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ABSTRACT. We consider an optimal control problem governed by parameter-
ized stationary Maxwell’s system with the Gauss’s law. The parameters enter
through dielectric, magnetic permeability, and charge density. Moreover, the
parameter set is assumed to be compact. We discretize the electric field by a
finite element method and use variational discretization concept for the con-
trol. We present a reduced basis method for the optimal control problem and
establish the uniform convergence of the reduced order solutions to that of the
original full-dimensional problem provided that the snapshot parameter sample
is dense in the parameter set, with an appropriate parameter separability rule.
Finally, we establish the absolute a posteriori error estimator for the reduced
order solutions and the corresponding cost functions in terms of the state and
adjoint residuals.

1. Introduction. Maxwell’s equations with the Gauss’s law play a central role
in many day-to-day applications. However, the underlying coefficients in these
equations, such as dielectric, magnetic permeability, and charge density contain pa-
rameters which must be inferred from experiments or treated as random variables.
In many cases, these parameterized equations must be queried for different param-
eters, many times over and thus the problem quickly becomes intractable. This
issue is only exasperated when dealing with optimization problems with such pa-
rameterized equations as constraints. The goal of this paper is to present numerical
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analysis, using reduced basis method, for the optimal control problem governed by
stationary Maxwell’s system with the Gauss’s law as constraints.

We discretize these equations using a finite element method and carry out a
variational discretization for the control. The finite element system for the PDE is
a parameterized constrained saddle point system. It can be very expensive to solve,
especially on fine meshes and for many parameter queries (cf. [23, 37, 18, 19]).
From a reduced basis point of view, one needs a surrogate model for the system.
Furthermore, since the reduced basis approach considers a suboptimal problem,
convergence analysis and error estimates for the reduced order solution to that
of the original full-dimensional problem are crucial, which are investigated in the
present paper.

For completeness, we mention that the optimal control problems governed by
the non-parameterized Maxwell systems have attracted a great deal of attention
from many scientists in the last decades. For surveys on the subject, we refer the
reader to, e.g., [7, 10, 31, 35, 36, 40, 41, 42, 43, 44] and the references therein. The
construction of the reduced basis methods for parameterized Maxwell systems can
be found in [6, 11, 12, 20, 21, 22]. Moreover, an incomplete list of references that
considers the analysis of parameterized optimal control problems (not Maxwell) can
be found in [4, 15, 27, 29, 30, 34, 38].

To the best of our knowledge, the optimal control of such a system is not known.
The main results of our paper are contained in Theorem 5.5, where we prove the
uniform convergence of reduced order solution, to the optimal control problem, to
that of the original full-dimensional problem, and in Theorem 6.3 where we establish
the absolute a posteriori error estimator for the reduced order solutions. Numerical
implementation will be part of a future work.

The remainder of the paper is organized as follows. In Section 2, we state the
problem under consideration. Section 3 is devoted to some functional spaces and
the finite element method for the system 1. Primal reduced basis approach for
the optimal control problem and first order optimality conditions are presented in
Section 4. Convergence analysis and a posteriori error estimates for the reduced
basis approximations are respectively discussed in Section 5 and Section 6.

2. Problem formulation. Let ) C R3 be an open, bounded, nonempty domain
with a connected Lipschitz-continuous boundary. Moreover, let P C RP denotes the
set of parameters, we assume that P is compact. In this paper we deal with the
following p-parameterized stationary Maxwell’s system fulfilled by the electric field
E:

Vx (07 (xp)V xE(xp) = expux), (xp) € QxP,
V- (e ) E(x; 1)) p(x; 1), (x;1) € XX P, (1)
E(x; 1) x 1i(x) =0, (x; 1) €02 x P,
where i := 1i(x) is the unit outward normal on 9. In 1 the dielectric € := e(x; ),
the magnetic permeability o := o(x;pu) and the charge density p := p(x;u) are
assumed to be known with
pSpxip) <p, e<e(xsp) <€ and oc<o(xip) <7 (2)

a.e. in x € €2, all u € P for some given constants p,p, ¢, €, o, and & independent of
both x and p, where € > 0 and g > 0. Furthermore, we assume that Gauss’s law is
applied to the current source, i.e.

Ve (e(xsp)u(x)) =0, (x51) € QxP. (3)
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The function u denotes the control variable. For
u € Uug(p) = {u = (w)?, € LX) = (L2(9))° | V- (cu)=0andu <u < ﬁ}

given, we solve 1 for the electric field E := E(x,u;u) := E(u;p) € Hg(curl; Q)
depending on u and the parameter p as well (see Section 3 for the definition of
functional spaces). Here u := (u;)3_; and U := (@;)5_; € R? are the given lower
and upper bounds of the control with u < u < 1 referring to the inequality u, <
ui(x) < w; for ¢ = 1,2,3 and a.e in Q. Therefore, for any given p € P we define
the control-to-state operator E : Uyq(pn) — Ho(curl; Q) that maps each u to the
unique weak solution E(u; i) of 1. We note that the admissible set Ugq(1) depends
on €(u), which guarantees that the control-to-state operator E is well defined (cf.,
e.g., [44]).

Let D be a non-empty measurable subset of 2 and E4(u) € L2(D), ug(u) €
L2(Q) respectively be the desired state and control, both of which can be dependent
on parameters. In this paper we consider the parameterized control problem

min J(u, E; p), P,
(u,E)EU44(p) xHp (curl;Q2) ( M) ( )

where! the cost functional is defined as

J(w,E;pr) : *II\/ a) L) + 5 IVl (1 = wa()) 320

and « > 0 is the regularization parameter. We assume that the desired state and
control are uniformly L2-bounded with respect to the parameter, i.e.

[Ba(p)llL2py < e and  [Jug(p)|Lz() < ua (4)

for all 4 € P with e4 and ug some positive constants. Furthermore, E; fulfills the
Gauss’s law in D, i.e.,

V- (e()Ea(p)) = p(p) in D.

Let (En, Vi) be the finite element space associated with the system 1 and Ep(u)
be the finite element approximation of E(u) (cf. Subsection 3.3). Adopting the
variational discretization concept introduced in [24] (where control is not directly
discretized), we approximate the “exact” problem (IP) by the discrete one

i J(u, Ep; 1), P
(u7Eh)EnLlllag(u)><5h (u h NJ) ( h)

subject to

{(O’l(,u)v X Eh(ﬂ)v V x Qh)LQ(Q) = (G(M)u’ (ﬁh)LZ(Q) (5)

(e(W)En (), V¢h)L2(Q) = —(p(k): én)r2(0)

for all (®p, pn) € Ep X V.

As mentioned in the introduction, the constrained saddle point system 5 may be
expensive to solve. Our goal is to create a reduced basis method for (IP;,), prove its
convergence, and derive a posteriori error estimates.

