ς χ t f θ t ψ x

M k t ψ ψ V t T γ H

, , d d

d d

, , for any , a.e. 0, , subject to 0 0 in .

t
δ

H
δ

H
δ

ε
δ δ

δ δ
ε

v H
δ

0
2

Ω 0

1

2

Ω 0

1

0

N

In fact, these variational forms are obtained by taking the difference between two respective variational
forms for [ ]η θ,δ δ and [ ]η θ, , as in Main Theorem 1 (I-A), and by using the following linearization formulas:

H

H

( ( ) ( ))
⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟

( ( ) ( ) ( ) ( )) ( ( ) ( )) ( ) ( )( ( ) ( ))

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟

∫

∫ ∫

− = ′ +

′ ∇ − ′ ∇ = ′ − ′ ∇ + ′ ∇ − ∇

= ∇ ″ + + ′ ∇ ∇ + ∇ ⋅∇

δ
g η g η g η ςδχ ς χ

δ
α η f θ α η f θ

δ
α η α η f θ

δ
α η f θ f θ

f θ α η ςδχ ς χ α η f θ ςδ γ ς γ

1 d in ,

1 1 1

d d in ,

δ δ δ

δ
ε

δ
ε

δ
ε

δ
ε

δ
ε

ε
δ δ δ

ε
δ δ

0

1

0

1

0

1

and

H

( ( ) ( ) ( ) ( )) ( )( ( ) ( )) ( ( ) ( )) ( )

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟

⎛

⎝

⎜
⎜

⎛

⎝

⎜⎜
( )

⎞

⎠

⎟⎟

⎞

⎠

⎟
⎟

( ) [ ]

∫

∫

∇ ∇ − ∇ ∇ = ∇ ∇ − ∇ ∇ + − ∇ ∇

= ∇ ∇ + ∇ ∇

+ ′ + ∇ ∇

δ
α η f θ α η f θ

δ
α η f θ f θ

δ
α η α η f θ

α η f θ ςδ γ ς γ

α η ςδχ ς χ f θ

1 1 1

d

d in .

δ
ε

δ
ε

δ
ε

δ
ε

δ
ε

δ
ε

δ δ

δ δ
ε

N

0

1

2

0

1
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Incidentally, the above linearization formulas can be verified as consequences of the assumptions
(A1)–(A4) and the mean-value theorem (cf. [26, Theorem 5 in p. 313]).

Remark 15. Note that the situation (r.s.0) implies ( )∈
∞η L Ω0 and ( )∈

∞u L Q . Therefore, under (r.s.0), we
can suppose ( )∈

∞η L Q for the solution H[ ] [ ]∈η θ, 2 to the system ( )S ε.

Now, we prepare the following two lemmas, for the proof of Main Theorem 3.

Lemma 3. Under the assumptions (A1)–(A5), let us fix >ε 0, and suppose (r.s.0) as in Main Theorem 3. Then,
the restriction of the cost X� ∣ε :X �⟶ is Gâteaux differentiable overX. Moreover, for any X[ ] ∈u v, , the
Gâteaux derivative XX�( ∣ ) ( )′ ∈

∗u v,ε admits a unique extension H H� ( ) ([ ] ) [ ]′ ∈ =
∗u v,ε

2 2, such that:

XX� �( ) ( ∣ ) ( )′ = ′
∗u v u v in, , ,ε ε (71)

and

X

H H

H

� �( ( ) [ ]) ([ ( ) ( )] [ ])

([ ] [ ]) [ ]

[ ] [ ]

[ ]

′ = − −

+ ∈

u v h k M η η M θ θ M h M k

M u M v h k for any h k

, , , , , ¯ ,

, , , , , .
ε η θ ε u v

u v

ad ad2 2

2
(72)

In the context, [ ]η θ, is the solution to the state system ( )S ε, for the initial pair [ ]η θ,0 0 and forcing pair [ ]u v, ,

and H Z� [ ] ⟶¯ :ε
2 is a bounded linear operator, which is given as a restriction H� ∣{[ ]} [ ]×0,0 2 of the (linear)

isomorphism Y Z� �( ) [ ]= × ⟶
∗a b μ λ ω A H, , , , , : 2 , as in Proposition 5, in the case when:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

[ ] [ ] ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) [ ( )]

( ) ( ) [ ( )]

= ×

= ≔ ″ ∇

= ≔ ′

= ≔ ′ ∇ ∇

= ≔ ∇ ∇

∞ ∞

∞

∞

∞

∞ ×

a b α in W Q L Q
μ μ α η f θ in L T H
λ λ g η in L Q
ω ω α η f θ in L Q
A A α η f θ in L Q

, , 0 ,
¯ 0, ; ,
¯ ,
¯ ,
¯ .

ε ε

ε

ε ε
N

ε ε
N N

0
1,

2

(73)

Proof. Let us fix any X[ ] ∈u v, , and take any ( )∈δ 0, 1 and any X[ ] ∈h k, . Then, due to the assumptions
(r.s.0) and X[ ] [ ] ∈u v h k, , , , we can see that

∣ ∣ ∣ ∣( )
( )

( )∨ + < ∞

∈

∞ ∞η u δhsup ˜ ,L
δ

L Q0 Ω
˜ 0,1

and

X[ ( ) ( )] [ ]+ + → ↓M u δh M v δk M u M v δ, , in , as 0.u v u v

Therefore, as a consequence of Main Theorem 1 (I-B), it is observed that

Y[ ] [ ] [ ([ ] )] [ ( )]

( ) ( )

→

− ∗ ×
∞ ∞

η θ η θ C T H W T H
L T V L T V

, , in 0, ; , in , weakly in 0, ; ,
and weakly in 0, ; 0, ; ,

δ δ 2 1,2 2

0
(74a)

and

( )→ − ∗ ↓
∞η η L Q δweakly in , as 0.δ (74b)

In the meantime, it is easily computed that:

H H

H H

� � ⎜ ⎟( ( ) ( )) ⎛

⎝
( ) ⎞

⎠

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

+ + − = + − + + −

+ + + +

δ
u δh v δk u v

M
η η η χ M θ θ θ γ

M u δh h M v δk k

1 , ,
2

2 ,
2

2 ,

2
2 ,

2
2 , .

ε ε
η δ δ θ δ δ

u v

ad ad

(75)
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Here, let us set:

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

( ) ( ) ( )

( ) ( )

( ) ( ) [ ( )]

( ) ( ) [ ( )]

∫

∫

∫

∫

≔ ∇ ″ +

≔ ′ +

≔ ′ ∇ ∇ + ∇

≔ ∇ ∇ + ∇

∞

∞

∞

∞ ×

μ f θ α η ςδχ ς L T H

λ g η ςδχ ς L Q

ω α η f θ ςδ γ ς L Q

A α η f θ ςδ γ ς L Q

¯ d in 0, ; ,

¯ d in ,

¯ d in ,

¯ d in ,

ε
δ

ε
δ

ε
δ δ

ε
δ δ

ε
δ N

ε
δ δ

ε
δ N N

0

1

0

1

0

1

0

1

2

(76a)

and

V
⎡

⎣

⎢
⎢

( ) ( ) ( ) ( )
⎤

⎦

⎥
⎥

( )

∫ ∫≔ + ∇ ∇ ′ + − ′ ∇ ∇ + ∇

∈

∗k M k χ f θ α η ςδχ ς χ α η f θ ςδ γ ς

δ

¯ div d d in ,

for all 0, 1 .

ε
δ

v
δ

ε
δ δ δ

ε
δ

0

1

0

1

0 (76b)

Then, in the light of (74) and Remark 14, one can say that:

Z�[ ] [ ] ( )= ∈χ γ M h k δ, ¯ , ¯ in , for 0, 1 ,δ δ
ε
δ

u ε
δ

by using the restriction Y ZY� � ∣{[ ]}≔ ⟶×

∗
∗¯ :ε

δ
0,0 of the (linear) isomorphism � �( )= a b μ λ ω A, , , , , :

Y Z[ ] × ⟶
∗H 2 , as in Proposition 5, in the case when:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

[ ] [ ] ( ) [ ( )]

[ ( )]

[ ( )]

( ) ( )

= ×

=

=

= ∈

∞ ∞

∞

∞ ×

∞

a b λ α λ W Q L Q
ω ω L Q

A A L Q
μ μ L T H δ

, , , 0, ¯ in ,
¯ in ,
¯ in ,
¯ in 0, ; , for 0, 1 .

