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In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number
scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of
baryonic interactions is found for identified hadron collective flow measurements in /Snn = 3 GeV Au+Au
collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic
parameters, vq and vj, of light nuclei (d, t, 3He, 4He) produced in ,/sNn = 3 GeV Au+Au collisions

at the STAR experiment. An atomic mass number scaling is found in the measured v; slopes of light
nuclei at mid-rapidity. For the measured v, magnitude, a strong rapidity dependence is observed. Unlike
vy at higher collision energies, the v, values at mid-rapidity for all light nuclei are negative and no
scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model
(JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations,
implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.

© 2022 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Collective motion of particle emission in high-energy heavy-
ion collisions, often referred to as collective flow, is a general
phenomenon observed over a wide range of collision energies.
The flow anisotropy parameters, v, (where n represents the n-th
harmonic order), are used to describe the azimuthal anisotropies
in particle momentum distributions with respect to the reaction
plane [1]. The first- and second-order azimuthal anisotropies, v
and v, are important probes of nuclear matter. In high energy col-
lisions at the top RHIC and LHC energies, they provide information
on the collective hydrodynamic expansion and transport proper-
ties of the produced Quark Gluon Plasma (QGP), while at lower
collision energies of the order of a few GeV, they are sensitive to
the compressibility of the nuclear matter and nuclear equation of
state [2,3]. The collision-energy dependence of v and v, for dif-
ferent particle species has been observed experimentally [4,5], and
provides valuable information on the dynamical evolution of the
strongly interacting matter.

At high LHC energies, significant v, and v3 values are reported
for d [6,7]. In parallel and at lower energies, compared to protons,
enhanced values of v and v, for light nuclei (d, t, and 3He) were
observed in prior heavy-ion collision experiments [8-14]. These
measurements suggest that the vi of heavier nuclei have more

pronounced energy dependences and may carry more direct in-
formation on the collective motion of nuclear matter. Recently, the
HADES experiment reported the measurements of anisotropic flow
of p,d and t from ,/sny = 2.4 GeV Au+Au collisions [15]. The STAR
collaboration observed the atomic mass number (A) scaling of light
nucleus v, for the reduced transverse momentum (pt) range of
pr/A < 1.5 GeV/c at /SNy = 7.7 — 200 GeV [14]. Similar to the
number of constituent quark (NCQ) scaling of hadron collective
flow [16], under the assumptions of small v, and light nucleus for-
mation by nucleon coalescence in momentum space, light nucleus
collective flow is expected to follow an approximate A scaling

v (pT. Y)/A~ Vi (pT/A. Y). (1)

The STAR observation [14] favors nucleon coalescence, while the
true production mechanism of light nuclei in heavy-ion collisions
is still an open question. At lower energies, however, the v is not
negligibly small as reported in this paper. Keeping up to v%, Eq. (1)
for n =2 becomes

A—-1 2

v3(pr y)/A~ VE(pr/A y) + (Vi (/A ) @)

The coalescence model assumes that light nuclei are formed
via the combination of nucleons when these nucleons are near
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each other both in coordinate and momentum space near the time
of kinetic freeze-out [17-20]. Due to the longer passing time of
the colliding ions in the few GeV regime, the interference be-
tween the expanding central fireball and the spectator remnants
becomes more significant than at higher energies. Since flow is
strongly affected by the spectators, one expects to gain insight into
the collision dynamics and the nucleon coalescence behavior from
the measurements of light nucleus v; and v, in the few GeV en-
ergy regime. In this paper, we report the measurements of v and
vy as functions of particle rapidity (y) and transverse momentum
(pr) for d, t, *He, and *He in fixed-target /syn = 3 GeV Au+Au
collisions at the STAR experiment.

