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Abstract
The accurate, continuous analysis of healthcare-relevant gases such as nitrogen oxides (NOx) in a humid environment
remains elusive for low-cost, stretchable gas sensing devices. This study presents the design and demonstration of a
moisture-resistant, stretchable NOx gas sensor based on laser-induced graphene (LIG). Sandwiched between a soft
elastomeric substrate and a moisture-resistant semipermeable encapsulant, the LIG sensing and electrode layer is first
optimized by tuning laser processing parameters such as power, image density, and defocus distance. The gas sensor,
using a needlelike LIG prepared with optimal laser processing parameters, exhibits a large response of 4.18‰ ppm−1

to NO and 6.66‰ ppm−1 to NO2, an ultralow detection limit of 8.3 ppb to NO and 4.0 ppb to NO2, fast response/
recovery, and excellent selectivity. The design of a stretchable serpentine structure in the LIG electrode and strain
isolation from the stiff island allows the gas sensor to be stretched by 30%. Combined with a moisture-resistant
property against a relative humidity of 90%, the reported gas sensor has further been demonstrated to monitor the
personal local environment during different times of the day and analyze human breath samples to classify patients
with respiratory diseases from healthy volunteers. Moisture-resistant, stretchable NOx gas sensors can expand the
capability of wearable devices to detect biomarkers from humans and exposed environments for early disease
diagnostics.

Introduction
Wearable electronic devices can conform to the skin to

capture mechanical1, thermal2, chemical3, electrical4, and
biological signals5,6 for future health monitoring. The
increasing interest in personal air quality monitoring and
breath analysis has also spurred the demand for wearable
gas sensors to accurately and continuously detect various
health-relevant gases7–9. The nitrogen oxides (collectively
termed NOx) generated from fuel combustion and

petroleum refining are major atmospheric pollutants that
lead to bronchitis and emphysema with heart-aggravating
conditions10–13. Meanwhile, nitric oxide (NO), as an
essential biomarker for airway inflammation, is of high
interest for the noninvasive diagnosis and monitoring of
respiratory diseases such as lung cancer and ventilator-
associated pneumonia14. The NO concentration in the
exhaled breath of asthma patients exceeds hundreds of
parts per billion (ppb), whereas the level is less than
several tens of ppb for healthy subjects15–20.
Studies on detecting NOx have explored diverse sensi-

tive nanomaterials such as graphene21, metal oxides22,
conducting polymers23, and carbon nanotubes24. Com-
pared with electrochemical cells, field-effect transistors,
and other types of gas sensors, wearable graphene-based
chemiresistive NOx gas sensors from simple fabrication
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processes show low noise and high mechanical
strength25–31. Unfortunately, graphene-based gas sensors
without proper surface modification exhibit low sensitiv-
ity and poor selectivity due to few active sites and non-
selective molecular adsorption29–31. The recently
explored highly porous 3D laser-induced graphene (LIG)
conveniently prepared by a fast, cost-effective, envir-
onmentally friendly laser scribing process32–34 supplies
many active surface sites for gas-solid interactions for gas
sensing35,36. In addition to exploring LIG with a high
specific surface area and low contact resistance as a sen-
sing electrode for detecting NO2 gas37, LIG can also be
combined with other nanomaterials to form a P-N junc-
tion with increased carrier mobility to detect NO2

38,39.
Additionally, the changed thermal conductivity of pristine
LIG in a vacuum environment allows for the detection of
O2, N2, and CO2

36. LIG-based NOx gas sensors remain
undeveloped.
As water molecules often occupy the active sites on the

surface of sensing materials, the relative humidity (RH)
often influences the adsorption and equilibrium processes
of the target gas, resulting in large response fluctuations,
especially in breath with an RH of 50–95%40–43. Attempts
to mitigate the RH effect include the use of coated
hydrophobic self-assembled monolayers (SAMs)44,45,
coated moisture barrier layers46, integrated heating ele-
ments47, or electronic nose algorithms48,49. However,
these methods usually increase the fabrication complexity
and cost of the resulting sensing devices. Therefore, it is
imperative to develop a facile strategy to design and fab-
ricate moisture-resistant, stretchable NOx gas sensors
with a large response, rapid response/recovery rates, low
limit of detection (LOD), and excellent selectivity to
monitor local air quality and analyze breath for disease
diagnostics.
Here, we design and demonstrate a moisture-resistant,