ε
δ

ε
δ N

ε
δ N N

ε
δ

0
1, 2

Besides, taking into account (8), (A.5), (76), (A3), (A4), and Remark 1, we have:

� �

( )
( ) ( ∣ ∣ ∣ ∣ ∣ ∣ )

( )

( )
( ) ( ∣ ∣ ∣ ∣

∣ ∣ )

( ) ( ) ( )

( )
( ) ( )

[ ( )]

( ) ( ) ( )

( ) ( ) ( )

≔
+

∧ ∧

⋅ + + + ⋅ + + ′ + ′

≥
+

∧ ∧

⋅ + + + ⋅ + +

+

∗

∗

∈

∞ ∞ ∞

∞ ∞

∞

C ν
ν δ

C C C α g α

ν
ν α Q

C C C α λ

ω

¯ 9 1
1

1 1

9 1
1 inf

1 sup 1 ¯

¯ ,

V
L

V
L

V
L

W Q L L

V
L

V
L

V
L

δ
W Q ε

δ
L Q

ε
δ

L Q

0
2

2
2 4 2

0
2

2

2
0

2 4 2

0,1
0

2
N

4 4

0

4
1,

4 4

0

4
1, (77a)

and

�

�

∣ [ ( ) ( )] [ ] ∣ ∣ ( ) ∣ ∣ ( ) ∣

∣ ( )∣ ∣ ∣ ∣ ( )∣ ∣ ∣ ∣ ∣ ∣ ( )∣ ∣ ∣

∣ ( )∣ ∣ ∣ ( ∣ ( )∣ ∣ ∣ ∣ ( )∣ )∣ ∣

( ) [ ] ( )

( ) [ ]

( )

⟨ ⟩ ≤ ⟨ ⟩ + ⟨ ⟩

≤ + + ′ ∇

≤ + + ′

∈ ∈ × ∈

×

∞

∞

M h t k t φ ψ M h t φ k t ψ
M h t φ M k t ψ α χ t ψ

M h t φ M C k t α χ t ψ
t T φ ψ V V δ

, ¯ , , , ¯ ,
2

2 ,
for a.e. 0, , any , , and any 0, 1 ,

u ε
δ

V V u V ε
δ

V

u H H v H H L
δ

H H

u H V v V
H

H L
δ

H V

0

N

0 0

0 0

(77b)

with the use of the constant >C 0V
H
0

of the embedding ⊂V H0 , so that

∣[ ( ) ( )]∣ (∣[ ( ) ( )]∣ ∣ ( )∣ ) ( ) ( )
[ ]

≤ + ∈ ∈
×

∗

∗ ∗M h t k t C h t k t χ t t T δ, ¯ ¯ , , for a.e. 0, , and any 0, 1 ,u ε
δ

V V H
δ

H
2

1
2 2

0
2 (77c)

with a positive constant �( ∣ ∣ )( )( )≔ + + ′
∗

∞C M M C α¯ 4 u v V
H

L1
2 2 2 2

0
.
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Now, having in mind (77), let us apply Proposition 4 to the case when:

� �

⎧

⎨

⎪

⎩
⎪

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] ( )

= =

= = = =

= = = = ∈

a b μ λ ω A a b μ λ ω A α μ λ ω A

p z p z h k M h k h k

p z χ γ M h k p z δ

, , , , , , , , , , , 0, , ¯ , ¯ , ¯ ,

, , 0, 0 , , , ¯ , , 0, 0 ,

, , ¯ , ¯ , , 0, 0 ¯ 0, 0 , for 0, 1 .

ε
δ

ε
δ

ε
δ

ε
δ

u ε
δ

δ δ
ε
δ

u ε
δ

ε
δ

1 1 1 1 1 1 2 2 2 2 2 2
0

0
1

0
1

0
2

0
2 1 1 2 2

1 1 2 2

Then, we estimate that

(∣ ( )∣ ∣ ( ) ( )∣ ) (∣ ( )∣ ∣ ( )∣ )

(∣ ( )∣ ∣ ( ) ( )∣ ) (∣ ( )∣ ∣ ( )∣ )

( )(∣ ( )∣ ∣ ( ) ( )∣ ) (∣ ( )∣ ∣ ( )∣ )

( )

+ + +

≤ + + +

≤ + + + +

∈

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

t
χ t α t γ t χ t ν γ t

C χ t α t γ t C M h t k t

C C χ t α t γ t C C h t k t
t T

d
d

3 ¯ 2 ¯ ¯

3 ¯ 1 ¯ 2 ¯ ¯ ,
for a.e. 0, ,

δ
H

δ
H

δ
V

δ
V

δ
H

δ
H u V ε

δ
V

δ
H

δ
H H H

2
0

2 2 2 2

0
2

0
2

0
2 2

0 1
2

0
2

0 1
2 2

0

0

and subsequently, by using Gronwall’s lemma, we observe that
(⋆1) The sequence {[ ]} ( )∈χ γ,δ δ

δ 0,1 is bounded in Y[ ([ ] )] ∩C T H0, ; 2 .

Meanwhile, as consequences of (70), (73)–(77), ( )⋆ 1 , (A1)–(A5), Main Theorem 1, Remark 7, and the
dominated convergence theorem [25, Theorem 10 on page 36], one can find a sequence �{ } ⊂

=

∞δn n 1 , such
that

∣ ∣< < → → ∞δ δ n0 1, and 0, as ,n n (78a)

Y

⎧

⎨

⎪
⎪

⎩

⎪
⎪

[ ]

[ ([ ] )]

[ ] [ ]

[ ( [ ] )]

[ ] [ ]

[ ( ) ( )]

= − − →

∇ ∇ = ∇ − ∇ − →

→ ∞

δ χ δ γ η η θ θ

C T H
δ χ δ γ η η θ θ

L T H Q

n

, , 0, 0

in 0, ; , and in ,
, , 0, 0

in 0, ; , and in the pointwise sense a.e. in ,

as ,

n
δ

n
δ δ δ

n
δ

n
δ δ δ

N

2

2 2

n n n n

n n n n
(78b)

[ ] ( ) [ ( )] [ ( )][ ] → − ∗ × ×

→ ∞

∞ ∞ ∞ ×λ ω A λ ω A L Q L Q L Q
Q n

¯ , ¯ , ¯ ¯ , ¯ , ¯ weakly in ,
and in the pointwise sense a.e. in , as ,

ε
δ

ε
δ

ε
δ

ε ε ε
N N Nn n n

(78c)

⎧

⎨
⎩

( )

( ) ( ) ( )

→ − ∗

→ ∈

→ ∞

∞μ μ L T H

μ t μ t H t T
n

¯ ¯ weakly in 0, ; ,

¯ ¯ in , for a.e. 0, ,
as ,ε

δ
ε

ε
δ

ε

n

n
(78d)

and

V

H

H

⎛

⎝

⎜
⎜

( )
⎛

⎝

⎜⎜

⎞

⎠

⎟⎟

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎛

⎝

⎜⎜

⎞

⎠

⎟⎟

⎞

⎠

⎟
⎟

∫ ( )

( ) ∫ ( )

⟨ − ⟩ = − ∇ ∇ ′ + ⋅∇

+ ′ ∇ ∇ + ∇ ⋅∇

→ → ∞

k M k ψ χ f θ α η ςδ χ ς ψ

χ α η f θ ςδ γ ς ψ

n

¯ , , d

, d

0, as .

ε
δ

v
δ

ε n
δ

δ δ
ε n

δ

0

1

0

1

n n n

n n n

0

(78e)

On account of (70) and (73)–(78), we can apply Proposition 6(B), and can see that

H Y� �[ ] [ ] [ ]

( ) ( )

[ ] [ ]= → ≔

× → ∞
∗ ∗

χ γ M h k χ γ M h M k

W T V W T V n

, ¯ , ¯ , ¯ , in , weakly in ,

and weakly in 0, ; 0, ; , as .

δ δ
ε
δ

u ε
δ

ε u v
2

1,2 1,2
0

n n n n

(79)

Since the Hilbert spaceY is separable, and the uniqueness of the solution �[ ] [ ]=χ γ M h M k, ¯ ,ε u v is guaran-
teed by Proposition 3, the observations (75), (78), and (79) enable us to compute the directional derivative

�� ( )[ ] ∈D u v,h k ε, , as follows:

Constrained optimization  1273



X

H H

� � �

�

( ) ( ( ) ( ))

([ ( ) ( )] [ ]) ([ ] [ ])

[ ]

[ ]

[ ] [ ]

≔ + + −

= − − +

∈

→

D u v
δ

u δh v δk u v

M η η M θ θ M h M k M u M v h k
h k

, lim 1 , ,

, , ¯ , , , , ,
for any direction , .

h k ε
δ

ε ε

η θ ε u v u v

,
0

ad ad 2 2
(80)

Moreover, in the light of (73), (80), and Proposition 5, we can observe that:
(⋆2) The mapping X ��[ ] ( )[ ]∈ ↦ ∈h k D u v, ,h k ε, is a linear functional;

(⋆3) There exists a constant ∗∗M1 , independent of X[ ] ∈h k, , such that

XH�∣ ( )∣ ∣[ ]∣ [ ][ ] [ ]≤ ∈
∗∗D u v M h k h k, , , for any , .h k ε, 1 2

As a consequence of ( )⋆2 , ( )⋆3 , the continuous and dense embedding X H[ ]⊂
2, and Riesz’s theorem, we

can obtain the required functional H H� ( ) ([ ] ) ( [ ] )′ ∈ =
∗u v,ε

2 2 , satisfying (71) and (72), as the unique exten-
sion of the Gâteaux differential XX�( ∣ ) ( )′ ∈

∗u v,ε at X[ ] ∈u v, .
Thus, we complete the proof of this lemma. □

Lemma 4. Under the assumptions (A1)–(A5) with (r.s.0), let U[ ] ∈
∗ ∗u v,ε ε

K
ad be an optimal control of the

problem ( )OP ε
K, and let [ ]∗ ∗η θ,ε ε be the solution to the system ( )S ε, for the initial pair [ ]η θ,0 0 and forcing

pair [ ]∗ ∗u v,ε ε . Also, let H Z� [ ] ⟶
∗ :ε

2 be the bounded linear operator, defined in Remark 9, with the use
of the solution [ ]∗ ∗η θ,ε ε . Let H Z� [ ] ⟶:ε

2 be a bounded linear operator, which is defined as a restriction

H� ∣{[ ]} [ ]×0,0 2 of the linear isomorphism Y Z� �( ) [ ]= × ⟶
∗a b μ λ ω A H, , , , , : 2 , as in Proposition 5, in the

case when:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

[ ] [ ] ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) [ ( )]

( ) ( ) [ ( )]

= ×

= ″ ∇

= ′

= ′ ∇ ∇

= ∇ ∇

∞ ∞

∗ ∗ ∞

∗ ∞

∗ ∗ ∞

∗ ∗ ∞ ×

a b α in W Q L Q
μ α η f θ in L T H
λ g η in L Q
ω α η f θ in L Q
A α η f θ in L Q

, , 0 ,
0, ; ,

,
,

.

