DE GRUYTER Advances in Nonlinear Analysis 2022; 11: 1249-1286

Research Article

Harbir Antil, Shodai Kubota, Ken Shirakawa*, and Noriaki Yamazaki
Constrained optimization problems
governed by PDE models of grain boundary
motions

https://doi.org/10.1515/anona-2022-0242
received October 8, 2021; accepted February 8, 2022
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1 Introduction

Let (0, T) be a time interval with a constant 0 < T < oo, and let N € {2, 3, 4} denote the spatial dimension.
Let Q ¢ RY be a bounded domain with a Lipschitz boundary I := 9Q, and let ny be the unit outer normal on
I'. Besides, we setQ := (0, T) x Q and £ = (0, T) x T, and we define H := [2(Q) with norm ||z, V = H{(Q),
Vo == H)(Q), and .# = X0, T; L%(Q)), as the base spaces for this work. Moreover, we set:
[0, k'] ={il € #|k° <ii < k' a.e.in Q}, forarbitrary measurable obstacles k*: Q — [-o0, co],
£=0,1,

and define a family of functional classes & ¢ 27, as follows:

K = [k, k'] for some measurable obstacles x*: Q — [-0c0, 0], £ = 0, 1,

such that k° < ¥! a.e.in Q (i.e., K + @)

R={Kcw 1)
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In this article, we consider a class of optimal control problems, denoted by (OP)X, which are labeled by
constants £ > 0 and functional classes K = [x°, k!] € &, with the obstacles x*: Q — [-co, 0], £ = 0, 1.
For every € > 0 and K = [x°, x!] € &, the optimal control problem (OP)X is described as follows:

(OP)X find a pair of functions [u*, v*] € [#°]2, called the optimal control, such that

[w, v¥] € U5y = {[i, V] € [#P | d e K} and Je(u*,v*) = min{ T (u,v) | [u,v] € %53,
where 7. = J(u, v) is a cost functional on [#]?, defined as follows:

Je: [uy V] € [%]2 = Ju, v)
M,

- @
2

T T T T

M Mu MV
jm - ) Ofyde + 22 j 6 - GOy + 2L j|u(t>|§dt 2t jw)@dt ¢ [0, co),
0 0 (0] (0]

with [n, 0] € [#]? solving the state system, denoted by (S).:

om — An + g() + a'(n)y/e? + |VOP = Mu in Q,
(8)e {Vnt, x)- np(x) =0, (t,x) € %, (3)
n(0, x) = ny(x), x€Q;

Vo
JE2 + |VOP
6(t,x)=0, (t,x)eZX,
6(0,x) = 6p(x), xe€Q.

0p0:0 — div(a(n) + VZVG) =My in Q,

(4)

The state system (S). is based on a phase field model of planar grain boundary motion, known as
Kobayashi-Warren-Carter system (cf. [1,2]). So, for the spatial domain Q ¢ R¥, the case when N=2is a
reasonable setting in physics, and other cases when N = 3, 4 are just generalized ones in mathematics. In
this context, the unknowns n € # and 6 € # are order parameters that indicate the orientation order and
orientation angle of the polycrystal body, respectively. Besides, [r,, 0o] € V x V, is an initial pair, i.e., a pair
of initial data of [r, 6]. The forcing pair [u, v] € [#]* denotes the control variables that can control the
profile of solution [1, 8] € [#7]? to (S).. Additionally, 0 < ag € W-*(Q) and 0 < a € CXR) are given func-
tions to reproduce the mobilities of grain boundary motions. Finally, g € Wz*(R) is a perturbation for the
orientation order n, and v > O is a fixed constant to relax the diffusion of the orientation angle 6.

The first part (3) of the state system (S), is the initial-boundary value problem of an Allen-Cahn-type
equation, so that the forcing term u can be regarded as a temperature control of the grain boundary
formation. Also, the second problem (4) is the initial-boundary value problem to reproduce crystalline
micro-structure of polycrystal, and the case of € = 0 is the closest to the original setting adopted by

Kobayashi et al. [1,2]. Indeed, when € = 0, the quasi-linear diffusion as in (4) is described in a singular

Vo

form —div (a(n)w + vzve), and it is known that this type of singularity is effective to reproduce the facet,

i.e., the locally uniform (constant) phase in each oriented grain (cf. [1]). Hence, the systems (S),, for positive
&, can be regarded as regularized approximating systems, that are to approach to the physically realistic
situation (S)g, in the limit € | O.

Meanwhile, in the optimal control problem (OP)X, the class K = [«°, k] € £ is to constrain the range of
temperature control u, and the obstacles x* : Q — [-o00, 00], £ = 0, 1, indicate the control bounds of the
temperature. The pair of functions [1,,, 6aa] € [#]* is a given admissible target profile of [n, 0] € [#].
Moreover, M, = 0, My = 0, M, = 0, and M, > O are fixed constants.

The objective of this article is to significantly extend the results of our previous work [15], which
dealt with:

#1) Key properties of the state systems (S), with one-dimensional domain Q = (0, 1);
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#2) Mathematical analysis of the optimal control problem (OP)X, for £ > 0, but with one-dimensional
domain Q c (0, 1) without any control constraints, i.e., K = [«9, k'] € & (=#).

In light of this, the novelty of this work is in:

£3) The development of a mathematical analysis to obtain optimal controls of grain boundaries under
the higher dimensional setting N € {2, 3, 4} of the spatial domain, and the temperature constraint
K =[x% '] € &.

In addition, the presence of constraints K = [«9, k] € & makes the mathematical analysis further
challenging. Notice that such constraints are meaningful from a practical point of view. We further empha-
size that in the main part of this work, the L*°-boundedness of n will be essential, and the main results will
be valid under the following assumption on the data:

(1.5.0) € > 0, [1y, Bo] € Do = (V n L*(Q)) x Vp, and K € Ko, where

Ro=RN2"Q =K | K =[x '] € & such that k! € L*(Q), ¢ = 0, 1}. (5)

Hence, in general cases of constraints K € K (including no constraint case), we will be forced to adopt some
limiting (approximating) approach on the basis of the results under the restricted situation (r.s.0).
Now, in view of $1)-43), we set the goal of this article to prove four Main theorems, summarized as
follows.
Main Theorem 1: Mathematical results concerning the following items.
(I-A) (Solvability of state systems): Existence and uniqueness for the state system (S)., for every € > 0,
initial pair wo = [1,, o] € V x Vo, and forcing pair [u, v] € [#]%.
(I-B) (Continuous dependence on data among state systems): Continuous dependence of solutions to the
systems (S),, with respect to the constant € > 0, initial pair[n,, 6o] € V x V, and forcing pair [u, v] € [#].

Main Theorem 2: Mathematical results concerning the following items.
(II-A) (Solvability of optimal control problems): Existence for the optimal control problem (OP)X, for every
constant € > 0, initial pair [r,, 8o] € V x V, and constraint K = [«°, k1] € &.
(II-B) (Parameter dependence of optimal controls): Some semi-continuous dependence of the optimal
controls, with respect to the constant € > 0, initial pair [r,, 6o] € V x Vp, and constraint K = [°, k'] € &.

Main Theorem 3: Mathematical results concerning the following items.
(III-A) (Necessary optimality conditions under (r.s.0)): Derivation of first-order necessary optimality con-
ditions for (OP)§ , via adjoint method, under the restricted situation (r.s.0).
(II1-B) (Specific parameter dependence under (r.s.0)): Strong parameter dependence of optimal controls,
which is specifically obtained under (r.s.0).

Main Theorem 4: (Limiting optimality conditions): The optimality conditions which are obtained as
approximation limits of the necessary conditions under (r.s.0)

This article is organized as follows. The Main Theorems are stated in Section 3, after the preliminaries
in Section 1, and the auxiliary lemmas in the Appendix. The part after Section 3 will be divided into
Sections 4-7, and these four sections will be devoted to the proofs of the respective four Main Theorems 1-4.

2 Preliminaries

We begin by prescribing the notations used throughout this article.
Basic notations. For arbitrary 1y, So € [-00, o], we define

oV So == maxin, So} and 1y A Sg = min{r, So},
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and in particular, we set
[r*=rv0 and [r]”=-(rA0), forany r € R.

For any dimension d € N, we denote by £ the d-dimensional Lebesgue measure. The measure theo-

retical phrases, such as “a.e.,” “dt,” “dx,” and so on, are all with respect to the Lebesgue measure in each
corresponding dimension.
Abstract notations. For an abstract Banach space X, we denote by |-|x the norm of X, and denote by (-,-)x
the duality pairing between X and its dual X*. In particular, when X is a Hilbert space, we denote by (-,-)x
the inner product of X. Moreover, when there is no possibility of confusion, we uniformly denote by |-| the
norm of Euclidean spaces, and for any dimension d € N, we write the inner product (scalar product) of R4,
as follows:

d
)/)7 = Z)’y,, forall y = [YP ~--,)’d],}7 = [)71’ ~~~’)7d] € [Rd'

i=1
For any subset A of a Banach space X, let x, : X — {0, 1} be the characteristic function of 4, i.e.,

1, if we A,

: X =
Xa W €X=x, (W) {O, otherwise.

For two Banach spaces X and Y, we denote by #(X; Y) the Banach space of bounded linear operators
from X into Y, and in particular, we let #(X) = Z(X; X).

For Banach spaces X, ..., X4, with1 < d € N, let X; x---x X; be the product Banach space endowed with
the norm ||, x...xx; = |'lx, +---+ |‘|x,- However, when all X,,..., X; are Hilbert spaces, X; x---x X; denotes
the product Hilbert space endowed with the inner product (-, )xx...xx, = (-,-)x, +---+ (-,-)x, and the norm

1 . . . . .
[lxx-xxs = (|-|§(1 et |-|§<d)2. In particular, when all X;,..., X; coincide with a Banach space Y, we write:

dtimes

[Y9d:=Yx --xY.
Additionally, for any transform (operator) 7 : X — Y, we let:
TIw, ..., wy] = [Twy, ..., Twy] in [Y]4, forany [wy, ...,wi] € [X]4.

Specific notations of this article. As is mentioned in the previous section, let (0, T) ¢ R be a bounded

time interval with a finite constant T > 0, and let N € {2, 3, 4} be a constant of spatial dimension. Let Q ¢ RV
be a fixed spatial bounded domain with a smooth boundary T := 0Q. We denote by nr the unit outward
normal vector on I'. Besides, we set Q := (0, T) x Q and X := (0, T) x I'. In particular, we denote by o, V,
and div the distributional time derivative, the distributional gradient, and distributional divergence,
respectively.

On this basis, we define

H:=IXQ) and # =130, T; H),
V:=HYQ) and 7" = L%, T; V),
Vo = Hy(Q) and 7 = LX0, T; V),
Z = L®(Q) x A .
Also, we identify the Hilbert spaces H and s# with their dual spaces. Based on the identifications, we have
the following relationships of continuous embeddings:
VcH=HcV*and ¥ c # = H* C V',
WwcH=HcV;and ¥Yoc # =H*C V7,

among the Hilbert spaces H, V, V,, #, ¥~, and ¥, and the respective dual spaces H*, V*, V3, #*, v, and
775. Additionally, in this article, we define the topology of the Hilbert space V, by using the following inner
product:

w, Wy, = (Vw, VW), forall w, w € V.
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Remark 1. (cf. [16, Remark 3]) Due to the restriction N € {2, 3, 4} of spatial dimension, we can suppose the
continuous embedding V ¢ L*(Q), and we can easily check that:

(i) fO<jicHandp eV, then \Jjip € H, jip € V*, and

1
(JRP, W < CE 1P v [lu, forany e H,
v v Y v v v Y 4 A v Y Y
Gp, Pyv = Jip, P < (GF VIlulplvPly, forany ¢ e V;

(i) if 0 < i € L(0, T; H) and p € 7", then \Jip € A, ip € 7*, and

1
(D ©)x < CE 12w 1, 1 Blv-1@ly, forany ¢ e 7,
AA A ~ A = A 4 N A ~ ~ .
@B, @)y = (AP, VAP < (CF ) IAle=o,1 mIBly 1@ly, forany ¢ € 77

where C&4 > 0 is the constant of embedding V ¢ L*(Q).

Finally, we define:
D=V x Vy and Do = (V N L®(Q)) x Vo,

as the notations to specify the range of the initial pair [1,, 8o] in the state system.

Notations in convex analysis. (cf.[6, Chapter II]) Let X be an abstract Hilbert space X. Then, any
closed and convex set K ¢ X defines a single-valued operator proj; : X — K, which maps any w € X to
a point projy(w) € K, satisfying:

[projx(w) — wlx = min{|w — w |y | W € K}.

The operator projy is called the orthogonal projection (or projection in short) onto K.

Remark 2. (Key properties of the projection) Let K be a closed and convex set in a Hilbert space X. Then, the
following facts hold.
(Fact 1) The projection proj; : X — K is a nonexpansive operator from X into itself, i.e.,

|proje(w!) — proj(w?)|x < [w! — w?|x, forall wte X,2=1,2.

(Fact 2) wig = projy(w) in X, iff. (w — wg, W — wg)x < O, for any w € K.