2. Experiment and data analysis

The data used here were recorded in the fixed-target program
by the STAR experiment [21]. The lab energy of the beam is
3.85 GeV per nucleon, equivalent to the center-of-mass energy of
/SNN = 3 GeV. A detailed description of the STAR detector can be
found in [21]. The main tracking and particle identification (PID)
detectors are the Time Projection Chamber (TPC) [22] and the
Time-of-Flight (TOF) barrel [23] located inside a 0.5 T solenoidal
magnetic field. For the fixed target configuration, the Au target is
installed inside the vacuum pipe 200 cm to the west of the TPC
center. The TPC covers the full azimuth and a pseudorapidity range
0.1 <n <2, and the TOF covers the range 0.1 < n < 1.5 in the
laboratory frame. In this paper, the beam direction is defined as
positive, and the particle rapidity is given in the collision center-
of-mass frame.

For each event, the reconstructed primary vertex is required to
be within 2 cm of the target position along the beam axis. The
transverse x, y position of the vertex is required to be within 2 cm
of the target located at (0, 2) cm. The event centrality is estimated
from the charged-particle multiplicity measured in the TPC within
—2 < 1n < 0 with the help of a Glauber Monte Carlo model [24].

Charged-track trajectories are reconstructed from the measured
space point information in the TPC. In order to select the primary
tracks, a requirement of less than 3 cm is applied on their dis-
tance of closest approach (DCA) from the event vertex. To avoid
effects from track splitting, each track should have at least 15 TPC
space points, and have more than 52% of the total possible TPC
points used in the track fitting. The TPC reconstruction efficiency
is around 80% for all light nuclei species.

The charged particle identification is accomplished by the spe-
cific energy loss dE/dx measured in the TPC. Fig. 1a shows the
average dE/dx distribution of charged particles as a function of
rigidity (momentum/charge). The curves denote the Bichsel expec-
tation for each particle species [25]. At low momenta, the (dE/dx)
bands corresponding to different particle species are clearly sepa-
rated and the particle type can be determined via the variable z,

((dEjdx)
= 1“( (dE /dx) B>’ ®)

where the (dE/dx)p is the corresponding Bichsel expectation. The
expected value of z for a given particle type is zero. At higher mo-
menta, these bands start to overlap. A combination of z and m?
of the particle is used to identify the high momentum light nu-
clei with a PID purity higher than 96%. A particle’s m?, where m
is mass of the particle, is determined by measuring the particle
speed using the TOF system. Fig. 1b shows the m2/q? distribution
as a function of particle rigidity.

The proton vqi and v, are measured over the range of 0.4
< pt < 2.0 GeV/c. In this measurement, the lower cutoffs of light
nucleus pt are restricted to the same value in terms of pt/A
(> 0.4 GeV/c). The pr upper limits are determined based on the
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Fig. 1. (a) The (dE/dx) of charged tracks versus rigidity in Au+Au collisions at

V/SNN = 3 GeV. The curves are Bichsel expectations for the corresponding parti-

cle species as labeled. (b) Particle m?/q? versus rigidity. The bands correspond to

m+, KT, p, 3He, d, and t as labeled. “He and ©Li have the same m?/q? as d and
6He has the same m?/q? as t.
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Fig. 2. The pr versus y acceptances for d, t, 3He, and “He at /SNy = 3 GeV Au+Au
collisions. The bands in the distributions are caused by the momentum dependent
requirements of the PID. The boxes represent the selected phase space for flow cal-
culation.

pr versus y acceptances shown in Fig. 2, within —0.5 < y <0 af-
ter each studied light nucleus species is identified. The values for
vq1 and vy are extracted in the chosen pr ranges: 0.8 < pr < 3.5
GeVJc for d, 12 < pt < 4.0 GeV/c for t and 3He, and 1.6 < p1 <
4.0 GeV/c for “He. As a result of the limited 7 coverage of the TOF
detector, within —0.1 < y < 0, the t and “He do not have coverage
for pt < 2.1 GeV/c and pt < 2.8 GeV/c, respectively.

