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ABSTRACT
This article provides a brief review of recent developments on two nonlocal operators:
fractional Laplacian and fractional time derivative. We start by accounting for several
applications of these operators in imaging science, geophysics, harmonic maps and deep
(machine) learning. Various notions of solutions to linear fractional elliptic equations are
provided and numerical schemes for fractional Laplacian and fractional time derivative
are discussed. Special emphasis is given to exterior optimal control problems with a
linear elliptic equation as constraints. In addition, optimal control problems with interior
control and state constraints are considered. We also provide a discussion on fractional
deep neural networks, which is shown to be a minimization problem with fractional in
time ordinary differential equation as constraint. The paper concludes with a discussion
on several open problems.
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1.1 INTRODUCTION AND APPLICATIONS OF FRACTIONAL OPER-
ATORS

Fractional (nonlocal) models have received a significant amount of attention
during the recent years. This can be attributed to their ability to account for
long range interactions and their flexibility in being applicable to non-smooth
functions. Motivated by these facts and several applications, this research area
has attracted a significant amount of attention on both theoretical and computa-
tional fronts. The goal of this article is to discuss some of these developments.
This article is meant to provide an overview, largely motivated by authors’ own
research, and it is not meant to be completely exhaustive. We begin by discussing
several applications of fractional operators in data science, physics, and machine
learning.

Fractional Laplacian in imaging: Image denoising problems have received a
lot of attention over last several decades. A major breakthrough occured when
the article [66] considered the Total Variation (TV) regularization to capture
the jumps in an image reconstruction, during the noise removal process. Ever
since, this approach has attracted a lot of attention from researchers interested
in both theory and numerical methods. However, it is a still quite a challenging
problem because of the non-smooth nature of TV and the fact that when we
formally write the Euler-Lagrange equations, they are nonlinear and degenerate.
Recently in [8], the authors replaced the total variation semi-norm by fractional
Laplacian regularizationwith fractional Laplacian (−Δ)B of order Bwith constant
B ∈ (0, 1). For a mathematical justification, we refer to [31, Subection 2.3] and
[8]. The fractional variational model is given by

min
D

1
2

∫
Ω

| (−Δ) B2 D |2 dG + _
2
‖D − 5 ‖2

!2 (Ω) (1.1.1)

where 5 is the noisy image, _ is the regularization parameter, and Ω is the
image domain. Moreover, periodic boundary conditions are assumed, see [8]
for the definition of (−Δ)B . Notice that in this paper we will focus on the
so-called integral fractional Laplacian, these two definitions coincide in case
of periodic boundary conditions [1, Eq. (2.53)]. The key advantage is that the
Euler-Lagrange equation in the case of (1.1.1) is a linear elliptic fractional partial
differential equation (PDE) of the type

(−Δ)BD + _D = _ 5 in Ω (1.1.2)

which can be easily solved in the case of periodic boundary conditions by using
Fourier series [8], or for general zero exterior conditions by using the method
of bilinear forms. From left to right, Figure 1.1 shows the original image,
noisy image, denoised image using fractional model with fractional exponent
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of B = 0.42 and _ = 10. The rightmost image has been obtained using TV
regularization approach [38, 35], where we have even optimized over _. It is
clear that the reconstruction quality in the fractional case is comparable to the TV
case even without optimizing over _, however, it is significantly cheaper than TV.
We also refer to [11] for the extension of this work to tomographic reconstruction
problems where the second term in (1.1.1) has been replaced by ‖ D − 5 ‖2

!2 (Ω) ,
with  denoting a linear operator. The article [11] also discusses a bilevel
optimization and machine learning based strategy to identify parameters such as
_ and B. See also [42] for another recent work on bilevel strategies for nonlocal
problems. We remark that the total variation regularization is known to promote
sparsity. However this sparsity behavior has also be expected in fractional
Sobolev space case, under the strict condition B < 1, see [31, Subection 2.3] and
also [2, 30].

FIGURE 1.1 From left to right, original image, noisy image, denoised image using fractional
regularization with randomly selected regularization parameter and denoised image using TV regu-
larization with optimized regularization parameter. The figures have been reproduced from [8].

The article [21] introduces a newmodel with variable order B(G) ∈ [0, 1] with
G ∈ Ω, i.e., B is not a constant any longer but instead, it is a function. Moreover,
B is allowed to take the extreme values of 0 and 1. This can be quite beneficial
for applications (e.g. imaging) where it is critical to capture the jump across the
interfaces (e.g., phase field models). Figure 1.2 shows a comparison between
TV regularization and the variable order approach. A strategy to identify the
function B is also discussed in [21]. We clearly notice that TV is rounding up
the corners in the middle panel, while the variable B based approach in the right
panel leads to an almost perfect reconstruction. Notice that the regularization
parameter has been optimized in TV case and has been chosen randomly in the
variable B case. We further emphasize that it might be possible to further improve
TV results, for instance, by using variable order _ regularizer [37]. However,
this approach is still challenging to implement in comparison to the single, linear
PDE solve done above, in the case of variable order fractional Laplacian.
Fractional Laplacian in geophysics: The article [69] has recently derived the
fractional Helmholtz equation using the first principle arguments in conjunc-
tion with a constitutive relationship. A finite element based numerical method
motivated by [34] has been introduced to solve the problem. These concepts
are applied to the scalar Helmholtz equation and its use in electromagnetic
interrogation of Earth’s interior through the magnetotelluric method. For the
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FIGURE 1.2 Left: Noisy image. Middle: reconstruction using TV regularization where the
regularization parameter has been optimized. Right: Reconstruction using B (G) approach where
the regularization parameter _ has been chosen randomly. Notice that the reconstruction using B (G)
approach is almost perfect. The figures have been reproduced from [21].

magnetotelluric problem, several interesting features are observable in the field
data: long-range correlation of the predicted electromagnetic fields; a power-law
relationship between the squared impedance amplitude and squared wavenum-
ber whose slope is a function of the fractional exponent within the governing
Helmholtz equation; and, a non-constant apparent resistivity spectrum whose
variability arises solely from the fractional exponent. The latter can be seen in
Figure 1.3 (left). The figure on the right is the apparent resistivity data from
USArray MT station for KSP34 located NW of Kansas City, KS, USA from
the US Array. Notice that the fractional model provides an excellent qualitative
match.

fractional Helmholtz MT sounding curves

FIGURE 1.3 Left: Results from numerical simulations. Right: The apparent resistivity data from
USArray MT station for KSP34 located NW of Kansas City, KS, USA from the US Array.

Other applications of fractional Laplacian include, harmonic maps [9] and
quantum spin chains [50] etc.

