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Abstract. We consider optimal control of fractional in time (subdiffusive,

i.e., for 0 < γ < 1) semilinear parabolic PDEs associated with various notions
of diffusion operators in an unifying fashion. Under general assumptions on

the nonlinearity we first show the existence and regularity of solutions to the

forward and the associated backward (adjoint) problems. In the second part,
we prove existence of optimal controls and characterize the associated first
order optimality conditions. Several examples involving fractional in time (and

some fractional in space diffusion) equations are described in detail. The most
challenging obstacle we overcome is the failure of the semigroup property for

the semilinear problem in any scaling of (frequency-domain) Hilbert spaces.

1. Introduction. Optimization problems constrained by partial differential equa-
tions (PDEs) are ubiquitous in science and engineering. Without any specific men-
tion, we will refer to these problems as optimal control problems. See the mono-
graphs [34, 27, 7, 28] and references therein for many applications and general results
for such problems. In particular, such optimization problems arise in fluid dynam-
ics, superconductivity, phase field modeling, regularized variational inequalities and
contact problems, etc. These all are the examples of optimization problems with
parabolic semilinear PDEs as constraints. Semilinear optimal control problems are
known to be a key testbed for developing new algorithms and/or analysis and there
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is a significant amount of literature available on this topic [19, 20, 12, 8]. The
optimization variable (control variable) either acts in the interior (distributed con-
trol), or on the boundary (boundary control), or in the exterior (exterior control).
The first two notions of controls are well-known, the exterior control is new, see
[36, 6, 11].

The goal of this paper is to develop a unified framework for optimal control
problems constrained by fractional in time semilinear PDEs{

∂γt u (x, t) +Au (x, t) = f (u (x, t)) + Bz (x, t) , in Ω× (0,∞),
u (·, 0) = u0 in Ω.

(1.1)

where A is a given linear operator and f is a given nonlinear map which depends
on the unknown PDE solution u. Some examples of f where our theory directly
applies are the following.

• Allen-Cahn (phase field) equation: Here f is a cubic type of nonlinearity
f = −F ′ associated with the double-well potential

F (u) = c1u
4 − c2u2, for c2 > c1 > 0.

• Subdiffusive Fisher-KPP: Here f is a logistic term of the form ru(1 −
uK−1) with r,K > 0.

• Subdiffusive Burger’s equation: Here f(u) := −udiv(J ∗ u), where

(J ∗ u)(x) =

∫
Ω

J(x− y)u(y)dy, x ∈ Ω.

We call u the state variable. The control z enters into the problem in a linear
fashion, but with the help of operator B, it can be in the interior, on the boundary,
or in the exterior. Notice, that this framework not only allows A to be a standard
local operator such as −div(K∇·), but also a nonlocal operator such as a fractional
Laplacian (−∆)s (0 < s < 1). In addition, the boundary control not only can,
be of Dirichlet, Neumann or Robin type, but also of Wentzell type [35]. Notice,
that in the standard case of γ = 1, there are several existing results on boundary
control of Dirichlet, Neumann or Robin problems, but there are no existing results
on Wentzell type boundary control under the weaker conditions provided in this
paper.

A key novelty of this paper is the presence of fractional in time derivative ∂γt in
(1.1) in the sense of Caputo (Definition 2.1). Recently, there has been a considerable
interest in optimal control of fractional PDEs and ODEs, but most of the results are
limited to linear problems or they consider very special scenarios [2, 10, 29]. Besides,
low regularity requirements, the interest in fractional time derivative stems from its
ability in capturing hereditary effects in materials and anomalous random walks
[14, 30]. This hereditary property has also been recently used in designing new
deep neural networks [4, 5], and gradient based algorithms [32].

The amount of literature on fractional in time derivative is growing due to many
new emerging applications, however many of these results are empirical observa-
tions, and the analytical results are still very limited. It is well-known that the
results from the classical models, i.e., γ = 1, do not directly extend to the fractional
case γ < 1, see the monograph [26] and references therein. However, the results
in this monograph do not apply to our problem as it focuses on the homogeneous
case, i.e., z = 0 and does not consider any optimal control problems. Furthermore,
problem (1.1) is ill-posed (even when f ≡ 0) in the sense that the solution flow
is not strongly continuous (near t = 0) in the scale of Hilbert spaces associated
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with any fractional order of the (self-adjoint) operator A (see Remark 3.8). An-
other technical difficulty is the fact that the formulation of the necessary optimality
conditions for the optimal control problem (3.8) requires a rigorous passage of the
Caputo-derivative from the forward to the backward variables, a step which must be
carefully analized (and, unfortunately, omitted quite often in the current literature
on optimal control for subdiffusive parabolic problems). It turns out that the argu-
ments, leading to the neccesary optimality conditions, need an additional condition
of the behavior of the time derivative of the control variable near the origin. We
emphasize that this is a technical condition which is in fact necessary, and which
we believe, it cannot be discarded as it takes into account the solution behavior of
(1.1) near the time t = 0. Besides, the control-to-state mapping for our problem
appears to be (Frechet) differentiable only under this hypothesis.

The key novelties of this paper are the following.

• Well posedness of the fractional in time state equation under minimal (generic)
assumptions on f .

• Well posedness of the linearized state (adjoint) equation.
• Existence of solution to the optimal control problem.
• Lipschitz continuity of the control to state map and its derivative.
• Rigorous derivation of the first order necessary conditions using the notion of

strong1 Caputo derivative (2.1).
• Applications to (subdiffusive) phase-transition phenomena, (subdiffusive) Fisher-

KPP equations and subdiffusive Burger’s equation, subject to nonlocal trans-
port.

The remainder of the paper is organized as follows: In section 2 we introduce
the basic definitions of fractional derivatives, properties of abstract operator A
and collect various other tools that will be needed in the remainder of the paper.
Section 3 focuses on the well-posedness of the forward semilinear problem (1.1)
under minimal conditions on f and z. This is followed by section 4 where we state
the optimal control problem. Here we assume that the final time T is finite and
T < Tmax, for a maximal time Tmax > 0 where either Tmax = ∞ (global solution)
or Tmax < ∞, and finite time blow-up may occur in some Vα-norm. Global well-
posedness is briefly touched upon in Section 5 for V1-solutions. With respect to the
optimal control problem, we first establish the Lipschitz continuity of the control-
to-state map and then existence of solution to the optimal control problem. Next,
we show the differentiability of the control-to-state operator followed by Lipschitz
continuity of the derivative of the control-to-state map. Subsequently, we establish
well-posedness of the linearized state equation and rigorously derive the first order
necessary conditions. We present several examples of cost functionals and control
problems in section 6 where the abstract theory can be applied. Finally, we provide
in Section Appendix 7 the proofs of most of teh technical results stated in Section
3.

2. The basic functional framework. Let Y,Z be two Banach spaces endowed
with norms ‖·‖Y and ‖·‖Z , respectively. We denote by Y ↪→ Z if Y ⊆ Z and there
exists a constant C > 0 such that ‖u‖Z ≤ C ‖u‖Y , for u ∈ Y ⊆ Z. In particular,
this means that the injection of Y into Z is continuous. In addition, if Y is dense

1It remains unclear how this derivation can be performed with a notion of generalized Caputo
derivative (2.2), without the validity of Proposition 2.3.
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in Z, then we denote by Y
d
↪→ Z, and finally if the injection is also compact we

shall denote it by Y
c
↪→ Z. We denote by L(Y, Z) the space of all (bounded) linear

operators from Y to Z. If Y = Z, we let L(Y, Z) = L(Y ). By the dual Y ∗ of Y , we
think of Y ∗ as the set of all (continuous) linear functionals on Y . When equipped
with the operator norm ‖·‖Y ∗ , Y ∗ is also a Banach space. We use throughout the
notation h . g to denote h ≤ Cg, for some constant C > 0 when the dependance of
the constant C = C (γ, s, q, p, ...) on some physical parameters is not relevant, and
so it is suppressed.

We give next the notion of fractional-in-time derivative in the sense of Caputo
and Riemann-Liouville. Let γ ∈ (0, 1) and define

gγ (t) :=


tγ−1

Γ(γ)
if t > 0,

0 if t ≤ 0,

where Γ is the usual Gamma function. Let Y be a Banach space which possesses
the Radon-Nikodym property, and let T > 0.

Definition 2.1 (Strong Caputo fractional derivative). Let u ∈ W 1,1 ((0, T );Y ) .
The (strong) Caputo fractional derivative of order γ ∈ (0, 1) is given by

C∂
γ
t u (t) :=

∫ t

0

g1−γ (t− τ)u
′
(τ) dτ = (g1−γ ∗ u

′
) (t) , (2.1)

for all t ∈ (0, T ].

Definition 2.2 ((Left) Riemann-Liouville fractional derivative). Let u ∈ C ([0, T ];Y )

be such that g1−γ ∗ u ∈ W 1,1 ((0, T );Y ). The (left) Riemann-Liouville fractional
derivative of order γ ∈ (0, 1) is given by

Dγ
t u (t) :=

d

dt

(
g1−γ ∗ u

)
(t) =

d

dt

∫ t

0

g1−γ (t− τ)u (τ) dτ,

for almost all t ∈ (0, T ).

We next set

∂γt u := Dγ
t (u− u (0)) , (2.2)

and recall that the right-hand side of (2.2) is usually dubbed in the literature as a
generalized Caputo derivative (see, e.g., [26]). We observe that the notions of
fractional derivatives in (2.2) and (2.1), respectively, are in fact equivalent under
the Radon-Nikodym property.

Proposition 2.3. Let the assumptions of Definition 2.1 be satisfied. Then

C∂
γ
t u (t) = ∂t(g1−γ ∗ (u− u (0))) (t) = Dγ

t (u− u (0)) (t) ,

for almost all t ∈ (0, T ], and g1−γ ∗ (u− u (0)) ∈W 1,1 ((0, T );Y ) .

Proof. We note that ‖u (0, ·)‖Y <∞ since each u ∈ W 1,1 ((0, T );Y ) is also contin-
uous on [0, T ] with values in Y. As a consequence of the Radon-Nikodym theorem
(see [21]), each function that belongs to W 1,1 ([0, T ];Y ) is also absolutely continu-
ous on [0, T ] (modulo a null set of Lebesgue measure) with values in Y . Then the
conclusion follows from a standard result in [22, Theorem 3.1] in the case Y = R
(the proof in the case of a general Banach space Y follows with some, albeit, obvious
modifications).
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Definition 2.4 ((Right) Riemann-Liouville fractional derivative). The (right)
Riemann-Liouville fractional derivative of order γ ∈ (0, 1) is defined by

∂γt,Tu(t) = − d

dt
(I1−γ
t,T u)(t), (2.3)

where

Iγt,Tu (t) :=
1

Γ(γ)

∫ T

t

(τ − t)γ−1u(τ)dτ

is the right Riemann-Liouville fractional integral of order γ. The left Riemann-
Liouville fractional integral of order γ ∈ (0, 1) is given by

Iγ0,tu(t) =
1

Γ(γ)

∫ t

0

(t− τ)γ−1u(τ)dτ.

From (2.3), we observe that if u is differentiable, then ∂1
t,Tu = −∂tu. We will

employ the following well-known result (see, e.g., [1]) to determine the corresponding
adjoint problem associated with the initial boundary value problem, that we have
set up in Section 4.

Proposition 2.5. Under the assumptions of Proposition 2.3, the following inte-
gration by parts formula holds:∫ T

0

v (t)C ∂
γ
t u(t)dt =

∫ T

0

∂γt,T v(t)u(t)dt+
[
(I1−γ
t,T v) (t)u(t)

]t=T
t=0

, (2.4)

provided that the left and right-hand sides expressions make sense (i.e., the products
inside the integrals are well-defined, at least in a duality sense 〈·, ·〉Y,Y ∗). Note that

if u (0) = (I1−γ
t,T v) (T ) = 0, the bracket term in (2.4) vanishes.

Remark 2.6. The integral expressions in (2.4) are well defined (cf. [31, pg.

76], owing to ∂γt,T v = I1−γ
t,T (∂tv) and C∂

γ
t u = I1−γ

0,t (∂tu)), for instance, when

u ∈W 1,p ((0, T );Y ∗) and v ∈W 1,q ((0, T );Y ) , with p, q ≥ 1 and p−1 + q−1 ≤ 2− γ
(p 6= 1 and q 6= 1 when p−1 + q−1 = 2− γ).

We recall next the following Gronwall type inequality from [24, Lemma 6.3].

Lemma 2.7. Let the function ϕ(t) ≥ 0 be continuous for 0 < t ≤ T . If

ϕ (t) ≤ C1t
α−1 + C2

∫ t

0

(t− s)β−1
ϕ (s) ds, 0 < t ≤ T,

for some constants C1, C2 ≥ 0 and α, β > 0, then there is a positive constant
C∗ = C∗ (α, β, T, C2) such that2

ϕ (t) ≤ C∗C1t
α−1, 0 < t ≤ T. (2.5)

We shall now assume (Ω, g) is a (n-dimensional) Riemannian manifold and g a
complete Riemannian metric on Ω, which is at least of Lipschitz class (i.e., ‖g‖Lip <

∞).

(HA) In that case, let A be a strictly positive3 self-adjoint (unbounded) operator

in L2(Ω) (i.e., 0 ∈ ρ (A)) whose resolvent (I +A)
−1

is compact4 in L2 (Ω).

2A crucial part of this estimate that we shall exploit repeteadly is that the final exponent in

(2.5) is independent of β.
3The strict positivity of the operator is generally not required, and one can assume instead

A ≥ 0. Indeed, one can replace A by I +A by adding the identity on both sides of equation (3.1).
The assumptions on f hold for the modified nonlinearity as well.