stretchable LIG-based NOx gas sensor, with the LIG
sensing/electrode region sandwiched between semi-
permeable polydimethylsiloxane (PDMS) membrane and
a soft elastomeric substrate. Tuning the laser processing
parameters (e.g., laser power, image density, and defocus
distance) yields a LIG with different morphologies (e.g.,
sheet, needle, closed rose petal, and collapsed hole-like
microstructure), defect levels, and specific surface areas. A
needlelike LIG with a large specific surface area of
296m2/g and small defects of ID/IG ≈ 0.46 is obtained with
optimal laser processing parameters (i.e., power of 0.6W,
image density of 500 PPI, and defocus distance of 0 mm).
The resulting sensor exhibits a large response of 6‰ (or
4‰), fast response/recovery of 134/388 s (or 113/296 s),
and ultralow LOD of 4.0 ppb (or 8.3 ppb) to NO2 (or NO)
at room temperature. Combining a high stretchability of
30% and a moisture-resistant property against an RH of
90%, the water-resistant, stretchable LIG-based gas

sensing device has successfully detected outdoor air
quality at different times of the day and analyzed the
clinical breath samples to accurately classify patients with
respiratory diseases from healthy human subjects.

Results and discussion
Fabrication of moisture-resistant, stretchable LIG-based
gas sensors
Produced by fuel combustion, automobile exhaust, and

industrial waste gas, NOx is the primary pollutant in the
atmosphere that causes bronchitis, emphysema, and other
diseases after human inhalation (Fig. 1a). Exhaled NOx is
also an important biomarker for chronic obstructive
pulmonary disease (COPD) and asthma50–52. The highly
sensitive and selective, stretchable LIG-based gas sensor is
designed to consist of a straight LIG sensing region and a
serpentine Ag/LIG electrode on a soft elastomeric sub-
strate (500 μm-thick Ecoflex) (Fig. 1b). The width in the
LIG sensing region (150 μm) is much smaller than that of
0.5 mm in the electrode to provide much higher resistance
and localized Joule heating in the sensing region. A thin
semipermeable PDMS membrane with a thickness of
10 μm is applied to encapsulate the sensor to provide
moisture-resistant properties. The rapid and low-cost
fabrication process (Fig. S1) is also scalable, allowing rapid
mass production for future commercialization (Fig. S2).
Briefly, the commercial polyimide (PI) thin film attached
to the glass slide is transiently heated by a commercial
CO2 laser system in an ambient environment to form
programmed 3D porous LIG patterns. The raster (or
vector) mode is explored for the electrode (or sensing)
region (Fig. S3). After transferring the LIG pattern onto
the Ecoflex substrate, the serpentine electrode region is
coated with Ag ink to further reduce the resistance in this
region. Spin coating of a thin, gas-permeable PDMS film
completes the preparation for the moisture-resistant,
stretchable LIG-based gas sensor. The moisture-resistant
LIG-based gas sensor can be conveniently attached to the
skin below the nose for local environmental monitoring
and breath analysis (Fig. 1c). The serpentine electrode and
the strain isolation from the PI island underneath the
sensing region (Fig. S4) provide the stretchable gas sensor
with mechanical stability against various deformations,
including stretching, twisting, and coiling on the finger
(Fig. 1d).