Fractional time derivative in machine learning: Dynamical system based
deep neural networks (DNNs) are gaining popularity, as they allow us to model
connectivity among the network layers. Recently in [15], we have considered a
new framework for classification problems and it has been further extended to
parameterized partial differential equations in [13]. These works are motivated
by [67]. These articles attempt to develop mathematical models for the analysis
and understanding of DNNs. The idea is to consider DNNs as dynamical sys-
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tems. In particular, in [29, 48], the process of training a DNN is thought of as an
optimization problem constrained by a discrete ordinary differential equation.
Designing DNN algorithms at the continuous level has the appealing advantage
of architecture independence; in other words, the number of optimization itera-
tions remains stable as the number of layers are increased. The articles [15, 13]
specifically consider fractional ODE as constraints. This fractional DNN al-
lows the network to access historic information of input and gradients across
antecedent layers since each layer is connected to all previous layers unlike the
standard DNN, where each layer is connected only to a single previous layer.

Outline: In view of the above motivations, this article focuses on several opti-
mization problems constrained by fractional partial differential equations. We
will use the term “optimal control" to describe such problems. In Section 1.2
we begin by defining two fractional operators, i.e., fractional Laplacian and
fractional time derivative. Section 1.3 focuses on various notions of solutions
to a linear elliptic fractional diffusion equation. We discuss various notions
of solutions, including weak and very-weak solutions under various regularity
conditions on data. We also provide a discussion on various approaches to ap-
proximate the fractional Laplacian and fractional time derivative. Section 1.4
focuses on a new notion of optimal control, i.e., exterior optimal control. More-
over, Section 1.5 focuses on elliptic fractional state constraint problems where
we also discuss a Moreau-Yosida based algorithm to solve the problem. Sec-
tion 1.6 is devoted to fractional deep neural networks which is also an optimal
control problem governed by time fractional ordinary differential equation. We
conclude by stating various open problems in Section 1.7. We emphasize that
this is a review article and the results have been previously published in the
authors’ other research papers.

1.2 TWO FRACTIONAL OPERATORS AND THEIR PROPERTIES

Unless otherwise stated, throughout the paper, we assume that Ω ⊂ R# is a
bounded open Lipschitz domain with boundary mΩ. Notice that many of our
results hold without the Lipschitz assumption, but we do not get into those details
here in this review.

1.2.1 Fractional Laplacian (−�)s and nonlocal normal derivativeNs

To define the integral fractional Laplace operator we consider the weighted
Lebesgue space

L1
B (R# ) =

{
5 : R# → R measurable and

∫
R#

| 5 (G) |
(1 + |G |)#+2B

dG < ∞
}
,
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and first define for 5 ∈ L1
B (R# ), Y > 0, and G ∈ R# the quantity

(−Δ)BY 5 (G) = �# ,B
∫
{H∈R# , |H−G |>Y }

5 (G) − 5 (H)
|G − H |#+2B

dH,

where the constant �# ,B =
(
B22BΓ

(
2B+#

2

) )
/
(
c
#
2 Γ(1 − B)

)
is obtained by Euler

Gamma function. We then define the integral version of the fractional Laplace
operator for B ∈ (0, 1) via a limit passage for Y → 0, i.e.,

(−Δ)B 5 (G) = �# ,BP.V.
∫
R#

5 (G) − 5 (H)
|G − H |#+2B

dH = lim
Y→0
(−Δ)BY 5 (G), (1.2.1)

where P.V. indicates the Cauchy principal value. Note that this definition for the
full space R# coincides with the spectral definition of the fractional Laplacian
obtained using Fourier transform [43, Proposition 3.4], see also [36]. Such an
equivalence also holds in the case of periodic boundary conditions [1, Eq. (2.53)].

Fractional order Sobolev spaces: Next we introduce the fractional order
Sobolev space �B (R# ) for B ∈ (0, 1) by setting

[ 5 ]� B (R# ) = ‖(−Δ)
B
2 5 ‖!2 (R# ) = �# ,B

(∫
R#

∫
R#

| 5 (G) − 5 (H) |2
|G − H |#+2B

dH dG
) 1

2

,

‖ 5 ‖� B (R# ) = ‖ 5 ‖!2 (R# ) + [ 5 ]� B (R# ) .

Then, the Sobolev space �B (R# ) is defined as

�B (R# ) =
{
5 ∈ !2 (R# ) : ‖ 5 ‖� B (R# ) < +∞

}
is a Hilbert space. We denote the dual of �B (R# ) by �−B (R# ) and 〈·, ·〉 the
duality pairing between �B (R# ) and �−B (R# ). We mention that the notation
‖(−Δ) B2 5 ‖!2 (R# ) is not just formal. Since we are in all R# , the notation has
been justified in [43, Proposition 4.4] by using the Fourier transform.

For bounded open setsΩ ⊂ R# and parameters B ∈ (0, 1) we define Sobolev
spaces �̃B (Ω) by considering trivial extensions to R# , i.e., we set

�̃B (Ω) = { 5 ∈ !2 (R# ) : (−Δ) B2 5 ∈ !2 (R# ), 5 ≡ 0 in R# \Ω}.

We recall the following density result for B ∈ (0, 1] and bounded domains
Ω ⊂ R3 with a Lipschitz continuous boundary [46]

�̃B (Ω) = D(Ω) ‖ · ‖�̃B (Ω) ,

and by a Poincaré type inequality, which is a consequence of Hölder’s inequality
and Sobolev embedding theorem, [6, Theorem 3.1.4.], a norm on �̃B (Ω) is given
by

‖ 5 ‖
�̃ B (Ω) = ‖(−Δ)

B
2 5 ‖!2 (R# ) .
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Other fractional operators: Next we define the operator (−Δ)B
�
in !2 (Ω) as

follows:

� ((−Δ)B�) :=
{
D |Ω, D ∈ �̃B (Ω) : (−Δ)BD ∈ !2 (Ω)

}
,

(−Δ)B� (D |Ω) := (−Δ)BD a.e. in Ω.
(1.2.2)

Notice that (−Δ)B
�
is the realization of the fractional Laplace operator (−Δ)B in

!2 (Ω) with the zero Dirichlet exterior condition D = 0 in R# \Ω.
For D ∈ �B (R# ), we define the nonlocal normal derivative NB as:

NBD(G) := �# ,B
∫
Ω

D(G) − D(H)
|G − H |#+2B

dH, G ∈ R# \Ω,

which maps continuously �B (R# ) into �Bloc (R
# \ Ω). As a result, if D ∈

�B (R# ), then NBD ∈ !2 (R# \Ω). See [16, Lemma 2.1] for details.
Moreover, the following integration-by-parts formula can be found in [16,

Proposition 2.2]. If D ∈ �B (R# ) is such that (−Δ)BD ∈ !2 (Ω), then for every
E ∈ �B (R# ) we have that

�# ,B

2

∬
R2# \(R# \Ω)2

(D(G) − D(H)) (E(G) − E(H))
|G − H |#+2B

3G3H =

∫
Ω

E(−Δ)BD 3G

+
∫
R# \Ω

ENBD 3G,

(1.2.3)
where R2# \ (R# \Ω)2 := (Ω ×Ω) ∪ (Ω × (R# \Ω)) ∪ ((R# \Ω) ×Ω).