ε ε ε

ε

ε ε ε
N

ε ε ε
N N

0
1,

2

(81)

Then, the operators �∗

ε and �ε have a conjugate relationship, in the following sense:

HH H� �( [ ] [ ]) ([ ] [ ]) [ ] [ ] [ ][ ] [ ]= ∈
∗ u v h k u v h k for all h k u v, , , , , , , , , , .ε ε

22 2

Proof. Let us fix arbitrary pairs of functions H[ ] [ ] [ ]∈h k u v, , , 2, and let us put

H� �[ ] [ ] [ ] [ ] [ ]≔ ≔
∗χ γ h k p z u v, , and , , , in .ε ε ε ε ε ε

2

Then, invoking Proposition 3, and the settings as in (25) and (81), we compute that

H�( [ ] [ ])

( ( ) ( )) ( ( ) ( ))

( ) ( ) ( ) ( )

[ ( ) ( ) ( ( ) ( )) ( ( ( )) ( ( )) ( ) ( ))

( ( ( )) ( ) ( )) ( ( ( )) ( ( )) ( ) ( )) ]

[ ( ) ( ) ( ) ( ( ( )) ( ) ( ( )) ( ))

( ( ( )) ( ( )) ( ) ( )) ( ( ) ( )) ]

[ ]

[ ]

[ ]

[ ] [ ]

∫ ∫

∫ ∫

∫

∫

= +

= ⟨ ⟩ + ⟨ ⟩

= ⟨∂ ⟩ + ∇ ∇ + ″ ∇

+ ′ + ′ ∇ ∇ ⋅∇

+ ⟨∂ ⟩ + ′ ∇ ∇ ∇

+ ∇ ∇ ∇ ∇ + ∇ ∇

∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗

u v h k

p t h t t z t k t t

h t p t t k t z t t

χ t p t χ t p t α η t f θ t χ t p t

g η t χ t p t α η t f θ t γ t p t t

γ t α t z t α η t χ t f θ t z t

α η t f θ t γ t z t ν γ t z t t

, , ,

, d , d

, d , d

, , ,

, , d

, ,

, , d

ε
T

ε H

T

ε H

T

ε V

T

ε V

T

t ε ε V ε ε H ε ε ε ε ε H

ε ε ε H ε ε ε ε ε H
T

t ε ε V ε ε ε ε ε H

ε ε ε ε ε H ε ε H

0 0

0 0

0

0

0

2 2

N

N

N N

2

0

0
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H H H�

( ( ) ( )) ( ( ) ( )) [ ( ) ( ) ( ( ) ( ))

( ( ( )) ( ( )) ( ) ( )) ( ( ( )) ( ) ( ))

( ( ( )) ( ( )) ( ) ( )) ] ( ( ) ( ) ( )) ( ( ) ( ) ( ))

[ ( )( ) ( ) ( ( ( )) ( ) ( ( )) ( ))

( ( ( )) ( ( )) ( ) ( )) ( ( ) ( )) ]

( ) ( ) ([ ] [ ])

[ ]

[ ]

[ ] [ ]

[ ]

∫

∫

= − + ⟨−∂ ⟩ + ∇ ∇

+ ″ ∇ + ′

+ ′ ∇ ∇ ⋅∇ + −

+ ⟨−∂ ⟩ + ′ ∇ ∇ ∇

+ ∇ ∇ ∇ ∇ + ∇ ∇

= + =

∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

p T χ T p χ p t χ t p t χ t

α η t f θ t p t χ t g η t p t χ t
α η t f θ t z t χ t t α T z T γ T α z γ

α z t γ t α η t p t f θ t γ t

α η t f θ t z t γ t ν z t γ t t
u χ v γ u v h k

, 0 , 0 , ,

, ,
, d , 0 0 , 0

, ,

, , d
, , , , , .

ε ε H ε ε H

T

t ε ε V ε ε H

ε ε ε ε ε H ε ε ε H

ε ε ε ε ε H ε ε H ε ε H
T

t ε ε V ε ε ε ε ε H

ε ε ε ε ε H ε ε H

ε ε ε

0

0 0

0

0

2 2

N

N

N N

0

2

This finishes the proof of Lemma 4. □

Remark 16. Note that the operator L H Z� ([ ] )∈ ;ε
2 , as in Lemma 4, corresponds to the operator

L H Z� ([ ] )∈¯ ;ε
2 , as in the previous Lemma 3, under the special setting (81).

Now, we are ready to prove the Main Theorem 3 (III-A).

Proof of Main Theorem 3 (III-A). Let U[ ] ∈
∗ ∗u v,ε ε

K
ad be the optimal control of ( )OP ε

K , with the solution
H[ ] [ ]∈

∗ ∗η θ,ε ε
2 to the system ( )S ε for the initial pair [ ] ∈η θ D,0 0 0, as in (r.s.0), and forcing pair [ ]∗ ∗u v,ε ε ,

and let L H Z� � ([ ] )∈
∗, ;ε ε

2 be the two operators as in Lemma 4. In addition, let us put [ ] ≔
∗ ∗p z,ε ε

� [ ( ) ( )]− −
∗ ∗ ∗M η η M θ θ,ε η ε θ εad ad . Then, on the basis of the previous Lemmas 3 and 4, we compute that:

U

H

H H

H H

H H

�

� �

�

�

( ( ) [ ])

( ( ( ) ) ( ))

([ ( ) ( )] [ ( ) ]) ([ ] [ ])

( [ ( ) ( )] [ ( ) ]) ([ ] [ ])

( ( ) ) ( ( ) ) [ ]

[ ]

[ ] [ ]

[ ] [ ]

≤ ′

= + − + −

= − − − + −

= − − − + −

= + − + + ∈

∗ ∗

↓

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

u v h k

δ
u δ h u v δk u v

M η η M θ θ M h u M k M u M v h u k
M η η M θ θ M h u M k M u M v h u k

M p u h u M z v k h k

0 , , ,

lim 1 , ,

, , , , , ,
, , , , , ,

, , , for any , .

ε ε ε

δ
ε ε ε ε ε ε ε

η ε θ ε ε u ε v u ε v ε ε

ε η ε θ ε u ε v u ε v ε ε

u ε ε ε v ε ε
K

0

ad ad

ad ad

ad

2

2 2

2 2

(82)

Now, in (82), let us consider the case when U[ ] [ ]= ∈h k h, , 0 K
ad with arbitrary ∈h K . Then, we have

H H( ( ) ) ( )≤ + − = − − − − ∈
∗ ∗ ∗ ∗ ∗ ∗M p u h u M p u h u h K0 , , for any .u ε ε ε u ε ε ε (83)

It is equivalent to (19a). Indeed, if >M 0u , then the equivalence of (19a) and (83) is a straightforward
consequence of (Fact 2). Also, if =M 0u , then both (19a) and (83) coincides with the tautology “ =0 0.”

In the meantime, putting U[ ] [ ]= ∈
∗h k u k, ,ε

K
ad with arbitrary H∈k , one can see that:

HH( ( ) )+ ≥ ∈
∗ ∗M v z k k, 0 for any .v ε

This implies the equality (19b).
Thus, we conclude Main Theorem 3 (III-A). □

Next, before the proof of Main Theorem 3 (III-B), we prepare the following lemma.

Lemma 5. Let us assume (A5) and (A6) and fix a constraint K[[ ]]= ∈K κ κ,0 1 . Also, let us assume that:

H H H{ }∈ ⊂ → → ∞
=

∞p p and p p in as n˜ , ˜ , ˜ ˜ ,n n n1 (84a)

and let us put

H

H
⎧

⎨
⎩

( )

( )

≔

≔ = …

u p in
u p in for n
˜ proj ˜ ,
˜ proj ˜ , 1, 2, 3, .

K

n K nn

(84b)
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Then, it holds that

H→ → ∞u u in as n˜ ˜ , .n (85)

Proof. By using the assumptions as in (84), Remark 2, and Lemma 2, this lemma is easily verified as follows.

H H H

H H

∣ ∣ ∣ ( ) ( )∣ ∣ ( ) ( )∣

∣ ∣ ∣ ( ) ( )∣

− ≤ − + −

≤ − + − → → ∞

u u p p p p
p p p p n

˜ ˜ proj ˜ proj ˜ proj ˜ proj ˜
˜ ˜ proj ˜ proj ˜ 0, as . □

n K n K K K

n K K

n n n

n

Now, we are on the stage to prove Main Theorem 3 (III-B).