4L2 (Ω) is locally compact since Ω is complete.
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By the spectral theory, A has its eigenvalues forming a non-decreasing sequence
of real numbers 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · satisfying limn→∞ λn = ∞. In
addition, the eigenvalues are of finite multiplicity. Let (ϕn)n∈N be the orthonormal
basis of eigenfunctions associated with (λn)n∈N. Then ϕn ∈ D(A) for every n ∈ N,
(ϕn)n∈N satisfies Aϕn = λnϕn. We shall denote by D(A)? the dual of D(A) with

respect to the pivot space L2(Ω) so that we have the continuous embedding D(A)
c
↪→

L2(Ω)
c
↪→ D(A)?. Spectral theory also allows us to define the spaces Vα = D(Aα/2)

with norms

|u|α := ||Aα/2u||L2(Ω), for any real α. (2.6)

A simple argument shows that D(A−α/2) = V−α, for α ≥ 0. Indeed, by the standard
spectral theory, fractional powers of A can be defined by means of

Aα/2u =

∞∑
n=1

λα/2n (u, ϕn)L2(Ω) ϕn,

D(Aα/2) =

{
u ∈ L2 (Ω) :

∥∥Aα/2u∥∥2

L2(Ω)
=

∞∑
n=1

λαn

∣∣∣(u, ϕn)L2(Ω)

∣∣∣2 <∞} .
(2.7)

In particular, there holds V1 = D(A1/2) and V−1 = V ∗1 such that

|u|1 '
(
A1/2u,A1/2u

)
L2(Ω)

and |u|−1 '
(
A−1u, u

)
L2 (in the sense of equivalent norms), respectively. A com-

plete characterization of the spaces Vα and their embedding properties into Lp (Ω)-
spaces (p ≥ 1) can be found in [3] (see also [25]).

Next, we recall the definition of the Wright type (also sometimes called the
Mainardi) function (see [26] and the references therein),

Φγ(z) :=

∞∑
n=0

(−z)n

n!Γ(−γn+ 1− γ)
, 0 < γ < 1, z ∈ C. (2.8)

It is well known that Φγ(t) is a probability density function, namely,

Φγ(t) ≥ 0, t > 0;

∫ ∞
0

Φγ(t)dt = 1.

Furthermore, Φγ(0) = 1/Γ (1− γ) and∫ ∞
0

tpΦγ(t)dt =
Γ(p+ 1)

Γ(γp+ 1)
, p > −1, 0 < γ < 1. (2.9)

We let (T (t))t≥0 denote the analytic semigroup on L2(Ω) generated by the op-

erator −A, and consider an extension of T (which we still denote by T , for the
simplicity of notation) on all scales of negative fractional order spaces Vα, α < 0.
Next, we define two additional operators

Sγ(t) : Vα → Vα, Pγ(t) : Vα → Vα, α ∈ [−2, 2] ,

by 
Sγ(t)v :=

∫ ∞
0

Φγ(τ)T (τtγ)vdτ,

Pγ(t)v := γtγ−1

∫ ∞
0

τΦγ(τ)T (τtγ)vdτ.
(2.10)
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We next recall the definition of the Mittag-Leffler function

Eα,β(z) :=

∞∑
n=0

zn

Γ(αn+ β)
, α > 0, β ∈ C, z ∈ C.

A particular estimate for Eα,β that we shall often use in the paper (and whenever
necessary) is

|Eα,β (x)| ≤ Cα,β (1− x)
−1
, for x ≤ 0 and α ∈ (0, 1) , β > 0. (2.11)

It is also well-known that Eα,β(z) is an entire function, and that both operators in
(2.10) can be also cast in terms of these functions (see, for instance, [18, Theorem
4.2]). In particular, by the spectral theory we further have

Sγ(t)v =

∞∑
n=0

(v, ϕn)L2(Ω)Eγ,1 (−λntγ)ϕn,

Pγ(t)v =

∞∑
n=0

(v, ϕn)L2(Ω) t
γ−1Eγ,γ (−λntγ)ϕn.

(2.12)

Proposition 2.8. The operator families {Sγ (t)} , {Pγ (t)} are analytic for t > 0,
and satisfy the following estimates:

|Sγ (t) v|β ≤ Cα,β,γt
−γ( β−α2 ) |v|α , − 2 ≤ α ≤ β ≤ 2, (2.13)

with β − α ∈ [0, 2], and

|Pγ (t) v|β̃ ≤ Cα̃,β̃,γt
γ−1−γ

(
β̃−α̃

2

)
|v|α̃ , − 2 ≤ α̃ ≤ β̃ ≤ 2. (2.14)

The positive constants Cα,β,γ , Cα̃,β̃,γ are independent of t and v, and are bounded

as γ → 1−. Finally, the operator Sγ is also a contraction (strongly continuous)
mapping from Vα → Vα.

Proof. The analyticity of the semigroup T (t) = exp (−tA) together with the repre-
sentation (2.10) implies the analyticity of Sγ(t) and Pγ(t) for t > 0. The analyticity
of T (t) is also reflected in the inequality

|T (t) v|β ≤ Cα,βt
−(β−α)/2 |v|α , with − 2 ≤ α ≤ β ≤ 2. (2.15)

Combining (2.15) with the norm |v|α via (2.6)-(2.7) for all real α, and exploiting the
identities (2.9)-(2.10) (or, respectively (2.11)-(2.12)), we easily obtain the estimates
(2.13)-(2.14).

3. Well-posedness results for the forward problem. In the above framework,
we can conveniently rewrite the semilinear problem as follows:{

∂γt u (x, t) +Au (x, t) = f (u (x, t)) + Bz (x, t) , in Ω× (0,∞),
u (·, 0) = u0 in Ω.

(3.1)

Our main goal in this section is to state sufficiently general conditions on the data
(f, z, u0) for which we can infer the existence of properly-defined solutions5 for (3.1).
Let T ∈ (0,∞) and denote by J a time interval of the form [0, T ] , [0, T ) or [0,∞).

Definition 3.1. By a mild solution of (3.1) on the interval J , we mean that the
measurable function u has the following properties:

5We will also investigate in which sense (3.1) is satisfied by non-regular solutions.
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(a) u ∈ C (J ;Vα) , for some α ∈ R.
(b) f (u (·, t)) ∈ Vβ , for all t ∈ J, for some α ≥ β, β ∈ R.

(c) u (·, t) = Sγ (t)u0 +

∫ t

0

Pγ (t− τ) f (u (·, τ)) dτ +

∫ t

0

Pγ (t− τ)Bz (·, τ) dτ, for

all t ∈ J\ {0} , where the integral is an absolutely converging Bochner integral
in the space Vα.

(d) The initial datum u0 is assumed in the following sense:

lim
t↓0+
|u (·, t)− u0|α = 0, (3.2)

for u0 ∈ Vα.

Our first goal is to establish the existence of maximally-defined mild solutions
under some suitable assumptions on the parameters of the problem. These assump-
tions are as follows.

(H1) Let α̃ ∈ [−1, 0] be such that B ∈ L
(
L2(D);Vα̃

)
, for an arbitrary6 (Hausdorff,

at least) space D. Set Iβ := [β, β + 2), for β ∈ R and assume that u0 ∈ Vα,
for some α ∈ Iα̃ ∩ Iβ 6= ∅.

(H2) The ’control’ function z ∈ Lqloc(R+;L2(D)), for some q ∈ ( 2
γ(2−α+α̃) ,∞].

(H3) The nonlinear function f ∈ C0,1
loc (R) , f (0) = 0, induces a locally Lipschitzian

map

f : Vα → Vβ ;

namely, for every R > 0, with |u|α , |v|α ≤ R, there exists CR > 0 such that

|f (u)− f (v)|β ≤ CR |u− v|α , for all u, v ∈ Vα ↪→ Vβ .

Our first result is concerned with the existence and uniqueness of locally-defined
mild solutions (see Appendix 7 for the proof).

Lemma 3.2. (Local existence). Assume (HA) and (H1)-(H3). Then there exists
a time T∗ > 0 (depending on u0) such that the problem (3.1) possesses a unique
mild solution in the sense of Definition 3.1 on the interval J = [0, T∗] .

Our second statement shows that locally-defined mild solutions in Vα can be
(uniquely) extended to a larger interval (see Appendix 7 for the proof).

Lemma 3.3. (Unique continuation) Let the assumptions of Lemma 3.2 be sat-
isfied. Then the unique integral solution on J = [0, T ?] of (3.1) can be extended to
the interval [0, T ? + τ ], for some τ > 0, so that, the extended function is the unique
mild solution of (3.1) on [0, T ? + τ ] in the sense of Definition 3.1.

The following statement is then straightforward on account of the above lemmas.

Theorem 3.4. Assume (HA) and (H1)-(H3). Problem (3.1) has a unique mild
solution on J = [0, Tmax) in the sense of Definition 3.1, where either Tmax =∞ or
Tmax <∞, and in that case,

lim sup
t→T−max

|u (t)|α =∞.

Proof. The proof is standard owing to Lemma 3.2 and Lemma 3.3, respectively, and
a contradiction argument (see, e.g., [3, 18]).

6The control region D depends upon the choice of A, the geometry of Ω and the control operator
B, as some examples will show in Section 6.
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We derive a sufficient condition in order to conclude additional (temporal) reg-
ularity for the mild solution (under the same assumptions of Theorem 3.4; see
Appendix 7, for a proof).

Theorem 3.5. Let u : [0, T ] → Vα be a mild solution in the sense of Theo-
rem 3.4 for any T < Tmax. In addition, assume that u0 ∈ Vβ+2 ↪→ Vα and
z ∈W 1,1((0, T ) ;L2 (D)), provided that

‖∂tz (t)‖L2(D) ≤ Ct
ρ−1, for all 0 < t ≤ T, (3.3)

for some ρ > 0, and C > 0 independent of t and z. Then, for the above mild
solution, we have

u ∈W 1,1+ξ ((0, T ) ;Vα) , for some ξ > 0. (3.4)

Furthermore, the identity C∂
γ
t u (t) = ∂γt u (t) is satisfied for almost all t ∈ (0, T ) .

In what follows it is more convenient to set α̃ = β ∈ [−1, 0] and recall that
α ∈ [β, β + 2) (so that assumption (H1) is satisfied). The previous theorems imply
the following two (major) statements which conclude the section.

Theorem 3.6. (The problem for the generalized Caputo derivative) If
(HA), (H1)-(H3) hold, then problem (3.1) has a unique mild solution

u ∈ C ([0, Tmax);Vα) ,

for which

∂γt u := ∂t (g1−γ ∗ (u− u0)) ∈ C([0, Tmax);Vα̃−δ), for any δ ∈
(

2

γq
, 2

]
. (3.5)

Moreover, the variational identity

〈∂γt u (t) +Au (t) , v〉Vα̃−δ,V−α̃+δ
= 〈f (u (t)) + Bz (t) , v〉Vα̃,V−α̃ , (3.6)

holds for any v ∈ V−α̃+δ ⊂ V−α̃, and for almost all t ∈ (0, Tmax).

Proof. The statement (3.5) is a consequence of the proof of Theorem 3.4, since
f (u) ∈ C([0, Tmax);Vα̃) ⊂ Lq (0, Tmax;Vα̃),[

|A (Pγ ∗ Bz) (t)|α̃−δ + |A (Pγ ∗ f (u)) (t)|α̃−δ
]

. t
γδ
2 −

1
q

(
‖Bz‖Lq(0,T ;Vα̃) + ‖f (u)‖Lq(0,T ;Vα̃)

)
,

and
|ASγ (t)u0|α̃−δ ≤ |ASγ (t)u0|α̃ . t

γ
2 (2+α̃−α) |u0|α ,

for all Tmax > t > 0. The identity (3.6) then follows from the solution representation
in Definition 3.1 and from (3.5).

Corollary 3.7. (The problem for the strong Caputo derivative) Let the
assumptions of Theorem 3.6 be satisfied, and in addition, assume u0 ∈ Vβ+2 ⊂ Vα
and (3.3) hold. Then the mild solution of problem (3.1) satisfies |∂tu (t)|α . tθ−1,
and therefore,

u ∈W 1,1+ξ ((0, T ) ;Vα) ∩ Lσ ((0, T );V2+α̃) , C∂
γ
t u ∈ L1+ξ ((0, T );Vα̃) , (3.7)

for ξ = ξ (θ) ∈ (0, θ
1−θ ), σ := min (1 + ξ, q) > 1. Moreover, the variational identity

〈∂γt u (t) +Au (t) , v〉Vα̃,V−α̃ = 〈f (u (t)) + Bz (t) , v〉Vα̃,V−α̃ , (3.8)

holds for any v ∈ V−α̃, and for almost all t ∈ (0, Tmax).
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Proof. The proof is a consequence of Theorem 3.5, in view of the assumptions
of Theorem 3.6. Indeed, owing to the fact that Bz ∈ Lq ((0, T );Vα̃), f (u) ∈
C ([0, T ] ;Vα̃) and C∂

γ
t u = ∂γt u ∈ L1+ξ ((0, T );Vα̃), one may argue, by comparison

in (3.6), that Au ∈ Lσ ((0, T );Vα̃) , which implies that u ∈ Lσ ((0, T );V2+α̃).

Remark 3.8. We observe the following facts.

(a) When α̃ = β ∈ [−1, 0] and α ∈ [β, β + 2), we have in Corollary 3.7, θ =
γ(2−α+β)

2 − 1
q > 0 whenever q ∈ ( 2

γ(2−α+β) ,∞]. Moreover, σ = min (1 + ξ, q) =

1 + ξ ∈ (1, η (θ)) since η (θ) := 1
1−θ ∈ (1, q].