The coefficients vi and v, are determined via a particle’s az-
imuthal angle in momentum space relative to the azimuth of the
reaction plane spanned by the beam direction and the impact pa-
rameter vector. While the reaction plane orientation can not be
accessed directly in measurements, it is common to use the event
plane angle to be a proxy of the true reaction plane [1]. In this
analysis the first-order event plane W is adopted for both the vq
and v, calculations. The W value is reconstructed by using infor-
mation from the event plane detector (EPD). A vector

Q=(Qx Q)= (Z w; cos(¢i), ) wi sin(cbi)) (4)

is calculated event-by-event. The ¢; is the azimuthal angle of the
i™ module of the EPD, and its weight w; is proportional to the
energy deposition. The non-uniformities in the EPD are corrected
by subtracting the ((Qx), (Q,)) from Q in each event [1], where
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Fig. 3. (a) The pr and rapidity dependencies of v; for p, d, t, 3He, and *He in 10-40% mid-central Au+Au collisions at ./Syy = 3 GeV. (b) The same results as (a) but both
vy and pr are scaled by A. For t and “He, there are no data points at pr/A < 0.7 GeV/c in —0.1 < y <0 due to limited acceptance. The data points in each rapidity are
scaled for clarity. Statistical and systematic uncertainties are represented by vertical lines and open boxes, respectively. The dashed lines represent the fit to a third-order

polynomial function of the data points to guide the eye.

the angle brackets indicate averaging over all events. Then the ¥y
is given by Wy =tan~!(Q,/Qx). A shifting method [1] is utilized
to make the distribution of the reconstructed ¥; uniform.

The values vi; and v, are computed via v, = (cos[n(¢p —
W1)])/Rn. The pr- and y-dependent reconstruction efficiency of
particle tracks is corrected using a Monte Carlo calculation of sim-
ulated particles embedded into real collision events. The event
plane resolution R, is determined via a three sub-event plane cor-
relation method [1], where the sub-event planes are reconstructed
separately in different n ranges of the EPD and TPC. At ./syn =3
GeV, the resolutions peak in the centrality range 30-40% with value
of 0.75 and 0.41 for v{ and vy, respectively.

The systematic uncertainties of the measured flow harmonics
come from the method of selecting charged tracks, from particle
identification, and from the event plane resolution. They are es-
timated point-by-point on v{ and vy as a function of y and pr
for each light nucleus species. The systematic uncertainties arising
from the track selection are determined by varying the selection
requirements. The values amount to about 2% after the statistical
fluctuation effects are removed [26]. The systematic uncertainties
related to the particle misidentification are determined by varying
the cuts on z and m2, and are found to be 2% to 8% depending
on the light nucleus species and their pt. A common systematic
uncertainty arises from the event plane resolution, and is deter-
mined by using combinations of different 7 sub-events; it is es-
timated to be less than 2% and 3% for vi; and v,, respectively,
within the centrality bin 10-40%. Additional systematic uncertainty
on the dv;/dy slope parameter comes from the chosen fit range,
and is estimated by taking the difference between the fit values
from default range —0.5 < y <0 and from —0.4 < y < 0. The typ-
ical magnitude of this systematic uncertainty is found to be 3%
for all light nucleus species. In the following figures, the total sys-
tematic uncertainty of each data point is represented by the open
boxes.

3. Results and discussions

The pt dependencies of the light nucleus vy in different rapid-
ity intervals are shown in Fig. 3. Fig. 3b shows that the values of
v1/A of all light nuclei, including protons, approximately follow A
scaling for —0.3 < y < 0 especially near mid-rapidity. The v; scal-
ing behavior suggests the light nuclei are formed via nucleon coa-
lescence in Au+Au collisions at ,/Syy = 3 GeV. The scaling worsens
for pr/A > 1 GeV/c in the range —0.4 < y < —0.3, where the v,

values are large and the simple coalescence of Eq. (1) may not ap-
ply. Increasing contamination of target-rapidity (y = —1.045) frag-
ments may also play a role.