1.2.2 Fractional time derivative: I@
$
t

The focus of this section is to define the (strong) fractional order Caputo deriva-
tive and to introduce the integration-by-parts formula. The latter is critical to
drive the optimality conditions.

Definition 1.2.1 (Strong Caputo fractional derivative). Let D ∈ ,1,1 ( [0, )]; -),
with - denoting a Banach space. The (strong) Caputo fractional derivative of
order W ∈ (0, 1) is given by

�m
W
C D(C) =

1
Γ(1 − W)

∫ C

0

D′(A)
(C − A)W dA. (1.2.4)

The following integration-by-parts formula holds, [7], under the assumptions
of Definition 1.2.1∫ )

0
E(C)�mWC D(C) dC =

∫ )

0
m
W

C,)
E(C)D(C) dC +

[
(�1−W
C,)

E) (C)D(C)
] C=)
C=0

, (1.2.5)
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provided the expressions on the left and right hand sides make sense. Here, mW
C,)

is the right Riemann-Liouville fractional derivative

m
W

C,)
D(C) = − 3

3C
(�1−W
C,)

D) (C), where �
W

C,)
D(C) :=

1
Γ(W)

∫ )

C

(A − C)W−1D(A) dA

denotes the right Riemann-Liouville fractional integral of order W. We refer to
[68, pg. 76] for further details. We notice that if the space - has the Radon-
Nikodym property, then ,1,1 ( [0, )]; -) is the optimal space for which (1.2.5)
makes sense (see e.g. the monograph [47] for more details).

1.3 FRACTIONAL DIFFUSION EQUATION: ANALYSIS AND NUMER-
ICAL APPROXIMATION

1.3.1 Non-homogeneous diffusion equations: analytic results

The focus of this section is on stating well-posedness results for the linear elliptic
fractional equation {

(−Δ)BD = 5 in Ω,
D = 6 in R# \Ω,

(1.3.1)

under various general assumptions on the data 5 and 6. In particular, we first
establish the notion of weak solution in a Sobolev space when 6 is an appropriate
Sobolev function itself. When 6 is only square integrable, we establish the notion
of very weak solution in !2. Next for 6 ≡ 0, we provide conditions on 5 and Ω
which leads to boundedness and continuity of D. This is followed by the notion
of very weak solution when 5 is a Radon measure. We will denote the space of
Radon measures byM(Ω). For parabolic versions of these results, we refer to
[23, 24]. We further refer to [26] for semilinear problems, [25] for quasi-linear
problems, [20, 22] for variational and quasi-variational inequalities. Similar to
the classical case of B = 1, the problem (1.3.1) serves as a fundamental model
problem in the nonlocal case. It also serves as a model problem for some of the
applications mentioned in Section 1.1.

We begin by stating the various notions of solutions to (1.3.1). This will be
followed by several well-posedness results.

Definition 1.3.1 (Solutions to elliptic Dirichlet problem). We define various
notions of solutions to (1.3.1):
(i) Weak solution to non-homogeneous problem: Let 5 ∈ �̃−B (Ω), 6 ∈

�B (R# \ Ω) and Z ∈ �B (R# ) be such that Z|R# \Ω = 6. A function
D ∈ �B (R# ) is said to be a weak solution to (1.3.1) if D −Z ∈ �̃B (Ω) and

�# ,B

2

∫
R#

∫
R#

(D(G) − D(H)) (E(G) − E(H))
|G − H |#+2B

dG dH = 〈 5 , E〉, ∀E ∈ �̃B (Ω).
(1.3.2)
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(ii) Very-weak solution to non-homogeneous Dirichlet problem: Let 6 ∈
!2 (R# \ Ω) and 5 ∈ �̃−B (Ω). A function D ∈ !2 (R# ) is said to be a
very-weak solution to (1.3.1) if the identity∫

Ω

D(−Δ)BE 3G = 〈 5 , E〉 −
∫
R# \Ω

6NBE 3G, (1.3.3)

holds for every E ∈ + := {E ∈ �̃B (Ω) : (−Δ)BE ∈ !2 (Ω)}.
(iii) Very-weak solution to homogeneous Dirichlet problem with measure

data: Let ? satisfy

? >
#

2B
if # > 2B, ? > 1 if # = 2B, ? = 1 if # < 2B, (1.3.4)

and 1
?
+ 1
?′ = 1. Let 5 ∈ M(Ω). A function D ∈ ! ?′ (Ω) is said to be a

very-weak solution to (1.3.1), if for every E ∈ + := {E ∈ �0 (Ω) ∩ �̃B (Ω) :
(−Δ)BE ∈ ! ? (Ω)} we have∫

Ω

D(−Δ)BE 3G =
∫
Ω

E 35 . (1.3.5)

Here �0 (Ω) is the space of all continuous functions in Ω that vanish on mΩ.

Theorem 1.3.2. The following results hold for non-homogeneous Dirichlet
boundary value problems:
(i) Weak solution: Given 5 ∈ �̃−B (Ω) and 6 ∈ �B (R# \ Ω) there exists a

unique weak solution to (1.3.1) according to Definition 1.3.1 (i). Also there
is a constant � > 0 such that

‖D‖� B (R# ) ≤ �
(
‖ 5 ‖

�̃−B (Ω) + ‖6‖� B (R# \Ω)
)
. (1.3.6)

(ii) Very-weak solution: Given 5 ∈ �̃−B (Ω), 6 ∈ !2 (R# \ Ω) then there exists
a unique very-weak solution D to (1.3.1) according to Definition 1.3.1 (ii)
that fulfills

‖D‖!2 (Ω) ≤ �
(
‖ 5 ‖

�̃−B (Ω) + ‖6‖!2 (R# \Ω)

)
, (1.3.7)

and the following assertions hold: (a) Every weak solution of (1.3.1) is also
a very-weak solution. (b) Every very-weak solution of (1.3.1) that belongs
to �B (R# ) is also a weak solution.

In addition, the following holds true when 6 ≡ 0:
(iii) D is bounded in !∞ (Ω): Let 5 ∈ ! ? (Ω) with ? as in (1.3.4), then D ∈

!∞ (Ω) ∩ �̃B (Ω). Moreover, if Ω fulfills the exterior cone condition, then
the weak solution D ∈ �0 (Ω) and there is a � = � (#, B, ?,Ω) > 0 such that
‖D‖�0 (Ω) ≤ �‖ 5 ‖!? (Ω) .
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(iv) Very-weak solution with measure 5 : Let 5 ∈ M(Ω), ? as in (1.3.4), and
Ω fulfills the exterior cone condition, then there exists a unique D ∈ ! ?′ (Ω)
solving (1.3.1) according to Definition 1.3.1 (iii), and there is a constant
� = � (#, B, ?,Ω) > 0 such that ‖D‖!?′ (Ω) ≤ �‖ 5 ‖M(Ω) .