(b) When α̃ 6= β, the explicit value of θ > 0, in terms of α, β, γ and α̃, can be
found in (7.14), namely7,

θ = min

{
γ

2
(2− α+ α̃)− 1

q
,
γ

2
(2− α+ β)

}
.

In this case, the analogue of Corollary 3.7 is

∂γt u+Au = f (u) + Bz, holds in Vmin{α̃,β}, for almost all t ∈ (0, T ) , (3.9)

and each solution of (3.9) belongs to

W 1,1+ξ ((0, T ) ;Vα) ∩ Lσ
(
(0, T );V2+min{α̃,β}

)
,C ∂

γ
t u ∈ L1+ξ

(
(0, T );Vmin{α̃,β}

)
.

For additional regularity theory of problem (3.1), the restriction α̃ ∈ [−1, 0]
does not appear to be a necessary condition. More precisely, in the statement
of Corollary 3.7, one can assume instead that α̃ ∈ R+, for as long as α ∈
Iα̃ ∩ Iβ 6= ∅ (see, e.g., Theorem 5.2 in Section 5). However, the restriction
that α̃ > 0 appears necessary for the rigourous justification of the V1-energy
equality for the corresponding subdiffusive problem.

(c) The gap in regularity between the initial datum u0 ∈ Vβ+2 $ Vα and the
solution u ∈ C([0, T ] ;Vα) (but8 with u /∈ C([0, T ] ;Vβ+2)) is not of technical
nature. It is due to a complete failure of the semigroup property for the
solution operator associated with (3.1) (see, e.g., [26, 23], and the references
therein). In particular, this means that the fractional in time problem is not
well-posed in the classical sense formulated by Hadamard; namely, there does
not exist a (strongly) continuous flow map Φ : u0 7→ u (t) in any scale
of the operator spaces Vα. This is in contrast to the strong continuity of the
flow map for the classical problem when γ = 1.

4. The optimal control problem. In view of Corollary 3.7, we set the control
space to be

Zρ,∞ :=
{
z ∈ C([0, T ] ;L2(D)) : ‖∂tz (t)‖L2(D) . tρ−1, a.e. 0 < t ≤ T

}
,

for some T < Tmax (with a value T which we will fix from now on) and 0 < ρ ≤ 1.
Notice9 that Zρ,∞ is a closed (bounded) subset of

W 1,1+λ((0, T ) ;L2 (D)) ⊂ C([0, T ] ;L2 (D)),

7The value of θ is independent of ρ > 0.
8Strictly speaking, this is a consequence of the singular behavior of Pγ (t) near t = 0.
9Due to the embedding, we may immediately take q = ∞ in Remark 3.8. It follows that

σ = 1 + ξ (θ) > 1 and θ =
γ(2−α+β)

2
.
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for some λ > 0 depending on ρ (i.e, (1 + λ) (ρ− 1) > −1), when we endow it with
the norm

‖z‖Zρ,∞ := ‖z‖C([0,T ];L2(D)) + sup
t∈[0,T ]

t1−ρ ‖∂tz (t)‖L2(D) . (4.1)

Thus, the control-to-state operator

S : Zρ,∞ → Yθ,α, z 7−→ u =: S (z)

is well-defined as a mapping from Zρ,∞ into the Banach space

Yθ,α =
{
u ∈W 1,1+ξ(θ) ((0, T ) ;Vα) : |∂tu (t)|α . tθ−1, a.e. 0 < t ≤ T

}
; (4.2)

Yθ,α is endowed with the natural norm (for some ξ = ξ (θ) > 0, depending10 on
θ > 0)

‖u‖Yθ,α := sup
t∈[0,T ]

|u (t)|α + sup
t∈[0,T ]

t1−θ |∂tu (t)|α .

We notice first that S is Lipschitz continuous from Zρ,∞ into C ([0, T ] ;Vα) (see
(4.5)). Secondly, if we impose additional assumptions on f, the state mapping S
satisfies an improved stability estimate (4.6). To this end, let us denote by U a
nonempty, open and bounded subset of Zρ,∞.

(H4) The nonlinearity f ∈ C1,1 induces a bounded11 mapping

gu (v) := (∂uf (u)) v : Vα → Vβ , (4.3)

such that, for every u1, u2 ∈ Vα satisfying |ui|α ≤ R (i = 1, 2), there is a
constant CR > 0 such that,

|gu1
(v)− gu2

(v)|β ≤ CR |v|α |u1 − u2|α . (4.4)

Theorem 4.1. Let the assumptions of Corollary 3.7 be satisfied.

(i) Then for each T < Tmax, there exists a constant K1 > 0, depending on T,R, f ,
such that whenver z1, z2 ∈ U are given and u1, u2 ∈ Yθ,α denote the associated
solutions of the state system, we have

‖u1 − u2‖C([0,T ];Vα) ≤ K1 ‖z1 − z2‖C([0,T ];L2(D)) . (4.5)

(ii) If in addition, (H4) holds, then there is a constant K2 > 0 such that

sup
t∈[0,T ]

t1−θ |(∂tu1 − ∂tu2) (t)|α ≤ K2 ‖z1 − z2‖Zρ,∞ . (4.6)

Proof. Set u := u1−u2 and z := z1−z2. Then, every mild/weak solution u satisfies
on (0, T ) ⊂ (0, Tmax) ,

u (t) =

∫ t

0

Pγ (t− τ) (f (u1 (τ))− f (u2 (τ))) dτ +

∫ t

0

Pγ (t− τ)Bz (τ) dτ (4.7)

since u (0) = 0, for i = 1, 2, whenever ui (0) = u0. By Theorem 3.5,

∂tui (t) = APγ (t)u0 + Pγ (t) f (u0) + Pγ (t)Bzi (0) (4.8)

+

∫ t

0

Pγ (t− τ)B∂tzi (τ) dτ +

∫ t

0

Pγ (t− τ) ∂uif (ui (τ)) ∂tui (τ) dτ,

10Namely, ξ > 0 is such that (1 + ξ) (θ − 1) > −1.
11Note that boundedness is a consequence of (4.4).
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for almost all t ∈ (0, T ) ⊂ (0, Tmax) . Then (4.5) follows easily employing once again
an extension argument for (4.7) to the whole interval (0, T ), via the proofs of Lemma
3.2 and Lemma 3.3. Let us now set v := ∂tu1 − ∂tu2, and notice that

v (t) =

∫ t

0

Pγ (t− τ) (gu1
(∂tu1 (τ))− gu2

(∂tu1 (τ))) dτ + Pγ (t)Bz (0) (4.9)

+

∫ t

0

Pγ (t− τ) ∂u2
f (u2 (τ)) v (τ) dτ +

∫ t

0

Pγ (t− τ)B∂tz (τ) dτ.

The argument in (7.13), given α̃ = β and α ∈ [β, β + 2), easily yields∣∣∣∣∫ t

0

Pγ (t− τ)B∂tz (τ) dτ

∣∣∣∣
α

. t
γ(2−α+β)

2 +ρ−1 sup
t∈[0,T ]

t1−ρ ‖∂tz (t)‖L2(D)

. t
γ(2−α+β)

2 +ρ−1 ‖z‖Zρ,∞
. tθ−1T ρ ‖z‖Zρ,∞
. tθ−1 ‖z‖Zρ,∞

while, in light of the boundedness of gu (by (4.4), |gu (v)|β . |v|α (|u|α + 1) , since

0 ∈ Vα), it follows that∣∣∣∣∫ t

0

Pγ (t− τ) ∂u2f (u2 (τ)) v (τ) dτ

∣∣∣∣
α

.
∫ t

0

(t− τ)
γ(2−α+β)

2 −1 |v (τ)|α dτ.

Moreover, in view of (4.4) and (4.5), we can deduce that∣∣∣∣∫ t

0

Pγ (t− τ) (∂u1f (u1 (τ))− ∂u2f (u2 (τ))) ∂tu1 (τ) dτ

∣∣∣∣
α

.
∫ t

0

(t− τ)
γ(2−α+β)

2 −1 |∂tu1 (τ)|α dτ ‖u‖C([0,T ];Vα)

.
∫ t

0

(t− τ)
γ(2−α+β)

2 −1
τθ−1dτ ‖u1‖Yθ,α ‖u‖C([0,T ];Vα)

. t
γ(2−α+β)

2 +θ−1 ‖z‖C([0,T ];L2(D))

. tθ−1 ‖z‖C([0,T ];L2(D)) .

Finally, we have

|Pγ (t)Bz (0)|α . t
γ(2−α+β)

2 −1 |Bz (0)|β=α̃ . t
γ(2−α+β)

2 −1 ‖z (0)‖L2(D) . tθ−1 ‖z‖Zρ,∞ .

Collecting the previous estimates, from (4.9) we find that

|v (t)|α . tθ−1 ‖z‖Zρ,∞ +

∫ t

0

(t− τ)
γ(2−α+β)

2 −1 |v (τ)|α dτ. (4.10)

Application of the Gronwall inequality (see Lemma 2.7) then yields

|v (t)|α . tθ−1 ‖z‖Zρ,∞ ,

from which we can immediately infer (4.6). The proof is complete.

Remark 4.2. Part (ii) of Theorem 4.1 implies that the solution operator S is
(Lipschitz) continuous when viewed as a mapping from Zρ,∞ into Yθ,α (with θ =
γ (2− α+ β) /2 ∈ (0, 1)). Indeed, (4.6) yields

‖u1 − u2‖Yθ,α ≤ K3 ‖z1 − z2‖Zρ,∞ , (4.11)
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for some K3 > 0, depending only on K1,K2.

Now we define the cost functional, i.e., J(u, z) := J1(u) + J2(z). Consider D1

and D2 to be the effective domains of the (proper) functionals J1 and J2, respec-
tively. We let J1 : X1 → (−∞,+∞] and J2 : X2 := Zρ,∞ → (−∞,+∞] (with the
convention that Ji (u) = +∞, for u ∈ Xi\Di, i = 1, 2), and as a result we can write
the reduced minimization problem

min
z∈Zad

J (z) := J1(S(z)) + J2(z) = J (S (z) , z) . (4.12)

First, we assume there is an admissible set Zad which is a convex and closed subset
of Zρ,∞. We impose the following (specific) assumptions on J1 and J2.

(H5) J1 : D1 := Yρ,α̃ → R is weakly lower semicontinuous (for some ρ > 0);
J2 : D2 := Zad → R is convex, lower-semicontinuous and the level set
{z ∈ Zad : J2 (z) ≤ κ} is bounded for some κ ∈ R.

Theorem 4.3 (Existence of optimal controls). Let the assumptions of Corol-
lary 3.7 hold. Assume in addition that (H5) holds. Then the optimal control problem
(4.12) admits a solution.

Proof. We begin by noticing an infimizing sequence {zn}n∈N always exists (see [13,
pg. 84]). Let {zn}n∈N be a infimizing sequence, that is, zn ∈ Zad and un = S(zn),
for n ∈ N, are such that J (zn) → j as n → ∞. Moreover, un (0) = u0n ∈ Vα are
such that u0n ⇀ u0 weakly in Vα. Notice that

Zad ⊆ X := W 1,1+λ
(
(0, T ) ;L2 (D)

)
,

where X is reflexive. Since Zad is a closed and convex subspace of X , Zad is also
reflexive, and therefore, by taking a subsequence if necessary, we may assume that
{zn}n∈N converges weakly in the space Zρ,∞, to some z∗ ∈ Zad ⊂ Zρ,∞ (since Zad
is weakly compact in the topology of Zρ,∞; see [13, Proposition 3.2.8 and Theorem
3.2.1]).

Next, we aim to show that the state {un}n∈N converges, as n → ∞, to some
u∗ in a suitable sense, and that (u∗, z∗) satisfies the state equation u∗ = S(z∗).
More precisely, z∗ becomes the desired optimal control for the problem, owing to
the (weak) lower-sequential semicontinuity of the cost functional J . By virtue of
the proof of Corollary 3.7, we observe that un is bounded uniformly (with respect
to n ∈ N),

un ∈ C ([0, T ] ;Vα) (4.13)

and

un ∈W 1,1+ξ ((0, T ) ;Vα) ∩ Lσ=1+ξ ((0, T );Vα̃+2)
c
↪→ Lσ ((0, T );Vα) , (4.14)

since Vα̃+2
c
↪→ Vα ↪→ Vα̃ = Vβ , and α̃ ≤ α < α̃ + 2 (owing to (I +A)

−1
being

compact in L2 (Ω)). We recall that the embedding in (4.14) is also compact due to
the (standard) Aubin-Lions-Simon compactness lemma. It follows that, as n→∞,

un → u∗ strongly in Lσ ((0, T );Vα) .

Together with (H3), this strong convergence implies that

f (un)→ f (u∗) strongly in Lσ((0, T );Vβ),

which is enough to pass to the limit in a standard way, in the sequence of mild
solutions

un = Sγ (t)u0n +

∫ t

0

Pγ (t− τ) f (un (τ)) dτ +

∫ t

0

Pγ (t− τ)Bzn (τ) dτ. (4.15)
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Indeed, while it is easy to pass to the limit in the first and last summands on the
right-hand side of (4.15), for the second convolution term we have

|Pγ ∗ (f (un)− f (u∗))|Vβ ≤ t
(γ−1)σξ+1 ‖f (un)− f (u∗)‖Lσ(0,T ;Vβ) ,

for all 0 < δ ≤ t ≤ T . In particular, we have established the strong convergence in
C((0, T ];Vβ), of∫ t

0

Pγ (t− τ) f (un (τ)) dτ →
∫ t

0

Pγ (t− τ) f (u∗ (τ)) dτ, as n→∞

for any T < Tmax. Therefore, there holds in Vβ , for almost all t ∈ (0, T ) ,

u∗ = Sγ (t)u0 +

∫ t

0

Pγ (t− τ) f (u∗ (τ)) dτ +

∫ t

0

Pγ (t− τ)Bz∗ (τ) dτ.