Optimization of laser processing parameters and
characterization of LIG-based gas sensing response
The processing-structure relationship of the LIG is

systematically investigated by varying key laser processing
parameters, such as laser power and image density, while
leaving other parameters unchanged (speed of 2.54 mm/s,
defocus distance of 0 mm, vector mode) (Fig. 2). As the
laser power is increased from 0.15W to 0.6W, the sheet-
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structured LIG (Fig. 2a) caused by the escape of local
high-temperature gas changes into a needle-like mor-
phology (Fig. 2b). Further increasing the power to 1.2W
and 1.8W results in closed rose petals (Fig. 2c) and col-
lapsed hole-like microstructures (Fig. 2d). The Raman
spectra of these LIG structures (Fig. 2g) exhibit three
predominant peaks: the D (~1350 cm−1), G (~1580 cm−1),
and 2D (~2700 cm−1) peaks, confirming the presence of
few-layered graphene. The smallest ID/IG and largest I2D/
IG ratios of the needlelike LIG indicate its high degree of
graphitization (Fig. S5 and Table S1)53. The smallest full
width of half-maximum (FWHM) of the G peak from the
needlelike LIG prepared with a power of 0.6W also
indicates high-quality graphene (Table S1). After

determining the optimal laser power of 0.6W, the image
density that is controlled by the pulse per inch (PPI) is
further investigated to modulate the LIG morphology
(Fig. S6). For a constant laser power of 0.6W, the increase
in the image density from 500 PPI to 750 PPI and then to
1000 PPI leads to overheating and the destruction of the
needle-like structure (Fig. 2b, e-f). The increase in the
image density also leads to increased defects and
decreased quality in the LIG, as observed in the increased
ID/IG ratio (Fig. S7 and Fig. S8) and FWHM of the G peak
(Table S2). This result is possibly due to the increased
overlap between the laser paths34. By controlling the laser
spot size and energy, the defocus distance is another
commonly used processing parameter to modulate the
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Fig. 1 Moisture-resistant, stretchable gas sensing systems based on laser-induced graphene (LIG) foams for environmental monitoring
and patient breath analysis. a Schematic illustrating NOx (NO2 or NO)-related air pollution and the use of NOx gas as a biomarker for representative
human diseases. b Exploded view of the LIG-based moisture-resistant, stretchable gas sensor to show its structural layout. c Optical image of a
representative LIG-based gas sensor attached below the nose of a human subject, with a zoomed-in view of the sensor and the scanning electron
microscope (SEM) image of needlelike LIG shown in the inset. d Images of the stretchable LIG-based gas sensor before and after varying
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LIG morphology (Fig. S9). As the defocus distance is
increased from 0 to 9mm, the ID/IG ratios from the
Raman spectra of the resulting LIG increase (Fig. S10) and
indicate increased defects in the LIG (Fig. S11 and Table
S3). The increased defects can be attributed to insufficient
energy and thus a low target temperature. X-ray photo-
electron spectroscopy (XPS) of the LIG prepared with the
optimal parameters revealed clear carbon (C) and oxygen
(O) features (Fig. 2h). The deconvoluted C1 s into C–C
(284.5 eV), C–O (285.2 eV), and C=O (288.7 eV) (Fig.
S12) is also consistent with a previously reported result54.
With R0 and R denoting the steady resistance in air and

the target gas, the gas sensor response is defined as ΔR/
R0= (R−R0)/R0. At a room temperature of 25°C (bias
voltage of 0.05 V), the p-type LIG-based chemiresistive
gas sensor reduces its resistance (Fig. 3a, b) upon

exposure to oxidizing NOx (electron acceptor). As the
laser power is increased from 0.15W to 0.6W, 1.2W, and
1.8W, the response of the LIG-based gas sensor first
increases from 2.60 to 4.0‰ but then decreases to 3.10‰
and then 2.20‰ (to 1 ppm NO) (Fig. 3a). The highest
response from the needlelike LIG-based gas sensor pre-
pared at a power of 0.6W is likely attributed to its largest
specific surface area, as confirmed by the Brunauer-
Emmett-Teller (BET) measurements (Fig. 3c). In the
investigation of the effect of the image density on the gas
sensor response, the increase in the image density from
500 to 1000 PPI shows a decreased response from 4.0 to
1.7‰ (Fig. 3b), which is also likely due to the decreased
specific surface area from 296 to 129m2/g (Fig. 3d). For
the effect of the defocus distance, its increase from 0 to
9mm results in a decreased gas sensor response from
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4.1‰ to 0.9‰ (Fig. S13). It is interesting to note that the
response of the gas sensor prepared by a defocus distance
of 2 mm is roughly the same (~4‰) as that from 0mm.
This is attributed to the similar LIG morphology created
by the similar energy levels, as the defocus distance of
2 mm is less than the focal depth (2.54 mm) of the laser
lens (Fig. S9). Therefore, the optimal laser processing
parameters with a power of 0.6W, image density of 500
PPI, and defocus distance of 0 mm are chosen in the
following studies unless otherwise specified.