3. Preliminaries. We start this section by presenting the definition of functional
spaces which are utilized in the paper, for more details one can consult [2, 32].
Well-posedness and finite element discretization, including a priori error estimates
of 1 are given in Subsections 3.2 and 3.3, respectively.

IThe subscript e in the problem (Pe) refers to “exact”.



4 QUYEN TRAN, HARBIR ANTIL AND HUGO DIAZ

3.1. Functional spaces. In this paper bold typeface is used to indicate a point in
R3, a (three-dimensional) vector-valued function or a Hilbert space of vector-valued
functions.

In what follows we denote by C a generic positive constant which is independent
of the mesh size h and the parameter u. Notice that the value of C' can differ from
one occurrence to another. Moreover C(y) is a generic positive constant which is
independent of h but it can depend on p, its value also can differ from one occurrence
to another.

The Hilbert spaces

H(div; Q) := {® € L*(Q) | V- ® € L*(Q)} and
H(curl; Q) := {® € L*(Q) | Vx ® € L*(Q)}
are respectively equipped the inner product
(®, \I,)H(diV;Q) = (@, )2 + (V- @,V -¥)12) and
(@, ¥)H(curl;0) = (B, ¥)r2(0) + (VX @,V X ¥)12(q).
The normal trace operator v, (®) = 0 - Y5 for all & ¢ C>(Q) can be ex-

tended to a surjective, continuous linear map from H(div; Q) — H~Y2(9Q) :=
(H1/? (8(2))* such that Green’s formula (cf. [32, Chapter 3])

(V- @,9)12(0) = —(®,VP)L2(0) + (70 (P), ¢>(H—1/2(39),H1/2(39)) (6)
holds true for all ® € H(div;Q) and ¢ € H'(Q). The tangential trace operator

Yt (@) 1= 1 X Pgq for all & € C>(2) can be also extended to a continuous linear
map from H(curl; Q) — H~/2(99). Further, Green’s formula [32, Theorem 3.29]

(Vx®, ‘I’)L2(Q) = (®,V x ‘I’)LQ(Q) + (1 (®), \Il>(H71/2(QQ)}H1/2(6Q)) (7)
holds true for all ® € H(curl; Q) and ¥ € H*(Q).
We conclude this subsection by the following definition

C<(0) d ; N T~ curl;
Hy(div: 2) := C(@) " amd Hy(eurl; ) := C(@) ",

where the closures are respectively taken with respect to the norm of the space
H(div; Q) and H(curl; Q) and C°(Q) is the space of all infinitely continuously
differentiable functions with compact support in 2. Notice that
H, (div; Q) := {® € H(div; Q) | 7,,(®) =0},
Hy(curl; Q) := {® € H(curl; Q) | v(®) =0} .

3.2. Variational formulation of the system. For any given 4 € P and u €
L2(Q) an element E := E(u1) := E(u; 1) € Ho(curl; Q) is said to be a weak solution
of 1if

(0" (WY X B(1).V x ®) ) = (()u,®)pagy . ¥ € Hylcurl: 0)

(e()E(1), Vo) 120 —(p(1), @) 2y, Vo € Hi ().
The first equation in 8 is obtained by multiplying the first equation of 1 with
® ¢ Hy(curl;Q), and then using the identity 7. The second equation of 8 is

obtained by using the second equation in 1 and the Green’s formula 6.
We define by

(8)

V() = {1 € Hy(curl;Q) | V- (er) = 0}.
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For any fixed p € P, due to the connectedness of the boundary 92, we have
{reV(u) | VxT=0}
={rel?(Q) | Vx7=0, V- (er) =0, i x T|pp = 0} = {0}

(cf., e.g., [14, 44]). An application of Peetre’s lemma (see, [28, Lemma 2]) then
yields that there is a positive constant C(u) such that

[TllL2) < C(W)IV X 7|20 (9)

holds true for 7 € V(u). With the aid of the condition 2, we obtain the coercivity
condition

||VH%I(cur];Q) S C(M) (J_lv XV, V x V) (10)

L2(Q)

for all v € V().

Therefore, due to the standard theory of the mixed variational problems (see,
e.g., [9, 17]), we conclude that the system 8 attains a unique solution E = E(u; u) €
Hy(curl; Q) which satisfies

Bl meurto) < C(u) (lallezo) + llollz2 ()

< CIN2(5+ [lss) = Calp). (11)

We therefore can define for any fixed p € P the map
Syt Uga(p) = Ho(curl; Q) with u— S,(u) := E(u)
and for any fixed u € Ugyq(p) the one
Su:P — Hp(curl; Q) with p— Su(p) := E(p).

3.3. Finite element discretization. Hereafter, we assume (7),., is a quasi-
uniform family of regular triangulations of the domain Q with the mesh size h (cf.

[8]). For discretization of the state variable solving the system 8 let us denote the
Nédélec finite element spaces (cf. [33])

&n = {Ey € Ho(curl;Q) | Epjpr = ag + by x x, VT € T, with ap, by € R*},
V= {th € HY(Q) | dnjr = ar +br-x, VT € T, with ay € R, by € R3},

where VV}, C &p,.

The discrete variational formulation corresponding to the system 8 then reads:
find E;, € &, such that 5 is satisfied for all (®y,, ¢p,) € &, x V3. Similar to 10, since
the discrete Poincaré-Friedrichs-type inequality (cf. [26, Theorem 4.7], [32, Chapter

7))
[VhllLz ) < CWIV X vallLz o) (12)
is satisfied for all discrete e-divergence-free functions, i.e.
vi € D5 (n) = {Eh € &n | (€Bn, Von)pa =0 forall ¢, e Vh}, (13)
we have that
IVilfreurto) < C)(0 ™'V X Vi, V X vi)L2 (o) (14)

for all v, € Dy, (11). Therefore, we conclude that the system 5 has a unique solution
E; € &), satisfying the estimate ||Ep| g(curi;0) < Cu(H).
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To analyze the u-dependent optimal control problem, we assume that the Poincaré
constant C(u) appearing in 10 and 14 is uniformly bounded with respect to p, i.e.
there is a positive constant C' such that

C(p) <C
for all u € P. Therefore, we arrive at a priori estimate for the states

max (|| Ellacurt;), | Enl|H(curto)) < Ck,

where the constant Cg is independent of .
For all s > 0 we denote by (cf. [13])

H*(curl; Q) := {® e H*(Q) | Vx ® e H*(Q)}.

Equipped with the norm

) ) 1/2
@[5 (curne) = (H'I’HHs(Q) + [V x 'I’HHs(Q)) )
it is a Banach space. Before going further, we state the following result.