Due to (4.13), clearly u∗ ∈ C ([0, T ] ;Vα); in fact, one may conclude as in the proof
of Corollary 3.7 that u∗ ∈ Yθ,α ⊆ Yθ,α̃ (for each α ≥ α̃) is a solution in the sense of
Theorem 3.6.

The element z∗ is the right candidate for the optimal control. Indeed, z∗ is the
minimizer. We first notice that since J2 is convex, proper, and lower-semicontinuous,
therefore it is weakly lower-semicontinuous with respect to the X2-norm topology
(see [13, Theorem 3.3.3]). We have

inf
z∈Zad

J (z) = lim inf
n→∞

J (zn) ≥ lim inf
n→∞

J1(S(zn)) + lim inf
n→∞

J2(zn)

≥ J1(S(z∗)) + J2(z∗) = J (z∗).

The proof is complete.

Our next goal is to show differentiability of the control-to-state operator. We
begin with another assumption on f.

(H4bis) The nonlinearity f ∈ C2,1 (R) induces (for a fixed u ∈ Vα) a bounded12

nonlinear form

bu (v, w) :=
(
∂2
uf (u)

)
vw : Vα × Vα → Vβ ,

such that, for every u1, u2 ∈ Vα, satisfying |ui|α ≤ R (i = 1, 2), there is a
constant CR > 0 such that,

|bu1 (v, w)− bu2 (v, w)|β ≤ CR |v|α |w|α |u1 − u2|α . (4.16)

Suppose now that z∗ ∈ Zad is a local minimizer for the control problem, and let
u∗ = S (z∗) be the associated state. We consider, for a fixed h ∈ U , the linearized
system:

∂γt η (t) = −Aη (t) + f
′
(u∗ (t)) η (t) + Bh, η (0) = 0, in Ω. (4.17)

We now show that problem (4.17) admits for every h ∈ Zρ,∞, a unique solution
η ∈ Yθ,α (in the sense of Corollary 3.7), and that the linear mapping

Φ : Zρ,∞ → Yθ,α, h 7→ η := ηh (4.18)

is continuous from Zρ,∞ into Yθ,α. Namely, there is a constant K4 > 0 such that

‖η‖Yθ,α ≤ K4 ‖h‖Zρ,∞ . (4.19)

12Note that boundedness of bu is a consequence of (4.16).
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Lemma 4.4. Let the assumptions of Corollary 3.7 hold, and in addition, assume
(H4) and (H4bis). Then the above statement for (4.18) holds. Moreover, η ∈
L1+ξ ((0, T );V2+α̃) and ∂γt η ∈ L1+ξ ((0, T );Vα̃) , for the same value ξ > 0 defined
previously.

Proof. The existence of a (unique) mild solution follows exactly along the lines of
Theorem 3.4, and is based on the formula

η (t) =

∫ t

0

Pγ (t− τ) f
′
(u∗ (τ)) η (τ) dτ +

∫ t

0

Pγ (t− τ)Bh (τ) dτ.

We skip the (basic) details for the sake of brevity, and focus mainly on the stability
estimate (4.19). Since η is also differentiable for almost all t ∈ (0, T ) , we have

∂tη (t) =

∫ t

0

Pγ (t− τ) f
′
(u∗ (τ)) ∂tη (τ) dτ

+

∫ t

0

Pγ (t− τ) f
′
(u∗ (τ)) ∂tη (τ) dτ

+

∫ t

0

Pγ (t− τ)B∂th (τ) dτ + Pγ (t)Bh (0) .

This is due to the fact that if L is continuous at t = 0 and L is of bounded variation
on (0, T ), we have that

d

dt
(Pγ ∗ L) (t) = Pγ (t)L (0) + (Pγ ∗ ∂tL) (t) , for t > 0.

Following the basic argument developed in the proof of (4.5) (see Theorem 4.1), it
is first easy to see that

‖η‖C([0,T ];Vα) ≤ K5 ‖h‖C([0,T ];L2(D)) , (4.20)

for some K5 > 0 independent of h. Similarly, arguing as in the proof of (4.9)-(4.10),
owing to the boundedness of the form bu : Vα × Vα → Vβ , one has

|∂tη (t)|α . tθ−1 ‖h‖Zρ,∞ +

∫ t

0

(t− τ)
γ(2−α+β)

2 −1 |∂tη (τ)|α dτ. (4.21)

The application of Gronwall lemma to (4.21), together with (4.20), implies the
desired conclusion (4.19). The final regularity on η can be deduced as in the proof
of Corollary 3.7 (see also the proof of Proposition 4.6 below).

Lemma 4.5. Let the assumptions of Lemma 4.4 hold. Then the following state-
ments hold:

(i) Let z∗(= z) ∈ U be arbitrary. Then the control-to-state mapping S : Zρ,∞ →
Yθ,α is (Frechet) differentiable at z∗, and the frechet derivative dS (z∗) is given
by dS (z∗) (h) = η, where for any given h ∈ Zρ,∞, the function η denotes the
solution of the linearized system (4.17).

(ii) The mapping dS (z∗) : U → L (Zρ,∞, Yθ,α) , z∗ 7→ dS (z∗) is Lipschitz contin-
uous on U in the following sense: there exists a constant K6 > 0 such that for
all z1, z2 ∈ U and all h ∈ U the following estimate holds:

‖dS (z1)h− dS (z2)h‖Yθ,α ≤ K6 ‖z1 − z2‖Zρ,∞ ‖h‖Zρ,∞ .

Proof. We begin with (i). Let z ∈ U be arbitrarily chosen and let u = S (z) be the
associated solution to the state system. Since U is open in Zρ,∞, there is ζ > 0 such
that for any h ∈ Zρ,∞ with ‖h‖Zρ,∞ ≤ ζ there holds z + h ∈ U . In what follow,
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we also consider solutions uh = S (z + h) , for such variations h ∈ U . Next, we let
vh := uh−u−ηh, where η = ηh denotes the unique solution to the linearized system
associated with a given h ∈ U . Our goal is to show that

∥∥vh∥∥
Yθ,α

= o(‖h‖Zρ,∞), as

‖h‖Zρ,∞ → 0. To this end, we notice that vh satisfies

vh (t) =

∫ t

0

Pγ (t− τ)
(
f(uh (τ))− f(u (τ))− f

′
(u (τ))η (τ)

)
dτ,

for almost all t ∈ (0, T ) ⊂ (0, Tmax). By Taylor’s theorem [16, Theorem 30.1.3], we
have for almost all t ∈ (0, T ) ,

f(uh (t))− f (u (t))− f
′
(u (t))η (t) = f

′
(u (t))vh (t) + rh (t) , (4.22)

with remainder

rh (t) :=

∫ 1

0

(f
′
(u (t) + x(uh − u) (t))− f

′
(u (t)))(uh − u) (t) dx.

Moreover, vh (0) = 0, rh (0) = 0, and vh is differentiable a.e. on (0, T ) , with

∂tv
h (t) =

∫ t

0

Pγ (t− τ) bu(∂tu (τ) , vh (τ))dτ +

∫ t

0

Pγ (t− τ) gu(∂tv
h (τ))dτ

(4.23)

+

∫ 1

0

∫ t

0

Pγ (t− τ)
[
gu+x(uh−u)(∂t(u

h − u))− gu(∂t(u
h − u))

]
dτdx

+

∫ 1

0

∫ t

0

Pγ (t− τ)
[
bu+x(uh−u)(∂tu, u

h − u)− bu(∂tu, u
h − u)

]
dτdx

+

∫ 1

0

∫ t

0

Pγ (t− τ)xbu+x(uh−u)(u
h − u, ∂t(uh − u))dτdx

=: Q1 + ...+Q5.

In view of (4.22), we can also rewrite

vh (t) =

∫ t

0

Pγ (t− τ) f
′
(u (τ))vh (τ))dτ +

∫ t

0

Pγ (t− τ) rh (τ))dτ.

We deduce∣∣vh (t)
∣∣
α
≤ CR

∫ t

0

|Pγ (t− τ) f
′
(u (τ))vh (τ))|αdτ

+ CR

∫ 1

0

∫ t

0

(t− τ)
γ(2−α+β)

2 −1
x|uh (τ)− u (τ) |αdτdx

. t
γ(2−α+β)

2 ||vh||C([0,T ];Vα) + t
γ(2−α+β)

2 ||uh − u||2C([0,T ];Vα),

so that for small enough T � 1, we obtain

||vh||C([0,T ];Vα) . ||uh − u||2C([0,T ];Vα) . ‖h‖
2
Zρ,∞

, by (4.11). (4.24)

The continuation argument exploited in the proof of Lemma 3.3 yields the same
estimate on the whole interval (0, T ) , for any T < Tmax. It remains to estimate all
Qi-terms in (4.23). The assumptions (H4)-(H4bis) and (4.24) are mainly exploited
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in these estimates. We thus find that

|Q1 (t)|α .
∫ t

0

(t− τ)
γ(2−α+β)

2 −1
τθ−1dτ

(
1 + ‖u‖C([0,T ];Vα)

)
‖u‖YΘ,ε

||vh||C([0,T ];Vα)

(4.25)

. t
γ(2−α+β)

2 +θ−1 ‖h‖2Zρ,∞ ,

and

|Q2 (t)|α .
∫ t

0

(t− τ)
γ(2−α+β)

2 −1 ∣∣∂tvh (τ)
∣∣
α
dτ.

Analogously, we obtain that

|Q4 (t)|α .
∫ t

0

(t− τ)
γ(2−α+β)

2 −1 |∂tu (τ)|α |(u
h − u) (τ) |2αdτ

. t
γ(2−α+β)

2 +θ−1||uh − u||2C([0,T ];Vα) ‖u‖YΘ,ε

. t
γ(2−α+β)

2 +θ−1 ‖h‖2Zρ,∞ ,

|Q5 (t)|α .
∫ t

0

(t− τ)
γ(2−α+β)

2 −1 ∣∣∂t(uh − u) (τ)
∣∣
α

∣∣(uh − u) (τ)
∣∣
α
dτ

. t
γ(2−α+β)

2 +θ−1 ‖h‖2Zρ,∞ ,

as well as

|Q3 (t)|α . t
γ(2−α+β)

2 +θ−1 ‖h‖2Zρ,∞ . (4.26)

Once again collecting the previous estimates, we obtain by means of Gronwall’s
lemma that

sup
t∈[0,T ]

t1−θ|∂tvh (t) |α . ‖h‖2Zρ,∞ . (4.27)

Combining (4.24)-(4.27), we finally arrive at the conclusion (i). The proof of (ii)
follows in a similar fashion; we leave the details to the interested reader.

It is now straightforward to derive the standard variational inequality that op-
timal controls must satisfy. However, for the method to be practical, it is critical
to identify the adjoint equation. We shall proceed on these two fronts simultane-
ously. Exploiting first the integration by parts formula (2.4) of Proposition 2.5, we
introduce a dual problem, that can be associated with (4.17) whenever h ≡ 0, also
owing to η (0) = 0,{

∂γt,Tw +Aw = f
′
(u∗)w + k, in Q := (0, T )× Ω,

I1−γ
t,T w(T, ·) = 0 in Ω.

(4.28)

Roughly speaking, one identifies k with duJ (S (z∗) , z∗), where the function u∗ =
S (z∗) is the state associated with a minimizer z∗ ∈ Zad ⊂ Zρ,∞, of (4.12). Note
that (4.28) is a (linear) backward in time partial differential equation for the (right)
Riemann-Liouville fractional derivative ∂γt,T . We now use the time transformation

t 7→ T − t := t in (4.28) to set p (t) = w (T − t) (which also yields that w (t) =
w
(
T − t

)
= p

(
t
)
) and k (t) := g

(
t
)
. Employing the basic identities

(I1−γ
t,T w) (t) = (I1−γ

0,t
p)
(
t
)
, − d

dt
=

d

dt
, (4.29)
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we can then transform (4.28) into a (forward) problem for the left Riemann-Liouville
derivative Dγ

T−t = Dγ

t
. In particular, solvability of problem (4.28) turns out to be

related to solvability of the following (generic) initial-value problem{
Dγ

t
p+Ap = f

′
(u∗) p+ g =: l, t ∈ (0, T ) ,

(I1−γ
0,t

p) (0) = p0.
(4.30)

Here, once again in the context of (4.28) g must be equal to duJ (S (z∗) , z∗) and
p0 = 0. The solvability of the linearized problem (4.30) under suitable conditions
on l has also been investigated in detail by Bajlekova [15, Section 4, Theorem 4.16].
However, we prefer to give a more direct proof of the solvability here due to the
additional summand f

′
(u∗) p. To this end, we recall that if (I1−γ

0,t
p) (0) = p0, one

has the following integral solution representation for the above linearized problem:

p (t) = Pγ (t) p0 +

∫ t

0

Pγ (t− τ)
(
f
′
(u∗ (τ)) p (τ) + g (τ)

)
dτ, (4.31)

where u∗ (t) ∈ BR (BR is a ball of radius R, in the corresponding strong topology
of Yθ,α; see (4.2)), and we have dropped the bar from t, for the sake of notational
simplicity. We also recall from (4.2) that the Banach space

Yρ,α̃ =
{
k ∈ C([0, T ] ;Vα̃) : |∂tk (t)|α̃ . tρ−1, a.e. 0 < t ≤ T

}
,

is subject to the (natural) norm

‖k‖Yρ,α̃ := ‖z‖C([0,T ];Vα̃) + sup
t∈[0,T ]

t1−ρ |∂tk (t)|α̃ ,

for some ρ > 0. We sketch a proof of the subsequent result in the Appendix (see
Section 7).