Proof of Main Theorem 3 (III-B). Let us note that the assumptions (14) and (23) guarantee that:
– The sequence of initial pairs {[ ]}

=

∞η θ,n n n0, 0, 1 is bounded in ( ( ))= ∩ ×
∞D V L VΩ0 0;

– The sequence { }∈
∗

=

∞u Kn n n 1, consisting of the first components of optimal controls U[ ] ∈
∗ ∗u v,n n

K
ad

n of ( )OP ε
K

n
n,

= …n 1, 2, 3, , is bounded in ( )∞L Q .

Hence, with the compact embedding [ ]= × ⊂D V V H0
2 and Alaoglu’s theorem in mind, we may suppose

that:

⎧

⎨

⎪

⎩
⎪

[ ] [ ]

( )

( )

[ ] → ×

→ − ∗

→ − ∗ → ∞

∞

∗ ∗∗ ∞

η θ η θ H V V
η η L
u u L Q i

, , in , and weakly in ,
weakly in Ω ,

weakly in , as ,

n n

n

n

0, 0, 0 0
2

0

0, 0

i i

i

i

(86)

for the subsequence { } { }⊂
=

∞n ni i 1 and the limiting optimal control U[ ] ∈
∗∗ ∗∗u v, K

ad, as in Main Theorem
2(II-B).

By (14) and (86), we can apply Main Theorem 1 (I-B) to the solutions H[ ] [ ]∈
∗∗ ∗∗η θ, 2 and [ ] ∈

∗ ∗η θ,n ni i

H[ ]2, = …i 1, 2, 3, , as in (69), and can deduce that

( )→ − ∗ → ∞
∗ ∗∗ ∞η η L Q iweakly in , as .ni (87)

Meanwhile, by taking more subsequence(s) if necessary, one can see from (25), (69), and (87) that:

� �[ ] [ ( )] ( )( )≔ ′ → ≔ ′ − ∗
∗ ∗ ∗∗ ∗∗ ∞λ g η λ g η L Q

Q

weakly in ,

and in the pointwise sense a.e. in ,
i T n Ti (88a)

� �[ ] [ ( ) ( )]

[ ( )]

( ) ( )≔ ′ ∇ ∇ → ≔ ′ ∇ ∇

− ∗

∗ ∗ ∗ ∗∗ ∗∗ ∗∗

∞

ω α η f θ ω α η f θ

L Q Qweakly in , and in the pointwise sense a.e. in ,
i T n ε n T ε

N
i ni i (88b)

� �[ ] [ ( ) ( )]

[ ( )]

( ) ( )≔ ∇ ∇ → ≔ ∇ ∇

− ∗

∗ ∗ ∗ ∗∗ ∗∗ ∗∗

∞ ×

A α η f θ A α η f θ

L Q Qweakly in , and in the pointwise sense a.e. in ,
i T n ε n T ε

N N

2 2
i ni i (88c)

� �[ ] [ ( ) ( )]

( )

( ) ( )≔ ″ ∇ → ≔ ″ ∇

− ∗

∗ ∗ ∗ ∗∗ ∗∗ ∗∗

∞

μ α η f θ μ α η f θ

L T Hweakly in 0, ; ,
i T n ε n T εi ni i (88d)

and

( ) ( ) ( )→ ∈ → ∞
∗ ∗∗μ t μ t H t T iin , for a.e. 0, , as .i (88e)

Now, let us denote by �∗∗

0 and �∗∗

i , = …i 1, 2, 3, , the operators �∗

ε, as in Remark 9, in the cases when:

[ ] [ ] ( ) ( ) [ ( )] [ ( )]= × × ×
∗∗ ∗∗ ∗∗ ∗∗ ∞ ∞ ∞ ∞ ×μ λ ω A μ λ ω A L T H L Q L Q L Q, , , , , , in 0, ; ,N N N

[ ] [ ] ( ) ( ) [ ( )] [ ( )]= = × × × = …
∗ ∗ ∗ ∗ ∞ ∞ ∞ ∞ ×ε ε μ λ ω A μ λ ω A L T H L Q L Q L Q i, and , , , , , , in 0, ; , 1, 2, 3, ,i i i i i

N N N
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respectively. Then, as a consequence of Proposition 6, Main Theorem 3(III-A), and Remark 9, we can derive
from (69) and (88) that

Y

�

�

[ ] [ ]

[ ] [ ( ) ( )] [ ([ ] )]

( ) ( )

( ) ( )≔ − −

→ ≔ − −

× → ∞

∗ ∗ ∗∗ ∗ ∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗ ∗

p z M η η M θ θ

p z M η η M θ θ C T H
W T V W T V i

, ,

, , in 0, ; ,
in , and weakly in 0, ; 0, ; , as .

i i i η n θ n

η θ

ad ad

0 ad ad
2

1,2 1,2
0

i i

(89)

Furthermore, taking into account (89) and Lemma 5, one can infer that

H( ) ( )= − → = − → ∞
∗ ∗ ∗∗ ∗∗M u M p M u M p iproj proj in , as ,u n u K i u u Ki ni (90a)

and

Y([ ] ) ( )= − → = − → ∞
∗ ∗ ∗∗ ∗∗ ∗M v M z M v M z C T H W T V iin 0, ; , in , and weakly in 0, ; , asv n v i v v

1,2
0i (90b)

(86) and (90) are sufficient to verify the convergences as in (24), and to conclude Main Theorem 3 (III-B).
□

7 Proof of Main Theorem 4

Under the assumptions (A1)–(A5) and the situation (r.s.0), let us set:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( ) ( )

( ) ( )

≔ +

≔ − ∨ ∧

≔

≔ − ∨ ∧ ℓ =

= …

ℓ ℓ

ε ε
n

η n n η
θ θ
κ n n κ Q

n

1 ,

a.e. in Ω,
a.e. in Ω,

a.e. in , 0, 1,

1, 2, 3, .

n

n

n

n

0, 0

0, 0

Then, we immediately see that
(⋆4) { } ( )⊂ ∞

=

∞ε ε,n n 1 , {[ ]} ⊂
=

∞η θ D,n n n0, 0, 1 0, and K{ } {[[ ]]}≔ ⊂
=

∞K κ κ,n n n n1
0 1

0, and these sequences fulfill the

assumptions (14) and (A6), as in Main Theorems 1–3.

Additionally, we can apply Main Theorem 1 (I-A) and Main Theorem 2(II-A), and can take sequences of
functional pairs {[ ]}∘ ∘

=

∞u v,n n n 1 and {[ ]}∘ ∘

=

∞η θ,n n n 1, such that

– For any �∈n , U[ ] ∈
∘ ∘u v,n n

K
ad

n is an optimal control of ( )OP ε
K

n
n;

– For any �∈n , H[ ] [ ]∈
∘ ∘η θ,n n

2 is the solution to ( )S εn, for the initial pair [ ]η θ,n n0, 0, and forcing

pair [ ]∘ ∘u v,n n .

Also, applying Main Theorem 1 (I-B) and Main Theorem 2(II-B), we can find subsequences of {[ ]}∘ ∘

=

∞u v,n n n 1

and {[ ]}∘ ∘

=

∞η θ,n n n 1 (not relabeled), together with limiting pairs H[ ] [ ]∈
∘ ∘u v, 2 and H[ ] [ ]∈

∘ ∘η θ, 2, and a

limiting function [ ( )]∈
∘ ∞σ L Q N , such that

H[ ] [ ] [ ]→
∘ ∘ ∘ ∘M u M v M u M v, , weakly in ,u n v n u v

2 (91a)

Y[ ] [ ] [ ([ ] )] ( ) ( )→ - ∗ ×
∘ ∘ ∘ ∘ ∞ ∞η θ η θ C T H L T V L T V, , in 0, ; , in , and weakly in 0, ; 0, ; ,n n

2
0 (91b)

[ ] [ ] [ ( [ ] )]∇ ∇ → ∇ ∇
∘ ∘ ∘ ∘η θ η θ L T H Q, , in 0, ; , and in the pointwise sense a.e. in ,n n

N2 2 (91c)

⎧

⎨

⎪

⎩
⎪

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

≔ ″ ∇ → ≔ ″ ∇ − ∗

→ ∈

∘ ∘ ∘ ∘ ∘ ∘ ∞

∘ ∘

μ α η f θ μ α η f θ L T H
Q

μ t μ t H t T

weakly in 0, ; ,
and in the pointwise sense a.e. in ,

in , for a.e. 0, ,

n n ε n ε

n

n

(91d)
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H( ) ( ) ( )≔ ′ → ≔ ′ - ∗
∘ ∘ ∘ ∘ ∞λ g η λ g η L Q Qin , weakly in , and in the pointwise sense a.e. in ,n n (91e)

( ) [ ( )]∇ ∇ → − ∗
∘ ∘ ∞f θ σ L Qweakly in ,ε n

N
n (91f)

and

( ) ( ) ( ) [ ( )]≔ ′ ∇ ∇ → ′ − ∗ → ∞
∘ ∘ ∘ ∘ ∘ ∞ω α η f θ α η σ L Q nweakly in , as .n n ε n

N
n (91g)

Additionally, from (91c), (91f), Remark 4, and [24, Proposition 2.16], one can observe that