Theorem 3.1. For any given p € P let E(u) and Ep(u) be the unique solution to
8 and 5, respectively. Then:

(i) There holds the limit

lim [V x (E(1) — En(1))[L2(0) = 0.

h—0

(ii) In addition e(p), o=t () € W (Q) we get the reqularity E(u) € H?(curl; Q)
for some s € (1/2,1]. Furthermore, there exist constants v,v' € (1/2,1] such that
the estimates

IE(1) — En (1)l H(curtso) < CR°[E(w) |5 (cur0)
IV - e(E(p) = En(p)ll vy < Ch" T (||V x E(p)llz o) + Hp(/‘)"HV'*l(Q))

hold true.

Proof. The regularity E € H*(curl; Q) follows from [13, Lemma 3.6]. Further, the
assertion is based on standard arguments, it is therefore omitted here. O

4. Primal reduced basis approach. By standard arguments (see, e.g., [25, 39]),
one can verify that the problem (P.) attains a unique solution for each the parameter
@ € P. Furthermore, we can derive the following, for instance using Lagrangian
approach, first order optimality system satisfied by the optimal control, state and
adjoint.

Theorem 4.1. The pair (u},E?) € Uuq(p) x Ho(curl; Q) is the unique solution?
of the problem (P.) if and only if there exists an adjoint state F: € Hy(curl; Q)

2The superscript * refers to “optimality”.
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such that the triple (u}, EX, F¥) satisfies the system
(0 )V X B2 (1), ¥ % @) 0 = (1), @) (
(e(w)EL (1), V) L2y = —(p(1), ) L2(0), (15b
(0% % 0. )10 = (00 E) — Bal), Bhpapy s
(T2 (1), V) ey = O, (
(<o a = u2). i) - P20 - ) <0 (15¢)
@ L2(Q)
for all (®,$,u) € Ho(curl; Q) x HE(Q) x Uga(p).
Notice that the following inequality holds true for all p € P
IFe()llLz) < C(ea+ Cr) == Cr (16)

Based on the finite element approach in Subsection 3.3, next we approximate the
“exact” problem (P.) by the discrete one (Pj). Then, the associated first order
optimality system for the problem (P}) reads:

Theorem 4.2. The pair (u;,E}) € Ugqq(p) x & is the unique solution of the
problem (Py) if and only if there exists an adjoint state F; € &, such that the triple
(uj,E7,F}) satisfies the system

(7 )V X B0, ¥ % B) ) = el B (17a)

(e(EL (1), Von)yzq) = —(p(1), dn)r2(0), (17b)

(@ WV X F (1), V X @) 1o ) = (() (R (1) — Ba(p)), Br)pe(py,  (17¢)

(e(WF3 (1), Vo)) =0, (17d)

(<t wi). a0 - P30 -~ wi) <o (17¢)
L2(2)

for all (®p, pn,0) € En x Vi, x Uga(p).

The above optimality system 17a—17e consists of several sets of variational equa-
tions and inequalities which may be computationally expensive. Thus the surrogate
model approach will be considered next, where the original full-dimensional problem
is replaced by a reduced order approximation.

Assume that we are given the reduced basis spaces

(En,VN) C (En, Vi).

Furthermore, to guarantee the existence of a solution to the reduced order constraint
system, we assume that the coercivity condition 14 is fulfilled for all

vy € Dy (p) = {EN € &n | (B, Vén)am =0 forall oy e VN}. (18)
We can then consider the reduced basis problem

min J(u, En;p), P
(B O e, T (N ()

subject to

(19)

{( WV XEN(1),V X @N) o) = (), Bx)pe )
(e(u)En(p), V¢N)L2(Q) —(p(p), ¢N)L2(Q)
for all (@, dn) € En x V. The associated first order optimality system reads:
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Theorem 4.3. The pair (uy,E%) € Uya(p) x En is the unique solution of the
problem (Px) if and only if there exists an adjoint state ¥y € En such that the
triple (uly, By, Fy) satisfies the system

(O—il(ru)v X E}k\/(,u')a v X (iN)LQ(Q) = (G(ﬂ)u7v7 (I)N)L2(Q) 9 (20&
(

)

(e(WEN (1), VON)12(q) = —(p(11), dN) 12(0), 20b)

(07 )V X Fiy (). X B) 2 = (€GB (1) — Buli) B gy« (200)

(6(/U)F*N(M)v V¢N)L2(Q) =0, (20(1)

(<) a = uk)owa) = SF30 ~uy ) <0 (200)
L2(2)

for all (BN, pn,u) € En X Vy X Uga(p).

We conclude this section by performing the greedy sampling procedure [19, 23, 37]
applied to the problem under consideration. Note that, by the discrete Helmholtz
decomposition (see, [32, Section 7.2.1]), for all z5 € &, there exists a unique pair
(21, H(z5)) € D} x Vj, such that z5 = 2} + VH(z5).

Algorithm 1 Greedy procedure

Choose Sirain C P, an arbitrary pu' € Sirain, €1o] > 0 and Npap € N
Set N :=1, and
En = span{E; (u™), F(u™), VH(E; (1)), VH(F; (1))}

Viv = span{H (B}, (u")), H(F},(u"))}

while max,es, .. AN(EN, Vi) > €] and N < Nmax do
pN T = arg maXpes; . AN(EN, Vs 1)
Eny1 = span{{Ej (uN 1), Fy (uN ), VH(E; (uN ), VH(F; (1N 1)) UEn}
V1 := span{{H (B} (uN*1)), H(F} (1" 1))} U Vv }
N:=N+1
end while

In Algorithm 1, the sampling parameter set Stqs, C P is finite, but rich enough
to so that it is a good approximation of the full parameter set P. The initial
parameter /Jl is chosen arbitrarily in Sirqin, €to] 1S @ desired error tolerance and
Nz is the maximum number of iterations. The pair {Ej(uY), F; (1Y)} is the
optimal state and adjoint state defined by the optimality system 17a—17e at the
parameter g = p’¥. The quantity Ax(En, Va; i) is an error estimator between
solutions of the problem (P;) and the reduced one (Py) at the given parameter p,
that will be described in detail in Section 6.

5. Convergence of the reduced basis method. Our aim in this section is to
investigate the uniform convergence

i sup [ (1) — wiy () [z ) = 0
— 00 #Ep

of reduced basis optimal solutions to the original one. To do so, we assume that
the snapshot parameter sample Py := {u!, ..., uN } is dense in the compact set P,
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i.e. the Hausdorfl distance

Ky = sup dist(u, Py)
HEP

tends to zero as N to infinity, where dist(u, Py) :=inf,ycpy |10 — 1/ ||re-

A crucial property for an efficiently computational procedure of reduced basis
approaches is the parameter separability that can be defined as follows (cf. [16]).
Such separability conditions, for instance, can be obtained by using the Empirical
Interpolation Method (EIM) [5], see also [ ].