1.3.2 Non-homogeneous diffusion equations: numerical approxi-
mation

Approximation of fractional Laplacian is a challenging topic and has received a
tremendous amount of attention recently. However, most of the focus has been
on the homogeneous problem. There exist several efficient works in 1D but for
# > 1 the problem is very challenging and the number of works are limited.
The main difficulty is the fact that the bilinear form (1.3.2) contains a singular
integral and the traditional finite element approaches are not amenable to this.
The first work that rigorously provides approximation to the weak solutions is
by Acosta and Borthagaray [4], see also [3]. However, implementations in these
works have been limited to # = 2 dimensions. We also refer to another finite
element approach by Bonito, Lei, and Pasciak [33], which also works for # = 3.

In contrast, in [12] the authors have introduced an efficient spectral method
which works in arbitrary Lipschitz domains. Under this method, the evaluation
of the fractional Laplacian and its application onto a vector has complexity of
O(" log(")) where " is the number of unknowns. For instance, for exponent
B = 1/4 the 3D implementation can solve the Dirichlet problem with 5 · 106

unknowns under 2 hours on a standard office workstation.
The spectral method presented in [12] also extends to the non-homogeneous

Dirichlet problem. But below, instead, we briefly discuss a finite element method
based on [16, 23]. We refer to [5] for an alternative approach. The main idea in
[16, 23] is to approximate the solutions to a Dirichlet problem by solutions to a
Robin problem. Some of the key challenges for the Dirichlet problem are:

• Since we are interested in optimal control problemswith !2-exterior controls,
the correct notion of solution is as given in (1.3.3). Numerically, this will
require approximating NB .

• The control equation, in addition, will require approximation of NB applied
to the adjoint variable.

In other words, we have to approximateNB in addition to approximating (−Δ)B .
Notice that approximation of NB using a finite element method will require
triangulation of unbounded domain R# \Ω. A typical finite element is not well-
suited for this. We further emphasize that even though (−Δ)B is also defined on
an unbounded domain, but its approximation using finite element method is by
now well-established [3]. Approximating the Dirichlet problem by the Robin
problem helps overcome the NB computational challenge. To define the Robin
problem, we consider the Sobolev space introduced in [44]. Let ^ ∈ !1 (R# \Ω)
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be fixed and set

,
B,2
Ω,^

:=
{
D : R# → R measurable and ‖D‖

,
B,2
Ω,^

< ∞
}
,

where

‖D‖
,
B,2
Ω,^

:=
(
‖D‖2

!2 (Ω) + ‖D‖
2
!2 (R# \Ω,`)

+
∫ ∫

R2# \(R# \Ω)2

|D(G) − D(H) |2
|G − H |#+2B

3G3H

) 1
2

,

(1.3.8)

and the measure ` on R# \Ω is given by d` = |^ | dG.
The article [44, Proposition 3.1] has shown that for ^ ∈ !1 (R# \Ω),, B,2

Ω,^
is

a Hilbert space. Now for every = ∈ N, we define the generalized Robin problem{
(−Δ)BD = 5 in Ω,

NBD + =^D = =^I in R# \Ω.
(1.3.9)

Then the following result holds (see Proposition [16, 3.9])

Proposition 1.3.3. Let = ∈ N and ^ ∈ !1 (R# \ Ω) ∩ !∞ (R# \ Ω). Then for
every I ∈ !2 (R# \Ω, `) and 5 ∈ (, B,2

Ω,^
)★, there exists a weak solution D ∈ , B,2

Ω,^

of (1.3.9) in the following sense:

�# ,B

2

∫ ∫
R2# \(R# \Ω)2

(D(G) − D(H)) (E(G) − E(H))
|G − H |#+2B

3G3H + =
∫
R# \Ω

^DE 3G

= 〈 5 , E〉(, B,2
Ω,^
)★,, B,2

Ω,^

+ =
∫
R# \Ω

^IE 3G, (1.3.10)

for all E ∈ , B,2
Ω,^

.

Let us mention that the motivation of using ^ in the second equation of
(1.3.9) is that with respect to the measure `, the set R# \ Ω is bounded, that
is, `(R# \ Ω) =

∫
R# \Ω |^ | 3G < ∞, since ^ ∈ !

1 (R# \ Ω). This is a huge
computational advantage over the use of unbounded set R# \ Ω with respect to
the classical #-dimensional Lebesgue measure. However, we emphasize that
all the results can be obtained by dropping out ^ in (1.3.9) and using another
fractional order Sobolev space. More precisely, in that case one has to use the
following space:

, :=
{
D : R# → R measurable :

‖D‖2
!2 (R# ) +

∫ ∫
R2# \(R# \Ω)2

|D(G) − D(H) |2
|G − H |#+2B

3G3H < ∞
}
.

Next we make the following assumption.
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Assumption 1.3.4. We assume that ^ ∈ !1 (R# \Ω) ∩ !∞ (R# \Ω) and satisfies
^ > 0 almost everywhere in  := supp[^] ⊂ R# \ Ω, where the Lebesgue
measure | | > 0.

Under this assumption, the solution to (1.3.10) belongs to, B,2
Ω,^
∩!2 (R# \Ω)

[16, Lemma 6.2]. Moreover, the following approximation result holds:

Theorem 1.3.5 (Approximation of Dirichlet solution by Robin solution).
Under Assumption 1.3.4, the following assertions hold:

(a) Let I ∈ �B (R# \ Ω) and D= ∈ , B,2
Ω,^
∩ !2 (R# \ Ω) be the weak solution of

(1.3.10). Let D ∈ �B (R# ) be the weak solution to the state equation (1.3.2).
Then there is a constant � > 0 (independent of =) such that

‖D − D=‖!2 (R# ) ≤
�

=
‖D‖� B (R# ) . (1.3.11)

In particular D= converges strongly to D in !2 (R# ) as =→∞.
(b) Let I ∈ !2 (R# \ Ω) and D= ∈ , B,2

Ω,^
∩ !2 (R# \ Ω) be the weak solution

of (1.3.10). Then there exist a subsequence that we still denote by {D=}=∈N
and a function D̃ ∈ !2 (R# ) such that D= ⇀ D̃ in !2 (R# ) as = → ∞, and D̃
satisfies ∫

Ω

D̃(−Δ)BE 3G = −
∫
R# \Ω

D̃NBE 3G, (1.3.12)

for all E ∈ + := {E ∈ �̃B (Ω) : (−Δ)BE ∈ !2 (Ω)}.

Next, we introduce a discrete scheme to approximate (1.3.10). Let Ω̃ be
an open bounded set that contains Ω. We consider a conforming simplicial
triangulation of Ω and Ω̃ \ Ω such that the partition remains admissible in the
classical sense (see [40, (FEM 1), pg. 38]). We assume that the support of I
and ^ is contained in Ω̃ \ Ω. We let the finite element space Vℎ on Ω̃ to be the
set of continuous piecewise linear functions. Then it remains to approximate
the weak form (1.3.10). All other terms are standard and can be done using any
standard finite element code and quadrature rule, except the stiffness matrix. We
assemble the latter using [3] and the details of this discretization can be found
in another chapter in this handbook. All other matrices are computed by using
quadrature which is accurate for polynomials of degree less than or equal to 4.