( ) ⎧
⎨⎩

{ ( )}

( )
∈ ∂ ∇ =

∇ ∇ >

∇ =

∘ ∘

∘

∘
σ f θ

f θ ε
θ ε

Q
, if 0,

Sgn , if 0,
a.e. in .ε

ε
N (92)

Next, for any �∈n , let us put:

( ) ( ) [ ( )]≔ ∇ ∇
∘ ∘ ∘ ∞ ×A α η f θ L Qin ,n n ε n

N N2
n (93)

and let us denote by � ∘

n the operator L H Z� ([ ] )∈
∗ ;ε

2 , as in Remark 9, in the case when the constant >ε 0
(in Remark 9) and the sextuplet S[ ] ∈a b μ λ ω A, , , , , is replaced by >ε 0n and � [ ]−∂

∘ ∘ ∘ ∘α α μ λ ω A, , , , ,T t n n n n0 0

S∈ , respectively.
On this basis, let us set:

Z�[ ] [ ( ) ( )]≔ − − = …
∘ ∘ ∘ ∘ ∘p z M η η M θ θ n, , in , for 1, 2, 3, .n n n η n θ nad ad

Then, from Main Theorem 3 (III-A), it is inferred that

H( ( ) ) [[ ]]+ − ≥ ∈ =
∘ ∘ ∘M p u h u h K κ κ, 0, for any , ,u n n n n n n

0 1 (94a)

H( )+ =
∘ ∘M z v 0 in ,v n n (94b)

V

V H V H

H

( ) ( )

( ( ) )

[ ]⟨−∂ ⟩ + ∇ ∇ + ⟨ ⟩ + + ⋅∇

= − ∈

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

∘

p φ p φ μ p φ λ p ω z φ

M η η φ φ

, , , ,

, , for any ,
t n n n n n n n n

η n ad

N

(94c)

V

V H H

H

(( ) ) ( )

( ( ) )

[ ]⟨− ∂ ⟩ + −∂ + ∇ + ∇ + ∇

= − ∈

∘ ∘ ∘ ∘ ∘ ∘ ∘

∘

α z ψ α z ψ A z ν z p ω ψ

M θ θ ψ ψ

, , ,

, , for any ,
t n t n n n n n n

θ n

0 0
2

ad 0

N0 (94d)

and

[ ( ) ( )] [ ] [ ]= = …
∘ ∘p T z T H n, 0, 0 in , 1, 2, 3, .n n

2 (94e)

Also, having in mind (91)–(93), and applying Proposition 4 to the case when:

�

�

�

⎧

⎨

⎪
⎪

⎩

⎪
⎪

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ( ) ( )]

[ ] [ ]

[ ] [ ] [ ] [ ]

= = −∂

= =

= − −

=

= =

= …

∘ ∘ ∘ ∘

∘ ∘

∘ ∘

a b μ λ ω A a b μ λ ω A α α μ λ ω A
p z p z
h k M η η M θ θ
h k
p z p z p z

n

, , , , , , , , , , , , , , , ,
, , 0, 0 ,
, , ,
, 0, 0 ,
, , , , 0, 0 ,

for 1, 2, 3, .

T t n n n n

T η n θ n

T n n

1 1 1 1 1 1 2 2 2 2 2 2
0 0

0
1

0
1

0
2

0
2

1 1
ad ad

2 2

1 1 2 2

we deduce that

� � � �

� � � �

(∣( )( )∣ ∣ ( )( )∣ ) (∣( )( )∣ ∣( )( )∣ )

(∣( )( )∣ ∣ ( )( )∣ ) (∣ ( ( ))( )∣ ∣ ( ( ))( )∣ )

( )

+ + +

≤ + + − + −

∈ = …

∘ ∘ ∘ ∘

∗ ∘ ∘ ∗ ∘ ∘
∗ ∗

t
p t α z t p t ν z t

C p t α z t C M η η t M θ θ t

t T n

d
d

3 ¯ 2 ¯ ,

for a.e. 0, , 1, 2, 3, ,

T n H T n H T n V T n V

T n H T n H T η n V T θ n V

2
0

2 2 2 2

0
2

0
2

0 ad
2 ad 2

0

0

(94f)

with the use of the constant ∗C̄0 as in (77a). As a consequence of (91b), (94f), (A4), and Gronwall’s lemma, it
is observed that
(⋆5) The sequence {[ ]}∘ ∘

=

∞p z,n n n 1 is bounded in Y[ ([ ] )] ∩C T H0, ; 2 .
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In the meantime, from (8), (91b)–(91g), (94c), (94d), (A3), and Remark 1, we can derive the following
estimates:

V

V V H H H

V

∣ ∣ ∣ ∣ ∣( ) ∣ ∣( ) ∣ ∣( ( ) ) ∣

∣ ∣

[ ]⟨∂ ⟩ ≤ ⟨ ⟩ + ∇ ∇ + + ⋅∇ + −

≤ ∈

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

∘

p φ μ p φ p φ λ p ω z φ M η η φ

C φ φ

, , , , ,

, for any ,
t n n n n n n n n η n ad

1

N
(96a)

and

W H

H H H

W

∣ ( ) ∣ ∣( ) ∣

∣( ) ∣ ∣( ) ∣ ∣( ( ) ) ∣

∣ ∣ ( )

[ ]

[ ]

⟨− ∇ ⟩ = ∇ ∇

≤ ∂ + ∇ + ∇ + −

≤ ∈ = …

∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∘

∘ ∞

A z ψ A z ψ
α z ψ ν z p ω ψ M θ θ ψ

C ψ ψ C Q n

div , ,
, , ,

, for any , 1, 2, 3, ,

n n n n

n t n n n θ n0
2

ad

2 c

N

N

0

0

(96b)

with n-independent positive constants:

Y H�

⎧

⎨
⎩

∣ ∣ ∣ ∣ ∣ ∣

(∣[ ]∣ ∣ ( )∣ )

⎫

⎬
⎭

( )
( ) ( ) [ ( )]( ( ) )

≔

+ + +

⋅ + −

<∞
∘

∈

∘ ∘ ∘

∘ ∘ ∘

∞ ∞ ∞

C
C μ λ ω

p z M η η
sup

1
,

,
n

V
L

n L T H n L Q n L Q

n n η n
1

2
0, ;

ad

N
4

and

Y H�

⎧

⎨
⎩

∣ ∣ ∣ ∣

(∣[ ]∣ ∣ ( )∣ )

⎫

⎬
⎭

( )
( ) [ ( )]( )

≔

+ + +

⋅ + −

<∞
∘

∈

∘

∘ ∘ ∘

∞ ∞

C
ν C α ω
p z M θ θ

sup
1

,
,

n

V
H

L Q n L Q

n n θ n
2

2
0

ad

N
0

where >C 0V
L4

and >C 0V
H
0

are the constants of embeddings ( )⊂V L Ω4 and ⊂V H0 , respectively.
Due to (91d)–(91g), (96), (⋆ 5), Lemma 6, and the compactness theory of Aubin’s type (cf. [27, Corollary

4]), we can find subsequences of Y{[ ]} ⊂
∘ ∘

=

∞p z,n n n 1 , H{ }⋅∇ ⊂
∘ ∘

=

∞ω zn n n 1 , and W{ ( )}− ∇ ⊂
∘ ∘

=

∞ ∗A zdiv n n n 1 0 (not
relabeled), together with the respective limits Y[ ] ∈

∘ ∘p z, , H∈
∘ξ , and W∈

∘ ∗ζ 0, such that

Y

H
⎧

⎨

⎩

[ ] [ ]

( )

→

→

∘ ∘ ∘ ∘

∘ ∘ ∗

p z p z
p p W T V

Q

, , weakly in ,
in , weakly in 0, ; ,

and in the pointwise sense a.e. in ,

n n

n
1,2 (97a)

V→
∘ ∘ ∘ ∘ ∗μ p μ p weakly in ,n n (97b)

H→
∘ ∘ ∘ ∘λ p λ p in ,n n (97c)

H( )→ ′
∘ ∘ ∘ ∘ ∘p ω p α η σ weakly in ,n n (97d)

H

H
⎧

⎨
⎩

( )

( ) ( ) ( )

∇ ∇ ⋅∇ →

⋅∇ = ′ ∇ ∇ ⋅∇ → ′

∘ ∘ ∘

∘ ∘ ∘ ∘ ∘ ∘ ∘

f θ z ξ
ω z α η f θ z α η ξ

weakly in ,
weakly in ,

ε n n

n n n ε n n

n

n

(97e)

and

W( )− ∇ → → ∞
∘ ∘ ∘ ∗A z ζ ndiv weakly in , as .n n 0 (97f)

Now, the properties (28)–(31)will be verified through the limiting observations for (94), as → ∞n , with
the use of (91) and (97).

Finally, we verify the properties as in (32), under the situation (r.s.1). To this end, we first invoke (9b)
and (91c), and confirm that

H
⎧
⎨⎩

∣ ( ( ) ( ))∣

∣ ( ( ) ( ))∣ ∣ ∣

∇ ∇ − ∇ ∇ → → ∞

∇ ∇ − ∇ ∇ ≤ = … ∈

∘ ∘

∘ ∘

φ f θ f θ Q n
φ f θ f θ φ Q n φ

0, in the pointwise sense , a.e. in , as ,
2 , a.e. in , 1, 2, 3, , for any .