Definition 5.1. Assume that the functions o, €, the desired control and state u,
and E; admit the expansions

Q7 o
)= 05(wo (), elsp) = 0% (meq(r)

Qud QFd

Z @ udq , Z @ Edq

where Q7, Q¢, Q¢ and Q¥ are finite positive integers, the functions 07,05, 071
and @Ed P — R, while the functions o, 1,eq, ug, : 2 — R as well as Ed D — R
are independent of the parameter p.
Due to 2 and 4, we assume that
Uq_l € [E_l7g_1}7 €q € [§7a> HuquLQ(Q) < ugq and ||Edq||L2(D) <eq
for all the index gq. We start with some auxiliary results.
Lemma 5.2. (i) For any given p € P the inequality
||Su1 (M) - Su2 (/J/)”H(curl;Q) < CfHu1 - UQHLQ(Q)

is satisfied for all u',u® € Uyq(p).
(#i) For any fivzed u € Ugyq(p) the estimate

HSU(Ml) - SU(H’Z) ||H(0url;Q)

o
<C <Z 07 (1) — 92(u2)|2>

holds true.

1/2 1/2

o
+C (Z CHDES 92(u2)|2>

Proof. (i) For any ® € Hy(curl; Q) from the system 8 have that
(Uil(u)v x (Sul (H’) — Su2 (,LL)), V x Q)L2(Q) - (e(p’)(ul - u2)7 q’)Lz(Q) .
Taking ® = Sy1 (1) — Su2(p), with the aid of 2 and 10, we obtain

[Sur (1) — Su2 (M)”%—I(curl;ﬂ) < OHul - U2||L2(Q)||Su1 (1) — Sye (H)HL?(Q),

which yields the desired inequality.
(ii) Likewise, we get

(e ()Y X (Su(p') = Su (/LQ)) VX ®),q
= (e(u Ju, )LQ(Q) (0’ DWWV x Su(p ),VX‘P)LQ(Q)
— (o () - ww X Suli2), ¥ % ) g+ ((el!) — (), @) g
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Taking ® = Sy (u!) — Su(p?), we thus obtain

o 1/2
Q
||Su(/1'1) - Su(ﬂ2)||H(curl;Q) < C (Z |®g(,u/1) - @Z(N2)|2> ||Su(/142)||H(curl;Q)
qg=1
1/2
+C <Z®€ o5 (1) > [uflLz(q)
which together with 11 yield the desired inequality. The proof completes. O

Lemma 5.3. Let ul(u) be the solution of the problem (P.) associated with the
parameter p € P. Then, the estimate

[ug (n') = ug (1) e ) < Blu', 1?)

is satisfied for all p*, p? € P, where

Qua 1/2
B(u', i) = Call? | Y105 (uh) — O (1)
. 1/2 1/4
+Cat <Z|@f CH )) +C<Z|@€ CH )I)
o° 1/4 QEd 1/4
+C (Z CHTE 62(u2)|2> +C | D107 (uh) — OF (u?)[?
q=1 q=1
Proof. By the variational inequality 15e, we have
(€00 200 ), wati) = (o) i) <0
(<o) 2 = e, wa) = P20 ) <o
L2(2)
which yield
ol ug (1) — wi (1) |22 o)
< (e(u' )( (u %) —ug(uh), a(ua(e?) = wa(nh))) 2 )
+ ((e®) = e(uh) (uZ (?) = ug(ph), oua(p?) = F(p?) — aug (1) 2 g

+ (e<u1>(u:<u2> () FL (1)~ FL()) ey = Do+ o+ I,

We bound for the terms I, Is and I3. First, we get

Qua 1/2
* u u 2
I < Calluc ) ~ut ez | 351036 - 0301)|
QU )
<4 laellul(4®) — ul(p)fai) + Ca )y [0 (u?) — 05 (1))

qg=1
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I < H (6(M2) - 6(/‘1)) (UZ(Nz) - u:(ﬂl)) ||L2(Q) '

: (CV||11d(M2)||L2 @ +Cr + a||u:(ﬂ2)||L2(Q))
1/2

(Z@E O4( )|> ||UZ(M2)—UZ(M1)||L2(Q)

<4 ae||u( ) —ui ()i

-1 Z |@e e )|
For I3 we write
) (1), Fr(i®)) 1oy — ((e(u') = e(u®))uz (6?), F(1?)) 1o g
) F2(2%)) oy — (P2 (2) B2 (6)) Loy
+ 6(/ﬂ) E: (1) = Ea(nh)), Suz ) (1) = E2(1)) 1o

with
I+ I3 = ((e(p') — () (EZ (') = Ba(n'), Suz a2y (1) = BZ (1)) 1 )
+ () (B (') = Ba(1), Suz ) (1) = Suz ) (1)) 2y
+ (e(u®) (B (1?) = Ba(1), Suz (o) (1) = Suz ) (1)) 12 )
() (B )~ Ba), Sz ey ()~ BEG) )
+ () (B (1*) = Ba(1?)), Suz (1) = BL 1) 12y

=D+ o+ J3+ i+ Js5.
Since E}(u') = Sys (1) ('), we with the aid of 4, 11 and 5.2 get

1/2

QE
Ji<C <Z 08 (') — @Z(ﬂ2)|2> (I18us a2y (1) = Sus (ur) (D) IL2(p))
q=1
1/2

(ZGE Oq( )|> HUZ(/Jz)—UZ(Ml)HLZ(Q)

<4 aeHu( ) =l ()2

7lz|@e e )|
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and

1/2 1/2

o
o+ Iy <C <Z|@Z(u1) - @goﬂ)ﬁ)

g=1

o
+C (Z 0% (') — @;W)P)

and
Ji+Js = (e(u?) (B (1) — Ea(n')), EZ(1?) = BL(1)) o )
+ (e(e?) Bz (%) = Ba(u'), Bz (') = E2(4?)) 1o )
+ (e(e®)(Ba(p') — Ea(k®)), Bz (') = EZ(1)) 2
< —€el[E;(1?) — EX(1h)|12(p)
+ (e(u®) (Ba(u') — Ea(p®)), EZ (1) = BL(1)) 1o )
< C|Ea(p') — Ea(p®)||L2(p)

E 1/2
Q d
<C (D [10f(ut) — OF ()
qg=1
Therefore, we arrive at
QE
Iy < 4 Y|t (52) — wl (u)3ago) + Cat D 105022) — 5 (u) P
g=1
o 1/2 o 1/2
+C (Z 05 (n?) — 92(u1)2> +C (Z 07 (1) - @Z(u2)|2>
q=1 q=1
QFa 1/2
+C [ Y1074 (nh) — 7 (1))
q=1

The desired estimate follows from the bounds for Iy, I, I3, which finishes the
proof. O

Now we state the similar results for the finite dimensional approximation problem
(Pp,) and the reduced basis approach (Py), their proofs follow exactly as in the
continuous case (P.), therefore omitted here.