Sensing performance characterization of LIG-based gas
sensors for NOx

The LIG-based gas sensor exhibits a fast response/
recovery (113/296 s) to 1 ppm NO even at room tem-
perature (Fig. 4a). The continuous response curve to NO
with progressively increasing concentration from 0.5 to
2.5 ppm exhibits the increased response from 2.6 to 5.5‰
(Fig. 4b), indicating excellent dynamic response/recovery
at room temperature. The incomplete recovery in the
dynamic response is attributed to the short recovery time
used in the testing and the residual charge carrier on the
LIG repeatedly exposed to NOx

55,56. However, the ele-
vated working temperature can be used to enhance the
desorption process of the absorbed gas molecules to

reduce incomplete recovery. For instance, the recovery
time decreases from 400 to 210 s as the operating tem-
perature is increased from 25 to 60°C (Fig. S14). The
elevated temperature can be easily achieved from self-
heating (Joule heating), which comes from the sig-
nificantly increased resistance of the sensing region
compared to that of the electrode. As the applied voltage
is stepwise increased from 0 to 15 V to raise the tem-
perature to 65°C, the resistance of the LIG gas sensing
platform only gradually decreases by 3.1% (Fig. S15a),
consistent with the literature report38 attributable to the
negative temperature coefficient57. The small change in
resistance has a negligible effect on the input power for
heating (Fig. S15b). Although the operating temperature
of 60°C is higher than the desired temperature on the skin,
it is possible to exploit a heat sink or thermal isolation
layer to significantly reduce the temperature at the sen-
sor/skin interface to avoid the adverse thermal effect on
the skin surface58,59. The relatively stable response of
~4.0‰ and fast response/recovery (110/330 s) from the
gas sensor to 1 ppm NO over eight consecutive cycles
indicate excellent repeatability and reversibility (Fig. 4c),
which is crucial for practical gas sensing. The long-term
stability of the sensor is also confirmed by the almost
unchanged response to 1 ppm NO over 15 days (Fig. S16).
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Because NO2 is more oxidizing and has better electron-
withdrawal properties than NO, the LIG-based gas sensor
exhibits a similar but more pronounced response when
exposed to NO2 (Fig. S17).
The linear fit of the sensor response to the NO gas

concentration from 200 to 1000 ppb yields a slope of
4.18 ppm−1 with a correlation coefficient (R2) of 0.992
through the least square fit60 for the calculation of the
theoretical limit of detection (LOD) (Fig. 4d and Fig. S18).
As the LOD is defined as 3 × RMSnoise/Slope

61 with

RMSnoise to be the standard deviation in the baseline of
the response curve, the LOD to NO is calculated to be
8.3 ppb. In practical applications, the signal-to-noise ratio
(SNR), defined as ΔR/RMSnoise, determines the actual
LOD that approximately corresponds to the signal with
SNR= 3. Although the sensor response to NOx is rela-
tively small (e.g., 4‰ to 1 ppm NO and 6‰ to 1 ppm
NO2), the SNR values of 463 to NO and 679 to NO2 are
still much larger than those of the other 2D nanomaterial-
based gas sensors62. The highly porous LIG with a high
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specific area provides low contact resistance to give low
noise and high SNR. The validation of the actual LOD can
be challenging with the static gas testing setup in this
work, but the response curve to 20 ppb NO still exhibits a
steady response of 2.2‱ with an SNR of 42.7, as well as
rapid response/recovery (Fig. 4e). The LOD of the LIG-
based gas sensor is sufficient for air quality monitoring
and breath analysis, as the early warning range of NO2 in
the ambient atmosphere is 0.6–5 ppm63,64 and the exhaled
NO from patients with asthma and halitosis is >100 ppb65.
Furthermore, the response of the LIG-based gas sensor to
NOx (1 ppm of NO or NO2) is significantly higher than
that of other interfering gases (e.g., 10 ppm of NH3 and
CO2, 100 ppm of acetone, ethanol, and methanol). When
the P-type chemiresistive LIG gas sensor is exposed to an
oxidizing NOx gas, the electrons in the valence band of
the LIG are extracted by the adsorbed NOx, forming the
hole (main carriers) accumulation zone. The lowest
unoccupied molecular orbital (LUMO) determines the
number of transferred electrons. As the LUMO of NOx