ε n ε

ε n ε
(98)

With (98), (r.s.1), (⋆ 4), and (A4) in mind, using (9b) and (91b), and applying the dominated convergence
theorem [25, Theorem 10 on page 36] yield that
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H

H

H H

H

H H H

�

�

�
�

∣ ( ( ) ( ) ( ) ( ))∣

∣ ( ( ) ( ))∣ ∣ ∣ ∣ ( ( ) ( ))∣

∣ ∣ ∣ ( ( ) ( ))∣

∣ ( ( ) ( ))∣ ∣ ∣ ∣ ( ( ) ( ))∣
∣ ∣

∣ ∣∣ ∣

[ ]

( ) [ ]

( ) [ ]

( ) [ ]
( )

′ ∇ ∇ − ′ ∇ ∇

≤ ′ − ′ + ′ ∇ ∇ − ∇ ∇

+ ′ ∇ ∇ − ∇ ∇

≤ ′ − ′ + ′ ∇ ∇ − ∇ ∇ +

′

−

→ → ∞ ∈

∘ ∘ ∘ ∘

∘ ∘ ∘ ∘

∘ ∘

∘ ∘ ∘ ∘

∞

∞

∞

∞

φ α η f θ α η f θ

φ α η α η α φ f θ f θ

α φ f θ f θ

φ α η α η α φ f θ f θ
α

ε
ε ε φ

n φ

2

0, as , for any .

n ε n ε

n L ε n ε

L ε n ε n

n L ε n ε
L

n

n N

N

n N

N

(99)

Owing to (97a) and (99), one can further observe that

H

H H

H H

( ( ) ( ) ) ( ( ) ( ))

( ( ) ( ) ) ( ( ) ( ))

[ ]

[ ]

′ ∇ ∇ ⋅∇ = ∇ ′ ∇ ∇

→ ′ ∇ ∇ ⋅∇ = ∇ ′ ∇ ∇

→ ∞ ∈

∘ ∘ ∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∘ ∘

α η f θ z φ z φα η f θ
α η f θ z φ z φα η f θ

n φ

, ,
, ,

as , for any .

n ε n n n n ε n

ε ε

n n N

N (100)

Meanwhile, from (9c), (91b), (91c), (⋆ 4), and (A4), it is inferred that:

H

H H H

H H H

� � �

� � �

∣( ( ) ( ) ( ) ( )) ∣

∣ ( ) ( )∣ ∣ ( )∣ ∣ ∣ ∣ ( )∣ ∣ ( ) ( )∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
( )

∣ ( )∣ ∣ ∣ ⎛
⎝

∣ ( )∣ ⎞
⎠

( )

[ ]

( ) ( ) [ ] ( )

( ) ( ) ( ) [ ]

∇ ∇ − ∇ ∇ ∇

≤ − ∇ ∇ ∇ + ∇ ∇ − ∇ ∇ ∇

≤
+

′ ∇ − +
+

∇ ∇ − +

→ → ∞ ∈

∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∘ ∘

∘ ∘ ∘

∞

∞ × ×

∞

α η f θ α η f θ ψ
α η α η f θ ψ α η f θ f θ ψ
N

ε
α ψ η η N

ε
α η ψ θ θ

n
n ψ C Q

1 3 1 1

0, as , for any ,

n ε n ε

n ε n L Q C Q ε n ε C Q

L C Q n C Q n

2 2

2
; ;

2 2
;

;
2

2 ;

c

n N

n N N N n N N N

N N N

and therefore,

H

H

( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) )

( )

[ ]

[ ]

⟨− ∇ ∇ ∇ ⟩= ∇ ∇ ∇ ∇

→ ⟨− ∇ ∇ ∇ ⟩= ∇ ∇ ∇ ∇

→ ∞ ∈

∘ ∘ ∘ ∘ ∘ ∘

∘ ∘ ∘ ∘ ∘ ∘

∞

α η f θ z ψ z α η f θ ψ
α η f θ z ψ z α η f θ ψ

n ψ C Q

div , ,
div , , ,

as , for any .

n ε n n n n ε n

ε ε

2 2

2 2

c

n n N

N (101)

The fine properties as in (32) will be a consequence of (91f), (91g), (92), (97d)–(97f), (100), and (101).
Thus, we complete the proof of Main Theorem 4.

8 Conclusion

The Main Theorems 1–4 of this article establish a versatile mathematical theory, which allows us to handle
various temperature constrained optimization problems for grain boundary motions. In particular, when
the state system is smooth and the temperature constraint is bounded, the Main Theorem 3 provides a
useful method (algorithm) to compute the optimal control, via the first necessary optimality condition.
Additionally, even when either the state system is nonsmooth or the temperature constraint is unbounded,
we identify a governing law for the optimal controls as the final Main Theorem 4. In fact, the proposed ideas
have the potential to push the field of optimal control of complementarity problems significantly forward.
Notice that such results are scarce for complementarity problems.
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Appendix

In this Appendix, we prepare some auxiliary results for our study. The auxiliary results are stated in the
following two subsections.

§ 2.1 Abstract theory for the state system ( )S ε;
§ 2.2 Mathematical theory for the linearized system of ( )S ε.

A1 Abstract theory for the state system S ε( )

In this subsection, we refer to [15, Appendix] to overview the abstract theory of nonlinear evolution
equation in an abstract Hilbert space X , which enables us to handle the state systems ( )S ε, for all ≥ε 0,
in a unified fashion.

The general theory consists of the following two propositions.

Proposition 1. (cf. [15, Lemma 8.1]). Let L�{ ( ) ∣ [ ]} ( )∈ ⊂t t T X0,0 be a class of time-dependent bounded
linear operators, let 	 ⟶X X:0 be a given nonlinear operator, and let [ ]⟶ ∞XΨ : 0,0 be a non-negative,
proper, l.s.c., and convex function, fulfilling the following conditions:

(cp.0) L� ( ) ( )∈t X0 is positive and self-adjoint, for any [ ]∈t T0, , and it holds that

�( ( ) ) ∣ ∣≥ ∈t w w κ w for any w X, , ,X X0 0
2

with some constant ( )∈κ 0, 10 , independent of [ ]∈t T0, and ∈w X .
(cp.1) L� [ ] ( )⟶T X: 0,0 is Lipschitz continuous, so that � 0 admits the (strong) time derivative

L� ( ) ( )′ ∈t X0 a.e. in ( )T0, , and

L L� �{ {∣ ( )∣ ∣ ( )∣ }}
( )

( ) ( )≔ ′ < ∞
∗

∈

A t tess sup max , ;T
t T

X X
0,

0 0

(cp.2) 	 ⟶X X:0 is a Lipschitz continuous operator, and	0 has aC1-potential functional �	 ⟶X:0 ,

so that the Gâteaux derivative 	 ( )′
∈

∗w X0 ( )=X at any ∈w X coincides with 	 ( ) ∈w X0 ;
(cp.3) ≥Ψ 00 on X , and the sublevel set { ∣ ( ) }∈ ≤w X w rΨ0 is compact in X , for any ≥r 0.
Then, for any initial data ( )∈w D Ψ0 0 and a forcing term f ( )∈ L T X0, ;0

2 , the following Cauchy problem of
evolution equation:

f� 	
( ) ⎧

⎨⎩

( ) ( ) ( ( )) ( ( )) ( ) ( )

( )

′ + ∂ + ∋ ∈

=

t w t w t w t t in X t T
w w in X

CP
Ψ , 0, ,

0 ;
0 0 0 0

0

admits a unique solution ( )∈w L T X0, ;2 , in the sense that:

( ) ( ) ( )∈ ∈
∞w W T X w L T0, ; , Ψ 0, ,1,2

0

and

f� 	( ( ) ( ) ( ( )) ( ) ( ) ) ( ( )) ( )

( ) ( )

′ + − − + ≤

∈ ∈

t w t w t t w t ϖ w t ϖ
for any ϖ D a.e. t T

, Ψ Ψ ,
Ψ , 0, .

X0 0 0 0 0

0

Moreover, both [ ] ( ( )) [ )∈ ↦ ∈ ∞t T w t0, Ψ 0,0 and  �	[ ] ( ( ))∈ ↦ ∈t T w t0, 0 are absolutely continuous
functions in time, and

f� 	∣ ( ) ( )∣ ( ( ( )) ( ( ))) ( ( ) ( )) ( )′ + + = ′ ∈t w t
t

w t w t t w t for a.e. t Td
d

Ψ , , 0, .X X0
2

0 0 0
1
2

Proposition 2. (cf. [15, Lemma 8.2]). Under the notations � 0, 	0, Ψ0, and assumptions (cp.0)–(cp.3), as in
the previous Proposition 1, let us fix ( )∈w D Ψ0 0 and f ( )∈ L T X0, ;0

2 , and take the unique solution
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( )∈w L T X0, ;2 to the Cauchy problem (CP). Let { }
=

∞Ψn n 1, { }
=

∞w n n0, 1, and f{ }
=

∞

n n 1 be, respectively, a sequence of
proper, l.s.c., and convex functions on X , a sequence of initial data in X , and a sequence of forcing terms in

( )L T X0, ;2 , such that
(cp.4) ≥Ψ 0n on X , for = …n 1, 2, 3, , and the union { ∣ ( ) }⋃ ∈ ≤

=

∞ w X w rΨn n1 of sublevel sets is relatively
compact in X , for any ≥r 0;

(cp.5) Ψn converges to Ψ0 on X , in the sense of Mosco, as → ∞n ;
(cp.6) � ( ) < ∞∈ wsup Ψn n n0, , and →w wn0, 0 in X , as → ∞n ;
(cp.7) f f→n 0 weakly in ( )L T X0, ;2 , as → ∞n .