Lemma 5.4. Let uj(p) and u}y(p) respectively be the solution of the problems (Py)
and (Py) at the given parameter pu € P. Then, the estimates

[uy, (1) = wh (1*) 2 () < B(ph, p?)  and  [Juyy(n') — uiy (6®)lle2) < B(u', 1?)
hold true for all pt, u? € P.

We are in the position to state the main result of this section on the uniform
convergence of reduced order solutions. To do so, we assume uj (1) = uj (p) for
1 belonging to the parameter sample Py. For the state equation, this assumption
is the basic consistency property of an Reduced Basis scheme, which simply put is
the reproduction of solutions (cf. [18, Proposition 2.20]). For a justification of this
assumption for optimal control problems, see [1, pp. A282].
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Theorem 5.5. Assume that the functions ©F,©¢, ©71, @Ed P — R are Holder
continuous, i.e.

07 (1) — 07 (1*)] < L7|u' — 1?30

g ()l
105 (1) = O ()| < LIt = p?||2,
O3 (') — O ()] < L™t =yl
O (1) — O ()] < L4 — i,
for all p*, u? € P and all the index q with some positive constants L, L, LY, [Fa

and 77, v¢, v, v, For any given p € P let uj(n) and ui (1) be the solutions
of the problems (Py,) and (Py), respectively. Then the estimate

[, (1) = wiy (p )||L2(Q < Cry

is established, where vy := 1 min (’y , Y, 20y ) > 0.

Proof. For all u', u? € P we deduce from Lemma 5.4 that
ma ([l (4) — () @ iy () — e (52) 2oy
<C (It = k1% + It = 1212%)

u, 2 Eq 2
+C (= 2™+ et = 2% + et = eI,
where the positive constant C' is independent of the parameters. For any fixed
p € P, since the set Py is finite, there exists u* € argmingep, |0 — 1'[|re. By
w* € Pn, we get uj(u*) = ujy(u*) and therefore obtain that
([, (1) — uiy ()l (o)

= [Ju, (1) = wj, (1) + uy (%) — ui () [L2 @)

< g (p) — up (B) leo) + [ay (%) — ui (1) L)

< Ck},
which finishes the proof. O

6. A posteriori error estimation. In the greedy sampling procedure, a possible
choice for the error estimator is that
AN(EN, Vi) = |lug, (1) — uy ()]lL2(0)-

However, this estimator depends on uj, i.e. the full-dimensional problem (Py). In
view of a posteriori error estimates we wish to construct an error estimator which
is independent of the solution to (Py).

For a given p € P let (uy(p), Exy (1), Fy(n)) satisfy the system 20a—20e. We
consider Eh(u) € &, and f‘h(u) € &), defined by

(o7 00V x Buu), ¥ x @), = (eln)uie (), Ba)pagey

_ (21)
() Batr). Vo), = ~(p(1), n) 20
and
(77007 X Fulo). Vo ) = () (B 0) = Bl By o)
(E(M)Fh(u% V¢h>L2(Q) =0
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for all (®y,,¢p) € & x Vi, respectively. We further define the residuals Rg :=
Rg(; 1) € & and Ry := Rp(-; u) € & via the following identities

Rie(®1i ) = (e()uie (1), 1)y = (07" (09 % BR (), ¥ X @1) 2
Rue(@ns 1) = (e(p) (B (1) — Ba(10)), ®n) 20y — (07 ()7 % Fre(), V X 81) 2

for all ®;, € &,.
To begin, we present some auxiliary results.

Lemma 6.1. Let (uj (), Ej(n), ¥ (1) and (uy(n), Ex (p), Fi (1)) respectively
satisfy the systems 17a—17e and 20a—20e at a given p € P. Then the following
inequalities

IE; (1) — En (1) lrrceuro) < Cllug (1) — wly (1)llL2 (o)
1F7 (1) — Fr(p) | curo) < ClEL (1) — Ex(1)]lL2(o)

are satisfied.
Proof. By 14, we have
1B, = Bl euro) < C071V x (Bf, = B), ¥ x (B} — Bu))ra(o)
= C ((e(w;, — uy). E; _Eh)m(m
< Clluj, — ui e | Bf — Enllneurio)
which implies the first inequality. Likewise, we get
IF5 = Fullfreurtoy < Clo™ 'V x (F = Fp), V x (F}, = Fu)re(o)
= C (e(B] ~BR)LF ),
< C|E; = Exlle2oIFh — Falleeurno)-
The proof completes. O
Lemma 6.2. The inequalities
CIREC; 1) lsgeurnn < B (1) = Bt | mx(eurte) < Call BB (3 1) s cumon
Cl| Be (- ) lxenmnen < N (1) = B ) laxeurie) < Call Bo (0 lgieunnen”

hold true, where the positive constants Cy and Cs are independent of h and p.

Proof. From the assumed coercivity condition (cf. 14 and 18) for reduced basis, we
have that

IB% — Bl ouniey < € (0717 x (Bl — B4),V x (By - Eh)>n2<m
- c( * En — E} )
EuN h N L2(Q)

_ —1 * - _ *
C <a V x E%,V x (B, EN))LQ(Q)

= CRg(E) — EY)
< C|Rell
To show the lower bound, we first take rg € &, such that

- E?\/’ ”H(curl;Q)-

RE('I)h) = (TE§ (I)h)H(curl;Q)y V), € &, and HTE”H(curl;Q) = ”REHH(curl;n)*a
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by Riesz Representation Theorem. In view of the above argument, we arrive at

||RE||%-I(curl;Q)* = (TEaTE)H(curl;Q)
= Re(re)

= (eu}y, mB)12(q) — (07 'V X B}, V X rE)Lz(Q)

-1

\Y E —E%),V )
( x (Ep, N,V XTE L2(Q)
<o

IN

TE|H(curl;Q) [ Br — BN [|H(curl;Q)
Hire] 1B, — Ex|

r — EN|lH(curt0)-

The remaining inequalities follows by the same arguments, therefore omitted here.
O

We now state the main results of the section.

Theorem 6.3. Let (uj, (1), B} (1), F (1)) and (uy (1), Ex (1), Fy (1)) satisfy the
systems 17a—17e and 20a—20e at a given p € P, respectively. Then the estimates

C < luj(p) = ui (W)l @) + 1B, (1) — Ex (1)l E(eurto)
+IFL (1) = Fy (W o) < C

are satisfied, where
C= 6EHRE(7 /’L)HH(curl;Q)* + 6FH]%F(7 /J’) ||H(cur1;ﬂ)*

and
Q - QEHRE(7 :U/)”H(curl;ﬂ)* + QF||RF(7 :U/)”H(curl;Q)*

with the positive constants Cg, Cr,Cg, Cy independent of h and p.