We consider an example taken from [5]. Let Ω = �0 (1/2) ⊂ R2, i.e., a ball
centered at 0 with radius 1/2 and Ω̃ = �0 (3/2). Our goal is to find D solving
(−Δ)BD = 2 in Ω and D(·) = 2−2B

Γ(1+B)2 (1 − | · |)
B
+ in R# \Ω. Figure 1.4 shows our

results and confirms our theoretical findings in Theorem 1.3.5.
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FIGURE 1.4 Left panel: Let B = 0.5 and DoFs = 2920 be fixed. We let ^ = 1 and consider the
!2-error between the actual solution D to the Dirichlet problem and its approximation Dℎ which
solves the Robin problem. We have plotted the error with respect to =. The solid line denotes a
reference line and the actual error. We observe a rate of 1/= which confirms our theoretical result
(1.3.11). Right panel: Let B = 0.5 be fixed. For each = = 142, 143, 144, 145 we have plotted
the !2-error with respect to the degrees of freedom (DOFs) as we refine the mesh. Notice that the
error is stable with respect to =. Moreover, the observed rate of convergence is (DoFs)−

1
2 and is

independent of =.

1.3.3 Fractional time derivative: numerical approximation

We consider an Euler scheme to approximate �mC and we state the result with
the help of a nonlinear ODE [60, 59, 62]

3
W
C D(C) = 5 (D(C)), D(0) = D0. (1.3.13)

Consider the time discretization of the interval [0, )] uniformly with step size
g. We let 0 = C0 < C1 < · · · < C 9+1 < · · · < C# = ) , where C 9 = 9g.

Then, using an Euler-scheme, the discretization of (1.3.13) is given by: for
9 = 0, ..., # − 1,

D(C 9+1) = D(C 9 ) −
9−1∑
:=0

0 9−: (D(C:+1) − D(C: )) + gWΓ(2 − W) 5 (D(C 9 )), (1.3.14)

where the coefficients 0 9−: are given by,

0 9−: = ( 9 + 1 − :)1−W − ( 9 − :)1−W . (1.3.15)

Next, we present an example illustrating this approach. Consider the differential
equation:

3
1
2
C D(C) = −4D(C), D(0) = 0.5. (1.3.16)

Then, the exact solution to (1.3.16) is given by, see [68, Section 42], also
[63, Section 1.2], D(C) = 0.5 �0.5 (−4C0.5), where �U, with 0 < U ∈ R, is
the Mittag Leffler function, see [63, Pg. 17], defined by �U (I) = �U,1 (I) =∑∞

0
I:

Γ(U:+1) . Figure 1.5 depicts the true solution and the numerical solution
using the discretization (1.3.14) for the above example with uniform step size
g = 0.005 and final time, ) = 1. For numerical analysis of partial differential
equation with strong Caputo derivatives, see [62, 19, 58] and the references
therein.
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FIGURE 1.5 Comparison of exact solution of (1.3.16) and its approximation using anEuler-scheme.
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FIGURE 1.6 Left: External optimal control setup for a diffusion process inΩwith control supported
in Ω̂, disjoint from Ω. This is different than the classical control approaches where the control must
be either inside Ω or on the boundary of Ω. Right: A finite element mesh.

1.4 EXTERIOR OPTIMAL CONTROL OF FRACTIONAL PARABOLIC
PDES WITH CONTROL CONSTRAINTS

This section provides details on the novel exterior optimal control problem
introduced in [16, 23]. Under classical setting, the control either is on the
boundary or in the interior, but this new framework allows the control placement
away from the domain. This is depicted in Figure 1.6. Such a situation can
potentially arise in various scenarios, for instance, in magnetic drug targeting
[18, 17] where the drug with ferromagnetic particles is injected into the body
and an external magnetic field is used to steer it to a desired location.

Let /� := !2 (R# \ Ω), *� := !2 (Ω) and _ ≥ 0 be a constant penalty
parameter. Then the fundamental optimal control problem amounts to:

min
(D,I) ∈(*� ,/� )

� (D) + _
2
‖I‖2/� , (1.4.1a)

subject to the fractional Dirichlet exterior value problem: Find D ∈ *� solving{
(−Δ)BD = 0 in Ω,
D = I in R# \Ω,

(1.4.1b)

and the control constraints
I ∈ /03,� , (1.4.1c)
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with /03,� ⊂ /� being a closed and convex subset. Well-posedness of this
problem follows by the standard direct method of calculus of variations [16,
Theorem 4.1].

Theorem 1.4.1. Let /03,� be a closed and convex subset of /� . Let either
_ > 0 or /03,� bounded and let � : *� → R be weakly lower-semicontinuous.
Then there exists a solution Ī to (1.4.1). If either � is convex and _ > 0 or � is
strictly convex and _ ≥ 0, then Ī is unique.

Moreover, the following first order optimality conditions hold [16, Theo-
rem 4.3].

Theorem 1.4.2. Let the assumptions of Theorem 1.4.1 hold. Let Z be an open
set in /� such that /03,� ⊂ Z. Let D ↦→ � (D) : *� → R be continuously
Fréchet differentiable with � ′(D) ∈ *� . If Ī is a minimizer of (1.4.1) over /03,� ,
then the first order necessary optimality conditions are given by

(−NB ?̄ + _Ī, I − Ī)!2 (R# \Ω) ≥ 0, ∀I ∈ /03,� , (1.4.2)

where ?̄ ∈ �̃B (Ω) solves the adjoint equation{
(−Δ)B ?̄ = � ′(D̄) in Ω,
?̄ = 0 in R# \Ω.

(1.4.3)

Equivalently we can write (1.4.2) as Ī = P/03,�
(

1
_
NB ?̄

)
, where P/03,� is the

projection onto the set /03,� . If � is convex, then (1.4.2) is also a sufficient
condition.

As we emphasized earlier, in its current form, (1.4.1) requires the approxi-
mation ofNB twice. First to compute the very-weak solution (Theorem 1.3.2(ii))
and second to evaluate the optimality condition (1.4.2). In order to overcome
this issue in the state equation, recall that we had introduced the Robin problem
(1.3.9). Also, recall the approximation of the Dirichlet solution by the Robin
solution from Theorem 1.3.5. In fact, one can approximate the Dirichlet optimal
control problem by the Robin optimal control problem: for _ ≥ 0 the fractional
Robin control problem is given by:

min
D∈*' ,I∈/'

� (D) + _
2
‖I‖2

!2 (R# \Ω) , (1.4.4a)

subject to the regularized exterior value problem (Robin problem): Find D= ∈ *'
solving {

(−Δ)BD = 0 in Ω
NBD + =^D = =^I in R# \Ω,

(1.4.4b)

and the control constraints
I ∈ /03,' . (1.4.4c)
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Here /' := !2 (R# \ Ω), /03,' is a closed and convex subset of /' and
*' := ,

B,2
Ω,^
∩ !2 (R# \ Ω). Then as = → ∞ the Robin problem (1.4.4)

approximates the Dirichlet problem (1.4.1), see [16, Theorem 6.5] for details.
We conclude this section by providing a numerical example, where we solve
(1.4.1) by approximating it with (1.4.4).