Proposition 4.6. Let u := u∗ (t) ∈ BR, be an optimal solution of (3.1) in the sense
of Corollary 3.7, for some R > 0 and t ∈ (0, T ) with T ≤ Tmax (Tmax > 0 is the
maximal existence time for u; see Theorem 3.4).

(i) If (H4) holds and k ∈ Lq((0, T );Vα̃), for some q ∈ ( 2
γ(2−α+α̃) ,∞], then the lin-

earized problem (4.28) admits a unique mild solution on (0, T ). In particular,
one has

w ∈ C ([0, T ] ;Vα) ; {∂γt,Tw,Aw} ∈ C([0, T ];Vα̃−δ), for
2

γq
< δ ≤ 2.

The variational equation

〈∂γt,Tw (t) +Aw (t) , v〉Vα̃−δ,V−α̃+δ
= 〈f

′
(u (t))w (t) + k (t) , v〉Vα̃,V−α̃ ,

is satisfied, for any v ∈ V−α̃+δ ⊂ V−α̃, for almost all t ∈ (0, T ).
(ii) If (H4), (H4bis) hold and additionally k ∈ Yρ,α̃, then the mild solution of

(4.28) also satisfies13 w ∈ Yθ,α, and

〈∂γt,Tw (t) +Aw (t) , v〉Vα̃,V−α̃ = 〈f
′
(u (t))w (t) + k (t) , v〉Vα̃,V−α̃ ,

for any v ∈ V−α̃, for almost all t ∈ (0, T ). Furthermore, w ∈ L1+ξ ((0, T );V2+α̃) ,

∂γt,Tw ∈ L
1+ξ ((0, T );Vα̃) , for some ξ = ξ (θ) > 0.

13We recall once again that θ is independent of ρ > 0.
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It follows from the chain rule that the reduced cost functional J (z) = J (u, z) =
J (S (z) , z) is Fr̈ı¿½chet differentiable at every z ∈ U (provided that u 7→ J1 (u) and
z 7→ J2 (z) are continuously (Fr̈ı¿½chet) differentiable) with Fr̈ı¿½chet derivative

dJ (z) = duJ (S (z) , z) ◦ dS (z) + dzJ (S (z) , z) . (4.32)

Equivalently for any h ∈ U , we have∫ T

0

(dJ (z (t)) , h (t))L2(D) dt (4.33)

=

∫ T

0

〈duJ (S (z (t)) , z (t)) , dS (z (t))h (t)〉Vα̃,V−α̃dt

+

∫ T

0

(dzJ (S (z (t)) , z (t)) , h (t))L2(D) dt,

where we have used the differentiability of S from Lemma 4.5(i) and the fact that
dS (z) ∈ L(Zρ,∞, Yθ,α̃) because Yθ,α ⊆ Yθ,α̃, for each a ≥ α̃ ≥ −1. Since dS (z)
is bounded and linear, it follows that its adjoint dS (z)

∗ ∈ L(Zρ,∞, Yθ,α̃)∗ is well-
defined. Consequently, from (4.33) we obtain∫ T

0

(dJ (z (t)) , h (t))L2(D) dt (4.34)

=

∫ T

0

(
dS (z (t))

∗
duJ (S (z (t)) , z (t)) + dzJ (S (z (t)) , z (t)) , h (t)

)
L2(D)

dt.

Thus to evaluate dJ , we need to identify dS (z (·))∗, we do this next.

Lemma 4.7. Let (z, u) ∈ Zρ,∞ × Yθ,α solve the state equation in the sense of
Theorem 3.6. For a.e. t ∈ [0, T ], the adjoint operator dS(z (t))∗ψ (t) : V−α̃ →
L2 (D) is given by

dS(z (t))∗ψ = B∗w (t) ∈ L2 (D) .

Furthermore, w solves the linear equation{
∂γt,Tw +Aw = f

′
(u∗)w + ψ, t ∈ (0, T ) ,

I1−γ
t,T w(T, ·) = 0.

(4.35)

Proof. Recall that for each α̃ ∈ [−1, 0], η = dS(z)h solves (4.17), while η ∈ Yθ,α ⊂
Yθ,α̃ and

η ∈ Lσ ((0, T );V2+α̃) ⊆ Lσ ((0, T );V−α̃) and ∂γt η ∈ L1+ξ ((0, T );Vα̃)

(the values σ and ξ are given in Corollary 3.7). For every ψ ∈ Yρ,α̃ and h ∈ Zρ,∞,
we have that∫ T

0

〈ψ (t) , dS(z (t))h (t)〉Vα̃,V−α̃dt =

∫ T

0

(dS(z)∗ψ (t) , h (t))L2(D) dt. (4.36)
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Testing (4.35) with η solving (4.17), in view of Proposition 4.6(ii) (recall that w is
sufficiently smooth), we obtain∫ T

0

〈ψ (t) , dS(z (t))h (t)〉Vα̃,V−α̃dt

=

∫ T

0

〈ψ (t) , η (t)〉Vα̃,V−α̃dt

=

∫ T

0

[
〈∂γt,Tw (t) , η (t)〉Vα̃,V−α̃ + 〈Aw (t)− f ′(u (t))w (t) , η (t)〉Vα̃,V−α̃

]
dt.

Applying integration by parts in time (see Proposition 2.5) and using the fact that
A can be extended to a (self-adjoint) isomorphism acting from Vα̃ into V−α̃, we
arrive at∫ T

0

〈ψ (t) , dS(z (t))h (t)〉Vα̃,V−α̃dt =

∫ T

0

〈
w (t) , ∂γt η(t) +Aη(t)− f ′(u(t))η(t)

〉
V−α̃,Vα̃

dt.

Then using (4.17), we immediately obtain∫ T

0

〈ψ (t) , dS(z (t))h (t)〉Vα̃,V−α̃dt =

∫ T

0

〈w (t) ,Bh (t)〉V−α̃,Vα̃ dt. (4.37)

The asserted result then follows from (4.36) and (4.37).

Finally, we are ready to state the first order necessary optimality conditions.

Theorem 4.8. Let z∗ ∈ Zad be a local minimum for (4.12) with u∗ = S(z∗)
solving the state equation. If w solves the adjoint equation (4.35) with ψ replaced
by duJ (S (z) , z), then the following necessary optimality conditions hold:∫ T

0

(dJ (z∗ (t)) , z (t)− z∗ (t))L2(D) dt

=

∫ T

0

(B∗w (t) + dzJ (S (z∗ (t)) , z∗ (t)) , z (t)− z∗ (t))L2(D) dt ≥ 0 (4.38)

for all z ∈ Zad.

Proof. The proof immediately follows from the convexity of Zad and the assumed
differentiability of J . Towards this end, using Lemma 4.7, we can write (4.34)
equivalently as the right-hand side of (4.38), where w solves the adjoint equation
(4.35) with ψ replaced by duJ (S (z) , z).

5. A global regularity result for energy solutions. Our goal in this section
is to describe the proper regularity conditions necessary to obtain globally defined
bounded solutions, i.e., Tmax = ∞ (see Corollary 3.7). We begin with a simple
energy estimate which is a consequence of the Hardy-Littlewood theorem. To this
end, let H be a Hilbert space with its associated inner product (·, ·) and norm |·|H ,
respectively.

Proposition 5.1. If u ∈W 1,p ((0, T );H) with p ≥ 2
2−γ , then the following holds:∫ T

0

(∂γt u (t) , ∂tu (t)) dt ≥ sin
γπ

2

∞∑
n=1

∥∥g(1−γ)/2 ∗ ∂tun
∥∥2

L2(0,T )
‖ψn‖2H ≥ 0,

for any γ ∈ (0, 1) and T > 0. Here, un (t) := (u (t) , ψn)H where (ψn)n∈N is an
orthogonal basis for H.
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Proof. We have in H,

∂γt u (t) =

∞∑
n=1

(g1−γ ∗ ∂tun) (t)ψn, ∂tu (t) =

∞∑
n=1

∂tun (t)ψn.

Clearly, un ∈W 1,p (0, T ). It follows that∫ T

0

(∂γt u (t) , ∂tu (t)) dt =

∞∑
n=1

‖ψn‖2H
∫ T

0

(g1−γ ∗ ∂tun) (t) ∂tun (t) dt

≥ sin
γπ

2

∞∑
n=1

∥∥g(1−γ)/2 ∗ ∂tun
∥∥2

L2(0,T )
‖ψn‖2H

where the last bound follows from [33, Corollary 2.1]. The proof is finished.

We need a crucial regularity assumption on the operator B in what follows. For
the sake of convenience, we also define F (u) =

∫ u
0
f (τ) dτ.

(H6) Let z ∈ Zρ,∞ and B ∈ L
(
L2(D);Vα̃

)
with u0 ∈ Vβ+2 ⊂ Vα=1 such that

F (u0) ∈ L1 (Ω). Assume also that (H3) is satisfied with α = 1, in either one
of the following regimes: (i) 0 < β < α̃ ≤ 1 = α; (ii) 0 < α̃ ≤ β ≤ 1 = α.

The following global regularity for γ ∈ (0, 1) is the main result of the section. Let
κ := β, when (i) holds and κ := α̃, if (ii) holds, respectively. Then set θ := γ

2 (1 + κ) .

Theorem 5.2. Let (H6) hold and assume14 F (s) ≤ −CF , for all s ∈ R, for
some CF ∈ R. Then problem (3.1) admits a unique (globally-defined) weak solution
u ∈ Yθ,1. Namely,

u ∈W 1, 1
1−θ− ((0, T );V1)∩L

1
1−θ− ((0, T );Vκ+2) , C∂

γ
t u = ∂γt u ∈ L

1
1−θ− ((0, T );Vκ) ,

(5.1)
for any (fixed) but otherwise arbitrary T > 0.

Proof. Note that by (H6), 1 = α ∈ Iα̃ ∩ Iβ 6= ∅ and (H2)-(H3) are satisfied since
z ∈ Zρ,∞. Therefore, as in the proof of Corollary 3.7, the problem admits a unique
weak solution satisfying (5.1) for every 0 < T < Tmax (where Tmax > 0 is such
that either Tmax = ∞, or limt→T−max

|u (t)|1 = ∞, if Tmax < ∞). Observe that

u : [0, T ]→ V1 is absolutely continuous, and notice also that p := 1
1−θ >

2
2−γ if and

only if θ > γ/2, which holds since β > 0 on account15 of (i) (the case (ii) is similar).
Thus, Proposition 5.1 applies with H = L2 (Ω), and we obtain

2 (∂γt u (t) , ∂tu (t))L2(Ω) +
d

dt

[
|u (t)|21 − 2 (F (u (t)) , 1)− 2 (Bz (t) , u (t))

]
(5.2)

= −2 (B∂tz (t) , u (t))L2(Ω) ,

for almost all t ∈ (0, T ). The right hand side of (5.2) is bounded in terms of
C |u (t)|1 tρ−1, for some C > 0 independent of t, T, owing to the fact that z ∈ Zρ,∞
and B ∈ L

(
L2(D);V−1

)
. In particular,

2
∣∣∣(B∂tz (t) , u (t))L2(Ω)

∣∣∣ . (1 + |u (t)|21
)
tρ−1, for 0 < t ≤ T

14Strictly speaking, this assumption can be easily relaxed depending on the application one
has in mind for the problem.

15This is the only place where one needs to assume β > 0, in order to derive the regularity
W 1,p ((0, T );V1) , for p > 2/ (2− γ) and effectively exploit Proposition 5.1.
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and

2|
(
Bz (t) , u (t)L2(Ω)

)
| ≤ Cδ ‖z‖2Zρ,∞ + δ |u (t)|21 , for every δ > 0. (5.3)

Set now

Eγ (t) := CT + |u (t)|21 − 2 (F (u (t)) , 1)L2(Ω) − 2 (Bz (t) , u (t))L2(Ω) ,

where CT > 0 is sufficiently large (depending clearly on z ∈ Zρ,∞) such that Eγ ≥ 0
on (0, T ) (this is possible due to (5.3), for a sufficiently small δ � 1). Notice also

that Eγ (0) ≤ (CT + |u0|21 +‖F (u0)‖L1(Ω)). We immediately deduce from (5.2) that,

∂tEγ (t) + 2 (∂γt u (t) , ∂tu (t))L2(Ω) ≤ C
′

T

(
1 + |u (t)|21

)
tρ−1 ≤ C

′′

TEγ (t) tρ−1

for some C
′

T , C
′′

T > 0. Integrating the foregoing inequality over (0, T ) , we deduce

on account of Gronwall’s lemma, that there exists C
′′′

T <∞, such that

CT,δ(1 + |u (T )|21) ≤ Eγ (T ) ≤ C
′′′

T Eγ (0) <∞, (5.4)

for any T > 0. The energy inequality (5.4) finally yields in view of Theorem 3.4
that Tmax =∞. The proof is finished.