For any �∈n , let ( )∈w L T X0, ;n
2 be the solution to the Cauchy problem (CP), for the initial data

( )∈w D Ψn n0, and forcing term f ( )∈ L T X0, ;n
2 . Then,

([ ] ) ( )

( ( )) ( ( ))∫ ∫

→

→ → ∞

w w in C T X weakly in W T X

w t t w t t as n

0, ; , 0, ; ,

Ψ d Ψ d , ,

n
T

n n

T

1,2

0 0

0

and

�

∣ ( )∣ ∣ ( )∣([ ]) ([ ])≤ < ∞

∈

w wΨ sup Ψ .C T
n

n n C T0 0, 0,

In this article, the readers are recommended to see [15, Appendix] for the detailed proofs of Propositions
1 and 2. Roughly summarized, these Propositions can be obtained by means of modified (mixed and
reduced) methods of the existing theories, such as [19,23,24].

A2 Mathematical theory for the linearized system of S ε( )

In this subsection, we recall the previous work [16] and set up some auxiliary results. In what follows, we let
Y V V≔ × 0, with the dualY V V≔ ×

∗ ∗ ∗

0. Note thatY is a Hilbert space which is endowed with a uniform
convex topology, based on the inner product for product space, as in the Preliminaries (see the paragraph of
Abstract notations).

Besides, we define

Z V V( ( ) ) ( ( ) )≔ ∩ × ∩
∗ ∗W T V W T V0, ; 0, ; ,1,2 1,2

0 0

as a Banach space, endowed with the norm:

ZZ Y Y
∣[ ]∣ ∣[ ]∣ (∣[ ]∣ ∣[ ]∣ ) [ ][ ([ ] )]≔ + + ∂ ∂ ∈∗p z p z p z p z p z˜ , ˜ ˜ , ˜ ˜ , ˜ ˜ , ˜ , for ˜ , ˜ .C T H t t0, ;

2 22
1
2

Based on this, let us consider the following linear system of parabolic initial-boundary value problem,
denoted by (P):

( )
⎧

⎨
⎩

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

⎧

⎨
⎩

( ) ( ) ( ( ) ( ) ) ( ) ( )

( ) ( )

( ) ( )

∂ − + + + ⋅∇ = ∈

∇ ⋅ = ∈

= ∈

∂ + − ∇ + ∇ + = ∈

= ∈

= ∈

P
p p μ t x p λ t x p ω t x z h t x t x Q
p t x n t x

p x p x x

a t x z b t x z A t x z ν z ω t x p k t x t x Q
z t x t x
z x z x x

Δ , , , , , , ,
, 0, , Σ,

0, , Ω;

, , div , , , , , ,
, 0, , Σ,

0, , Ω.

t

t

Γ

0

2

0

This system is studied in [16] as a key problem for the Gâteaux differential of the cost �ε for >ε 0. In the
context, H[ ] [ ]∈a b μ λ ω A, , , , , 6 is a given sextuplet of functions, which belongs to a subclassS H[ ]⊂

6,
defined as
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S H

�

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

[ ] [ ]

( ) ( )

[ ] [ ( )]

( )

[ ( )]

[ ( )] ( )

( )

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

≔ ∈

[ ] ∈ ∈

[ ] ∈

[ ] ∈ ≥

[ ] ∈

[ ] ∈

∈ ∈

∞ ∞

∞

∞

∞

∞ ×

×

a b μ λ ω A

a W Q a L Q
b λ L Q

μ L T H μ Q
ω L Q
A L Q A t x

t x Q

˜, ˜, ˜, ˜, ˜ , ˜

– ˜ and log ˜ ,
– ˜, ˜ ,
– ˜ 0, ; with ˜ 0 a.e. in ,
– ˜ ,
– ˜ , and the value ˜ ,

is positive and symmetric matrix, for a.e. ,

.N

N N

N N

6

1,

2

(A.1)

Also, [ ] [ ]∈p z H,0 0
2 and Y[ ] ∈

∗h k, are, respectively, an initial pair and forcing pair, in the system (P).
Now, we refer to the previous work [16], to recall the key properties of the system (P), in forms of

Propositions.

Proposition 3. (cf. [16, Main Theorem 1 (I-A)]) For any sextuplet S[ ] ∈a b μ λ ω A, , , , , , any initial pair
[ ] [ ]∈p z H,0 0

2, and any forcing pair Y[ ] ∈
∗h k, , the system (P) admits a unique solution, in the sense that:

⎧
⎨
⎩

( ) ( ) ([ ] )

( ) ( ) ([ ] )

∈ ∩ ⊂

∈ ∩ ⊂

∗

∗

p W T V L T V C T H
z W T V L T V C T H

0, ; 0, ; 0, ; ,
0, ; 0, ; 0, ; ;

1,2 2

1,2
0

2
0

(A.2)

( ) ( ( ) ) ( ) ( ) ( ( ) ( ) ( ) ( ) ) ( )

( ) ( )

[ ]⟨∂ ⟩ + ∇ ∇ + ⟨ ⟩ + + ⋅∇ = ⟨ ⟩

∈ ∈ =

p t φ p t φ μ t p t φ λ t p t ω t z t φ h t φ
for any φ V a.e. t T subject to p p H

, , , , , ,
, 0, , 0 in ;

t V H V H V

0

N
(A.3)

and

( ) ( ) ( ( ) ( ) ) ( ( ) ( ) ( ) ( ) ( ) ) ( )

( ) ( )

[ ]⟨∂ ⟩ + + ∇ + ∇ + ∇ = ⟨ ⟩

∈ ∈ =

z t a t ψ b t z t ψ A t z t ν z t p t ω t ψ k t ψ
for any ψ V t T subject to z z in H

, , , , ,
, a.e. 0, , 0 .

t V H H V
2

0 0

N0 0 (A.4)

Proposition 4. (cf. [16, Main Theorem 1 (I-B)]) For each { }ℓ ∈ 1, 2 , let us take arbitrary [ ]ℓ ℓ ℓ ℓ ℓ ℓa b μ λ ω A, , , , ,
S∈ ,[ ] [ ]∈

ℓ ℓp z H,0 0
2, and Y[ ] ∈

ℓ ℓ ∗h k, , and let us denote by H[ ] [ ]∈
ℓ ℓp z, 2 the solution to (P), corresponding to

thesextuplet [ ]ℓ ℓ ℓ ℓ ℓ ℓa b μ λ ω A, , , , , , initial pair[ ]ℓ ℓp z,0 0 ,and forcingpair[ ]ℓ ℓh k, .Besides, let ( )=
∗ ∗C C a b λ ω, , ,0 0

1 1 1 1

be a positive constant, depending on a b λ, , ,1 1 1 and ω1, which is defined as:

( )

( )
( )( ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ )

( ) ( ) ( )

[ ( )]

( ) ( ) ( )≔
+

∧ ∧

⋅ + + + + + +

+

∗
∞ ∞ ∞

∞

C ν
ν a Q

C C C a b λ

ω

9 1
1 inf

1 1

,

V
L

V
L

V
L

W Q L Q L Q

L Q

0
2

2 1
2 4 2 1 1 1

1 2
N

4 4

0

4
1,

(A.5)

with the use of the constants >C 0V
L4

and >C 0V
L
0

4
of the respective embeddings ( )⊂V L Ω4 and ( )⊂V L Ω0

4 .Then, it
is estimated that

(∣( )( )∣ ∣ ( ) ( )( )∣ ) (∣( )( )∣ ∣( )( )∣ )

(∣( )( )∣ ∣ ( ) ( )( )∣ ) (∣( )( )∣ ∣( )( )∣ ( ))

( )

− + − + − + −

≤ − + − + − + − +

∈

∗ ∗ ∗
∗ ∗

t
p p t a t z z t p p t ν z z t

C p p t a t z z t C h h t k k t R t

for a.e. t T

d
d

3 2 ,

0, ;

H H V V

H H V V

1 2 2 1 1 2 2 1 2 2 2 1 2 2

0
1 2 2 1 1 2 2

0
1 2 2 1 2 2

0

0

0

(A.6)

where

( ) ∣ ( )∣ (∣ ∣ ∣ ( )( )∣ ) ∣ ( )∣ (∣( )( )∣ ∣( )( )∣ )

∣ ( )∣ (∣( )( )∣ ∣ ( )( )( )∣ ) ∣ ( )( )( )∣ ∣( )( ) ( )∣

( )

( ) [ ( )] [ ( )]

( ) [ ]

≔ ∂ − + ∇ − + − + −

+ − + − + ∇ − + − ∇

∈

∗
∗R t z t a a a a t p t μ μ t ω ω t

z t b b t p t λ λ t z t ω ω t A A t z t

for a.e. t T

,

0, .