We choose our objective function as

9 (D, I) = � (D) + _
2
‖I‖2

!2 (R# \Ω) , with � (D) :=
1
2
‖D − D3 ‖2!2 (Ω) ,

and we let /03,' := {I ∈ !2 (R# \ Ω) : I ≥ 0, a.e. in Ω̂} where Ω̂ is the
support set of the control I that is contained in Ω̃\Ω. Moreover D3 : !2 (Ω) → R
is the given data (observations). All the optimization problems below are solved
using the projected-BFGS method with Armĳo line search.

Our computational setup is shown in Figure 1.6. The centered square region
is Ω = (−0.4, 0.4)2 and Ω̃ = �0 (3/2). The smaller square inside Ω̃ \ Ω is Ω̂
which is the support of the source/control. The right panel in Figure 1.6 shows
a finite element mesh with DoFs = 6103.

We define D3 as follows. For I = 1, we first solve the state equation for
D̃ (1.4.4b). To D̃, we then add a normally distributed random noise with mean
zero and standard deviation 0.02 to D̃. We call the resulting expression as D3 .
Furthermore, we set ^ = 1, and = = 145.

Our goal is then to identify the source/control Īℎ . For a fixed _ = 14-8,
Figure 1.7 shows the optimal Īℎ for B = 0.1 (4), 0.7 (2), 0.9 (2). The numbers
in the parenthesis denote the total number of iterations that BFGS has taken to
achieve a stopping tolerance (for the projected gradient) of 14-7. Notice that the
Armĳo line search has remained inactive in these cases. We notice that for large
B, Īℎ ≡ 0. This is expected as larger the B is, the closer we are to the classical
Poisson problem case and we know that we cannot impose the external condition
in that case.

FIGURE 1.7 The panels show the behavior of Īℎ as we vary the exponent B. Left to right: B = 0.1,
0.7, 0.9. For smaller values of B, the recovery of Īℎ is quite remarkable. However, for larger values
of B, Īℎ ≡ 0 as expected, the behavior of D̄ℎ for large B is close to the classical Poisson problem
which does not allow external sources/control.
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1.5 DISTRIBUTED OPTIMAL CONTROL OF FRACTIONAL PDES
WITH STATE AND CONTROL CONSTRAINTS

This section is based on the article [10]. Given D3 ∈ !2 (Ω) and regularization
parameter _ > 0, consider the state constrained optimal control problem

min
(D,I) ∈(*,/ )

1
2
‖D − D3 ‖2!2 (Ω) +

_

2
‖I‖2

!2 (Ω)

subject to:
(−Δ)B�D = I in Ω, D |Ω ∈ K and I ∈ /03 .

(1.5.1)

Recall the definition of (−Δ)B
�

from (1.2.2). Next, we introduce the relevant
function spaces. We let

/ := ! ? (Ω) and * :=
{
D ∈ �̃B (Ω) : ((−Δ)B�)D |Ω ∈ !

? (Ω)
}
.

Then,* is a Banach space with the graph norm ‖D‖* := ‖D‖
�̃ B (Ω) + ‖D‖�0 (Ω) +

‖(−Δ)B
�
D‖!? (Ω) . Here ? is as in (1.3.4), but in addition we assume that 2 ≤ ? <

∞. We let /03 ⊂ / a nonempty, closed, and convex set and K defined as

K :=
{
F ∈ �0 (Ω) : F(G) ≤ D1 (G), ∀G ∈ Ω

}
. (1.5.2)

Recall that�0 (Ω) is the space of all continuous functions inΩ that vanish on mΩ.
Moreover, D1 ∈ � (Ω) such that D1 ≥ 0 on mΩ. Existence of solution to (1.5.1)
then follows from the direct method of calculus of variations [24, Theorem 5.1].

In addition, under the Slater’s constraint qualification [24, Assumption 5.2]
we can derive the first order optimality conditions: Let (D̄, Ī) be a solution
to the optimization problem (1.4.1). Then, there exist a Lagrange multiplier
¯̀ ∈ (�0 (Ω))★ =M(Ω) and an adjoint variable ō ∈ ! ?′ (Ω) such that

(−Δ)B� D̄ = Ī in Ω, (1.5.3a)

〈ō, (−Δ)B�E〉!?′ (Ω) ,!? (Ω) = (D̄ − D3 , E)!2 (Ω) +
∫
Ω

E 3 ¯̀, ∀ E ∈ *

(1.5.3b)
〈ō + �I (D̄, Ī), I − Ī〉!?′ (Ω) ,!? (Ω) ≥ 0, ∀ I ∈ /03

(1.5.3c)

¯̀ ≥ 0, D̄(G) ≤ D1 (G) in Ω, and
∫
Ω

(D1 − D̄) 3` = 0. (1.5.3d)

Clearly, it is challenging to try to directly implement (1.5.3). Instead, we
follow the approach from the classical case of B = 1 [56, 53] and consider the so-
called Moreau-Yosida regularization. The Moreau-Yosida regularized optimal
control problem is given by
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min �W (D, I) :=
1
2
‖D − D3 ‖2!2 (&) +

_

2
‖I‖2

!2 (&) +
1

2W
‖( ˆ̀ + W(D − D1))+‖2!2 (&) ,

(1.5.4a)
subject to

(−Δ)B�D = I in Ω and I ∈ /03 . (1.5.4b)

where 0 ≤ ˆ̀ ∈ !2 (&) is a shift parameter that can be taken to be zero, and
W > 0 denotes the regularization parameter. Here, (·)+ denotes max{0, ·}. More
information about this can be found in [57]. Existence and uniqueness to (1.5.4)
again follows by the standard direct method of calculus of variations. Moreover,
we have the following first order optimality conditions:

Theorem 1.5.1. Let (D̄W , ĪW) be a solution to the regularized optimization prob-
lem (1.5.4). Then there exists a Lagrange multiplier ōW ∈ �̃B (Ω) such that

(−Δ)B� D̄
W = ĪW , in Ω, (1.5.5a)

(−Δ)B� ō
W = D̄W − D3 + ( ˆ̀ + W(D̄W − D1))+, in Ω, (1.5.5b)

(ōW + _ĪW , I − ĪW)!2 (Ω) ≥ 0, ∀ I ∈ /03 . (1.5.5c)

In addition, the following approximation result holds, see [10, Theorem 5.2]
for the proof.

Proposition 1.5.2. Let (D̄, Ī) solve (1.5.1) and (D̄W , ĪW) solve (1.5.4). Then as
W →∞, we have ĪW → Ī in !2 (Ω) and ‖(D̄W−D1)+‖!2 (Ω) = O(W−1/2).Moreover
if D1 ≡ 0 in Ω, then under the additional assumption that D3 ≥ 0, we obtain that
‖(D̄W)+‖!2 (Ω) = O(W−1) as W →∞.