The above proof underlines once again the additional smoothness required of the
sources on the right hand side of the equation in order to be able to (rigorously)
justify the energy equality16 for (3.1). This is in contrast to what happens in the
classical case where generally much less is required on the sources on the right-
hand side (and, which is due to the absence of strongly singular behavior of the
solution operator near t = 0). This result is optimal since p = 2 in Proposition
5.1 corresponds exactly to the case when γ = 1. In general, 1 < p < 2 whenever
0 < γ < 1, and the value of p diminishes toward the value 1, as γ goes to zero, no
matter how smooth the right-hand side turns out to be.17

6. Control setting and operator examples. In this section we give some ex-
amples of operators, functionals, and nonlinearities that enter in our framework
described in the previous sections.

6.1. Cost functionals and admissible set. We set, for given functions

zQ ∈ L2
(
(0, T );L2 (Ω)

)
, zΣ ∈ L2

(
(0, T );L2 (∂Ω)

)
(6.1)

and constants ai ≥ 0 (not all identically zero), the cost functional

J1(u) =
a1

2

∫ T

0

‖u (·, t)− zQ (·, t)‖2L2(Ω) dt+
a2

2

∫ T

0

‖u (·, t)− zΣ (·, t)‖2L2(∂Ω) dt.

(6.2)
Additionally, we let

J2(z) =
ζ

2
‖z‖2L2((0,T )×D), (6.3)

where D = Ω if the control z lies in the interior of Ω, and D = ∂Ω in case the
control is placed on the boundary ∂Ω. Moreover, ζ > 0 is a control regularization
parameter. We consider the problem of minimizing the total cost functional J :=

16Note also that a smoother initial datum u0 ∈ V1+ε, for some ε > 0, is neccesary due to the

“loss” of regularity of the solution flow near t = 0.
17A common mistake we had found in scientific journal publications nowadays is the fact that

many authors generally assume in their definition of weak or smooth solutions that the p = 2

regularity can be always achieved for arbitrary 0 < γ < 1 and when sources are sufficiently

smooth.
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J1 + J2, subject to the constraint z ∈ Zad, where we define the admissible control
set (with prescribed singular behavior near t = 0) to be

Zad := {z ∈W 1,2((0, T );L2(D)) : ‖∂tz‖L2(D) ≤Mtρ−1, (6.4)

and za ≤ z ≤ zb, a.e. in (0, T )×D}.

Here, za, zb ∈ L2((0, T ) ×D) with za ≤ zb are given, and we assume that M > 0,
ρ > 1/2. Notice that, Zad is a closed and convex subset of Zρ,∞. Moreover, Zad
depicts a generic situation with box constraints za and zb. The hypothesis (H5) is
then satisfied by the above J.

Our aim is to formulate necessary optimality conditions for our nonlocal in time
(subdiffusive) problem. We introduce U as a nonempty open subset of Zρ,∞ which
contains Zad; without loss of generality, we may assume that U is also open in
W 1,2((0, T );L2(D)). Recall that the control-to-state mapping S : U → Yθ,α, S (z) =
u is the unique (variational) solution of (3.1) (in the sense of Corollary 3.7). In the
context of (6.2)-(6.3), the ‘reduced’ cost functional J : U → R is then given by

J (z) = J (u, z) := J1 (S (z)) + J2 (z) .

As Zad is convex, the desired necessary condition for optimality is

〈dJ (z∗) , z − z∗〉 ≥ 0, (6.5)

for every z ∈ Zad (for a proper optimal control z∗ ∈ Zad), provided that dJ (z∗) is

well-defined (at least in the Gı̈¿½teaux sense) in the dual space
(
W 1,2((0, T );L2(D))

)∗
.

Following Section 4, it turns out that S is (continuously) Fr̈ı¿½chet differentiable at
z∗ so that the chain rule can be applied. As we had seen in Lemma 4.5, this leads to
the linearized problem (4.17) which can then be stated for a generic element h ∈ U .
This, in turn, leads to the fact that the Frechet derivative dS (z) ∈ L (Zρ,∞, Yθ,α)
exists for (a given generic) ρ > 1/2, such that dS (z)h = η, where η is the unique
(variational) solution of the aforementioned linearized problem. The latter can be
described in detail following the statement (ii) of Proposition 4.6, provided that
some regularity criteria for k = k (t) ∈ Yπ,α̃ is given for another (generic) parameter
π ∈ (0, 1] (to be determined below, see (6.7)). We thus can immediately apply the
chain rule and exploit the formula (4.32), to find that (6.5) takes on the form

a1

∫ T

0

(u∗ − zQ, η)L2(Ω) dt+ a2

∫ T

0

(u∗ − zΣ, η)L2(∂Ω) dt+ ζ

∫ T

0

∫
D

z∗hdxdt ≥ 0,

(6.6)
for any given z ∈ Zad, where the function η is the solution of the linearized problem
corresponding to h = z− z∗. As usual, the final procedure consists in eliminating η
in (6.6) by exploiting the ‘backward-in-time’ solution

w ∈ L1+ξ ((0, T );V2+α̃) , ∂γt,Tw ∈ L
1+ξ ((0, T );Vα̃) ,

of the corresponding adjoint problem (see (ii) of Proposition 4.6), but now set

k := duJ1 (S (z∗) , z∗) =

(
a1 (u∗ − zQ)

a2 (u∗ − zΣ)

)
∈ Yπ,α̃.

Namely, w satisfies

〈∂γt,Tw (t) +Aw (t) , v〉Vα̃,V−α̃ = 〈f
′
(u (t))w (t) + k (t) , v〉Vα̃,V−α̃ ,
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for any v ∈ V−α̃, for almost all t ∈ (0, T ). We note that for z∗ ∈ Zad ⊂ Zρ,∞, it
follows from Lemma 4.5 that u∗ = S (z∗) ∈ Yθ,α ⊆ Yθ,α̃ (since α ≥ α̃). Thus, we
must choose π := θ and consider further regularity assumptions on the data, i.e.,

zQ, zΣ ∈ Yθ,α̃. (6.7)

This allows18 to conclude that k ∈ Yθ,α̃; finally, we can eliminate

η ∈ L1+ξ ((0, T );V2+α̃) ⊂ L1+ξ ((0, T );V−α̃)

(where ∂γt η ∈ L1+ξ ((0, T );Vα̃)). Indeed, notice that all the operations on the left-
hand side of (6.6) are now well-defined in view of (6.1) and (6.7), respectively, and
we can perform calculations exactly as in the proof of Lemma 4.7.

We can state a simpler form of the optimality conditions (6.6) in the context of
various examples of diffusion operators. We do that next.

6.2. The fractional Neumann problem for the Laplacian. For the sake of
simplicity, assume that Ω ⊂ Rn, n ≥ 1, has a smooth boundary ∂Ω. In this
section denote by B := −∆Ω,N the realization of (−∆) in L2(Ω) with the zero
Neumann boundary condition. Since Ω is assumed to be smooth we have that
D(B) = {u ∈ H2(Ω) : ∂νu = 0 on ∂Ω}. Thus, fractional powers A := Bs of order
s ∈ [0, 1] can be defined as usual by the semigroup theory and the following domain
characterization holds:

X2s := D ((B + I)
s
) =

{
{u ∈ H2s (Ω) : ∂νu = 0 on ∂Ω}, s ∈ (3/4, 1]
H2s (Ω) , s ∈ (0, 3/4),

(in the case s = 3/4, u ∈ X3/2 ⊂ H3/2 (Ω) , and equality does not hold). As usual

we equip D (A) with the H2s-norm. For each s ∈ (0, 1], we consider an internally
controlled system

C∂
γ
t u+Bsu = f(u (t)) + z, in Q := (0, T )× Ω,

u(0, ·) = u0 in Ω.

(6.8)

This can be rewritten as the abstract Cauchy problem{
C∂

γ
t u (t) +Au (t) = f (u (t)) + Bz (t) , t ∈ (0, T ),

u(0) = u0,
(6.9)

where B = I and D := Ω. Notice that for α ∈ (0, 2], Vα = D(Aα/2) = Xsα. In what
follows, we thus let α̃ = 0, β = −1 and s ∈ (0, 1].

Example 6.1. One prototype for f is a cubic type of nonlinearity f = −F ′ asso-
ciated with the double-well potential

F (u) = c1u
4 − c2u2, for c2 > c1 > 0. (6.10)

With the choice (6.10), one refers to (6.8) as an internal optimal control problem for
the subdiffusive Allen-Cahn (or phase field) type equation. The assumptions (H3),
(H4), (H4bis) are satisfied by the cubic nonlinearity provided that s (3α+ 1) > n

2
for s ∈ (0, 1] and α ∈ (0, 1) .

18By the definition of C1, C2, (6.7) implies only additional temporal regularity of the data.
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Example 6.2. When f is a logistic reaction term of the form ru
(
1− uK−1

)
(r,K > 0), the associated system (6.9) is an internal control problem for the sub-
diffusive Fisher-KPP equation. The assumptions (H3), (H4), (H4bis) are satisfied
by the Fisher-KPP type logistic source provided that s ∈ (0, 1], α ∈ (0, 1) satisfy the
condition s (2α+ 1) > n

2 .

Example 6.3. We can also apply our results to the associated optimal control prob-
lem for a (subdiffusive) Burger’s equation, subject to nonlocal advection or transport.
Indeed, let f (u) := −udiv(J ∗ u) = −u(G ∗ u), where G :=div(J) ,

(J ∗ u) (x) =

∫
Ω

J (x− y)u (y) dy, x ∈ Ω,

for some J ∈ W 1,div
loc (Rn) :=

{
J ∈ L1

loc (Rn) : G ∈ L1
loc (Rn)

}
. We justify this def-

inition in the one dimensional case, Ω = (−L,L), L > 0. Given the Dirac delta
function acting δx at a point x ∈ Ω,

δx [u] =

∫
Ω

u (y) δ (x− y) dy = u (x) , x ∈ Ω,

as a distribution, δx ∈ Ck and ∂kxδx [u] = (−1)
k
δx [∂xu] = (−1)

k
∂kxu (x) , for every

positive integer k. Then, we observe that, for u ∈ C1
c (Ω) and v = −∂y (δ (x− y)) ,

we find that ∫
Ω

v (y)u (y) dy =

∫
Ω

∂yu (y) δ (x− y) dy = ∂xu (x) .

Thus, whenever u ∈ C1
c (Ω), ∂xu (x) occurs as an approximation of the convolution

G ∗ u, where G = −∂yδ (x− y) (i.e., f (u) ≈ −u (ux)). Thus, in general we may
replace any ∂xu (x) with a convolution G ∗ u to reflect the nonlocal behavior of
transport at microscopic levels. The assumptions (H3), (H4)-(H4bis) apply to the
nonlocal nonlinearity provided that s (3α+ 1) ≥ n if n > 2s; no restrictions are
required when n ≤ 2s.

However, in what follows we will not take a particular choice for f (u) since
many of the technical assumptions (H3), (H4), (H4bis) can be verified directly in
applications for such nonlinearities.

Corollary 6.4. Let u0 ∈ V1 = Xs and z ∈ Zρ,∞, for some ρ > 1/2. Assume (H3)
for some α ∈ (0, 1) and β = −1. Then (6.8) admits a unique weak solution on
(0, Tmax) such that u ∈ Yθ,α with θ := γ

2 (1− α) . The variational equality

〈C∂γt u (t) +Au (t)− z, v〉V−1,V1
= 〈f (u (t)) , v〉V−1,V1

,

holds for any v ∈ V1, for almost all t ∈ (0, Tmax). In particular,

u ∈W 1,1+ξ ((0, T ) ;Vα) , Au ∈ L1+ξ ((0, T );X∗s ) , C∂
γ
t u ∈ L1+ξ ((0, T );X∗s ) ,

for any T < Tmax, where ξ ∈ (0, θ
1−θ ).

Proof. By assumption, (H1)-(H2) are automatically satisfied for the operator B = I
and the initial datum u0, since V1 ⊂ Vα and z ∈ Zρ,∞. Thus the conclusions of
Corollary 3.7 hold.

The conclusions of Section 4 hold as well provided that f satisfies the correspond-
ing hypotheses (H4)-(H4bis) in that section with a given α ∈ (0, 1) and β = −1.

In what follows we consider the cost functional J , defined in Section 6, by setting
a2 = 0, a1 > 0 and ζ ≥ 0. Next, the datum zQ is assumed to belong to Yθ,0, for
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the same value θ = γ
2 (1− α), as in Corollary 6.4. We take the same admissible set

Zad, as defined in (6.4).
Consequently, it follows on account of Theorem 4.8 and the previous considera-

tions of Section 6.1, the following.

Theorem 6.5. Let z∗ ∈ Zad be an admissible optimal control and u∗ = S (z∗) , the
associated state. The necessary optimal condition (6.6) reads∫ T

0

∫
Ω

(w + ζz∗) [z − z∗] dxdt ≥ 0, for all z ∈ Zad, (6.11)

where T < Tmax.

Remark 6.6. Notice that since Zad is a closed convex subset of a Hilbert space, we
have in view of [13, Theorem 3.3.5], instead of solving the variational inequality (6.11),
we can equivalently find z∗ by computing the projection of − 1

ζw onto the set Zad with

respect to the topology on Zad. However, this projection maybe challenging to evaluate
in general, see for instance [9] for the H1-case where each projection requires solving a
variational inequality itself.

6.3. The nonhomogeneous Wentzell-Robin problem for the Laplacian.
Assume that Ω has a Lipschitz continuous boundary. Let β ∈ L∞(∂Ω) be such
that β(x) ≥ β0 > 0 for σ-a.e. x ∈ ∂Ω and for some β0 ∈ R, δ ∈ {0, 1} and

H1,δ(Ω) :=
{
U = (u, u|∂Ω) : u ∈ H1(Ω) and δu|∂Ω ∈ H1(∂Ω)

}
,

be endowed with the norm

‖u‖H1,δ(Ω) =


(
‖u‖2H1(Ω) + ‖u‖2H1(∂Ω)

) 1
2

if δ = 1(
‖u‖2H1(Ω) + ‖u‖2

H
1
2 (∂Ω)

) 1
2

if δ = 0.