Remark 3. (Examples of projections) Based on Remark 2, we can also see the following facts.
(Fact 3) If —oo < r* < s* < 00, £ = 1, 2, then the projections projj,« & : R — [r*, s*] onto compact intervals

[r¢, st] ¢ R fulfills that:
Iproji,: ¢1(§) — projj,2 (&) < [r' = r? v |s' - s?|, forany &€ R.

(Fact 4) Let £ be the class of constraints defined in (1), and let K = [«°, k'] € R be the constraint with the
obstacles xt : Q — [-00, 0], € = 0, 1. Then, for the projection proj; : # — K, it holds that:

[Projx (W](t, x) = Projje v, (e, xR U(E5 X))
Ki(t, x), if u(t, x) > x\(t, x),
= v (A W), x) = {ult, x), if kO, x) < u(t, x) < ki(t, x), a.e. (t,x)€Q,
KO(t, x), if u(t, x) < xO(¢, x),
forany u e .
For a proper, lower semi-continuous (l.s.c.), and convex function ¥ : X — (—00, co] on a Hilbert space
X, we denote by D(¥) the effective domain of W. Also, we denote by 0¥ the subdifferential of ¥. The

subdifferential 0¥ corresponds to a weak differential of convex function ¥, and it is known as a maximal
monotone graph in the product space X x X. The set D(0¥) := {z € X|0¥(z) #+ @&} is called the domain of 0¥.
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We often use the notation “fwy, wy] € 0¥ in X x X,” to mean that “wj € 0¥(wp) in X for wy € D(0¥),”
by identifying the operator 0¥ with its graph in X x X.

Next, for Hilbert spaces X, ..., X4, with1 < d € N, let us consider a proper, l.s.c., and convex function on
the product space X; x---x Xg:

Yw=[wy,...,w] € X x---x Xg > P(w) = ¥(w,...,wy) € (—00, o0].
Besides, for any i € {1,...,d}, we denote by awl.@ : Xp x---x X3 — X; a set-valued operator, which maps any

w=[wy, ...,W;, ..., € X) x---x X; x---x X, to a subset aw,.@(w) c X; described as follows:

aw,.@(w) = awi@(wl, s Wiy ooy WY) = [W* € X;

(W W - W)x, < P(wy, ..., W, ..., W)
- @(wl,...,wi,...,wd), forany w € Xi}.
As is easily checked,
¥ € [0, F x---x0,,P] in [X x---xXg]%, (6)
where [awﬁf Xon xawﬁ’] 1 Xy x--x Xg — 2%1xxXa jg 3 set-valued operator, defined as:
[00,F X x 0, T]W) = 3, F(W) X---xd,,, F(W) in X; x---x Xy,

forany w = [wi,...,wg] € D([0,, ¥ x---x3y,¥]) = D(3,,%) n---n D(3,,%).

But, it should be noted that the converse inclusion of (6) is not true, in general.

Example 1. (Examples of the subdifferential) As one of the representatives of the subdifferentials, we

exemplify the following set-valued signal function Sgn? : R4 — Z[Rd, with d € N, which is defined as:

& LGl it eso0,
£=1&,....6] e RT e Sgnd(§) = Sgni(¢,,...,.&) = { 1§l &2+ 482 @)

D4, otherwise,

where D4 denotes the closed unit ball in R¢ centered at the origin. Indeed, the set-valued function Sgn4
coincides with the subdifferential of the Euclidean norm || : £ € R — [&] = (/&7 + - +&7 € [0, 00), i.e.,

9-|(¢) = Sgni(§), forany & € D(AJ|) = RY,
and furthermore, it is observed that
9]-[(0) = D9 ¢ [-1,1]9 = [9g|-| x---xDg,|-]1(0).

Example 2. Let d € N be the constant of dimension. For any € > 0, let f. : R? — [0, 0o) be a continuous
and convex function, defined as:

f::yeR¥s fi(y) = Je2 + |y €0, c0). (8)

When € = 0, the convex function fy of this case coincides with the d-dimensional Euclidean norm ||,

and hence, the subdifferential df; coincides with the set valued signal function Sgn? : R4 — Z[Rd, defined
in (7).

In the meantime, when € > 0, the convex function f, belongs to C*°-class, and the subdifferential of; is
identified with the (single-valued) usual gradient:

Vfg:ye[RdHVfg(y):%e[Rd.
e+ |yl

Moreover, since:

) = Ile, Vllgart = |[€, Vo - s Yyllrar, forall [g,y] = [€,y,,...,,] € R4,
with e >0 and y=[y,....y] € RY,
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it will be estimated that
Ife(y) = e D] < lle, y] - [€, Fllgan < le — €| + |y -V |ge, foralle,>0 and y,yeR9, (%)

[e, y]

R? I[g» y] ||Rd"1

le,y]  [&7]
|[8! y]l[Rd"1 |[§, y~]|Rd+1

_y
€, Y]lgar

IVe(Ylge = ‘

IRd+1

(9b)

1IV(y) = Vie(Plga <

Rd+1

< /2\~(|£—§|+|y—)7|[ka), forall ,>0 andy,y e RY,
ENE

and

IVl < [l YDl < 21,
IV2F(y) - Vf(Plgeet < (Ve 1Es Y1) = P Heot IGE, PDlgetsnncan (90)
3(d + 1)?
< == 7
(e A E)

A

(le = & + |y - JIga), forall £, >0 and y,j € R4

Finally, we mention about a notion of functional convergence, known as “Mosco-convergence.”

Definition 1. (Mosco-convergence: cf. [17]) Let X be an abstract Hilbert space. Let ¥ : X — (-0, co] be a

proper, l.s.c., and convex function, and let {¥,}72; be a sequence of proper, Ls.c., and convex functions

¥, : X > (-00,00],n=1,2,3,.... Then, it is said that ¥, —» ¥ on X, in the sense of Mosco, as n — oo, iff.

the following two conditions are fulfilled:

(M1) The condition of lower-bound: lim ,,_,.,¥%,(W,) > Y(W), if w € X, {W,}22; ¢ X, and W, —» W weakly in
X, asn — oo.

(M2) The condition of optimality: For any w € D(¥), there exists a sequence {W,}3>; ¢ X such that w, » w
in X and ¥ (W) — ¥(W), asn — oo.

As well as, if the sequence of convex functions {¥},.= is labeled by a continuous argument ¢ € Z with a
range E Cc R, then for any gg € E, the Mosco-convergence of {fl\fg}geg, as € — &, is defined by those of
subsequences {‘/I\’gn}ﬁil, for all sequences {&,}o2; C E, satisfying €, — €9 as n — co.

Remark 4. Let X, ¥, and {¥};2, be as in Definition 1. Then, the following hold.
(Fact 5) (cf. [18, Theorem 3.66] and [19, Chapter 2]) Let us assume that

¥, — ¥ on X, in the sense of Mosco, as n — oo, (10)
and
{[W,w*] eX XX, [Wy,w;] € 0¥, in X x X,neN,
w, —» w in X and w; —» w* weaklyin X, as n — co.
Then, it holds that:
[w, w*] € 0¥ in X x X, and ¥(w,) —» ¥(w), as n — oo.
(Fact 6) (cf. [20, Lemma 4.1] and [21, Appendix]) Let d € N denote dimension constant, and let S ¢ R be a

bounded open set. Then, under the Mosco-convergence as in (10), a sequence {‘T’i}ﬁil of proper,
L.s.c., and convex functions on L*(S; X), defined as:

I‘I’n(W(t))dt, if W (w) € LX(S),
S

w e I2(S; X) > Po(w) = forn=1,2,3,..;

00, otherwise,
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converges to a proper, l.s.c., and convex function ¥° on I?(S; X), defined as:

. I‘I’(z(t))dt, it W(z) € LX(S),
ze2(S$; X)) » ¥(2) = s

0o, otherwise;

on L*(S; X), in the sense of Mosco, as n — oo.

Example 3. (Example of Mosco-convergence) Let d € N be the constant of dimension, and let{f.}.»o ¢ C(R9)
be the sequence of nonexpansive convex functions, as in (8) and (9). Then, the uniform estimate (9a)
immediately leads to:

fe = fe, ON R4, in the sense of Mosco, as € — &y, forany &, > 0.

3 Main theorems

We begin by setting up the assumptions needed in our Main theorems. All Main theorems are discussed
under the following assumptions.

(A1) Letv > 0 be a fixed constant. Let [1,4, 6aa] € [-#]* be a fixed pair of the admissible target profile.
(A2) Forany ¢ > 0, let f; : RN — [0, co) be the convex function, defined in (8).

(A3) Let g: R — R be a C'-function, which is Lipschitz continuous on R. Also, g has a nonnegative

primitive 0 < G € C3(R), i.e., the derivative G’ = ‘;—g coincides with g on R. Moreover, g satisfies that:

li{minf g(¢) = —oo and limsupg(¢) = co.
L=co &oo

(A4) Leta: R — (0, 00) and ag : Q — (0, co) be Lipschitz continuous functions, such that:
- a ¢ C}(R), with the first derivative a’ = g—z and the second one a” = %‘;;
-a'(0) =0, a” > 0onR, and aa’ is Lipschitz continuous on R ;
—a=>6,0onR, and ay > 8, on Q, for some constant 8, € (0, 1).
(A5) Let 8 and £ be the classes of constraints given in (1) and (5), respectively, and for any constraint
K = [ k'] € &, with the measurable obstacles k*: Q — [-00, 0], € = 0,1, let %%, c [#]2 be a
class of admissible controls [u, v], which is defined as

UKy = ([, V) € [#P |G eKy= ([, 7] e [#F | < i<k ae.in Q).

Moreover, the following extra assumption will be adopted to verify the dependence of optimal controls with
respect to the constraint K = [k°, ] € 8.
(A6) The constraint K = [k°, '] € & satisfies that:

k' e L{Q\ |k (00)), with [k (c0) = {(t,x) € Q | [KY|(t, x) = co}, for £=0,1,
and {K,}2; = {[x2, k]I, ¢ & is a sequence of constraints such that:
K,f(t, x) — k4t, x)(€[~00, 00]) as n — oo, forae. (t,x)e€Q, and ¢=0,1,
|kt — k¥dxdt — 0 as n — oo, for £=0,]1,
Q\|xt[(c0)

and moreover, [52,K, # @, i.e., there exists k € # satisfying

k) <k<xk!aeinQ, forn=1,23, ..,
0 Kl

kY<K < a.e.in Q.
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Remark 5. The assumption (A4) leads to the boundedness of the second derivative a” of a. In fact, from the
Lipschitz continuity of @ and aa’, one can see that

d%(aa')

%

" 1
la” ()| < 5—[

+ | [fogy | < 00, forany n € R.
LY(R)

Remark 6. The assumption (A6) prescribes general settings of the constraint K = [«°, k1] € & and the
approaching sequence of constraints {K,}°2; = {[x?, ]}, c & to K = [«°, ¥'] € &, as in Main Theorems 2
and 3, and as a special case, it contains the invariant (constant) setting {K, = K | n = 1, 2, 3,...}. In partic-
ular, we note that the result of Main Theorem 2 (II-B) will be enhanced in Main theorem 3 (III-B), under an
additional assumption labeled by (23).

Now, the Main Theorems of this article are stated as follows.
Main Theorem 1. Under the assumptions (A1)-(A4), let us fix a constant € > 0, an initial pair [1,, 6o] € D,

and a forcing pair [u, v] € [#)?. Then, the following hold.
(I-A) The state system (S), admits a unique solution [n, 8] € [#]?, in the sense that:

n € W0, T; H) n L*(0, T; V) n L*(0, T; H*(Q)) c C([0, T]; H), (11)
6 € W20, T; H) n L*(0, T; V) c C([0, T]; H),
@), @ + (Vn(t), V) + (8((6)), @Iu + (@' (n()f(VO(D)), P)u 12
= (Mu(t), )g, for any ¢ € V, a.e. t € (0,T), subjectto n(0) =n, in H;
and
(ao(1)3:0(t), O(t) — )i + v¥(VO(L), V(O(t) — ) + ja(n(t))fg(V@(t))dx
Q
< ja(n(t))/z(wz)dx + (M (D), 0(t) — Yy, for any P € Vo, ae. te(0,T), (13)
Q
subject to 6(0) = 6, in H.
In particular, if n, € L(Q) and u € L*(Q), then n € L*(Q).
(I-B) Let {en}p2; < [0, 00), {[Ng > Oo,nl}n21 € D, and {[un, val}y2; € [#/7T? be given sequences such that:
&n &, [rlo,n’ GO,n] - [HO’ 90] Weakly in Vx I/07 (14)
and [Myy,, Myv,] — [Mu, M,v] weakly in [#), as n — oo. (15)

In addition, let[n, 0] be the unique solution to (S),, for the initial pair[n,, 6o] and forcing pair[u, v]. Also,
for any n € N, let [n,,, 6] be the unique solution to (S)e,, for the initial pair [n, ,, 60,n] and forcing pair

[un, vu]. Then, it holds that:

(1,5 6a] — [, 0] in [C([0, T]; H)P, in %, weakly in [W"*(0, T; H)]?,

16
and weakly — = in L*°(0, T; V) x L*(0, T; V), as n — oo. (16)
In particular, if:
{No,ntnz1 € L2(Q), {unkn2y < L%(Q),
sup|ng nlie@) vV suplunlieg) < oo, 17
neN neN

then

n, — n weakly —= in L*(Q), as n — oo. (18)
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Remark 7. As a consequence of (16) and Remark 5, we further find a subsequence {n;}°; ¢ {n}, such that:

[nm, Gni] - [n, 0], [V}]m, VG,,i] — [Vn, VO], in the pointwise sense a.e. in Q,
a”(nm)f%(ven,-) — a"(f:(VO) weakly — * in L*°(0, T; H), and in the pointwise sense a.e. in Q,
and

[1,(6), 6r()] = [n(), 6(®)] in V x Vo, and a” (1, ()i, (V6 (D))
— a"(M()f(VO(t)) in H, fora.e. t € (0,T), as i — oo.