gas molecules is lower than that of other gases66, more
electrons are transferred from the LIG to give a larger
response. Therefore, the LIG exhibits excellent selectivity
to NOx (Fig. 4f). In a representative comparison, although
the concentration of CO2 is increased from 10 to
100 ppm, the response only increases from 0.52‰ to
0.96‰ (from one-eleventh to one-sixth of the response to
1 ppm NOx) (Fig. S19). Therefore, it is still possible to
distinguish low-concentration NOx from high-
concentration CO2 and other interfering gases that exhi-
bit reducing characteristics67. While it is challenging to
further distinguish NO and NO2, the response/recovery
time and magnitude of the response can be used.

Gas sensing mechanism of LIG-based sensors
The p-type LIG-based chemiresistive gas sensor68,69

reduces its resistance upon exposure to oxidizing NOx

(electron acceptor)70. This resistance decrease is mediated
by the direct charge transfer on the surface, where the
electrons in the valence band of the LIG are extracted by
adsorbed nitrogen oxides37, i.e., NOx (gas) + e− ↔ NOx

−

(ads). The NOx adsorbed on the LIG surface continuously
extracts electrons and extends the hole (main carriers)
accumulation zone on the LIG surface to lower the
resistance (Fig. 5a). The total resistance of the as-prepared
gas sensor is the sum of the contact resistance between
LIG and NOx gas, the resistance of the intrinsically sen-
sitive nanomaterial, and the resistance of the electrodes,
i.e., Rtotal= Rcontact+ Rmaterial+ Relectrodes (Fig. 5b). As
Relectrodes is often negligible, the change in Rtotal of the LIG
sensor during NOx adsorption/desorption can be attrib-
uted to the modulation of sorption sites.

Demonstration of moisture resistance and stretchability of
the LIG-based gas sensor for practical applications
The high RH of 89–97% in exhaled breath65 poses a

significant challenge for gas sensing, as it often drastically
affects the response due to the adsorption of water
molecules on the active sensitive layer, especially hydro-
philic LIG (water contact angle of ~0°). The semiperme-
able PDMS membrane coated on the LIG sensing region
could provide an effective diffusion pathway for NOx

through the siloxane backbone (Si-O)71 while repelling
water and aqueous components due to the reduced sur-
face energy from the methyl group (Si-CH3) (Fig. 6a). The
comparison in the response of the LIG-based gas sensor
without (Fig. 6b) or with (Fig. 6c) the semipermeable
PDMS membrane to 1 ppm NO for RH from 15 to 90%
clearly reveals the role and effect of water resistance. In
comparison to the sensor without PDMS, which shows a
drastic decrease from 4 to 1.3‰ as the RH increases from
15 to 90% (Fig. 6b), the sensor with hydrophobic PDMS
(water contact angle of ~130°) exhibits almost negligible
changes (Fig. 6c). The use of the semipermeable PDMS
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membrane, however, increases the response/recovery
time from 130/350 s to 890/2810 s due to the decreased
diffusion rate of the gas molecules through PDMS72. This
issue can be mediated at an elevated operating tempera-
ture from self-heating. For instance, the response/recov-
ery time decreases from 890/2810 s to 403/591 s (with
small effects on the magnitude of the response), as the
operating temperature is increased from 25 to 60°C (Fig.
S20). Moreover, the gas sensor with a semipermeable
membrane also exhibits good dynamic response/recovery
at different operating temperatures (Fig. S21). A thinner
PDMS layer can also be desirable to reduce the diffusion
time. Meanwhile, the gas sensor with the thinnest PDMS
membrane of 10 μm can maintain the large response of
~4‰ as that without PDMS (Fig. 6d).