t V C Q L V H L

V L H H H

0
2 2 1 2 2 1 2

Ω
2 2 2 1 2 2 1 2

Ω
2

2 2 1 2
Ω

2 2 1 2 2 2 1 2 2 1 2 2 2

N N

N

0
4 4

0 4

Proposition 5. (cf. [16, Corollary 1]) For any S[ ] ∈a b μ λ ω A, , , , , , let us denote by � �( )= a b μ λ ω A, , , , , :
Y Z[ ] × ⟶

∗H 2 a linear operator, which maps any pair of data Y[[ ] [ ]] [ ]∈ ×
∗p z h k H, , ,0 0

2 to the solution
Z[ ] ∈p z, to the corresponding linear system (P), for the sextuplet [ ]a b μ λ ω A, , , , , , initial pair [ ]p z,0 0 , and
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forcing pair [ ]h k, . Then, for any sextuplet S[ ] ∈a b μ λ ω A, , , , , , there exist positive constants =
∗M0

( )∗M a b μ λ ω A, , , , ,0 and ( )=
∗ ∗M M a b μ λ ω A, , , , ,1 1 , depending on a, b, μ, λ, ω, and A, such that

Y

Z

Y Z Y

�

∣[[ ] [ ]]∣ ∣[ ]∣ ∣[[ ] [ ]]∣

[ ] [ ] [ ]

[ ] ( )[[ ] [ ]]

[ ] [ ]≤ ≤

∈ ∈

= ∈

∗

×

∗

×

∗

∗ ∗M p z h k p z M p z h k
for all p z H h k

and p z a b μ λ ω A p z h k

, , , , , , , ,
, , , ,

, , , , , , , , , ,

H H0 0 0 1 0 0

0 0
2

0 0

2 2

i.e., the operator � �( )= a b μ λ ω A, , , , , is an isomorphism between the Hilbert space Y[ ] ×
∗H 2 and the

Banach space Z.

Proposition 6. (cf. [16, Corollary 2]) Let us assume:

S S[ ] {[ ]}∈ ⊂
=

∞a b μ λ ω A a b μ λ ω A, , , , , , , , , , , ,n n n n n n n 1

[ ] [ ]

( ) ( ) [ ( )] ( ) ( ) [ ( )] [ ( )]

∂ ∇ → ∂ ∇ − ∗

× × × × × ×

→ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ×

a a a b λ ω A a a a b λ ω A weakly in
L Q L Q L Q L Q L Q L Q L Q

and in the pointwise sense a.e. in Q as n

, , , , , , , , , , , ,
,

, ,

n t n n n n n n t
N N N N (A.7)

and

⎧

⎨
⎩

( )

( ) ( ) ( )

→ − ∗

→ ∈

→ ∞

∞μ μ weakly in L T H
μ t μ t H for a.e. t T

n
0, ; ,

in , 0, ,
as .n

n

Let us assume [ ] [ ]∈p z H,0 0
2, Y[ ] ∈

∗h k, , and let us denote by H[ ] [ ]∈p z, 2 the solution to (P), for the initial
pair [ ]p z,0 0 , and forcing pair [ ]h k, . Also, let us assume {[ ]} [ ]⊂

=

∞p z H,n n n0, 0, 1
2, Y{[ ]} ⊂

=

∞ ∗h k,n n n 1 , and for any
�∈n , let us denote by H[ ] [ ]∈p z,n n

2 the solution to (P), for the sextuplet S[ ] ∈a b μ λ ω A, , , , ,n n n n n n , initial
pair [ ]p z,n n0, 0, , and forcing pair [ ]h k,n n . Then, the following two items hold.
(A) The convergence:

Y
⎧
⎨⎩

[ ] [ ] [ ]

[ ] [ ]

→

→

→ ∞
∗

p z p z in H
h k h k in

as n, , ,
, , ,

,n n

n n

0, 0, 0 0
2

implies the convergence:

Y[ ] [ ] [ ([ ] )]→ → ∞p z p z in C T H and in as n, , 0, ; , , .n n
2

(B) The following two convergences:

Y
⎧
⎨⎩

[ ] [ ] [ ]

[ ] [ ]

→

→

→ ∞
∗

p z p z weakly in H
h k h k weakly in

as n
, , ,

, , ,
,n n

n n

0, 0, 0 0
2

and

H Y[ ] [ ] [ ] ( ) ( )→ × → ∞
∗ ∗p z p z in weakly in and weakly in W T V W T V as n, , , , 0, ; 0, ; , ,n n

2 1,2 1,2
0

are equivalent to each other.

Remark 17. In the previous work [16], one of the essential requirements is to use the continuous embedding
( )⊂V L Ω4 , as in Remark 1, which is satisfied under the restriction ≤N 4 of the spatial dimension �∈N .

Therefore, under the assumption { }∈N 2, 3, 4 of this article, Propositions 3–6 will be applicable, although
the previous results as in [16] were obtained under strict assumption { }∈N 1, 2, 3 .

Finally, we recall an auxiliary result, which was indirectly obtained in the proof of [16, Key-Lemma 2].

Lemma 6. Let us assume that ( )∈
∞μ L T Hˆ 0, ; , { } ( )⊂

=

∞ ∞μ L T Hˆ 0, ;n n 1 , V∈p̂ , V{ } ⊂
=

∞p̂n n 1 ,

≥ ≥ = …μ and μ a.e. in Q nˆ 0 ˆ 0, , 1, 2, 3, ,n (A.8a)
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⎧

⎨
⎩

( )

( ) ( ) ( )

→ − ∗

→ ∈

∞μ μ weakly in L T H
μ t μ t in H for a.e. t T
ˆ ˆ 0, ; ,
ˆ ˆ , 0, ,

n

n
(A.8b)

and

H V→ → ∞p p in and weakly in as nˆ ˆ , , .n (A.8c)

Then, it holds that

V→ → ∞
∗μ p μp weakly in as nˆ ˆ ˆ ˆ , .n n (A.9)

Proof. From (ap.8) and Remark 1, we can see that:

V V
� �

∣ ∣ ∣ ∣ ∣ ∣( )( )≤ < ∞

∈ ∈

∗ ∞μ p C μ psup ˆ ˆ sup ˆ ˆ ,
n

n n V
L

n
n L T H n

2
0, ;

4
(A.10)

with the use of the constant >C 0V
L4

of embedding ( )⊂V L Ω4 . This implies that:
(⋆ 0) The sequence { }

=

∞μ pˆ ˆn n n 1 is weakly compact inV∗.

Also, with (A.8b) and the dominated convergence theorem [25, Theorem 10 on page 36] in mind, we can
derive that:

H→ → ∞μ μ nˆ ˆ in , as .n (A.11)

Now, on the basis of (⋆ 0), let us take any V∈
∗ ∗q̂ , such that V∈

∗ ∗q̂ is a weak limit of a subsequence of
{ }

=

∞μ pˆ ˆn n n 1 (not relabeled), i.e.,

V→ → ∞
∗ ∗μ p q nˆ ˆ ˆ weakly in , as .n n (A.12)

Besides, by taking subsequences if necessary, (A.8c) and (A.11) enable us to say that:

→ → → ∞μ μ p p Q nˆ ˆ and ˆ ˆ in the pointwise sense , a.e. in , as .n n (A.13)

Additionally, by (A8) and Remark 1, we can compute that:

∣ ( ) ( ) ( ) ( )∣ ∣ ∣ ∣( ) ( )∣ ∣( )( )∣ ∣ ( )∣( )− ≤ − ≤ − → → ∞μ t φ t μ t φ t μ μ t φ t C μ μ t φ t nˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0, as ,n H n H V
L

n H V
2 2 2 24 (A.14a)

V

� �

∣ ( ) ( ) ( ) ( )∣ ∣( )( )∣ ∣ ( )∣

( )

( )− ≤ − < ∞

∈ ∈

∈ ∈

μ t φ t μ t φ t C μ μ t φ t

for any φ and a.e. t T

sup ˆ ˆ ˆ ˆ sup ˆ ˆ ˆ ,

ˆ , 0, ,
n

n H V
L

n
n H V

2 2 24

(A.14b)

and

H V
� �

∣ ∣ {∣ ∣ ∣ ∣ }( )( )≤ < ∞

∈ ∈

∞μ p C μ psup ˆ ˆ sup ˆ ˆ .
n

n n V
L

n
n L T H n

2 2
0, ;

24
(A.14c)

Taking into account (A14), Remark 1, Lions lemma [28, Lemma 1.3 on page 12], and the dominated
convergence theorem [25, Theorem 10 on page 36], one can observe that:

H

H

⎧

⎨
⎩

→

→ → ∞

μ φ μ φ

μ p μ p n

ˆ ˆ in ,

ˆ ˆ ˆ ˆ weakly in , as ,
n

n n

and therefore,

VV H H V( ) ( )⟨ ⟩ = → = ⟨ ⟩ → ∞ ∈μ p φ μ p μ φ μ p μ φ μp φ n φˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ , ˆ as , for any ˆ .n n n n n (A.15)

(A.12) and (A.15) imply the uniqueness of the weak limit =
∗q μpˆ ˆ ˆ of subsequences of { }

=

∞μ pˆ ˆn n n 1 inV∗. Hence,
invoking the separability of the Hilbert space V∗, we conclude the weak convergence (A.9) with non-
necessity of subsequences. □
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