Main Theorem 2. Let us assume (A1)—-(A5). Let us fix any constant € > 0, any initial data [1,, 6] € D, and
any constraint K = [k°, k'] € R. Then, the following two items hold.
(II-A) The problem (OP)X has at least one optimal control [u*, v*] € %X, so that:

T, v*) = min{J(u, v) | [u, v] € Uhy}-
(II-B) Let us assume the extra assumption (A6), for the sequence of constraints {K,}, = {[x?, x]}2, c &,

and let us take the sequences {ex}y2; C [0, c0) and {[n, ., Oo,nl}p21 € D as in (14). In addition, for any

neN, let [u;,v;] € %fg be the optimal control of (OP)fn" in the case when the initial pair of corre-
sponding state system (S), is given by (1, ,, 0o,]. Then, there exist a subsequence {n;}{°; ¢ {n} and a

pair of functions [u**, v**] € %X, such that:

{— [Muu,’{i, Mvv,’fi] — [Mu**, Myv**] weakly in [#)?, as i — oo,

—[u**, v**] is an optimal control of (OP)?.

Main Theorem 3. In addition to the assumptions (A1)—(A5), let us suppose the restricted situation (r.s.0)
as in the Introduction, i.e.,
(r.5.0) € > 0, [, Oo] € Do, and K = [k°, k'] € Ro(=R n 217@),

Let [u*, v*] € %X, be an optimal control of (OP)X, and let [n;, 67] be the solution to (S)e, for the initial pair
(1> B0l and forcing pair [u*, v*]. Then, the following two items hold.

(III-A) (Necessary condition for (OP)X under e > 0 and K € R) For the optimal control[u*, v*] € %X, of (OP)X,
it holds that

M,(u* - projg(-p:)) =0, in A, (19a)
M,(v*+2z))=0 in #. (19b)

In this context, [p}, z;] is a unique solution to the following variational system:

—(3pi(t), PIv + (VP (O), VO + ([ (Dfe(VOONOPI (), @)y + (8'( ()i (), P
+ ([’ M)V (VOO I(O)-VZ: (), P)u (20)
= (My(n} - n,9)@®), @, for any ¢ € V, and ae. t< (0, T);

and

—(@@oz))(©), Yy, + [am)IVe(VON(OVZ:(E) + v2Vzi (), Vi) + (PE(OIa’ )V(VODI(E), Vi)

21
— (M6 — 020)(O), Wi, for any Y€ Vo, and ae. ¢ € (0, T; @

subject to the terminal condition:

[pA(T), z2(D)] = [0,0] in [HP. (22)
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(III-B) Let{e,}; C [0, 0o) and{[n, ,» Oo,nl}p21 C D be sequences as in (14). Also, let {Kn}52, = {[Ky, ;1352 € R
be a sequence of constraints, fulfilling (A6). In addition, let us assume
—{Ka}o21 = (e 113021 € Ro(=8 n 2L7Q),
~{[M,s Bl € Do(=(V 1 L) X Vo), @)

—sup{|n, i@ V Kl V Ko@)} < oo.
neN

Then, the subsequence {nj}¥°, c {n} and the limiting optimal control [u**,v**] € %%, as in Main
Theorem 2 (I1I-B) fulfill that

u* € L°(Q), Myv** € Wh2(0, T; V) n L*(0, T; V) ¢ C([0, T]; H), (24a)

Muu,f,‘i - Mu** in A, ) 24h

U, — u* weakly — x in L°(Q), as 1= o (24b)

and

My, — Myv** in C([0, T]; H), in 74, weakly in W0, T; Vg), as i — oo. (24¢)

Remark 8. Note that the conclusion (24) of Main Theorem 3(III-B) is an enhanced version of that of Main
Theorem 2(II-B).

Remark 9. Let Ry € Z(#°) be an isomorphism defined as
Rrp)(t) = (T - t) in H, fora.e. t € (0, T).

Also, let us fix e > 0, and define a bounded linear operator Q; : [#']> — 2 as the restriction P |qjo,opjx2* Of
the linear isomorphism P = P(a, b, u, A, w, A) : [H]* x #* — %, as in Proposition 5, in the case when:
[a, b] = Rrlao, —dito] in W-2(Q) x L(Q),

p = Rla" (1)) (V8] in L0, T H),

{A=Rrlg'(n))] in L™(Q), (25)
w = Rela' n)Vfe(VE)] in [L2(Q)",

A = Rela(n)Ve(VE)] in [L2(QVV.

On this basis, let us define
Pri=Rr o Qi o Ry in L((HP; Z). (26)
Then, since the embedding V, ¢ L*(Q) and ay € W-*°(Q) guarantee
O(@oZ) = agdZ + £0,49 in ¥y, forany Z € Wh2(0, T; V3), (27)
we can obtain the unique solution [p;, z}] € [#°]? to the variational system (20)-(22) as follows:

(D2, 2] = PeAMy(n; — Maq)s Mo(6; — 6a0)] in 2.

Main Theorem 4. Let us assume (A1)—(A5), and let us assume that the situation is not under (r.s.0), i.e., it is
under:
(1.5.0) either € = 0, or [1,, 6o] € D\Do, or K = [k°, k'] € R\ R, is satisfied.

Also, let us define a Hilbert space # as follows:

Wo = (P € W20, T; H) n ¥4 | %(0) = 0 in H)}.
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Then, there exists an optimal control [u®, v°] € U, of the problem (OP)X, together with the solution[n°, 6°]
to the system (S)g, for the initial pair[n,, 6o] and forcing pair[u°,v°] € u%,, and moreover, there exist pairs of
functions [p°,z°] € #,[£°,0°] € A x [L®(Q)]N, and a distribution { © € W}, such that:

M,(u° - projg(-p°)) =0, in i, (28a)
M(v° +z°)=0 in X, (28b)
p° € Wb(0,T; V*)n v c C([0, T]; H), (29a)
o° € 0f(V6°), ae.in Q; (29b)
0", @)y + (VD , V@) 2o, 1y + (@' )fe(VO ), @)y + (8'(M°)p° + A (N°)E°, @) 30)

= (My(n° - N> @), forany @ € v", subjectto p°(T) =0 in H;

and

(@oz°, 3w + ({°, Yy + (V2VZ° + &'(N°)0°D° , V) 200, 1,111 31)

= (Mp(8° — 6aa), W) forany e Wo.

In particular, if € > 0, i.e., the situation is under:
(r.s.1) € > 0, while either [n,, 6o] € D\Dg or K = [k°, k'] € R\ R is satisfied;

then:

o° =Vf(V6°), a.e.in Q,
§°=0°-Vz° =Vf(VO°)-Vz° in K, (32)
(= =div(a(n° )V (VO°)Vz*) in W7

Remark 10. When ¢ = 0, the inclusion (29b) is equivalent to:
o° € Sgn¥(v0°), a.e.in Q.
In the meantime, when € > 0, (29)-(32) imply that the pair of functions|[p°, z °] solves the following system:

-dp° - Ap° +a"N°)fe(VO)p® + g (n°)p° + a'(N°)Vfe(VO°)-Vz° = My(N° — Mog)s
0oz *) — div(a(n° )V (VO°)Vz* + v2Vz°® + p°a'(°)Vfe(VO°)) = Mp(0° — 6aa),

in the sense of distribution on Q. Note that the above system corresponds to the distributional form of the
variational system (20)—(22), as in Main Theorem 3(III-A).

Remark 11. In the light of (19a), (28a), and Remark 3 (Fact 4), we will observe that

{Muu*(t, Xx) = My[ projg(-p)I(t, x) = My(x® v (k' A (=p))(E, X),

. fora.e. (¢, x) € Q.
M- (t, x) = My[ proje(—p*)I(t, x) = My v (i A (=p° ))(E, X),

4 Proof of Main Theorem 1

In this section, we give the proof of the first Main Theorem 1. Before the proof, we refer to the reformulation
method as in [22], and consider to reduce the state system (S). to an evolution equation in the Hilbert
space [H]?.
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Let us fix any £ > 0. Besides, for any R > 0, let us define a proper functional ®F : [H]2 — [0, co], by
setting:

@F 1w =[n, 0] € [HP = OIW) = O, 0)

L [iwnpax+ £ finpax+ 2 f(ucvor + La) ax,
Q Q

) (33)

if [n,0] € Vx W,

0o, otherwise.

Note that the assumptions (A2) and (A4) guarantee the lower semi-continuity and convexity of ®% on [H]2.

Remark 12. As consequences of standard variational methods, we easily check the following facts.
(Fact 7) For the operator 9,®% : [HP — 24,

D@5 = {[ﬁ, 6] € D | fj € H(Q) subjectto V- nr = 0 in H%(l")},
independent of R > 0, and a,ICDf is a single-valued operator such that:
1 .
A @Ew) = 3,@e(n, 0) = -An + Ry + A (Nfe(VO) + ﬁa(n)a’(n) in H,

for all w = [n, 0] € D(3,®%), and R > 0.
(Fact 8) 9g®F : [H]? — 2H is independent of R > 0, and 6 € D(3y®F), and 6* € dyDR(w) = 9,D(n, 6),
iff. 0 € V, and

6,0 - Y > ja(n)fg(ve)dx - Ia(n)fg(vw)dx + VY0, V(8 - Yy, forall € V, and R = 0,

Q o

In addition, let us define time-dependent operators A(t) € L([H]?), for t € [0, T], nonlinear operators
GR: [H}? — [H]? for R = 0, by setting:

A() : w=[n,0] € [H? » AW = [n, ap(t)8] € [H]?, for t € [0, T], (34)

GR:w=[n, 0] e [HF » GRw) = [gn) - Rn - v?a(m)a’'(n), 0] € [H]?, for R > 0, (35)

respectively. Then, based on (Fact 7) and (Fact 8), it is verified that the state system (S), is equivalent to the
following Cauchy problem.

AW'(t) + [B,ICI)ée X ag®§](w(t)) + GRw()) > f(t) in [H?, a.e.te(0,T),
w(0) = wp in [H]?.

In the context, “/” is the time derivative, and

~Wp = [y, o] € D is the initial data of w = [, 0], 36)
—f = [Myu, Myv] € [#]* is the forcing term of the Cauchy problem .
Now, before the proof of Main Theorem 1, we prepare the following Key Lemma and its Corollary.
Key-Lemma 1. Let us assume (A1)—(A4). Then, there exists a positive constant Ry > 0 such that:
DL = [9,DF x 3g@f] in [H]? x [H].
Proof. We set:
2 2
Ro=1+ §|“|L°°([R)x (37)

and prove that Ry is the required constant.
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In the light of (6), it is immediately verified that

DR ¢ [9,D% x 3pdf] in [HP x [HP.

DE GRUYTER

Hence, having in mind the maximality of the monotone graph 0@ in [H]? x [H]?, we can reduce our task to

show the monotonicity of [3,D% x 3®%0] in [H]? x [H]?. Let us assume
[w, w*] € [0,@% x 3p®F] and [W, W*] € [0,D% x D] in [H]? x [HP,
with w = [n, 8] € [H?, w* = [, 6*] € [H]?,
W = [, 6] € [HP?, and w* = [fj*, 6] € [H]?, respectively.
Then, by using (9a), (Fact 7), (Fact 8), (A4), and Young’s inequality, we compute that:

(W* - W*, w - W)[H]Z = Il + Iz + I3,

with
L= V07 = DR+ Roln = 1l + VAV - 6), v,
b= (@ (Df(V0) — A GDf(V0), - )y + %(a(n)a’(n) — a(Da (@), n - D
- Ifg(VG)(a’(n) — (D) - )dx + j () F(V8) — L.V - (dx
Q Q
L i 2 _ i 21(r -1
2 Q( dn [a?](m) an [a ](n))(n dx
> —|a'|zog) 0 = Al VO = )|y
! 200 2 5
> e, - ARl
and

L= J(a(n) - a)(f:(V0) - f(V))dx

0
> —|a |y = Al VO = Ol

2
. &' [feor)
2

Lo V2 A
2 In -1l - ZW(G - 9)|[H]N-
Due to (37), the inequalities in (38) lead to

2
-, . 3 v ~
(W* =W w = W > In - 1l +?|9—9|2v0 >0,

which implies the (strict) monotonicity of the operator [3,Df x 9®%0] in [H]? x [H]?.