For simplicity of presentation, next we consider the case where the control
admissible set is

/03 = {I ∈ / : 0 ≤ I ≤ 1 0.4. in Ω}, (1.5.6)

where 0 < 1 are constants. Next, we state the regularity of optimal solutions to
(1.5.4). See [10, Proposition 6.2] for the proof.

Proposition 1.5.3. Let Ω be a bounded Lipschitz domain and (D̄W , ōW , ĪW) be
the solution to (1.5.5) for a fixed W, then we have

D̄W ∈ �f−Y (Ω), ōW ∈ �f−Y (Ω), ĪW ∈ �g (Ω),

for every Y > 0 where f = min{2B, B + 1/2} and g = min{1, 2B − Y}.

We discretize the state and adjoint pair using piecewise linear, globally
continuous finite elements for a triangulation Tℎ of Ω̃ vanishing in the exterior
Ω̃ \ Ω. Here we have assumed that Ω ⊂ Ω̃. We discretize the control using
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piecewise constants, i.e., the control space is /ℎ := {Iℎ ∈ / : Iℎ
��
)
∈ P0, ∀ ) ∈

Tℎ}, where P0 denotes the space of piecewise constants on the triangulation Tℎ .
Then based on the regularity result in Proposition 1.5.3, the following result

holds.

Corollary 1.5.4. Let ĪW and ĪW
ℎ
denote the continuous and discrete optimal

controls. Then the following result holds:

‖ ĪW − ĪW
ℎ
‖!2 (Ω) ≤

�

_

(
(ℎ2V | log ℎ|2(1+^) + ℎV+B−Y) (‖ ĪW ‖!2 (Ω) + ‖D3 ‖!2 (Ω)

+ ‖ ˆ̀‖!2 (Ω) ) + ℎ2V | log ℎ|2(1+^) (1 + W)‖ ĪW ‖!2 (Ω)

+ ℎg (1 + W + _) | ĪW |� g (Ω)
)
,

for every Y > 0, where V = min{B, 1/2}, g = min{1, 2B − Y}, ^ = 1 if B = 1/2
and zero otherwise.

Next, we provide a numerical example. We let D3 (G, H) = 2−2B

Γ(1+B)2 (1/4 −
(G2 + H2)+)B , and we let D1 = 0.1. In the left panel in Figure 1.8 we show the
convergence of ‖(D − D1)+‖!2 (Ω) for B = 0.4 on a mesh with 24155 number of
nodes and 48468 number of elements as W increases. We observe a convergence
ofO(W−1)which is better than expected. However, this has also been documented
in the literature (when B = 1) and it can be rigorously established when D1 = 0
and D3 ≥ 0, see [53].

In Figure 1.8 we also show the optimal state, control, and Lagrangemultiplier
for B = 0.2 and W = 419430.4. We note that the control is a piecewise constant
on the mesh. The optimal state in Figure 1.8 appears to be cleanly cut off
at D1 = 0.1, complying with the state constraint and resulting in a cylindrical
profile. Moreover, notice that the Lagrange multiplier corresponding to the
inequality constraint is a measure (bottom right panel) as expected.

1.6 FRACTIONAL DEEP NEURAL NETWORKS – FDNNS

This section is based on the article [13]. Consider a generic (discrete) parame-
terized PDE

� (u(/); /) = 0, (1.6.1)

where / ∈ P ⊂ R#/ and u(/) ∈ U ⊂ R#G represent a fixed parameter and
the corresponding solution of the PDE, respectively. Moreover, P denotes the
parameter domain and U the solution manifold. For a fixed parameter / ∈ P,
we seek the solution u(/) ∈ U. In other words, we have the functional relation
given by the parameter-to-solution map

/ ↦→ Φ(/) ≡ u(/). (1.6.2)

Parameter-dependent PDEs of the form (1.6.1) arise in several areas of com-
putational sciences and engineering. Typical examples include Navier-Stokes
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FIGURE 1.8 Convergence of ‖ (D − D1)+ ‖!2 (Ω) as W increases (top left). The desired state (top
right), optimal state (middle), control (bottom left) and Lagrangemultiplier (bottom right) for B = 0.2
and W = 419430.4

equations (with Reynolds number as the parameter) [45], and Boussinesq equa-
tions (with Grashof or Prandtl numbers as the parameters) [64], etc.

In real-world applications, solutions of (1.6.1) are required for many pa-
rameter values and #/ is often very large; thus, the associated computational
complexity is enormous.Besides, a relatively large #G (due to fine mesh in the
discretization of the PDE) yields large (nonlinear) algebraic systems which are
computationally expensive to solve and may also lead to huge storage require-
ments. This is, for instance, the case in Bayesian inverse problems governed by
PDEs where several forward solves are required to adequately sample posterior
distributions throughMCMC-type schemes [32, 61]. Due to the aforementioned
challenges, it is a reasonable computational practice to replace the high-fidelity
model by a surrogate model which is relatively easy to evaluate.

There are twomajor classes of surrogatemodels in the literature: the reduced-
order models (ROMs), see e.g., [27, 52, 64, 14] and the deep neural network
models (DNNs), see e.g.,[28, 65]. A key feature of the ROMs is that they
use the so-called offline-online paradigm. The main thrust of the offline step
is the construction of a low-dimensional approximation to the solution space;
this approximation is generally known as the reduced basis. Depending on the
problem under consideration, the offline step can be computationally demanding,
although the expense incurred is a one time cost. In the online step, one then
uses the reduced basis to solve a smaller reduced problem. The resulting reduced
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solution accurately approximates the solution of the original problem. Typical
examples of ROMs include the reduced basis method [64], proper orthogonal
decomposition [52, 64] and the discrete empirical interpolation method (DEIM)
and its variants [27, 39, 14].

Deep neural network (DNN) models constitute another class of surrogate
models which are well-known for their high approximation capabilities. The
basic idea of DNNs is to approximate multivariate functions through a set of
layers of increasing complexity [28]. As in the case of ROMs, we also note here
that using DNNs also involves some offline cost, which is incurred in training the
network. Examples of DNNs for surrogate modeling include Residual Neural
Networks (e.g. ResNet) [51, 49], physics-informed neural network (PINNs) [65]
and fractional DNN [15].

Despite the fact that, in the online phase of ROMs, one essentially has to
do reduced system solves, note that these systems can still be ill-conditioned
and highly intrusive especially for nonlinear problems. On the other hand, the
DNN approach can be fully non-intrusive, which is essential for legacy codes.
Undoubtedly, rigorous error estimates for ROMs under various assumptions
have been well studied [64]; however, we like the advantage of DNN being
nonintrusive, but recognize that error analysis is not yet as strong [41].