Benefitting from the stretchable serpentine electrode
and the strain isolation, the gas sensor is capable of
withstanding a uniaxial tensile strain of 30% (Fig. S22),
which is sufficient to accommodate the maximum skin
deformation73. Compared with the U-shaped electrode
that shows 0.7‰ resistance fluctuation for 30% stretching,
the serpentine electrode provides a much lower fluctua-
tion of 0.3‰ (Fig. S23), confirming the advantage of
choosing the serpentine design. As the uniaxial strain is
increased from 0 to 30%, the response of the LIG-based
gas sensor to 1 ppm NO slightly increases from 3.5 to
5.0‰ (Fig. 6e), which is likely attributed to the locally torn
graphene surface upon stretching74. As a result, the LIG-
based gas sensor with an ultralow LOD (8.3 and 4.0 ppb to
NO and NO2), fast response/recovery (113/296 and 134/
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388 s to 1 ppm NO and NO2), high stretchability (30%),
and moisture-resistant property compares favorably with
other stretchable gas sensors based on varying nanoma-
terials (Table S4).

Demonstrations of the LIG-based gas sensor for
environmental monitoring and breath analysis
The applications of the LIG-based gas sensor to moni-

tor the outdoor environment at different times of the day
(e.g., morning, noon, and evening) allow air quality
monitoring of NO2 from car exhaust (Fig. 7a, b). The
sensor is first placed inside a closed gas tank filled with
indoor ambient air for 120 s. Next, the sensor is moved to
an outdoor environment for 360 s before it is placed back
into the closed gas tank. The detected responses in the
morning and evening of −4.56‰ and −5.53‰, respec-
tively, are larger in magnitude than those of −1.30‰ at
noon (Fig. 7b). Assuming that NO2 is the major active gas
molecule, the use of the linear fit from Fig. S17e provides
the estimated concentration of 769/280/914 ppb at
morning/noon/evening, which is consistent with the
trend captured by the commercial NO2 gas sensor
(TB200B, ECsense) (Fig. 7b). More importantly, the LIG-

based gas sensor can be applied to analyze human breath
samples for potential diagnostic confirmation of respira-
tory diseases such as asthma or COPD. In the repre-
sentative demonstration, human breath samples collected
from 23 patients with asthma or COPD and 12 healthy
volunteers were analyzed (Table S5). To provide high
operation reliability, exhaled breath samples from healthy
volunteers and patients with respiratory diseases are first
collected into an aluminum foil gas collecting bag75,76 and
then injected into a closed chamber for static detection
(Fig. S24 and Fig. S25). Real-time detection and breath
analysis will be pursued in future studies. The response
values from the gas sensor without the semipermeable
PDMS membrane are quite scattered (in the range from
1.73–3.61‰) even for healthy volunteers, likely due to the
RH effect77 (Fig. 7c). The adsorption of water molecules
on the active sensitive layer causes the sensor to exhibit a
positive response (Fig. S26 and Fig. S27a). In contrast, the
sensor with the semipermeable membrane can effectively
filter out the humidity effect to provide the response with
a much smaller variation in the range from −0.12 to
−0.46‰ (Fig. 7d and Fig. S27b). Meanwhile, the classifi-
cation accuracy is significantly improved, as the sensor
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response values from the respiratory disease patients are
approximately 4.8-fold greater than those of healthy
volunteers (Fig. 7d).