(38a)

(38b)

(38¢)

(38d)

(38e)

(39)

Corollary 1. Under the notations and assumptions as in the previous Key-Lemma 1, it further holds that

DF = [3,®F x 9@ in [H]? x [H]?, for any R > 0.

Proof. Let us take arbitrary two constants O < R, R < co. Then, from (Fact 7), [23, Theorem 2.10], and

[24, Corollary 2.11], we immediately have

D@,®%) = D(3,®F) in V,

(40a)
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and for any w = [n, 0] € D(3,®5) = D(a,,d)f),
3, PEw) = -An + Rp + (R - R)n + a'f(VO) + v2a(ma'(n) = and)f(w) +((R-Rnin H. (40b)
Also, as a straightforward consequence of (Fact 8), it is seen that
3R = 9,®F in H x H. (41)
In the meantime, invoking (33), [23, Theorem 2.10], and [24, Corollary 2.11], we will infer that
D@E®F) = D(30F) in D, (42a)
and
3DRw) = 30Fw) + (R - B)[n, 0] in [HP. (42D)

Now, let us take the constant Ry > 0 obtained in Key-Lemma 1. Then, owing to (40)-(42), and Key-Lemma 1,
we can compute that

[0,DF x d@FI(w) = [3, D x dgDF](W) + (R - Ro)[n, 0]
=0Df(w) + (R - Ro)[n, 0] = 0PX(w) in [H]?, (43)
forany w € D(9,@% x 9,®%) = D(3,@5) n D(B@H).

In the light of (6), the above (43) is sufficient to conclude this Corollary. O

Lemma 1. Let us assume (A1)—(A4), and fix functions € L*(0, T; V), Ny € V,andu € A . Then, the initial-
boundary value problem:

om — A + g) + d(fe(VO) = Mu  a.e.in Q,
Vn-nr=0on Z, (44)
)'1(0, X) = rZO(X)’ x € Q;
admits a unique solution n € W%2(0, T; H) n L*(0, T; V) n L*(0, T; HXQ)), and in particular, if:
Ny € L®(Q), and u € L*(Q), (45)

then it holds that n € L*(Q).
Proof. Let us fix 8 € L®(0, T; Vp), Ny € V, and u € . Then, referring to the general theories of nonlinear

evolution equations (e.g., [19,23,24]), we immediately find a solution n € W%2(0, T; H) n L*(0, T; V) n
L%(0, T; H*(Q)), in the variational sense:

Qn(®), P + (V1(), V)yup + €((0) + &' (O)f(VOWD), Pl

(46)
= (Mu(t), o)y, forany ¢ € V, a.e. te (0, 7).

Next, we assume 1, € V n L°(Q) and u € L*(Q) and verify the L*°-regularity of the solution 7 as in (45).
To this end, we invoke the assumption (A3) and take a large constant Ly > 0, such that

Lo 2 [nolr~), §(Lo) = Myluli~q), and g(-Lo) < —M,|uli~q). (47)
On this basis, we set our remaining task to show that
M) < Lo, ie. —Lo<n<Lpaein Q. (48)
Due to (47) and (A4), the constants Lo and —Lg fulfill that
dLo — ALy + g(Lo) + a'(Lo)fz(VO) > Mu(t, x), a.e. (t,x) € Q, (49a)



1264 —— Harbir Antil et al. DE GRUYTER

and
3:(~Lo) — A(-Lo) + g(~Lo) + a'(~Lo)f:(VO) < Mu(t, x), a.e. (t,x) € Q, (49Db)

respectively, together with the initial values Ly and —Lq, and the zero-Neumann boundary conditions.
Now, let us take the difference between partial differential equations in (44) and (49a) (resp. (49b) and
(44)), and multiply both the sides by [ — Lo]" (resp. [-Lo — 1]*). Then, from (A2)—-(A4), it is inferred that:

1d
55(”” = Lol" Ol + I[-Lo - nI*®Oli) < I8'leow) (U = Lol* (Ol + [[-Lo — nI*(Oly), a-e. t € (0, T).
Applying Gronwall’s lemma, and invoking (47), we obtain

Iln = Lol* (Ol + I[-Lo — 1"l < 0, ae. t € (0, T),
which implies the validity of (48). (|
Remark 13. Let € > 0 be arbitrary constant. Then, as a consequence of (Fact 7), (Fact 8), Key-Lemma 1,

Corollary 1, and Lemma 1, we can say that the state system (S). is equivalent to the following Cauchy
problem of evolution equation, denoted by (E),.

), : AW (t) + 0DXw(t)) + GRw(t)) 3 f(t) in [H]?, a.e. te (0,T),
¢ w(0) = wy in [H]?,

for any R > 0.
Now, we are ready to prove the Main Theorem 1.

Proof of Main Theorem 1 (I-A). Let us fix any R > 0. Then, under the setting (33)-(36), we immediately
check that
(ev.0) for any t € [0, T], A(t) € L([H]?) is positive and self-adjoint, and

(ﬂ(t)wa W)[H]2 2 6*|W|[2H]2’ for any w ¢ [H]Z’

with the constant 6, € (0, 1) as in (A4);
(ev.]) A € Wh(0, T; Z([HP)), and

A = esssup{max{|&7{(t)|y(m]z), |ﬂ’(t)|g([mz)}} <1+ |ag yregg) < 003
t€(0,T)

(ev.2) GR : [H? — [HJ* is a Lipschitz continuous operator with a Lipschitz constant:

. d
Lip(@) = R + |g'liow) + v d—(aa’) ,
L™(R)
and G has a C!-potential functional
2 2
G :w=[n0]c[HP ~ G W)= J(G(n) - RTH - aézz) )dx <R

Q

(ev.3) ®R > 0 on [H]%, and the sublevel set {W € [H?|®X(W) < r} is contained in a compact set KX(r) in
[H]?, defined as

Ry — w17 @ 7 |2 a 2
Kv(r)._{w—[rl,e]eD||n|V+|9|Vo$m}’

for any r > 0.
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On account of (33)-(36) and (ev.0)—(ev.3), we can apply Proposition 1, as the case when:

X=[HP, Ao = A in W->(0, T; Z([H]?),
Go=GR on [HP, %= ®f on [HP, and f,=fin [#],

and we can find a solution w = [, 8] € [#7]? to the Cauchy problem (E),. In the light of Proposition 1 and
Remark 13, finding this w = [n, 0] directly leads to the existence and uniqueness of solution to the state
system (S),.

Moreover, if 1, € L*°(Q) and u € L*(Q), then the regularity n € L*(Q) will be immediately seen from
Lemma 1. O

Proof of Main Theorem 1 (I-B). Under the assumptions and notations as in Main Theorem 1, we first fix a
constant R > 0, and invoke Remark 13 to confirm that the solution w = [n, 8] € [#]* to (S). coincides with
the solution to the Cauchy problem (E),, and as well as, the solutions wy, = [n,, 6,] € [#]* to (S),
n=1,2,3,..., coincide with the solutions to the Cauchy problems (E),, for the initial data wy, =
[Mo,n> Bo,n] € D, and forcing terms f, = [Myun, Myvn] € [#1%,n=1,2,3,..., respectively.

On this basis, we next verify
(ev.4) (Dfn >0 on [H], for n=1,2,3,..., and the union |J{W € [H]? | (D§n(ﬁ/) < r} of sublevel sets is
contained in the compact set KX(r) c [H]?, as in (ev.3), for any r > 0;
(ev.5) @fn — CD§ on [HJ?, in the sense of Mosco, as n — oo, more precisely, the uniform estimate (9a)
will lead to the corresponding lower bound condition and optimality condition, in the Mosco-convergence
of {®§n}2‘11;
(ev.6) supneNd)g(wo,n) < 00, and wyp , — Wy in [H]?, as n — oo, more precisely, it follows from (14), (A1),
and (A4) that

1+R 1
sup 8 (w,n) < sup 15Kl ff + V(LY + 1oy ) + ;m(no,n)l%{) < oo,

neN neN

and the weak convergence of {wy n}o2; in D = V x ¥, and the compactness of embedding D ¢ [H}?
imply the strong convergence of {wy ,}o>; in [H]?.
On account of (14) and (ev.0)—(ev.6), we can apply Proposition 2, to show that:

w, — w in C([0, T]; [H) (i.e., in [C([0, T]; H)P),
weakly in W20, T; [H]?) (i.e., weakly in [W%2(0, T; H)]?),

T T as n — oo, (50a)
[ oo~ [ormends,
0 0
2 P 8 R
SUP|WalZe(o, 1;v)x 10, T:10) < 4 SUPIWalLo(0, 7;vsp) < ———5 5 SUPIPg, (Wa)lr2(o,1) < 00,
neN neN 1AV-AR pen
and hence,
w, —» w weakly — x in L*(0, T; V) x L*°(0, T; V), as n — oo. (50b)

Furthermore, from (8), (9a), (50), and the assumptions (A2) and (A4), one can observe that

1 1 R R
m — 2 - 2 im - 2 5 MpR
Lm 1V, e = S1VAG,po - U Sl > Sl

V2 V2 1 1 (1)
lim —6,12. > —|0]%., lim —|a(n )% = —|a(n),,
lim 2| lv, 2| 7, Jim 2v2| (M)l 2v2| 5

n—oo



1266 —— Harbir Antil et al. DE GRUYTER

and

lim |a(n,)fe,(VO)Irq = Uim | | a(n,(£))fe, (VO(t))dxdt

n—oo n—oo

O 5 O
O —

> lim Ia(n(t))fgn(VGn(t))dxdt - lim |a(n,)
n—oo 0 n—oo
— a(m)| -sup(y LY*HQ) &n + [6nlv,) (51b)
neN

T
> lim [ [ aG©)(v8,0)dxdt - laliqy-lim]e, - el
0 Q

n—oo

T
> j j a((O)(VO)dxdt = [t (VO)l1io-
0 Q

Here, from (33), it is seen that

T T
f(D§(W(t))dt - I(I)§(ﬁ(t), 6(0)dt
0 0
1, R, . V2~ . x 1, . (52)
= 5|Vﬂ|ﬁ#]N + 5"1@{’ + 3I9|5/6 + [a(f:(VO)| o) + FW(”D@/
V22 ~
+ TLN”(Q), forall £> 0 and W = [7, 0] € #.
Taking into account (50a), (51), and (52), we deduce that
IV, ﬁ#]” + Rin, [ + v6al5, — |V’1|[2%]N + Rinl3, +v3617,, 53)

and hence, |[[n,, O.llv — |1, 0]l», as n — co.
Since the norm of Hilbert space % := ¥~ x ¥4 is uniformly convex, the convergences (50b) and (53)
imply the strong convergence:

w, - w in %, as n — oo, (54a)

and furthermore, it follows from (9a) and (54a) that

[fe,(VO) = fe(VOwr < Ife,(VOn) = fe,(VO)|e + |fe,(VO) — fo(VO) e

<6n - 6ly, + VLYVHQ)|en — €] - 0, as n — oco.
The convergences (50) and (54) are sufficient to obtain the convergence (16) as in Main Theorem 1 (I-B).

Finally, let us assume (17) to verify (18). In the light of (A3), we can take a large constant L, > 0, indepen-
dent of n, such that

(54b)

L. > sup|n, ,li~), 8(Ls) = Mysupluni~), and g(-L.) < —Mysup|un|i=~(q)-

neN neN neN
Then, just as in the derivation of (48), we can show that

sup|n,li»q) < L., ie. -L,<n,<L,aeinQ, n=123,... (55)

neN

The convergence (16), and the L*-weak-* compactness brought by (55) lead to the convergence (18). [
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5 Proof of Main Theorem 2
In this section, we prove the second Main Theorem 2. Before the proof, we prepare the following lemma.
Lemma 2. Let us assume (A5) and (A6), and let us fix the function k € (52,K, as in (A6). Besides, let us take
any function u € K, and define a sequence {u,},>, C #, by setting:

Uy = proj () =k, V (kg Au) € Ky in A, forn=1,2,3,....

Then, it holds that:

U, > uin A as n— oo. (56)

Proof. As is easily seen,

K (t, x), if u(t, x) > k(t, x),
un(t, x) = Ju(t, x), if k(t, x) < u(t,x) < xX(t,x), ae (t,x)eQ, n=1,273,.., (57)
ko(t, x), if u(t, x) < k2(t, x),
so that:
|lu, — u] — 0, in the pointwise sense, a.e.in Q, as n — oo. (58)
Also, owing to the presence of k¥ € [)32;,K;, as in (A6),
—-lu-k]" <u,-x<[u-xJ", a.e.in Q,
ie Ju,— kK| <u-kI"+[u-«%]"=|u-k|, ae.in Q,
which leads to:
lup, —ul < Ju, — K| + Ju - K| <2lu - K| a.e.in Q, with |u - k| € 2. (59)

The convergence (56) will be deduced as a straightforward consequence of (58), (59), and the dominated
convergence theorem [25, Theorem 10 on page 36]. O

Now, let [n,, 60] € D be the initial pair, and any constraint K = [x9, k'] € R. Also, let us fix arbitrary

forcing pair [i, 7] € %ffd, and let us invoke the definition of the cost function 7, defined in (2), to estimate
that:

0 <], =infg (&) < J. = J.(@,7) < 00, forall € >0. (60)

Also, for any € > 0, we denote by 7], 0] the solution to (S),, for the initial pair [r,, 6] and forcing pair [i, V].
Based on these, the Main Theorem 2 is proved as follows.