Proof. First we establish the upper bound. By variational inequalities 17e and 20e,
we have

* * 1 * * * * 1 * *
(E(uN —up),ug — —Fp, — uh) <0, <6(Uh —uy),ug — —Fy — UN) <0
« @ L2(Q)

L2(Q)

which implies that

aelluy, —uy L) < (e(uy —uj), Fj —Fy)ps(q)

— * _ * 7F\’k_ﬁ) ( * _ * ,ﬁ\ _F*) .
(G(UN u;,), Fj, hL2(Q)+ e(uy —uy), Fp N) ey

(23)
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Now we from 21, 17a, 17c and 22 get

* _ * 7F>}< _ﬁ )
(e(U-N u;,), Fj, h L2(9)

-1V x (Ej, — E}),V x (F% —ﬁh))

(v
(<05 -Ei)m)
(<05

—Ey+Ejy — EZ)LQ(D)

12(Q)

< an* — E}‘vnm(mnﬁh — ExllLe(p) — €|B;, — EX[IFap)
<A@ EL —Ex | p) + € B — Exlizp) — €IE — EXllie(n)
CHEh - EN”H(curl Q) (24)
and
(cluy —wi). P =Ty
<2 laclluy —upla ) + 27 e e R FL — Py lBeurny. (25)

We thus have from 23-25 that
lu, — u*NHLZ(Q)
< C (I8 — Ex lneurte) + I = Fi lneunto ) - (26)
An application of Lemma 6.1 and 26 yield
IE;, — Ex|[(euro) < 1B — Exllieuro) + IEn — By |[s(curso)
< Clluj, — uillz(@) + 1Bn — B lreune
< C (IBn - Exllueuso + |Fs = Filauro) ) - (27)
Furthermore, using Lemma 6.1 again, the last inequality gives
IF; — Fiyleurto) < I1F — Fllaeano) + 1Fr — Fivllaeuro)
< C (I8 — Bx ln(eurroy + [F5 — Fylmewrtey ) - (28)

Combining the inequalities 26—28 with Lemma 6.2, we therefore arrive at the upper
bound. Next, we will derive for the lower bound. We from Lemma 6.1 and Lemma
6.2 get that

Crll Re () lxieurn < B — B lrxccurnen + [BA — Exllstcurtio)
< Cllup — uylre) + 1EL — Exlla(curto)
< max(2,C) (||u2 —ujy |2 + 27YE}; - E7V||H(curl;9))
and
C1llRe (3 1) lxgeumiery* < 1Fn = Fillmeurio) + IFh — Fillaeurno)
< C|lE}, — EN a(curt) + [Fh — Fi |lH(curto)
< max(1,20) (271HE7L — Exllaurse) + [|[Fh — F}KVHH(curl;Q))
which completes the proof. O

We aim towards an error bound for the cost functional.
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Theorem 6.4. Let (uj,(u), B} (1), Fy (1) and (uy (n), Ex (1), Fy (1)) satisfy the
systems 17a—17e and 20a—20e at a given p € P, respectively. Then,

| (uj,, Eps ) — J(uly, Exs p)| < €7,
with
c’ = C}éHRE(v /"L)”H(curl;Q)* + C%”‘RF(v ILL)HH(curl;Q)*
and the positive constants C7,CE, Cy independent of h and pu.

Proof. We get that

2 |J(u2a Z;.u) - J(u}k\h TV;,L")‘
= (e(E}, —EN), Ej + Exy — 2Ea)y2(p)
+ a(e(uj —uy), uj + uy — 2ug)2 (g

<O (IE} — Exllreo) + luj, — uillLz@) - (29)

The desired inequality follows directly from the last inequality together with 27, 26
and Lemma 6.2, which finishes the proof. O

We derive a posteriori error estimators.

Theorem 6.5. The absolute a posteriori error estimator

g, (1) — iy (1) |2y < AR () (30)

is established, where
AJC\LIb(,u) =C (”RE(7 ,U)HH(curl;Q)* + | Rr (5 H)HH(curl;Q)*) :

a
. 2A . . .
Furthermore, in case HuiN < 1 we have the relative a posteriori error estimator

fv||L2(Q)
900 = uk (e _ pre, . 2AR() (31)
* = 2N T N T
([, (1) |2 () [ajy (1) |2 ()
Proof. By 26 and Lemma 6.2 we obtain 30. It remains to show 31. We get
* * * * b — *
luillLze) — gl < uj, —uillLze) < AR <27 uyllLz@)-
and arrive at 27 |uy [lL2(e) < |0, [lL2(o)- Therefore, we conclude
[wi — u e _ 20w — uillee) 2480
[wille) = lluilliee) iz’
which finishes the proof. O

Acknowledgment. The authors would like to thank the referees and the editor
for their valuable comments and suggestions which helped to improve our paper.



18

[1]

2]

3]

[4]

[5]

[6]
7]
[8]

[9]

[10]

[11]

(12]

(13]
(14]
15]

[16]

(17)

(18]

(19]

20]

(21]

22]

QUYEN TRAN, HARBIR ANTIL AND HUGO DIAZ

REFERENCES

A. A. Ali and M. Hinze, Reduced basis methods—an application to variational discretization
of parametrized elliptic optimal control problems, SIAM J. Sci. Comput., 42 (2020), A271-
A291.

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional
non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823-864.

H. Antil, M. Heinkenschloss and D. C. Sorensen, Application of the discrete empirical inter-
polation method to reduced order modeling of nonlinear and parametric systems, In Reduced
Order Methods for Modeling and Computational Reduction, 9 (2014), 101-136.

E. Bader, M. Karcher, M. A. Grepl and K. Veroy, Certified reduced basis methods for
parametrized distributed elliptic optimal control problems with control constraints, SIAM
J. Sci. Comput., 38 (2016), 3921-3946.

M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera, An ‘ampirical interpolation’ method:
Application to efficient reduced-basis discretization of partial differential equations, C. R.
Math., 339 (2004), 667-672.

P. Benner and M. Hess, Reduced basis approximations for Maxwell’s equations in dispersive
media, In Model Reduction of Parametrized Systems, Springer-Verlag, 17 (2017), 107-119.
V. Bommer and I. Yousept, Optimal control of the full time-dependent Maxwell equations,
ESAIM Math. Model. Numer. Anal., 50 (2016), 237-261.

S. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3% edition,
Springer-Verlag, New York, 2008.

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising
from Lagrangian multipliers, Rev. Francaise Automat. Informat. Recherche Opérationnelle
Sér. Rouge, 8 (1974), 129-151.

G. Caselli, Optimal control of an eddy current problem with a dipole source, J. Math. Anal.
Appl., 489 (2020), 124152, 20 pp.