Then
H1,0(Ω) ↪→ Lq(Ω)× Lq(∂Ω), (6.12)

with

1 ≤ q ≤ 2(n− 1)

n− 2
if n > 2 and 1 ≤ q <∞ if n ≤ 2, (6.13)

and
H1,1(Ω) ↪→ Lq(Ω)× Lq(∂Ω), (6.14)

with

1 ≤ q ≤ 2n

n− 2
if n > 2 and 1 ≤ q <∞ if n ≤ 2. (6.15)

Let Eδ,W with D(Eδ,W ) := H1,δ(Ω) be given by

Eδ,W (U, V ) :=

∫
Ω

∇u · ∇vdx+ δ

∫
∂Ω

∇Γu · ∇Γvdσ +

∫
∂Ω

β(x)uvdσ. (6.16)

Let ∆δ,W be the self-adjoint operator in L2(Ω)×L2(∂Ω) associated with Eδ,W . That
is,
D(∆δ,W ) =

{
U := (u, u|Γ) ∈ H1,δ(Ω) : ∃ F := (f, g) ∈ L2(Ω)× L2(∂Ω),

Eδ,W (U, V ) = (f, v)L2(Ω) + (g, v)L2(∂Ω) ∀ V := (v, v|∂Ω) ∈ H1,δ(Ω)
}

∆δ,WU = F.

(6.17)
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Then ∆δ,W is a realization in L2(Ω) × L2(∂Ω) of
(
−∆,−∆Γ

)
with the gener-

alized Wentzell boundary conditions. More precisely, using an integration by parts
arguments, we have that

D(∆δ,W ) =
{

(u, u|Γ) ∈ H1,δ(Ω) : ∆u ∈ L2(Ω) and

− δ∆Γ(u|∂Ω) + ∂νu+ β(u|∂Ω) ∈ L2(∂Ω)
}
,

and

∆δ,W (u, u|Γ) =
(
−∆u,−δ∆Γ(u|∂Ω) + ∂νu+ β(u|∂Ω)

)
.

We notice that for 1 ≤ q ≤ ∞, the space Lq(Ω)× Lq(∂Ω) endowed with the norm

‖(f, g)‖Lq(Ω)×Lq(∂Ω) =


(
‖f‖qLq(Ω) + ‖g‖qLq(∂Ω)

)1/q

if 1 ≤ q <∞,
max{‖f‖L∞(Ω), ‖g‖L∞(∂Ω)} if q =∞,

can be identified with Lq(Ω, µ) where the measure µ on Ω is defined for a measurable
set A ⊂ Ω by µ(A) = |Ω∩A|+σ(∂Ω∩A). In addition, we have that the embedding
H1,δ(Ω) ↪→ L2(Ω, µ) is compact.

For δ ∈ {0, 1} , let us consider the following semilinear problem:
C∂

γ
t u−∆u = f(u (t, x)), in Q := (0, T )× Ω,

δC∂
γ
t u|∂Ω − δ∆Γ(u|∂Ω) + ∂νu+ β(u|∂Ω) = z, in Γ := (0, T )× ∂Ω),

u(0, ·) = (u0, v0) in Ω.

(6.18)

The system (6.18) can be written as the following abstract Cauchy problem{
Kδ (C∂

γ
t U)−∆δ,WU = (f(u), z) in (0, T )× (Ω× ∂Ω)

U(0, ·) = (u0, v0) in Ω,
(6.19)

where we have identified C∂
γ
t U with (C∂

γ
t u|Ω,C ∂

γ
t u|∂Ω), and set

Kδ :=

(
1 0

0 δ

)
.

Clearly, the system (6.19) can be rewritten as the abstract Cauchy problem (3.1)
when D := ∂Ω, A = −∆δ,W , and

B =

(
0 0
0 1

)
∈ L( {0} × L2 (D) , L2(Ω, µ))

is a fixed control operator (and so, in that case α̃ = 0). The statement of Corollary
3.7 then applies with α ∈ (0, 1), θ = γ

2 (1− α), α̃ = 0, β = −1 and (u0, v0) ∈
H1,δ(Ω) = V1, provided that (f (u) , 0) is locally Lipschitz in the sense of (H3). All
the results of Section 4 are satisfied as well provided that all the corresponding
assumptions (H4)-(H4bis) are applied19 to the vector (f (u) , 0) (see Examples 6.1,
6.2, 6.3 with s = 1).

With this setup in mind, we take a1 = 0, a2 > 0, ζ ≥ 0 and consider the datum
zΣ ∈ Yθ,0 (as in Section 6.1). Since B = B∗, we conclude with the following.

19For instance, for f (u) = ru (1− u/K) , these assumptions are satisfied provided that
(2α+ 1) > n

2
, a condition which only restricts the value of α ∈ (0, 1) in higher space dimen-

sions n ≥ 3.



1910 HARBIR ANTIL, CIPRIAN G. GAL AND MAHAMADI WARMA

Theorem 6.7. Let z∗ ∈ Zad be an admissible optimal control and u∗ = S (z∗) , the
associated state. The necessary optimal condition (6.6) for the problem (6.18) reads∫ T

0

∫
∂Ω

(
w|∂Ω

+ ζz∗
)

[z − z∗] dσdt ≥ 0, for all z ∈ Zad,

where T < Tmax.

Notice that the comment from Remark 6.6, also applies to Theorem 6.7.

7. Appendix. For the sake of completeness, we list here the proofs of some state-
ments that appear in Section 3.

Proof of Lemma 3.2. We employ the application of the contraction mapping
principle to the mapping

Ψ (u) (t) := Sγ (t)u0 +

∫ t

0

Pγ (t− τ) f (u (τ)) dτ +

∫ t

0

Pγ (t− τ)Bz (τ) dτ

in the ball

BT :=
{
u ∈ C ([0, T ] ;Vα) : ‖u‖C([0,T ];Vα) ≤ R

}
.

We first show that Ψ : BT∗ → BT∗ , for some T∗ > 0 and (any sufficiently large)
R > 0. Indeed, on account of the estimates of Proposition 2.8, we have

|Ψ (u) (t)|α ≤ |Sγ (t)u0|α +

∫ t

0

|Pγ (t− τ) f (u (τ))|α dτ (7.1)

+

∫ t

0

|Pγ (t− τ)Bz (τ)|α dτ

. |u0|α +

∫ t

0

(t− τ)
γ
2
(2−α+β)−1 |f (u (τ))|β dτ

+

∫ t

0

(t− τ)
γ
2
(2−α+α̃)−1 |Bz (τ)|α̃ dτ

. |u0|α + CRt
γ
2
(2−α+β) ‖u‖C([0,T ];Vα) + t

γ
2
(2−α+α̃)−1+1/p ‖z‖Lq((0,T∗);L2(D))

owing to the fact that B ∈ L
(
L2(D), Vα̃

)
and γ

2 (2− α+ α̃) − 1 + 1/p > 0. The
preceeding estimate then yields the claim that Φ : BT∗ → BT∗ since |Ψ (u) (t)|α ≤ R,
for all 0 ≤ t ≤ T∗, provided that T∗, R > 0 are such that R & 2 |u0|α and

CRT
γ
2 (2−α+β)
∗ R+ T

γ
2 (2−α+α̃)−1+1/p
∗ ‖z‖Lq((0,T∗);L2(D)) . |u0|α .

On the other hand, we can choose a much smaller T∗ > 0, such that the mapping
Ψ : BT∗ → BT∗ is a contraction. Indeed, for u, v ∈ BT∗ , by the same standard
argument, we have

|Ψ (u) (t)−Ψ (v) (t)|α ≤
∫ t

0

|Pγ (t− τ) (f (u (τ))− f (v (τ)))|α dτ (7.2)

. CRt
γ
2 (2−α+β) ‖u− v‖C([0,T∗];Vα)

. CRT
γ
2 (2−α+β)
∗ ‖u− v‖C([0,T∗];Vα) ,

provided that T∗ is small enough such that CRT
γ
2 (2−α+β)
∗ . 1/2. Henceforth, the

existence of a unique fixed point u ∈ BT∗ for the mapping Ψ is an immediate
consequence of the contraction mapping principle.
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Next, we verify the sense in which the initial datum u (0) = u0 is satisfied. Recall
that Sγ is strongly continuous as a mapping from Vα → Vα. Exploiting the argument
of (7.1), we find that

|u (t)− u0|α ≤ |u (t)− Sγ (t)u0|α + |Sγ (t)u0 − u0|α (7.3)

≤ |Sγ (t)u0 − u0|α +

∫ t

0

|Pγ (t− τ) f (u (τ))|α dτ

+

∫ t

0

|Pγ (t− τ)Bz (τ)|α dτ

. |Sγ (t)u0 − u0|α + CRt
γ
2 (2−α+β)R

+ t
γ
2 (2−α+α̃)−1+1/p ‖z‖Lq((0,T∗);L2(D))

Therefore, the claim in (3.2) follows by passing to the limit as t ↓ 0+ in (7.3). The
proof is finished.

Proof of Lemma 3.3. Let T ? be the time from Lemma 3.2. Fix τ > 0 and
consider the space

K :=
{
v ∈ C([0, T ? + τ ];Vα): v(·, t) = u(·, t) ∀ t ∈ [0, T ?],

|v(·, t)− u(·, T ?)|α ≤ R, ∀ t ∈ [T ?, T ? + τ ]
}
.

Define the mapping Ψ on K by

Ψ(v)(t) = Sγ (t)u0 +

∫ t

0

Pγ (t− s) f (v (s)) ds+

∫ t

0

Pγ (t− τ)Bz (τ) dτ.

Note that K when endowed with the norm of C([0, T ? + τ ];Vα) is a closed subspace
of C([0, T ? + τ ];Vα). We show that Ψ has a fixed point in K.

We first show that Ψ maps K into K. Indeed, let v ∈ K.
If t ∈ [0, T ?], then v(·, t) = u(·, t). Hence Ψ(v)(t) = Ψ(u)(t) = u(·, t) and there is

nothing to prove. If t ∈ [T ?, T ? + τ ], then

|Ψ(v)(t)− u(T ?)|α
≤ |Sγ(t)u0 − Sγ(T ?)u0|α

+

∣∣∣∣∣
∫ t

0

Pγ (t− s) f (v (s)) ds−
∫ T∗

0

Pγ (T∗ − s) f (u (s)) ds

∣∣∣∣∣
α

+

∫ t

T∗

|Pγ (t− s)Bz (τ)|α ds

≤ |Sγ(t)u0 − Sγ(T ?)u0|α

+

∫ T∗

0

|(Pγ (t− s)− Pγ (T∗ − s)) f (u (s))|α ds

+

∫ t

T∗

|Pγ (t− s) f (v (s))|α ds+

∫ t

T∗

|Pγ (t− s)Bz (τ)|α ds

=: Q1 +Q2 +Q3 +Q4.

Since for every T ≥ 0, the mapping t 7→ Sγ(t)u0 belongs to C([0, T ], Vα), we can
choose τ > 0 small such that for t ∈ [T ?, T ? + τ ], we have

Q1 = |Sγ(t)u0 − Sγ(T ?)u0|α ≤
R

4
. (7.4)
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Proceeding as in the proof of Lemma 3.2 we can choose τ > 0 small such that for
t ∈ [T ?, T ? + τ ], we have

Q3 =

∫ t

T∗

|Pγ (t− s) f (v (s))|α ds . CRτ
γ
2 (2−α+β)R ≤ R

4
, (7.5)

Q4 . τ
γ
2 (2−α+α̃)−1+1/p ‖z‖Lq((T∗,T∗+τ);L2(D)) ≤

R

4
. (7.6)

We next write in view of (2.10),

Q2 =

∫ T∗

0

|(Pγ (t− s)− Pγ (T∗ − s)) f (u (s))|α ds (7.7)

=

∫ T∗

0

∣∣∣∣(γ (t− s)γ−1 − γ (T∗ − s)γ−1
)∫ ∞

0

τΦγ (τ)T (τ (t− s)γ) dτw (s)

∣∣∣∣
α

ds

+

∫ T∗

0

∣∣∣∣γ (T∗ − s)γ−1
∫ ∞

0

τΦγ (τ) (T (τ (t− s)γ)− T (τ (T∗ − s)γ)) dτw (s)

∣∣∣∣
α

ds

=: Q21 +Q22.

Noting that w (s) = f (u (s)) ∈ Vβ for s ∈ [0, T∗], and recalling the semigroup
estimate (2.15) for T (t) := exp (−At) , we have∣∣∣∣(γ (t− s)γ−1 − γ (T∗ − s)γ−1

)∫ ∞
0

τΦγ (τ)T (τ (t− s)γ) dτw (s)

∣∣∣∣
α

→ 0

in the limit as t → T∗, and there exists a constant CR > 0 (where |u (s)|α ≤ R,
s ∈ [0, T∗]) such that∣∣∣∣(γ (t− s)γ−1 − γ (T∗ − s)γ−1

)∫ ∞
0

τΦγ (τ)T (τ (t− s)γ) dτw (s)

∣∣∣∣
α

(7.8)

. CR (T∗ − s)γ−1
(t− s)−

γ
2 (α−β) . CR (T∗ − s)

γ
2 (2−α+β)−1

.