Proof of Main Theorem 2 (II-A). Let us fix any € > 0. Then, from the estimate (60), we immediately find a
sequence of forcing pairs {[uy,, v,|}2; ¢ %%, such that

Te(un, )l J,, as n— oo, (61a)
and
%sup My, VMV, o < T, 7) < 0. (61b)
neN

Also, the estimate (61b) and the assumption (A5) enable us to take a subsequence of {[u,, v, ]}nzq C “Z/fd (not
relabeled), and to find a pair of functions [u*, v*] € #X,, such that

[VMyuy, Myvy] — [Myu*, (M,v*] weaklyin [#]?, as n — oo, (62)



1268 —— Harbir Antil et al. DE GRUYTER

Let[n*, 6] € [#] be the solution to (S),, for the initial pair [r,, o] and forcing pair [u*, v*]. Also, for any
n €N, let[n,, 6,] € [#]* be the solution to (S),,, for the forcing pair [u,, v,,]. Then, having in mind (14), (62),
and the initial condition

[1,(0), 6,(0)] = [17°(0), 6*(0)] = [ny, Oo] in [HP?, forn=1,2,3,..,
we can apply Main Theorem 1(I-B), to see that
(M5 6a] — [7°, 6] in [C([0, T]; H), as n— oco. (63)

On account of (61a), (62), and (63), it is computed that:
1 1
Jew', v =~ My 01" = Tag)s Mo 0" = Qa2 + 5 INMatt', VMV,

1.. 1..
< Enlirc?o |[\/ﬁn(rln - rlad)’ \/ﬁ@(en - ead)]lﬁyflz + Eh_rn |[\/ M, up, \/ﬁvvn]lﬁy/]z
= lim Js(um Vn) = _Ig(Sjs(u*’ V*)),

and this leads to
Jeu*, v*) = [ min_ J.(u, v).

K
u,v]euty

Thus, we conclude the item (II-A). a

Proof of Main Theorem 2 (II-B). Let us take € > 0, {&,}2; C [0, 00), and {[n, ,, Oo,n]}p21 € D as in (14).
Besides, for the pair of functions [i1, V] € UX; as in (60), let us define

i, = projK"(ﬂ) :KV?V(K&/\II) eK,, n=1,2,3,....

Then, from Lemma 2, it immediately follows that
U, » uin #, as n — oo. (64)

Here, let [7, 0] € [#]? be the solution to (S),, for the initial pair [15, B0] and forcing pair [i1, 7], and let
(7,5 0, e [#,n=1,2,3,..., be solutions to (S)e,» for the initial pairs [r, ,, 6o,], and forcing pairs [i,, V],
n=1,2,3,..., respectively. Then, invoking (14) and (64), we can apply Main Theorem 1 (I-B) to these
solutions, and we can see that

(70> Oul — [, 6] in [C([O, T]; H)F, (65a)
and in particular,
(Mo, Bo,n] = [7,(0), 6,(0)] — [19, Bo] = [71(0), 6(0)] in [HF?, as n — oo. (65Db)
The convergences (64) and (65) enable us to estimate

]_sup = supjsn(ﬂm V) < oo. (66)

neN

Next, for any n € N, let us denote by [n,, 0;] € [#']? the solution to (S),, for the initial pair [Mo,n> Bo,nl,

and forcing pair [u,,, v;] of the optimal control of (OP)E"". Then, in the light of (60) and (66), it is observed
that

0 < < |IVMuttg, VMR, 0 < T < Jhup <00, n=1,2,3,....

N | =

Therefore, one can find a subsequence {n;}>; c {n}, together with a limiting pair of functions [u**, v**] €
[#]%, such that

[\/Eu,’{i, Mv,;;] — [VMu**, yM,v**] weaklyin [#?, as i— oo,

(67)
and as well as [Muu;,‘i,Mvv,’{i] — [Mur*, Myv**] weaklyin [#]?, as i— oo.
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Additionally, for every ¢ = 0, 1, the convex functionals on L(Q\ |k¢ |"}(c0)), defined as:
@ O\ [Meo) - [ lardxdee(o, ), £=0,1,
Q\ k% (c0)
are weakly lower semi-continuous. Therefore, we can observe from (67) and (A6) that:

[KC — w ] < [k — u**]* € # c LNQ),
[ — k1] < [u* - k]" € # < LVQ),

IM,[kO — u* Tl = I [My(x® — w**)]*dxdt < m I [M“(K*?ni - u;“i) ]+ dxdt = 0, (68a)
Q\ Ik (co) 70\ o)
and
IMu* — K1]+|L1(Q) — J- [M,(u** — x)]*dxdt < 111%0 I [Mu(u;,"i - Kfln,-) ]+ dxdt = 0. (68b)
Q\ | (c0) Q\ '™ (c0)

Since the limit u**, when M,, = 0, can be taken arbitrary, the estimates as in (68) enable us to suppose that
kK0 <u* <x' ae.in Q, i.e. [u**, v*] e %K,

Now, let us denote by [1**, 6**] € [#']* the solution to (S), for the initial pair [r,, 6] and forcing pair
[u**, v**]. Then, applying Main Theorem 1 (I-B), again, to the solutions [**, 8**] and [n:., 9;,",], i=1,23,...,
one can see that

[n;, 6] D, 61 in [C([0, T]; H)P, in %, weaklyin [W'%0, T; H)?, and

(69)
weakly— = in L*°(0, T; V) x L*(0, T; ), as i — oo.
As a consequence of (64), (65), (67), and (69), it is verified that:
* % * %k 1 * %k * % 1 * %k * %k
Feu=, vy = MMy O = Mag)s VMo (07" = Gl + o IVMs VM VIR
1 . * * 1 : * *
< 5 lim ([0, (0, = Maa) s VMo (65, = 6a0) [P + Sdim I[VMaws, VMV TR,
=lim e, (u;, ;) < lim T, (i 7)
1.. _ A 1.. _ _
= Ezlig |[\/Mrl (rlni - rlad)’ \/M9 (eni - ead)] |[2%,,]2 + Ezliloll |[\/ Mu Un;s MVV] |[2%,]2
= T, v).
Since the choice of [, 7] € %X, is arbitrary, we conclude that
Jeu, vy = min Je(u,v),
[u,v]eu
and complete the proof of Main Theorem 2(II-B). O

6 Proof of Main Theorem 3

Throughout this section, we suppose the situation (r.s.0). Let £ > 0 be a fixed constant, and let[n,, 6] € Do
be the initial pair. Let us take any forcing pair [u, v] € Z (=L*°(Q) x #), and consider the unique solution
[n, 6] € [#7]? to the state system (S).. Also, let us take any constant & € (0, 1) and any pair of functions
[k, k] € 2, and consider another solution [1°, 8%] € [#]* to the system (S),, for the initial pair [, 6] and a
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perturbed forcing pair [u + 6h, v + 6k]. On this basis, we consider a sequence of pairs of functions
{x?, y?B¥secco.1) € [T, defined as

5 _ 5 _
u, u] e [#)?, for 6 € (0, 1). (70)

D(ﬁ’ y6] = [ 5 5

This sequence acts a key role in the computation of Gateaux differential of the cost function 7, for £ > 0.

Remark 14. Note that for any § € (0, 1), the pair of functions[x?, y?] € [#]? fulfills the following variational
forms:

1
@), @ + (VX2 (), Vo) + I[fg’(n(t) + cﬁx‘s(t))dc]x‘s(t)fpdx
0

Q

1 1
N j(mve(t))ja"(n(o ¥ CSX‘S(t))dc]x‘s(t)fpdx N f (a’(nﬁ(t»jv];(vem N cawﬁ(t»dc) VyS(t)pdx
0 0

Q Q
= (Mh(t), )y, forany @ € V, a.e. t € (0, T), subjectto x5(0) =0 in H,

and

1
(@o()dey°(t), Y)u + v (VY2(t), Vip)p + I[a(n%t))jV%(V@(t) + €5Vy5(t))dC]Vy6(t)'VlPdX
0

Q

1
v | [ja’(n(t) + caxﬁ(t))dc]xﬁ(o V£ (VO(0)- Vipdx
a\\o
= (Mk(t), p)y, forany y € , a.e. t € (0, T), subjectto y?(0) =0 in H.

In fact, these variational forms are obtained by taking the difference between two respective variational
forms for [1?, %] and [n, 6], as in Main Theorem 1 (I-A), and by using the following linearization formulas:

1
S(801) - 81) - [jg'(n : c5x6)dc]x5 in .,
0
%(a’(nﬁ)fg(veﬁ) A (f(V0)) = %(a’(rz‘s) A ()fa(V6) + %a'(n*f)(fg(ve@) ~ £.(V0)
1 1
= [ﬁ(ve)ja”(n + c5x5)dc}<5 + [a’(n5>IVﬁ(ve + cé‘Vyﬁ)dg] VY% in #,
0 0

and

%(a(n‘s)wg(ve&) — a(Vf(V8)) = %a(nﬁ)(wg(ve&) _VE®VO)) + %(a(rzﬁ) ~ a()VE(VE)

1
= [a(ns)IVZfS(VO + ';f>‘Vy5)c1';]Vy‘S
0

1
+ [Ia’(n + c6x5)dc]x5 Vf.(VO) in [#]V.

0
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Incidentally, the above linearization formulas can be verified as consequences of the assumptions
(A1)-(A4) and the mean-value theorem (cf. [26, Theorem 5 in p. 313]).

Remark 15. Note that the situation (r.s.0) implies 1, € L*°(Q) and u € L*(Q). Therefore, under (r.s.0), we
can suppose 1 € L°(Q) for the solution [n, 8] € [#] to the system (S)..

Now, we prepare the following two lemmas, for the proof of Main Theorem 3.

Lemma 3. Under the assumptions (A1)—(A5), let us fix € > 0, and suppose (r.s.0) as in Main Theorem 3. Then,
the restriction of the cost . |+ : £ — R is Gdteaux differentiable over Z. Moreover, for any [u, v] € Z, the
Gdteaux derivative (T |)'(u, v) € 2* admits a unique extension J J(u, v) € ([#)* = [#?, such that:

jls(u’ V) = (js |;1')I(u’ V) in SX*’ (71)
and

(T, v), [h, KDpyp = (My(1 = Maq)> Mp(8 — 620)1, PeIMyh, Mk 2
+ ((Mu, M1, [h, kD p, for any [h, k] € Z.

(72)

In the context, [n, 0] is the solution to the state system (S), for the initial pair [n,, 0o] and forcing pair [u, v],
and P, : [#'|* — Z is a bounded linear operator, which is given as a restriction P |0 o< Of the (linear)
isomorphism P = P(a, b, u, A, w, A) : [H? x %* — %, as in Proposition 5, in the case when:

[a, b] = [ao, O] in Wh(Q) x L*(Q),

U =i, = a"()fe(VO) in L0, T; H),

A=A =g'(n) in L(Q), (73)
w = @, = A (Vf(VO) in [L2(QIV,

A = A, = a(n)V*¥(VO) in [L°(Q)]N*N,
Proof. Let us fix any [u, v] € %, and take any 6 € (0, 1) and any [h, k] € Z. Then, due to the assumptions
(r.s.0) and [u, v], [h, k] € &, we can see that

[Molz@) V' sup u + 6h|r=(q) < oo,
6¢€(0,1)

and
[M,(u + 6h), M,(v + 6k)] - [Mu, M,v] in &, as 6] 0.
Therefore, as a consequence of Main Theorem 1 (I-B), it is observed that

(7%, 6%1—1[n, 6] in [C([0, T]; H)}?, in %, weaklyin [W'2(0, T; H)J?,

74a
and weakly— « in L*(0, T; V) x L*°(0, T; V), (742)
and
n® — n weakly — * in L*(Q), as 6 | O. (74b)
In the meantime, it is easily computed that:
1 M, M,
STl + 81 v+ 8) = T, v)) = (7"(715 +n - 2nad),x5) + (7"(95 + 6 — 26,0), yﬁ)ﬂ
(75)

N (%Qu + 6h), h) N (%(Zv + 8K, k)
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Here, let us set:

1
a’ ::fg(ve)'[a”(q + ¢6x%)dg in L®(0, T; H),
0

1
A= Jg’(n + ¢6x%)d¢ in L°(Q),
‘ o (76a)
@f = a’(né)IVﬁ(Ve + c8VyO)de in [LoQ)Y,
0

1
AS = a(nﬁ)jvzfg(ve + ¢6Vy®)dg in [L®(Q)VV,
0

and

1 1
IEf = Mk + div X’;Vfg(ve)ja’(n + ¢oy%)dg - )(5a’(115)jvfg(ve +¢6Vyddg | in 77, ¢
0 0 (76b)
forall 6 € (0, 1).
Then, in the light of (74) and Remark 14, one can say that:
x4, y% = @g[Muh, 1286] in %, for 6 € (0, 1),

by using the restriction ¢§ =P |jo,opxz* : W* — Z of the (linear) isomorphism = P(a, b, y, A, w, A):
[H? x #* — %, as in Proposition 5, in the case when:

[a, b, A] = [, 0, ;] in W(Q) x [L™(Q)P,

w =@ in [LQ,

A=A in [LoQI™N,

p=p’ in L0, T; H), for 6 € (0,1).