Next, we provide a description of the fractional derivative based DNN ap-
proach introduced in [13] and apply it to a Bayesian inverse problem. The idea
of a DNN is to approximate the input-to-output map Φ : R#/ → R#G by a
surrogate Φ̂ which is the output of a DNN.

For sufficiently large #B ∈ N, suppose that E := {/1, /2, · · · , /#B } is a set of
parameter samples with /8 ∈ R#/ , and S := {u(/1), u(/2), · · · , u(/#B )} the cor-
responding snapshots (solutions of the model (1.6.1), with u8 := u(/8) ∈ R#G ).
Here, we assume that span{u(/1), u(/2), · · · , u(/#B )} sufficiently approximates
the space of all possible solutions of (1.6.1). We refer to [64], for instance, for a
description of “sufficient approximation" in the context of ROMs.

The idea of a DNN is to use the parameters / 9 as an input to the DNN
and try to match the output of DNN Φ̂(/ 9 ; )) with the vectors u 9 . Moreover,
) = {, 9 , b 9 }, are the unknown parameters in the DNN that need to be learned.
This learning problem can be cast as an optimal control problem

min
)={,9 ,1 9 }

J (); /, u) = 1
2#B

#B∑
9=1
‖Φ̂(/ 9 ; )) − u 9 ‖22 +

_

2
| |) | |22, (1.6.3)
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subject to the fractional Deep Neural Network as constraint

q0 = /,

q1 = f(,0q0 + b0),

q 9 = q 9−1 −
9−2∑
:=0

(
0 9−1−: (q:+1 − q: )

+ gWΓ(2 − W)f(, 9−1q 9−1 + b 9−1)
)
, 2 ≤ 9 ≤ ! − 1,

(Φ̂ :=) q! = ,!−1q!−1,

(1.6.4)

where, recall that, the middle equation in (1.6.4) is the Euler-time discretization
of a fractional differential equation (cf. (1.2.4) and (1.3.14)). For the definition
of coefficients 0 9−1−: , see (1.3.15). As pointed out in [15], designing the
DNN solution algorithms at the continuous level has the appealing advantage of
architecture independence; in other words, the number of optimization iterations
will not significantly deteriorate even if the number of layers is increased. This
comment is motivated by the literature on PDE constrained optimization where
such mesh-independence has been extensively studied [55, 54].

Also, as noted in [13], this fractional DNN allows connectivity among all the
layers unlike standard DNNs. This passage of historic information of input and
gradients across all the subsequent layers allows one to overcome the vanishing
gradient issue as discussed in [15] for classification problems. However, we
emphasize that currently, only numerical evidence is available.

The learning problem (1.6.4) can be solved using adjoint based approach as
discussed in the previous sections and by applying gradient based optimization
methods, such as BFGS.We refer to [15, 13] for the details. We close this section
by providing a numerical example.

Thermal fin problem: Consider the following parameterized system

−div (4/ (G)∇D) = 0, in Ω,

(4/ (G)∇D) · . + 0.1D = 0, on mΩ \ Γ,
(4/ (G)∇D) · n = 1, on Γ = (−0.5, 0.5) × {0},

(1.6.5)

which represents a forward model for heat conduction over the non-convex
domain Ω as shown in Figure 1.9 (left). When the heat conductivity function
4/ (x) is known, the forward problem can be solved for D. The goal of this
example is to infer 100 unknown parameters / from 262 noisy observations of
D. Figure 1.9 (left) also shows the location of the observations on the boundary
mΩ \ Γ.

The fDNN is trained by first computing #B = 900 solution snapshots corre-
sponding to 900 parameters / ∈ R100, drawn using Latin hypercube sampling.
Next we compute the SVD of S and train the network on this reduced space.
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FIGURE 1.9 Thermal fin problem: Given a diffusion equation with coefficient 4/ (G) , the goal is
to reconstruct D, from noisy measurements on the boundary (marked by circles). Middle: True
conductivity field. Right: The posterior mean estimates obtained by preconditioned Crank-Nicolson
(pCN) MCMC method using the fractional DNN as surrogate. The acceptance rate is comparable
to [32]. The figure has been reproduced from [13].

Figure 1.9 shows the true conductivity (middle) and the posterior mean estimates
obtained using standard MCMC approach.

Table 1.1 below shows the average acceptance rates for these models and the
computational times required to perform theMCMCsimulation for different vari-
ants of the MCMC algorithm (preconditioned Crank-Nicolson method (pCN),
the infinite variants of Riemannian manifold Metropolis-adjusted Langevin al-
gorithm (∞-MALA) and Hamiltonian Monte-Carlo (∞-HMC) algorithms as
presented in [32]), using both fDNN surrogate computations and full-order dis-
crete PDE solution. The acceptance rate is clearly comparable for the fDNN
surrogate model and the full order forward discrete PDE solver. In addition, a
reduction of 90% in computational time is observed for the fDNN approach. The
costs of the offline computations for fDNN were 63.2 seconds to generate the
data used for the fractional DNN models and 33.5 seconds to train the network
(with 1600 BFGS iterations); a total of 99.7 seconds.

Model pCN ∞-MALA ∞-HMC
Acc. Rate (fDNN) 0.67 0.67 0.79
Acc. Rate (Full) 0.66 0.70 0.75
CPU time (fDNN) 16.46 98.0 228.4
CPU time (Full) 157.8 958.9 2585.3

TABLE 1.1 Acceptance rates and computational times needed to solve the inverse
problem by pCN,∞-MALA and∞-HMC algorithms together with fDNN and full forward
models.

1.7 SOME OPEN PROBLEMS

There are still many open questions in this paradigm. We list a few of them
below:
1. Theorem 3.2 in part (iv) assumed the domain Ω to fulfill exterior cone con-

dition. It remains open if such a result holds true in case Ω is only Lipschitz
continuous. Also, note that (iii)-(iv) shows boundedness and continuity of
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solution when the exterior datum 6 ≡ 0. However, it remains open to prove
these results when 6 ≠ 0. That is, given a function 6 ∈ � (R# \Ω) and 5 ≡ 0
in Ω, under what conditions on Ω, there would exist an B-harmonic function
D ∈ � (R# ) satisfying (1.3.1). The classical case B = 1 has been resolved by
Wiener several decades ago, but the fractional case is more challenging and
remains an open problem.

2. Section 1.3.2 discusses a numerical method to approximate the
non-homogeneous exterior Dirichlet problem by the Robin problem. But
a complete numerical analysis of this method is still open. In addition,
a complete numerical analysis of the Robin problem in the full generality
considered here is still open as well.

3. Section 1.4 discusses exterior optimal control problems, but numerical anal-
ysis of these problems are fully open.

4. Section 1.5 discusses state constrained problems and provides finite element
W-dependent error estimates in Corollary 1.5.4. Such estimates which are
W-independent are still open. Note that these questions are not just limited to
elliptic problems, but are equally relevant to parabolic problems as well.

5. The article [15] numerically showed that the fractional time derivative can
help overcome the vanishing gradient problem. However, a theoretical justi-
fication is still an open problem.
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