Thus by the Lebesgue Dominated Convergence Theorem20, we can choose τ > 0
small enough such that for t ∈ [T ?, T ? + τ ], there holds Q21 ≤ R

8 . A similar

argument yields that Q22 ≤ R
8 on the interval [T∗, T∗ + τ ] , for a sufficiently small

τ > 0. Henceforth, all the foregoing estimates imply that |Ψ(v)(t)− u(T ?)|α ≤ R,
for all t ∈ [T ?, T ? + τ ]. We have shown that Ψ maps K into K.

The second step is to show that Ψ is a contraction on K. Let v, w ∈ K. Then

Ψ(v)(t)−Ψ(w)(t) =

∫ t

0

Pγ (t− s) (f (v (s))− f (w (s))) ds.

Once again if t ∈ [0, T ?], then

|Ψ(v)(t)−Ψ(w)(t)|α = 0 ≤ 1

2
‖v(t)− w(t)‖C([0,T∗];Vα) ,

20Note that the right-hand side of (7.8) is integrable.
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owing to the fact that v = w = u on [0, T∗]. On the other hand, if t ∈ [T ?, T ? + τ ],
then proceeding as in the proof of Lemma 3.2, we find

|Ψ(v)(t)−Ψ(w)(t)|α ≤
∫ t

T∗

|Pγ (t− s) (f (v (s))− f (w (s)))|α ds (7.9)

. CRτ
γ
2 (2−α+β) ‖v(t)− w(t)‖C([T∗,T∗+τ ];Vα)

≤ 1

2
‖v(t)− w(t)‖C([T∗,T∗+τ ];Vα) ,

provided that τ > 0 is small enough. We deduce once again that Ψ is a contraction
on K so that it has a unique fixed point v on K. The proof is finished.

Proof of Theorem 3.5. Let δ ∈ (0, T/2) be an arbitrarily small number and con-
sider the right-difference

Z (t, h) := h−1 (u (t+ h)− u (t)) , for h ∈ (0, δ] and δ < t ≤ T.

Notice that Z (t− h, h) coincides with the left-difference. We will derive a uni-
form estimate for Z (t, h), while we leave the details of the uniform estimate for
Z (t− h, h) to the interested reader. For every mild (continuous) solution u (t) ∈ Vα,
the continuous function Z (t, h) satisfies

Z (t, h) := h−1 (Sγ (t+ h)− Sγ (t))u0 (7.10)

+ h−1

∫ t+h

t

Pγ (s) f (u (t+ h− s)) ds

+ h−1

∫ t

0

Pγ (t− s) (f (u (s+ h))− f (u (s))) ds

+ h−1

∫ t+h

t

Pγ (s)Bz (t+ h− s) ds

+ h−1

∫ t

0

Pγ (s)B (z (t+ s+ h)− z (t− s)) ds

=: Z1 + Z2 + Z3 + Z4 + Z5.

We have |Z1 (t, h)|α → 0, as h ↓ 0+ uniformly in t ∈ [δ, T ] since Sγ (t) is analytic for

t ≥ δ > 0 and S
′

γ (t)u0 = Pγ (t)Au0, u0 ∈ D (A). Hence, we can pick a suffiiciently
small h0 ≤ δ such that, for all 0 < h ≤ h0 and δ ≤ t ≤ T,

|Z1 (t, h)|α ≤ 1 + |Pγ (t)Au0|α . 1 + tγ/2(2−α+β)−1 |Au0|β ≤ CT t
γ/2(2−α+β)−1,

for some positive constant CT that depends clearly on u0 ∈ Vβ+2 but is independent
of t, h and δ. Next, on account of Proposition 2.8, we estimate

|Z2 (t, h)|α . h−1

∫ t+h

t

s
γ
2 (2−α+β)−1 |f (u (t+ h− s))|β ds (7.11)

. CRh
−1
(

(t+ h)
γ
2 (2−α+β) − t

γ
2 (2−α+β)

)
≤ CCRt

γ
2 (2−α+β)−1,

owing to the fact that (t+ h)
r − tr ≤ htr−1 for all h, t > 0, and any r > 0. Here

(and below), the constant C > 0 is independent of h, t and δ. Moreover, since f is
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a (locally) Lipschitz mapping from Vα → Vβ , we bound

|Z3 (t, h)|α . h−1

∫ t

0

(t− s)
γ
2 (2−α+β)−1 |f (u (s+ h))− f (u (s))|β ds (7.12)

≤ CCR
∫ t

0

(t− s)
γ
2 (2−α+β)−1 |Z (s, h)|α ds,

for 0 < h ≤ δ, and for all δ ≤ t ≤ T . Similarly, we deduce in a similar fashion to
(7.1), that

|Z4 (t, h)|α . h−1

∫ t+h

t

s
γ
2 (2−α+α̃)−1 |Bz (t+ h− s)|α̃ ds

. h−1 ‖z‖Lq((0,T );L2(D)) [(t+ h)
γ
2 (2−α+α̃)−1+1/p − t

γ
2 (2−α+α̃)−1+1/p]

≤ C ‖z‖Lq((0,T );L2(D)) t
γ
2 (2−α+α̃)−2+1/p,

recalling that γ
2 (2− α+ α̃)−1 + 1/p > 0, with 1/p+ 1/q = 1. Finally, we find that

|Z5 (t, h)|α . h−1

∫ t

0

s
γ
2 (2−α+α̃)−1 |B (z (t+ s+ h)− z (t− s))|α̃ ds (7.13)

.
∫ t

0

s
γ
2 (2−α+α̃)−1

∣∣∣∣z (t− s+ h)− z (t− s)
h

∣∣∣∣
0

ds

.
∫ t

0

s
γ
2 (2−α+α̃)−1 ‖∂tz (t− s)‖L2 ds

.
∫ t

0

s
γ
2 (2−α+α̃)−1 (t− s)ρ−1

ds

. t(
γ
2 (2−α+α̃)+ρ)−1,

by assumption (3.3). Collecting the uniform estimates for the right and left differ-
ences, one arrives at the following two inequalities:

|Z (t, h)|α ≤ CT,Rt
θ−1 + CR

∫ t

0

(t− s)
γ
2 (2−α+β)−1 |Z (s, h)|α ds,

|Z (t− h, h)|α ≤ CT,Rt
θ−1 + CR

∫ t

0

(t− s)
γ
2 (2−α+β)−1 |Z (s− h, h)|α ds,

where, by (H1),

θ := min

{
γ

2
(2− α+ α̃)− 1

q
,
γ

2
(2− α+ β) ,

γ

2
(2− α+ α̃) + ρ

}
> 0. (7.14)

We can now apply the Gronwall Lemma 2.7 to infer the existence of a constant
C > 0, independent of h, δ and t, such that

|Z (t, h)|α ≤ Ct
θ−1, |Z (t− h, h)|α ≤ Ct

θ−1, (7.15)

for 0 < h ≤ h0 ≤ δ, and for all t ∈ [δ, T ] . We can now pass to the limit as h ↓ 0+

in the limsup and liminf sense in (7.15), to deduce that both lower Dini derivatives
∂+u (t) , ∂−u (t) and both upper Dini derivatives ∂+u (t) , ∂−u (t) are bounded (as
functions with values in Vα) by Ctθ−1 for all δ ≤ t ≤ T. Since δ > 0 was arbitrary,
all four Dini derivatives are bounded (and thus finite) in the range for 0 < t ≤ T.
By application of the celebrated theorem of Denjoy-Young-Saks (see [17, Chapter
IV, Theorem 4.4]), the continuous integral solution u : [0, T ]→ Vα is differentiable
for almost all 0 < t ≤ T, and that all four Dini derivatives are equal to ∂tu (t) on
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the set t ∈ (0, T ] \E (where E is a null set of Lebesegue measure; in fact E is a set
of first category, see [17, Chapter IV, Theorem 4.7]). In particular, this yields the
fact that

|∂tu (t)|α ≤ Ct
θ−1,

for allmost all 0 < t ≤ T, and the regularity (3.4) follows. Finally, the last conclusion
of the thereom is an immediate consequence of Proposition 2.3. The proof of the
theorem is finished.

Proof of Proposition 4.6. (i) Owing to (4.31), we can work with the transformed
equation (4.30) for the couple (p, g). Briefly, since p0 = 0, the contraction mapping
principle can be applied to the operator

Υ (p) (t) :=

∫ t

0

Pγ (t− τ) f
′
(u (τ)) p (τ) dτ +

∫ t

0

Pγ (t− τ) g (τ) dτ

in the ball

QT∗ :=
{
p ∈ C ([0, T∗] ;Vα) : ‖p‖C([0,T ];Vα) ≤M

}
.

It turns out that one can choose a suffiiciently small time T∗ ≤ T , and a sufficiently
large M > 0, where

CRT
γ
2 (2−α+β)
∗ ≤ 1

2
, 2T

γ
2 (2−α+α̃)−1+1/q
∗ ‖g‖Lq((0,T∗);Vα̃) ≤M,

(q is conjugate to q) so that Υ is a strict contraction on QT∗ . Indeed, owing to
(H4), one has for each t ∈ (0, T∗) ,

|Υ (p) (t)|α ≤ CRt
γ
2 (2−α+β) ‖p‖C([0,T ];Vα) + t

γ
2 (2−α+α̃)−1+1/p ‖g‖Lq((0,T∗);Vα̃)

and

|Υ (p1) (t)−Υ (p2) (t)|α ≤ CRt
γ
2 (2−α+β) ‖p1 − p2‖C([0,T∗];Vα) .

As in the proof of Theorem 3.4, the locally defined solution p can be extended to
the whole interval (0, T ) , for as long as an optimal solution u := u∗ exists on (0, T ).

Moreover, owing to (H4), one has ξ := f
′
(u) p ∈ C([0, T ];Vβ), which in turn implies[

|A (Pγ ∗ g) (t)|α̃−δ + |A (Pγ ∗ ξ) (t)|α̃−δ
]
. t

γδ
2
− 1
q

(
‖g‖Lq((0,T );Vα̃) + ‖ξ‖Lq((0,T );Vα̃)

)
since g ∈ Lq ((0, T );Vα̃) and α̃ = β (this latter condition is chosen for the sake of
simplicity; see Section 3). The rest follows analogously to the proof of Theorem 3.2.

For the proof of (ii), as in the proof of Theorem 3.5, let

V (t, h) := h−1 (p (t+ h)− p (t)) , for h > 0 and 0 < t ≤ T.

For every mild continuous solution p (t) ∈ Vα, V (t, h) satisfies

V (t, h) := h−1

∫ t+h

t

Pγ (s) ξ (t+ h− s) ds

+ h−1

∫ t

0

Pγ (t− s) (ξ (s+ h)− ξ (s)) ds

+ h−1

∫ t+h

t

Pγ (s) g (t+ h− s) ds

+ h−1

∫ t

0

Pγ (s) (g (t+ s+ h)− g (t− s)) ds

=: V1 + V2 + V3 + V4.
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As before, we estimate by employing (H4)-(H4bis),

|V1 (t, h)|α . h−1

∫ t+h

t

s
γ
2 (2−α+β)−1 |ξ (t+ h− s)|β ds

≤ CR,Mh−1
(

(t+ h)
γ
2 (2−α+β) − t

γ
2 (2−α+β)

)
≤ CR,M t

γ
2 (2−α+β)−1.

and

|V2 (t, h)|α .
∫ t

0

(t− s)
γ
2 (2−α+β)−1

∣∣∣f ′ (u (s+ h))V (s, h)
∣∣∣
β
ds

+ h−1

∫ t

0

Pγ (t− s) (f
′
(u (s+ h))− f

′
(u (s)))p (s) ds

≤ CR
∫ t

0

(t− s)
γ
2 (2−α+β) |Z (s, h)|α |p (s)|α ds

+ CR

∫ t

0

(t− s)
γ
2 (2−α+β)−1 |V (s, h)|α ds

.
∫ t

0

(t− s)
γ
2 (2−α+β)

sθ−1ds+

∫ t

0

(t− s)
γ
2 (2−α+β) |V (s, h)|α ds

. t
γ
2 (2−α+β)+θ−1 +

∫ t

0

(t− s)
γ
2 (2−α+β) |V (s, h)|α ds,

as well as,

|V3 (t, h)|α . h−1

∫ t+h

t

s
γ
2 (2−α+α̃)−1 |g (t+ h− s)|α̃ ds

. h−1 ‖g‖Lq((0,T );V∼) [(t+ h)
γ
2 (2−α+α̃)−1+1/q − t

γ
2 (2−α+α̃)−1+1/q]

≤ C ‖g‖Lq((0,T );V∼) t
γ
2 (2−α+α̃)−2+1/q,

recalling that γ
2 (2− α+ α̃)−1 + 1/q > 0, with 1/q+ 1/q = 1. Finally, we find that

|V4 (t, h)|α . h−1

∫ t

0

s
γ
2 (2−α+α̃)−1 |g (t+ s+ h)− g (t− s)|α̃ ds

.
∫ t

0

s
γ
2 (2−α+α̃)−1 |∂tg (t− s)|α̃ ds

.
∫ t

0

s
γ
2 (2−α+α̃)−1 (t− s)ρ−1

ds

. t(
γ
2 (2−α+α̃)+ρ)−1,

since g ∈ Z̃ρ,∞. Collecting these estimates, for the same value θ > 0 as defined
earlier, we obtain

|V (t, h)|α . tθ−1 +

∫ t

0

(t− s)
γ
2 (2−α+β)−1 |V (s, h)|α ds.

This implies by application of the Gronwall Lemma 2.7,

|V (t, h)|α ≤ Ct
θ−1.
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A similar estimate applies to the left-difference V (t− h, h) . The constant on the
right hand side is independent of h, so one can pass to the limit once again as
h ↓ 0+. The proof is finished.
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