Besides, taking into account (8), (A.5), (76), (A3), (A4), and Remark 1, we have:

A« 901 +v? 4 4 4
Cm X1 (G + ()" + (CH)M0 + laohoe) + 18w + By
s YD g () (CEY + (CEY) sup (1 + laohwioy + Wivg) (77
1 A V2 A infag(Q) 0 5¢(0,1)
-8 2
102 g

and

KIMA(E, KDL, [0, Yol < [MAE), )| + KO, vy
< Myh®lul@la + MIkOlala + 2| o) X (Ol VP lgpy
< Myh(®)lgl@ly + (M,CHIk®lE + 2 [r=w) X Ol)IWly,»
fora.e. t € (0,T), any [p,Y] e VxV, andany 6 € (0, 1),

(77b)

with the use of the constant C‘Z > 0 of the embedding V, ¢ H, so that
IIMA(O), K OB, < CUTRE), kOB, + KOO, forae. te(0,T), andany § € (0,1), (77¢)

with a positive constant C; = 4(M; + M? (C/)? + |&'[fow))-
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Now, having in mind (77), let us apply Proposition 4 to the case when:

[a, b1, i, AL, @, A1) = [a2, b2, 122, A2, 2, A2] = [ao, O, B0, AL, @, 421,
[pd, 2] = [pd, 23] = [0, O], [, kY] = [M,h, k2], [k, k] = [0, O],

[ph, 21] = [x%, y°] = P2AMA, k51, [p2, 22] = [0, 0] = [0, 0], for & € (0, ).

Then, we estimate that

%(I)(‘S(t)lfq + Nao® Y (Ol) + (X OF + vIy°(Of)

3G O + IVao® y°(OR) + 2Co(IMh(OR. + |l€f(t)|2V5)

3Co(1 + CHUXS DI + [V ao®) yoOIE) + 2CoCr (1hOIF + kO,
fora.e. t € (0, T),

IN

IN

and subsequently, by using Gronwall’s lemma, we observe that
(x1) The sequence {[x?, y®1}sc(0.1) is bounded in [C([O, T]; H )]2 @,

— 1273

Meanwhile, as consequences of (70), (73)-(77), (x 1), (A1)-(A5), Main Theorem 1, Remark 7, and the
dominated convergence theorem [25, Theorem 10 on page 36], one can find a sequence {§,}2; ¢ R, such

that
0< |64 <1, and 6, — 0, as n — oo,
[8:x%n, 8ay®] = [n° - n, 6% - 6] — [0, 0]
in [C([0, T]; H)]?, andin %,
[8,VX%", 8,Vy%] = [V(nP - 1), V(6% - 6)] — [0, 0]

in [L%(0, T; [H]Y)]?, and in the pointwise sense a.e.in Q,

[A7, @, A2] = [Ae, @, Ac] weakly -« in L¥(Q) x [LY(QIY x [L=(Q",

and in the pointwise sense a.e.in Q, as n — oo,

as n — oo,

ﬁfﬂ — ji, weakly — * in L*(0, T; H),
Al (t) - g (t) in H, forae. te(0,T),

and

1
(k" — Mk, )y = | X%, VF(V6) Ia’(n + 6By )dg | -V
0

1
+ [xo, @ (n) Ist(VG +68:Vy*r)dg | -V
0 A
— 0, as n — oo.

On account of (70) and (73)—(78), we can apply Proposition 6(B), and can see that

[x0r, yo] =9 [Mh ke ] X, v] = PIMuh, Mk] in [#]?, weaklyin %,
and weakly in W%2(0, T; V*) x W42(0, T; V), as n — oo.

as n — oo,

(78a)

(78b)

(78¢)

(78d)

(78e)

(79)

Since the Hilbert space % is separable, and the uniqueness of the solution [y, y] = P.[M,h, M k] is guaran-
teed by Proposition 3, the observations (75), (78), and (79) enable us to compute the directional derivative

D0 Je(u, v) € R, as follows:
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Dip 1T e(u, v) = lim %(Jg(u + 6h, v + 6k) - Je(u, v))

= ([Mn(rl - rlad), My(6 - 629)], PeIM,h, ka])[,yf]2 + ([Mu, My, [h, k])[,;//]zx
for any direction [h, k] € Z.

(80)

Moreover, in the light of (73), (80), and Proposition 5, we can observe that:
(x2) The mapping [h, k] € £ — D0 J=(u, v) € R is a linear functional;
(*¥3) There exists a constant M;*, independent of [h, k] € %, such that

IDin T, v)I < My"|[h, k], forany [h, k] e Z.

As a consequence of (x2), (x3), the continuous and dense embedding 2" ¢ [#]%, and Riesz’s theorem, we
can obtain the required functional J L(u, v) € ([s/12)*(=[#1?), satisfying (71) and (72), as the unique exten-
sion of the Gateaux differential (7 |2)'(u, v) € * at[u,v] € Z.

Thus, we complete the proof of this lemma. O

Lemma 4. Under the assumptions (A1)-(A5) with (r.s.0), let [u}, v}] € %%, be an optimal control of the
problem (OP)X, and let [n., 6F] be the solution to the system (S)e, for the initial pair [n,, 6] and forcing
pair [u, v}]. Also, let P%: [#> — Z be the bounded linear operator, defined in Remark 9, with the use
of the solution [n;, 67]. Let P : [#? — % be a bounded linear operator, which is defined as a restriction
P lijo,ox#12 Of the linear isomorphism P = P(a, b, u, A, w, A) : [H]* x #* — Z, as in Proposition 5, in the
case when:

la, b] = [ao, O] in W"(Q) x L*(Q),

u = a")f(V6;) in L0, T; H),

1A =g'(n)) in L(Q), (81)
w = a' (V) in [L(Q)IY,

A = a(n))VP.(V6?) in [LO(Q)INXN.

Then, the operators P and P. have a conjugate relationship, in the following sense:

Pelu, v, [h, kDpwp = (u, v], Pelh, kDpyp,  for all [h, k], [u, v] € [

Proof. Let us fix arbitrary pairs of functions [h, k], [u, v] € [#]%, and let us put
Xe» Vol = Pelh, k] and  [pe, z| = Plu, v], in [#].
Then, invoking Proposition 3, and the settings as in (25) and (81), we compute that

({ID;[U, V]r [h) k])[}f]z

T T
=I@mmmmM+ﬁammmmt
0 0

T T
ﬁmmmm»m+jw&ammm

0

[ (), P(O)y + (VX (), VPO + (@' (e (VO ON, (O, PO

Il
O C——— O

+ (&' (;ONX (O, PO + (@' (M (OIS (VO () Vy(0), Pe(D))n]dt
T

+ I[(atyg(t)’ ao(D)ze(O))y, + (@' (1 (ON(OVF(VO: (), Vze(O)
0

+ (@ OV fe(VOIOIVY (D), Vze(t)p + VE(VY(D), VzZe(t))yyv]dt
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T

= (P(T), X (T)u — (P(0), X (0)n + I[(_atps(t)’Xg(t)>V + (VP (0), VX (O)mp
0

+ (@' (O (VOIOIP(0), X (O + (8" (OIP=(O), X (O

+ (&' (O (VO (1) Vze(), X (D)uldt + (ao(T)ze(T), Y(T)u — (@0(0)z(0), y,(0)r
T

+ I[(‘at(aozg)(f), YO, + (@' (n;(O)pe(OVF(VE(D), VY (O)a

0
+ (@ OV (VOZ(O)IVZe(), Vy(O)m + vA(Vze(t), VY ()]t
= (u’Xg),Vf’ + (v, ye)}?” = ([u’ V]’ Pe[h’ k])[?/]2

This finishes the proof of Lemma 4. O

Remark 16. Note that the operator P. € L([#]*;%), as in Lemma 4, corresponds to the operator
P, € L([HV;%), as in the previous Lemma 3, under the special setting (81).

Now, we are ready to prove the Main Theorem 3 (III-A).

Proof of Main Theorem 3 (III-A). Let [u}, v}] € %%, be the optimal control of (OP)X, with the solution
[n), 671 € [#]? to the system (S), for the initial pair [1,, 6o] € Do, as in (r.s.0), and forcing pair [u;, v;],
and let P., Pi e L([#;%) be the two operators as in Lemma 4. In addition, let us put [p}, z}] =
PeMy(n; — Naq)s Mp(8; — Baq)]. Then, on the basis of the previous Lemmas 3 and 4, we compute that:
0 < (T, vp), [h, kD sp
: 1 * * * * *

= 16IFOI E(js(ua + é‘(h - us)» Ve + 5k) - js(ue» Vs))

= ([My(n; - Naq)s Mp(6; = Baa)], PeMu(h — ug), MykDpypp + ([Myug, Myve], [h = ug, kKD

= (Pe My} — Naq)s Mp(6; = Gaa)], [My(h — ug), MykDpp + ([Muug, MyveL, [h = ug, kDpyp

= (My(p: + U9, h = udy + (M2 + V), k), forany [h, k] € %5q.

(82)

Now, in (82), let us consider the case when [h, k] = [h, 0] € X, with arbitrary h € K. Then, we have
0 < (My(pe + ue), h —uy = -My(-p; — u;, h—u;), forany heK. (83)

It is equivalent to (19a). Indeed, if M, > O, then the equivalence of (19a) and (83) is a straightforward
consequence of (Fact 2). Also, if M,, = 0, then both (19a) and (83) coincides with the tautology “0 = 0.”
In the meantime, putting [h, k] = [u7, k] € %%, with arbitrary k € .#, one can see that:

M,(v* + zZ), k) = 0 forany k € #.
This implies the equality (19b).
Thus, we conclude Main Theorem 3 (ITI-A). O

Next, before the proof of Main Theorem 3 (III-B), we prepare the following lemma.

Lemma 5. Let us assume (A5) and (A6) and fix a constraint K = [k°, k'] € R. Also, let us assume that:
D e A {Pntpoi C H, and p, > P in H as n - oo, (84a)
and let us put

{a = proj(p) in #, (84b)

Uiy = projg (pn) in A, for n=1,2,3, ....
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Then, it holds that

i, > iiin #, as n - co. (85)

Proof. By using the assumptions as in (84), Remark 2, and Lemma 2, this lemma is easily verified as follows.

|n = @ | <|projg, (Pn) — Projg (Pl + |projg (B) — projx(p)lr
<|Pn = Pl + |projg,(p) — projg(p)l» — 0, as n — oo. O

Now, we are on the stage to prove Main Theorem 3 (III-B).

Proof of Main Theorem 3 (III-B). Let us note that the assumptions (14) and (23) guarantee that:
— The sequence of initial pairs {[1, ,, o,n]}a21 is bounded in Dy = (V N L°(Q)) x Vo;

— The sequence {u, € K,}2;, consisting of the first components of optimal controls [u,, v;] € %fg of (OP)f:,
n=1,2,3,... ,is bounded in L*(Q).

Hence, with the compact embedding D = V x 1} ¢ [H]? and Alaoglu’s theorem in mind, we may suppose
that:

[’To,n,-’ 90,,,1.] — [N, 6ol in [H?, andweaklyin V x 1,
No.n, = Mo weakly — = in L®(Q), (86)

u;{i — u** weakly — * in L*°(Q), as i — oo,

for the subsequence {n;}°, c {n} and the limiting optimal control [u**, v**] € %X,, as in Main Theorem
2(II-B).

By (14) and (86), we can apply Main Theorem 1 (I-B) to the solutions [1**, 6**] € [#]* and [, 0] €
[£),i=1,2,3,... , as in (69), and can deduce that

*

n, — n** weakly — = in L*°(Q), as i — oo. (87)
Meanwhile, by taking more subsequence(s) if necessary, one can see from (25), (69), and (87) that:

A =Relg'(n; )] = A = Relg' ()] weakly -« in L*(Q),

(88a)
and in the pointwise sense a.e. in Q,
w7 = Rela' (0 ) Vfe,, (VO1)] = @** = Rela' (" )VF(VE* )] (&8b)
weakly— = in [L°(Q)]¥, and in the pointwise sense a.e. in Q,
A7 = Rela(ny, ) Ve, (V65)] = A% = Rela(n* IV (V6*)] (850)
weakly— + in [L®°(Q)]N*N, and in the pointwise sense a.e. in Q,
u = Rela (1 Vo (V03] = o = Rela"Gp ) (V6°)] 88
weakly— = in L*°(0, T; H),
and
u () — p*(t) in H, fora.e. te(0,T), asi— oo. (88e)

Now, let us denote by Py and P;*,i =1, 2, 3,... , the operators #}, as in Remark 9, in the cases when:
[, A, @, A] = [p**, A%, @, A*]in L0, T3 H) x L®(Q) x [L2(QY x [Lo(Q)]VN,
£=¢, and [H, Aa w, A] = [Hl'*, Ai*s wi*: Ai*]in LOO(O’ T; H) X LOO(Q) X [LOO(Q)]N X [LOO(Q)]NXN’ i= ,23,..,
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respectively. Then, as a consequence of Proposition 6, Main Theorem 3(III-A), and Remark 9, we can derive
from (69) and (88) that

[P, 2= P My (1, = Maa)» Mo (65, — 6aa)]
— [p**, 2**] = Py IMy(** — Naq)s Mp(0** — Bag)] in [C([O, T]; H)?, (89)
in %, and weaklyin W%%(0, T; V*) x W%2(0, T; V), as i — oo.