Y. Chen, J. Hesthaven and Y. Maday, A seamless reduced basis element method for 2D
Maxwell’s problem: An introduction, In Spectral and High Order Methods for Partial Differ-
ential Equations, Springer-Verlag, 76 (2011), 141-152.

Y. Chen, J. Hesthaven, Y. Maday and J. Rodriguez, Certified reduced basis methods and
output bounds for the harmonic Maxwell’s equations, SIAM J. Sci. Comput., 32 (2010),
970-996.

P. Ciarlet, H. Wu and J. Zou, Edge element methods for Maxwell’s equations with strong
convergence for Gauss’ laws, SIAM J. Numer. Anal., 52 (2014), 779-807.

M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz
domains, Math. Methods Appl. Sci., 12 (1990), 365-368.

L. Dede, Reduced basis method and a posteriori error estimation for parametrized linear-
quadratic optimal control problems, SIAM J. Sci. Comput., 32 (2010), 997-1019.

J. L. Eftang, A. T. Patera and E. M. Ronquist, An “hp” certified reduced basis method
for parametrized elliptic partial differential equations, SIAM J. Sci. Comput., 32 (2010),
3170-3200.

N. G. Gatica, A Simple Introduction to the Mized Finite Element Method, Theory and ap-
plications. SpringerBriefs in Mathematics. Springer, Cham, 2014.

B. Haasdonk, Reduced basis methods for parametrized pdes — a tutorial introduction for
stationary and instationary problems, Model Reduction and Approzimation, 15 (2017), 65—
136.

B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of
parametrized linear evolution equations, ESAIM: M2AN, 42 (2008), 277-302.

M. Hammerschmidt, S. Herrmann, J. Pomplun, L. Zschiedrich, S. Burger and F. Schmidt,
Reduced basis method for Maxwell’s equations with resonance phenomena, In SPIE Optical
Systems Design., SPIE, Philadelphia, USA, 2015.

M. Hess and P. Benner, Fast evaluation of time-harmonic Maxwell’s equations using the
reduced basis method, IEEE Transactions on Microwave Theory and Techniques, 61 (2013),
2265-2274.

M. Hess, S. Grundel and P. Benner, Estimating the inf-sup constant in reduced basis meth-
ods for time-harmonic Maxwell’s equations, IEEE Transactions on Microwave Theory and
Techniques, 63 (2015), 3549-3557.


http://www.ams.org/mathscinet-getitem?mr=MR4053863&return=pdf
http://dx.doi.org/10.1137/18M1227147
http://dx.doi.org/10.1137/18M1227147
http://www.ams.org/mathscinet-getitem?mr=MR1626990&return=pdf
http://dx.doi.org/10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
http://www.ams.org/mathscinet-getitem?mr=MR3241209&return=pdf
http://dx.doi.org/10.1007/978-3-319-02090-7_4
http://dx.doi.org/10.1007/978-3-319-02090-7_4
http://www.ams.org/mathscinet-getitem?mr=MR3585026&return=pdf
http://dx.doi.org/10.1137/16M1059898
http://dx.doi.org/10.1137/16M1059898
http://www.ams.org/mathscinet-getitem?mr=MR2103208&return=pdf
http://dx.doi.org/10.1016/j.crma.2004.08.006
http://dx.doi.org/10.1016/j.crma.2004.08.006
http://www.ams.org/mathscinet-getitem?mr=MR3702343&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3460108&return=pdf
http://dx.doi.org/10.1051/m2an/2015041
http://www.ams.org/mathscinet-getitem?mr=MR2373954&return=pdf
http://dx.doi.org/10.1007/978-0-387-75934-0
http://www.ams.org/mathscinet-getitem?mr=MR365287&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR4090837&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2020.124152
http://www.ams.org/mathscinet-getitem?mr=MR3204811&return=pdf
http://dx.doi.org/10.1007/978-3-642-15337-2_11
http://dx.doi.org/10.1007/978-3-642-15337-2_11
http://www.ams.org/mathscinet-getitem?mr=MR2639602&return=pdf
http://dx.doi.org/10.1137/09075250X
http://dx.doi.org/10.1137/09075250X
http://www.ams.org/mathscinet-getitem?mr=MR3188392&return=pdf
http://dx.doi.org/10.1137/120899856
http://dx.doi.org/10.1137/120899856
http://www.ams.org/mathscinet-getitem?mr=MR1048563&return=pdf
http://dx.doi.org/10.1002/mma.1670120406
http://dx.doi.org/10.1002/mma.1670120406
http://www.ams.org/mathscinet-getitem?mr=MR2639603&return=pdf
http://dx.doi.org/10.1137/090760453
http://dx.doi.org/10.1137/090760453
http://www.ams.org/mathscinet-getitem?mr=MR2746617&return=pdf
http://dx.doi.org/10.1137/090780122
http://dx.doi.org/10.1137/090780122
http://www.ams.org/mathscinet-getitem?mr=MR3157367&return=pdf
http://dx.doi.org/10.1007/978-3-319-03695-3
http://www.ams.org/mathscinet-getitem?mr=MR3672146&return=pdf
http://dx.doi.org/10.1137/1.9781611974829.ch2
http://dx.doi.org/10.1137/1.9781611974829.ch2
http://www.ams.org/mathscinet-getitem?mr=MR2405149&return=pdf
http://dx.doi.org/10.1051/m2an:2008001
http://dx.doi.org/10.1051/m2an:2008001
http://dx.doi.org/10.1109/TMTT.2013.2258167
http://dx.doi.org/10.1109/TMTT.2013.2258167
http://dx.doi.org/10.1109/TMTT.2015.2473157
http://dx.doi.org/10.1109/TMTT.2015.2473157

23]
[24]
[25]

[26]

OPTIMAL CONTROL OF PARAMETERIZED STATIONARY MAXWELL’S SYSTEM 19

J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized
Partial Differential Equations, Springer Briefs in Mathematics, 2016.

M. Hinze, A variational discretization concept in control constrained optimization: The linear-
quadratic case, Comput. Optim. Appl., 30 (2005), 45-61.

M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, Math-
ematical Modelling: Theory and Applications, 23. Springer, New York, 2009.

R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer., 11 (2002),
237-339.

[27] K. Ito and S. S. Ravindran, A reduced-order method for simulation and control of fluid flows,

J. Comput. Phys., 143 (1998), 403-425.

[28] U. Kangro and R. Nicolaides, Divergence boundary conditions for vector Helmholtz equations

with divergence constraints, ESAIM: M2AN, 3 (1999), 479-492.

[29] M. Kércher and M. A. Grepl, A certified reduced basis method for parametrized elliptic

optimal control problems, ESAIM: COCV, 20 (2014), 416-441.