Conclusion
In summary, we have reported the design, fabrication,

and demonstration of a highly sensitive, moisture-resis-
tant, and stretchable LIG-based gas sensor for environ-
mental monitoring and patient breath analysis. Controlled
by the laser processing parameters (e.g., laser power,
image density, and defocus distance), the laser direct
writing process can yield LIG sensing regions with dif-
ferent morphologies. Due to its large specific surface area
of 296m2/g, the needlelike LIG prepared with the optimal
parameters (power of 0.6W, image density of 500 PPI,
and defocus of 0 mm) exhibits the largest response of 4‰,
fast response/recovery of 113/296 s, and ultrahigh SNR of
463 to 1 ppm NO at room temperature. The serpentine
LIG electrode and strain isolation from the PI island
further allow the gas sensor to withstand a uniaxial tensile
strain of 30% to accommodate skin deformation and
motions. Taken together with the ultralow LOD of
8.3 ppb and the water-resistant property of the semi-
permeable PDMS membrane, the NOx gas sensor can
conveniently and quickly monitor air quality and analyze
breath samples to classify patients with asthma/COPD
from healthy volunteers.

Experimental section
Fabrication of the LIG-based NOx gas sensor
The thin PI film (50 μm, Gold Finger, China) laminated

on a water-soluble tape (25mm wide, Yong Ri, China) was
first attached to a glass slide by double-sided tape. Next,
the LIG serpentine electrode (Fig. S28, black) was formed
on the PI surface by photothermal ablation with a CO2

laser (Universal Laser Systems ULS 2.30, power
Pmax= 30W, wavelength of 10.6 μm) in raster scanning
mode (power of 3W, speed of 127mm/s, image density of
500 PPI, and defocus distance of 0mm). The LIG sensing
region (Fig. S28, green) was also formed by the same laser
scribing process but in vector mode at a power of 0.6W
and a speed of 2.54mm/s. The cutting of the programmed
LIG pattern (Fig. S28, red) was achieved by the same laser
system at a power of 30W and a speed of 152mm/s. The
resulting sample was immersed in water to dissolve the
water-soluble tape and release the LIG pattern from the
glass substrate. After cleaning the LIG surface with ethanol
and water, gentle stirring removed dust and contaminants.
After the cleaned LIG adhered to another water-soluble
tape, a 500 μm-thick Ecoflex (Ecoflex 00-30, Smooth-on)
layer was cast on the back of the PI surface and cured at
room temperature for 24 hours. The water-soluble tape
exposed the LIG sensing region for spin coating of the
PDMS thin film and the electrode region for coating and

sintering of Ag ink (8821X, Shenggelu Technology, China),
completing the gas sensor fabrication.

Characterization
Characterizations were carried out directly on LIG films

unless otherwise specified. SEM images were collected by a
field emission scanning electron microscope (JSM 7100 F,
JEOL). XPS and Raman spectra were recorded using an
ESCALAB 250 photoelectron spectrometer (ESCALAB
250Xi, Thermo Fisher Scientific) and a laser micro Raman
spectrometer (inVia Reflex, Renishaw), respectively. BET
analysis of the LIG powder scratched from LIG films was
carried out by a specific surface area and porosity analyzer
(ASAP2020M+C, Micromeritics). Contact angle images
were obtained by a fully automatic contact angle mea-
suring system (DSAHT, KRUSS GmbH).

Calculation of the Concentration of the VOC
The concentration of the VOC was obtained by inject-

ing the required quantity of anhydrous liquid analytes into
a sealed glass container using a microliter syringe. The
concentration (C in ppm) of the VOC in the chamber was
calculated using the following equation78,79:

C ¼ 22:4ρTVS

273MV
´ 1000;

where ρ, VS, and M are the density (g ml−1), volume (μL),
and molecular weight (g mol−1) of the anhydrous liquid
VOC, T is the testing temperature (K), and V is the
volume of the glass container (L) filled with the VOC.

Collection of breath samples
Human breath samples were collected from patients

with respiratory diseases at the Tianjin Medical University
General Hospital and healthy volunteers at the State Key
Laboratory of Reliability and Intelligence of Electrical
Equipment (statistics provided in Table S5).

Testing of gas sensors
The response of the gas sensors was measured and

recorded by a source meter (Keithley 2400) at a constant
voltage of 0.05 V unless otherwise specified. Different
concentrations of NOx were prepared by diluting the
commercial calibration gas of 100 ppm NOx and fully
mixing it with air in the chamber (volume of 10 L). The
different relative humidities in the chamber were prepared
by the saturated salt solution method.
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