Furthermore, taking into account (89) and Lemma 5, one can infer that

My, = Myprojg, (=pi’) — Mu** = Myproj(-p**) in J#, as i — oo, (90a)

and
My, = -M,z{ — Myv** = -M,z** in C([0, T]; H), in %, and weaklyin W"%(0, T; V3), as i — co (90b)

(86) and (90) are sufficient to verify the convergences as in (24), and to conclude Main Theorem 3 (III-B).
O

7 Proof of Main Theorem 4

Under the assumptions (A1)—(A5) and the situation (r.s.0), let us set:

1
g =€+ —,
n
Non = (M) vV (n A1) a.e.in Q, n=1,23,...

Oon =6y a.e.in Q,
kt=(-nv@nak) aeinQ, ¢€¢=0,1,
Then, we immediately see that

(x4) {enkn21 € (€, 00), {[My,n> Bo,nl}a21 € Do, and {Kply2; = {[x?, x1]} ¢ Ry, and these sequences fulfill the
assumptions (14) and (A6), as in Main Theorems 1-3.

Additionally, we can apply Main Theorem 1 (I-A) and Main Theorem 2(II-A), and can take sequences of
functional pairs {[u, , v, I};2; and {[n,’, 6, [};24, such that

- Foranyn e N, [u,, v, ] € %% is an optimal control of (OP)X;
— For any neN, [n,,6,] € [#7T is the solution to (S),, for the initial pair [Mo,n> 6o.,n] and forcing
pair [uno s Vno ]

Also, applying Main Theorem 1 (I-B) and Main Theorem 2(II-B), we can find subsequences of {[u,, , v,/ }s24

and {[n,", 6, I}2; (not relabeled), together with limiting pairs [u°,v°] € [#]* and [°,0°] € [#]*, and a
limiting function o° € [L®°(Q)]", such that

(M, , Myv,’ ] — [Mu°, Myv°] weakly in [#]?, (91a)

[n,,6,]1—[n°,0°]in [C([O, T]; H)P?, in %, andweakly- * in L®(0, T; V) x L®(0, T; V), (91b)

[Vn,, V6,1 — [Vn°,V6°] in [L*(0, T; [H]V)]?, and in the pointwise sense a.e.in Q, (91¢c)

Wy = @0 e, (V8;) = p* = a(n°)fe(VO®)  weaKly — x in L(0, T; H),
and in the pointwise sense a.e. in Q, (91d)
u, () — p°(t) in H, fora.e. t € (0, T),
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Ay =8'(n,) — A° =g'(n°) in #, weakly-  in L*(Q), and in the pointwise sense a.e.in Q, (91e)
Vfe,(V0;) — 0° weakly — = in [L®(Q)]V, (91f)

and
w, =a' (N, IVfe,(V6,) - a'(n°)o°  weakly — * in [L°(Q)]Y, as n — oo. (91g)

Additionally, from (91c), (91f), Remark 4, and [24, Proposition 2.16], one can observe that

{Vfe(VO°)}, ife>0, )
° € ofe(VO°) = .e. . 92
0° € 0ofe(V0°) {SgnN(V6°), ife-o, a.e.in Q (92)
Next, for any n € N, let us put:
Ay = a(n, V¥, (VO,) in [L(QNN, (93)

and let us denote by P, the operator P € Z([#)?;Z), as in Remark 9, in the case when the constant e > 0
(in Remark 9) and the sextuplet|a, b, u, A, w, A] € ¥ isreplaced by &, > 0 and Rr[ag, —0:o, M s Ay, wy s Ay
€ &, respectively.

On this basis, let us set:

[Py 20 | = Pr My, — Nag)» Me(6, — 8aq)] in &, forn=1,2,3,...

Then, from Main Theorem 3 (III-A), it is inferred that

M (p; +u;),h—u)y =0, forany h e K, = [x2, k'], (94a)
Mz, +v,)=0 in #, (94D)
(=0tDy s @)y + (VDr s VO v + (W Py > @) + APy + Wy Vzy, @)y (940)

= (Mn(rlno - rlad)’ (p)%) fOr any (p € nf,
(=a00ezyy , YY)y + (010)zyy , P + (A Vz,, +VVzy + Py Wy, V) (94d)

= (Mp(6, — 6aq), Y)», forany y € 75,
and

[p,(T),z;(T)] =[0,0] in [H?, n=1,23,.... (94e)

Also, having in mind (91)-(93), and applying Proposition 4 to the case when:

[aly bls ]‘lls Al) wl) Al] = [azs bzs ]12, AZ’ wz’ AZ] = ‘RT[aOs _ata()s }'lno ’ An" ’ (‘Ur[O ’ 1471o ]s

[pé, 23] = [P, 231 = [0, 01,

[, k'] = Re[My(n,; — Naq)» Ma(6; — 6ad)], forn=1,2,3,....
[%, k] = [0, O],

[pl’ Zl] = RT[pno s Zno]y [pZ’ Zz] = [Oa 0]’

we deduce that

%(I(Rrpn")(t)liz + [Rr(Jaoz, YOI + (R YOI + V2 [(Rez) YOI,
< 3CIRp OB + IR Tz OB + 205 (ReMyn,, — OB + RiMo(8; - B:)OR), O
forae. te(0,T), n=1,23, ...,

with the use of the constant C, as in (77a). As a consequence of (91b), (94f), (A4), and Gronwall’s lemma, it
is observed that
(x5) The sequence {[p,’, z,; |}, is bounded in [C([0, T]; H)]? n %.
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In the meantime, from (8), (91b)—(91g), (94c), (94d), (A3), and Remark 1, we can derive the following
estimates:

|<atpn° ’ §0>1| < |<Hnopno ’ §0>1| + |(vpno ’ v¢)[e7f]N| + |(ArlopnO + wno 'v‘zno ’ q))//l + |(Mn(72n° - rlad)’ go))?’l
<C’lgly, forany ¢ € 77,

(96a)

and

K=div(Ay Vzy ), Whnol = 1Ay Vi, V)]
< |(aOZn0 ’ atlp)}ﬂ + |(V2VZn0 + pno a)n0 ’ le)[yf]”l + |(]M€(9n0 - ead)’ lp)ﬂl (96b)
<G| |y, forany p € C°(Q), n=1,2,3, ..,

with n-independent positive constants:

4
{(1 + (C& )2 M, lroo,rsm) + 1A o) + Wy e )} (<c0)

C;° = sup
([P 20 llw + |My(n,” = o)1)

neN

and

2, CH -
¢y = sup (1 +v2+ Cylaolieg + lwy |[L°°(Q)]N) (<00),
(l[pno s Zno]lﬂl/ + |M9(0nD - ead)l,yf)

neN

where C‘§4 > 0 and C‘Z > 0 are the constants of embeddings V ¢ L*(Q) and V, ¢ H, respectively.

Due to (91d)-(91g), (96), (* 5), Lemma 6, and the compactness theory of Aubin’s type (cf. [27, Corollary
4]), we can find subsequences of {[p,, z, I}n21 € ¥, {w,, -Vz, 21 € #, and {—div(4, Vz, )2, € #; (not
relabeled), together with the respective limits [p°,z°] € %, &° € #, and {° € ¥, such that

[pys2z,]1 = [p°,z°] weaklyin %,
p; — p° in #, weaklyin W0, T; V*¥), (97a)
and in the pointwise sense a.e. in Q,

M, Py — p°p° weaklyin 77, (97b)
Apy — A°p° in A, (97¢)
Py, w, — p°a'(n°)o° weaklyin #, (97d)
Vfe, (V. )-Vz; — &°  weaklyin 7,
{w,,° Vz,; = a'(n, WVfe,(V0, )-Vz, — a'(n°)§° weaklyin #, O7e)
and
—-div(4, Vz,) — {° weaklyin #;, as n — oo. (97f)

Now, the properties (28)—(31) will be verified through the limiting observations for (94), asn — oo, with
the use of (91) and (97).

Finally, we verify the properties as in (32), under the situation (r.s.1). To this end, we first invoke (9b)
and (91c), and confirm that

{l(p(Vfg(VHr,“) - Vf:(V6°))| — 0, in the pointwise sense, a.e.in Q, as n — oo, (98)

lp(Vf:(VB,) — Vfe(VO°))| < 2|p|, a.e.in Q, n=1,2,3,..., forany ¢ € #.

With (98), (r.s.1), (> 4), and (A4) in mind, using (9b) and (91b), and applying the dominated convergence
theorem [25, Theorem 10 on page 36] yield that
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lp(a’(n,, )Vfe, (VO ) — &' (° )V (VO )
<lp@m,) - Nl + & 12wl @(V(VO, ) = VI(VO )|
+ | [ro) l(Vfe, (VO ) = VI (VO Dl (99)

c c 2la’|
< L@ () = ANl + 1€ 1o | PV, ) = (VO Dl + ——

— 0,as n— oo, forany ¢ e #.

len — ell@lr

Owing to (97a) and (99), one can further observe that

(@, WVfe, (VO )-Vzy s @) = (Vz, , &' (1, )Vfe, (VO )y
— (@M )V(VO°)Vz°, 0)y = (VZ°, &' (" IVf(VO ) ¥ (100)
as n — oo, forany ¢ e #.

Meanwhile, from (9¢), (91b), (91c), (x 4), and (A4), it is inferred that:

I(a(n, IVfe, (VO ) — a(n IV [ (VO )V
la(m, ) = a(n ) IV¥e, (VO o oird N [VPle@rY) + 1801 ) IV, (VO ) = Ve (VO )| v [V earY)

N+1 ) 3(N + 1)? . . 1
- &' [y [VYleqrm N, — Nl + TW(’T N IVPlc@r™| V6, = Ol + ~

— 0, as n — oo, forany Y € C*(Q),

IN

IN

and therefore,

(—div(a(n, Ve, (V6, IVz, ), ) = (Vz, , a(n, IV S, (VO, IV ¥
— (=div(a(n )V (VO°)Vz ), P) = (Vz°, a(n° )Vf:(VO  )VY) v, (101)
as n - oo, foranyy € C(Q).

The fine properties as in (32) will be a consequence of (91f), (91g), (92), (97d)-(97f), (100), and (101).
Thus, we complete the proof of Main Theorem 4.

8 Conclusion

The Main Theorems 1-4 of this article establish a versatile mathematical theory, which allows us to handle
various temperature constrained optimization problems for grain boundary motions. In particular, when
the state system is smooth and the temperature constraint is bounded, the Main Theorem 3 provides a
useful method (algorithm) to compute the optimal control, via the first necessary optimality condition.
Additionally, even when either the state system is nonsmooth or the temperature constraint is unbounded,
we identify a governing law for the optimal controls as the final Main Theorem 4. In fact, the proposed ideas
have the potential to push the field of optimal control of complementarity problems significantly forward.
Notice that such results are scarce for complementarity problems.
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Appendix

In this Appendix, we prepare some auxiliary results for our study. The auxiliary results are stated in the
following two subsections.

§ 2.1 Abstract theory for the state system (S),;

§ 2.2 Mathematical theory for the linearized system of (S),.

Al Abstract theory for the state system (S),

In this subsection, we refer to [15, Appendix] to overview the abstract theory of nonlinear evolution
equation in an abstract Hilbert space X, which enables us to handle the state systems (S),, for all € > 0,
in a unified fashion.

The general theory consists of the following two propositions.

Proposition 1. (cf. [15, Lemma 8.1]). Let {Ay(t) | t € [0, T]} ¢ L(X) be a class of time-dependent bounded
linear operators, let Go : X — X be a given nonlinear operator, and let ¥, : X — [0, co] be a non-negative,
proper, Ls.c., and convex function, fulfilling the following conditions:

(cp.0) Ay(t) € L(X) is positive and self-adjoint, for any t € [0, T], and it holds that

(AW, W)y = kolwk, for any w € X,

with some constant x, € (0, 1), independent of t € [0, T] and w € X.
(cp.1) Ay : [0, T] — L(X) is Lipschitz continuous, so that A, admits the (strong) time derivative
Ayt) € Z(X) a.e. in (0, T), and

A7 = esssup{max{| Aot zx), A} < c0;
te(0,T)

(cp.2) Go : X —> X is a Lipschitz continuous operator, and G, has a Cl-potential functional @0 : X — R,

so that the Gdteaux derivative @;(w) € X*(=X) at any w € X coincides with Go(w) € X;

(cp.3) ¥, > 0 on X, and the sublevel set {w € X | Wo(w) < r} is compact in X, for any r > 0.