[30] M. Karcher, Z. Tokoutsi, M. A. Grepl and K. Veroy, Certified reduced basis methods for

parametrized elliptic optimal control problems with distributed controls, J. Sci. Comput., 75
(2018), 276-307.

[31] M. Kolmbauer and U. Langer, A robust preconditioned MinRes solver for distributed time-

periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012), 785-809.

[32] P. Monk, Finite Element Methods for Mazwell’s Equations, Oxford University Press, New

York, 2003.

[33] J. C. Nédélec, Mixed finite elements in R3, Numer. Math., 35 (1980), 315-341.
[34] F. Negri, G. Rozza, A. Manzoni and A. Quarteroni, Reduced basis method for parametrized

elliptic optimal control problems, SIAM J. Sci. Comput., 35 (2013), A2316-A2340.

[35] S. Nicaise, S. Stingelin and F. Tréltzsch, On two optimal control problems for magnetic fields,

Comput. Methods Appl. Math., 14 (2014), 555-573.

[36] S. Nicaise and F. Troltzsch, Optimal control of some quasilinear Maxwell equations of para-

bolic type, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 1375-1391.

[37] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential

Equations, An introduction. Unitext, 92. La Matematica per il 3+2. Springer, Cham, 2016.

[38] T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and pod a posteri-

ori error estimators for an elliptic linear-quadratic optimal control problem, Math. Comput.
Model. Dyn., 17 (2011), 355-369.

[39] F. Troltzsch, Optimal Control of Partial Differential Equations, Providence, American Math-

ematical Society, RI, 2010.

[40] F. Troltzsch and A. Valli, Optimal control of low-frequency electromagnetic fields in multiply

connected conductors, Optimization, 65 (2016), 1651-1673.

[41] W. Wei, H. M. Yin and J. Tang, An optimal control problem for microwave heating, Nonlinear

Anal., 75 (2012), 2024-2036.

[42] I. Yousept, Optimal control of Maxwell’s equations with regularized state constraints, Com-

put. Optim. Appl., 52 (2012), 559-581.

[43] I. Yousept, Optimal control of non-smooth hyperbolic evolution Maxwell equations in type-II

superconductivity, STAM J. Control Optim., 55 (2017), 2305-2332.

[44] 1. Yousept and J. Zou, Edge element method for optimal control of stationary Maxwell system

with Gauss law, STAM J. Numer. Anal., 55 (2017), 2787-2810.

Received June 2021; revised October 2021; early access February 2022.

E-mail address: ntqtran@ucdavis.edu
E-mail address: hantil@gmu.edu
E-mail address: hugodiaz@udel.edu


http://www.ams.org/mathscinet-getitem?mr=MR3408061&return=pdf
http://dx.doi.org/10.1007/978-3-319-22470-1
http://dx.doi.org/10.1007/978-3-319-22470-1
http://www.ams.org/mathscinet-getitem?mr=MR2122182&return=pdf
http://dx.doi.org/10.1007/s10589-005-4559-5
http://dx.doi.org/10.1007/s10589-005-4559-5
http://www.ams.org/mathscinet-getitem?mr=MR2516528&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2009375&return=pdf
http://dx.doi.org/10.1017/S0962492902000041
http://www.ams.org/mathscinet-getitem?mr=MR1631176&return=pdf
http://dx.doi.org/10.1006/jcph.1998.5943
http://www.ams.org/mathscinet-getitem?mr=MR1713234&return=pdf
http://dx.doi.org/10.1051/m2an:1999148
http://dx.doi.org/10.1051/m2an:1999148
http://www.ams.org/mathscinet-getitem?mr=MR3264210&return=pdf
http://dx.doi.org/10.1051/cocv/2013069
http://dx.doi.org/10.1051/cocv/2013069
http://www.ams.org/mathscinet-getitem?mr=MR3770321&return=pdf
http://dx.doi.org/10.1007/s10915-017-0539-z
http://dx.doi.org/10.1007/s10915-017-0539-z
http://www.ams.org/mathscinet-getitem?mr=MR3023745&return=pdf
http://dx.doi.org/10.1137/110842533
http://dx.doi.org/10.1137/110842533
http://www.ams.org/mathscinet-getitem?mr=MR2059447&return=pdf
http://dx.doi.org/10.1093/acprof:oso/9780198508885.001.0001
http://www.ams.org/mathscinet-getitem?mr=MR592160&return=pdf
http://dx.doi.org/10.1007/BF01396415
http://www.ams.org/mathscinet-getitem?mr=MR3118259&return=pdf
http://dx.doi.org/10.1137/120894737
http://dx.doi.org/10.1137/120894737
http://www.ams.org/mathscinet-getitem?mr=MR3259029&return=pdf
http://dx.doi.org/10.1515/cmam-2014-0022
http://www.ams.org/mathscinet-getitem?mr=MR3666696&return=pdf
http://dx.doi.org/10.3934/dcdss.2017073
http://dx.doi.org/10.3934/dcdss.2017073
http://www.ams.org/mathscinet-getitem?mr=MR3379913&return=pdf
http://dx.doi.org/10.1007/978-3-319-15431-2
http://dx.doi.org/10.1007/978-3-319-15431-2
http://www.ams.org/mathscinet-getitem?mr=MR2823468&return=pdf
http://dx.doi.org/10.1080/13873954.2011.547678
http://dx.doi.org/10.1080/13873954.2011.547678
http://www.ams.org/mathscinet-getitem?mr=MR2583281&return=pdf
http://dx.doi.org/10.1090/gsm/112
http://www.ams.org/mathscinet-getitem?mr=MR3515109&return=pdf
http://dx.doi.org/10.1080/02331934.2016.1179301
http://dx.doi.org/10.1080/02331934.2016.1179301
http://www.ams.org/mathscinet-getitem?mr=MR2870896&return=pdf
http://dx.doi.org/10.1016/j.na.2011.10.003
http://www.ams.org/mathscinet-getitem?mr=MR2925786&return=pdf
http://dx.doi.org/10.1007/s10589-011-9422-2
http://www.ams.org/mathscinet-getitem?mr=MR3679913&return=pdf
http://dx.doi.org/10.1137/16M1074229
http://dx.doi.org/10.1137/16M1074229
http://www.ams.org/mathscinet-getitem?mr=MR3723330&return=pdf
http://dx.doi.org/10.1137/17M1117021
http://dx.doi.org/10.1137/17M1117021
mailto:ntqtran@ucdavis.edu
mailto:hantil@gmu.edu
mailto:hugodiaz@udel.edu

	1. Introduction
	2. Problem formulation
	3. Preliminaries
	3.1. Functional spaces
	3.2. Variational formulation of the system
	3.3. Finite element discretization

	4. Primal reduced basis approach
	5. Convergence of the reduced basis method
	6. A posteriori error estimation
	Acknowledgment
	REFERENCES