Then, for any initial data wo € D(¥) and a forcing term §, € L*0, T; X), the following Cauchy problem of
evolution equation:

{‘ﬂo(t)W’(t) + 0W(w(t)) + Go(w()) > fo(t) in X, t € (0, T),
(CP) )
w(0) = wy in X;

admits a unique solution w € L*(0, T; X), in the sense that:
w e W20, T; X), Wo(w) € L*(0, T),
and

(A(OW'(t) + Go(W(t)) = fo(D), w(t) — )x + F(w(D)) < ¥o(w),
for any w € D(¥,), a.e.te€ (0, T).

Moreover, both t € [0, T] — ¥y(w(t)) € [0, 00) and t € [0, T] — Go(w(t)) € R are absolutely continuous
functions in time, and

[ Aot w' (D) + %(%(W(t)) + GoW())) = (fo(®), W' (), for ae. t € (0, T).

Proposition 2. (cf. [15, Lemma 8.2]). Under the notations Aq, Go, ¥, and assumptions (cp.0)—(cp.3), as in
the previous Proposition 1, let us fix wo € D(¥) and f, € L*0, T; X), and take the unique solution
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w € L%(0, T; X) to the Cauchy problem (CP). Let {¥}32,, {Wo,n}o21, and {§,}o2, be, respectively, a sequence of
proper, Ls.c., and convex functions on X, a sequence of initial data in X, and a sequence of forcing terms in
I%(0, T; X), such that

(cp4)¥Y,=200nX, forn=1,2,3,... ,and the union | J;2{w € X | Y(w) < r} of sublevel sets is relatively
compact in X, for any r > 0O;

(cp.5) ¥, converges to ¥, on X, in the sense of Mosco, as n — oo;

(cp.6) suppen¥(Wo,n) < 00, and wo,n — W in X, asn — co;

(cp.7) f, — f, weakly in L*(0, T; X), as n — oo.

For any n e N, let w, € L*(0, T; X) be the solution to the Cauchy problem (CP), for the initial data
Wo,n € D(¥,) and forcing term §, € L*(0, T; X). Then,

w, — w in C([0, T]; X), weakly in W-2(0, T; X),

T T
J“I’,,(w,,(t))dt - '[‘Po(w(t))dt, as n — oo,
0 0

and

YoW)lcqo, 1 < sup [Wnleqo, 1) < 0.
neN

In this article, the readers are recommended to see [15, Appendix] for the detailed proofs of Propositions
1 and 2. Roughly summarized, these Propositions can be obtained by means of modified (mixed and
reduced) methods of the existing theories, such as [19,23,24].

A2 Mathematical theory for the linearized system of (S),

In this subsection, we recall the previous work [16] and set up some auxiliary results. In what follows, we let
@ =¥ x ¥y, with the dual #* .= ¥™* x 77;. Note that % is a Hilbert space which is endowed with a uniform
convex topology, based on the inner product for product space, as in the Preliminaries (see the paragraph of
Abstract notations).

Besides, we define

Z = W0, T; V) n ¥") x (WX0, T; V5) n 7o),
as a Banach space, endowed with the norm:
(B, £l = I[D» Zllicqo,ry; myp + ([P, 211 + 1[0:D, 9:Z] f,/*)%, for [p,Z] € Z.

Based on this, let us consider the following linear system of parabolic initial-boundary value problem,
denoted by (P):

op — Ap + u(t, x)p + A(t, x)p + w(t, x)-Vz = h(t, x), (t,x) € Q,
(P) {Vp(t,x)-nr =0, (t,x) €Z,
p(0, x) = po(x), x € Q;
a(t, x)osz + b(t, x)z — div(A(t, X)Vz + v2Vz + w(t, x)p) = k(t, x), (¢, x) € Q,
z(t,x) =0, (t,x) € Z,
z(0, x) = zp(x), x € Q.

This system is studied in [16] as a key problem for the Gateaux differential of the cost 7 for € > 0. In the
context, [a, b, u, A, w, A] € [#]° is a given sextuplet of functions, which belongs to a subclass % ¢ [#]°,
defined as
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(<] & € W-(Q) and logd € [*(Q),
[-] [b, 4] € [[2(Q)P,

[-] fi € L®(0, T; H) with ji > 0 a.e.in Q,
-] @ € L@, @A
[-] 4 € [L®(Q)]¥¥, and the value A(t, x)

R

€ RN*N is positive and symmetric matrix, for a.e. (¢, x) € Q

Also, [po, zo] € [H)? and [h, k] € %* are, respectively, an initial pair and forcing pair, in the system (P).
Now, we refer to the previous work [16], to recall the key properties of the system (P), in forms of
Propositions.

Proposition 3. (cf. [16, Main Theorem 1 (I-A)]) For any sextuplet [a, b, u, A, w, A] € &, any initial pair
[po, 2z0] € [H)?, and any forcing pair [h, k] € %*, the system (P) admits a unique solution, in the sense that:

p € Wb2(0, T; V¥) n L*(0, T; V) c C([0, T]; H), (A2)
z € W40, T; V) n 20, T; Vp) c C([0, T]; H); '
©Op(6), p)v + (Vp(), V) + (MEOP(), p)v + AOP(E) + w(t)-Vz(t), ) = (h(D), p)v, A3)
for any ¢ € V, a.e. t € (0, T), subject to p(0) = po in H; '
and
(0ez(t), at)P)y, + (b()z(t), Pl + (AE)Vz(t) + v2Vz(t) + p(Ow(t), Vi) = (k(E), Yy, (A4)

for any Y € W, a.e. t e (0, T), subject to z(0) = zy in H.

Proposition 4. (cf. [16, Main Theorem 1 (I-B)]) For each ¢ ¢ {1, 2}, let us take arbitrary [a®, b%, ut, A%, wt, A*]
e Z,Ipé, 28] € [HI2, and [ht, k%] € #¥*, and let us denote by p*, z%] € [#]? the solution to (P), corresponding to
the sextuplet [a®, bt, p, A, wt, A, initial pair[ p¢, z§], and forcing pair[h, k%). Besides, letC; = Ci(a', b', A', w")
be a positive constant, depending on a', b', A!, and w', which is defined as:

901 +v?) r Iz I
Co=—"————(1+ (G )+ (Cy )* + (Cy )H)A + |@ gy + DY) + A
0= TAV2 A infaiQ) ( ( v) ( v) ( vo) YA + @) + Do) + M o) As5)

112
+ I(U |[L°°(Q)]N)’

with the use of the constants C&4 > 0and C&: > 0 of the respective embeddingsV ¢ L*(Q) andVy ¢ L*(Q). Then, it
is estimated that

%(I(p1 - Pl + IVa () (@' - 2O + (' - PO + v - 2)(O)l;)
< 3C5(1(p" - PO + W@l (& - 22(OF) + 261 ~ RYOR. + (K - k(OF, + Ry(t)), B

for a.e. t € (0, T);

where

R§(0) = Rez2(OR(Ia! - @ Bgy + V(@ = @)(OR. ) + IPORIG = 1O + 1@ = 0O )
+ 1ZOR B! - PO g + PPOR = DO + V2O - @)Of + (A" = YOV,
for a.e. t € (0, T).

Proposition 5. (cf. [16, Corollary 1]) For any [a, b, y, A, w, A] € &, let us denote by P = P(a, b, u, A, w, A):

[H? x #* — Z a linear operator, which maps any pair of data [[po, zo], [h, k]] € [H]? x #* to the solution
[p, z] € Z to the corresponding linear system (P), for the sextuplet [a, b, u, A, w, A}, initial pair [po, 2o], and
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forcing pair [h, k]. Then, for any sextuplet [a, b, u, A, w, A] € &, there exist positive constants M =
M(a, b, u, A, w, A) and My = M;(a, b, u, A, w, A), depending on a, b, u, A, w, and A, such that

M; |[[pos zol, [h, K1llgpxa < I[P, zllz < My |[[Po, Zol, [h, kK]l|gpxa:s
for all [pO’ ZO] € [H]Z’[h9 k] € @*;
and [p’ Z] = P(a) bx l’l’ /\’ w, A)[[pO) ZO]) [h) k]] € EX’

i.e., the operator P = P(a, b, u, A, w, A) is an isomorphism between the Hilbert space [H]? x %* and the
Banach space Z .
Proposition 6. (cf. [16, Corollary 2]) Let us assume:
[a’ bs ]'l: A’ (U, A] € (ys {[an! bna "lna Ans wn: An]}gil C ,9”,
[an, 0tan, Vay, by, Ay, wn, Anl — [a, 0:a, Va, b, A, w, A] weakly — = in

L®(Q) x L®(Q) x [L®(Q)IN x L®(Q) x L™(Q) x [L®(Q)IN x [L®(Q)NN, (A7)
and in the pointwise sense a.e. in Q, as n — oo,

and

{yn — u weakly — = in L°(0, T; H),
as n — oo.

u,(t) = u(t) in H, for ae. te (0, 7),

Let us assume [ po, zo| € [H?, [h, k] € #*, and let us denote by p, z] € [ #]? the solution to (P), for the initial
pair [ po, zo], and forcing pair [h, k]. Also, let us assume {[po.n, Zo nl}ox1 € [HP, {[An, ka}32, € #*, and for any
n € N, let us denote by [pn, z,] € [#']? the solution to (P), for the sextuplet [y, bn, U, An, Wy, An] € &, initial
pair [po,n, Zo,n), and forcing pair [hy, kn]. Then, the following two items hold.

(A) The convergence:

{[po,n,Zo,n] — [P0, zo] in [H]?, as n — oo,

[hn, kn] — [h, k] in &,
implies the convergence:
[Pn> zn] — [p, 2] in [C([0, T]; H)]?, andin %, as n — oo.

(B) The following two convergences:

{[po,n,zO,n] — [Ppo, zo] weakly in [HE,
as n — oo,

[y, k] — [h, k] weakly in %*,
and
[Pn, zn] — [P, z] in [#T?, weakly in %, and weakly in W-2(0, T; V*) x W42(0, T; V§), as n — oo,
are equivalent to each other.
Remark 17. In the previous work [16], one of the essential requirements is to use the continuous embedding
V ¢ L*Q), as in Remark 1, which is satisfied under the restriction N < 4 of the spatial dimension N € N.

Therefore, under the assumption N € {2, 3, 4} of this article, Propositions 3-6 will be applicable, although
the previous results as in [16] were obtained under strict assumption N € {1, 2, 3}.

Finally, we recall an auxiliary result, which was indirectly obtained in the proof of [16, Key-Lemma 2].

Lemma 6. Let us assume that ji € L°(0, T; H), {fi,};2, ¢ L0, T; H), p € V", {Pnfp21 € V",
fi20and i, >0, ae.inQ, n=1,23,.., (A.8a)
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i, — jl weakly — = in L*(0, T; H), (A.8b)
() - at) in H, for ae. te(0,T), '
and
Pn — P in K, and weakly in ¥, as n — co. (A.8¢c)
Then, it holds that
fi,bn — AP weakly in ¥, as n — oo. (A.9)
Proof. From (ap.8) and Remark 1, we can see that:
. 4 , X
suplil, puly+ < (CF ) suplil,li=o,7; m)lBnls- < 0o, (A.10)
neN neN

with the use of the constant C&a > 0 of embedding V ¢ L*(Q). This implies that:
(* 0) The sequence {fi, Pn}y2; is weakly compact in 7.

Also, with (A.8b) and the dominated convergence theorem [25, Theorem 10 on page 36] in mind, we can
derive that:

A, - jpin #, asn— oo. (A.12)

Now, on the basis of (* 0), let us take any §* € 7™, such that §* € 7™ is a weak limit of a subsequence of
{fi,, Dnks21 (not relabeled), i.e.,

fi,pn — @* weaklyin 7™, as n — oo. (A.12)
Besides, by taking subsequences if necessary, (A.8c) and (A.11) enable us to say that:
fi, — fi and p, — p inthe pointwisesense, a.e.in Q, as n — oo. (A.13)

Additionally, by (A8) and Remark 1, we can compute that:
WO @) - RO SO < 11, - 71O O < (CF V1@, - DOlIPOF — 0, as n — co, (Al4a)
sup | J71,(0 (t) — A $(OF < (CF')2 supl(, ~ DOllGOF < oo,

eN

neN n (A14b)
for any p € v°, and a.e. t € (0, T),
and
A~ A 4 A A
sup ||/, bl < (CF )2 supll, li=o,7; m)lPn 5} < co. (A.14c)
neN neN

Taking into account (A14), Remark 1, Lions lemma [28, Lemma 1.3 on page 12], and the dominated
convergence theorem [25, Theorem 10 on page 36], one can observe that:

A0 — g in #,
A, Pn — \/ﬁﬁ weaklyin #, as n — oo,
and therefore,
(s @Yr- = (Vi P B @) = (JAD, JAD)w = (1D, @) as n— oo, forany g € 7. (A.15)

(A.12) and (A.15) imply the uniqueness of the weak limit §* = jip of subsequences of {fi, P}y, in ¥ ™*. Hence,
invoking the separability of the Hilbert space 7*, we conclude the weak convergence (A.9) with non-
necessity of subsequences. O
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