The upper panels of Fig. 4 show the dependencies of v, in
different rapidity intervals. At mid-rapidity, —0.1 < y <0, the v,
values are negative for all measured light nucleus species. Mov-
ing away from mid-rapidity, the v, magnitudes decrease gradually,
and become positive for t, 3He, and “He at larger pr, while the
vy of protons and d remain negative within —0.4 < y < 0. More-
over, the proton v, has a stronger non-monotonic pt dependence
compared to other light nuclei. The lower panels of Fig. 4 show
v2/A as a function of pt/A and they do not follow the same trend.
Taking into account the effect of vi by Eq. (2), the naive momen-
tum coalescence expectation of v, for d is shown in the dashed
curves. While the v effect may partially explain the trend with in-
creasing rapidity, the v, data significantly deviate from the curve
(shown only for d, but similar behavior is also found for ¢, 3He,
and “He). This indicates that no A scaling is observed in these
data for light nucleus v, at /sny =3 GeV. The A scaling has been
observed for pt/A < 1.5 GeV/c in higher energy Au+Au collisions
at /SNy = 7.7 — 200 GeV [14]. There, as a supporting evidence for
the formation of the QGP, the v, of hadrons follow an approximate
NCQ scaling [27-29].

Fig. 5 shows light nucleus v{ and v, as a function of rapidity
integrated in the chosen prt ranges. There is a clear mass ordering
both for vq and for v,, namely, the heavier the mass of a nucleus,
the stronger the rapidity dependence in v and v;. At mid-rapidity,
—0.1 < y <0, the value of v; is negative and nearly identical for
p, d, and 3He. The negative v, at mid-rapidity may be caused by
shadowing of the spectators as their passage time is comparable
with the expansion time of the compressed system at ./SNn = 3
GeV [11,12]. During the expansion of the participant zone, the par-
ticle emission directed toward the reaction plane is blocked by the
spectators that are still passing the participant zone. Moving away
from mid-rapidity, the proton v; remains negative and those of
other light nuclei gradually become positive. A similar strong ra-
pidity dependence of light nucleus v, has also been reported by
the HADES experiment [15]. Nuclear fragmentation may play a role
in the production of those light nuclei, the effect of which is be-
yond the scope of the present investigation.

To further understand light nucleus formation and the scaling
behavior of v{ and v;, we employ a transport model, Jet AA Mi-
croscopic Transportation Model (JAM) [30], to simulate the proton
and neutron production from the initial collision stage to the fi-



STAR Collaboration

Physics Letters B 827 (2022) 136941

53 GeV Au+Au Collisions]

K BHgge
(c) 03<y< 02T (d) -04<y<-03
B B R R S R R I R B R Y
P, (GeVic)
T T .'d '.t'I""I""I""I""II'ii'l.""l""l""lI""I""I""I""I
0.05 TEHG \He # L pv,r05Y ] ]
DR S S a1 | ‘é"ﬁ'*$ ....... Lol i
-~ ° = [] /,* - - _c.
= %ﬁ#;i -8 E%‘\T!E g-t—’é c Té‘ét_g’ s 9 Beglga® s
~0.05} ! EE% 1 i -1 . 1 ]
(e) -0.1<y<0 ) -0.2<L<-01f (g) -0.3<y<-0.2 (h) -04<y<-0.3
O T TTE 20 05 T s 20 05 T 15 20 05 T 15 2
pT/A(GeV/c)

Fig. 4. Upper panels: The pr and y dependencies of v, for p, d, t, >He, and “He in 10-40% mid-central Au+Au collisions at /SNy = 3 GeV. Lower panels: The same results
as in upper panels but both v, and pr are scaled by A. The dashed lines are the v, expectation for d by Eq. (2). Statistical and systematic uncertainties are represented by

vertical lines and open boxes, respectively.

nal hadron transport in /syy = 3 GeV Au+Au collisions. Both the
cascade mode and the mean-field mode of JAM calculations are
performed. In the cascade mode, particles are propagated as in
vacuum (free streaming) between collisions with other particles.
In the mean-field mode [31], a momentum-dependent potential
with the incompressibility parameter k = 380 MeV is acting on the
nucleon evolution. The resulting proton v and v, from the mean-
field mode are consistent with the experimental observations (see
solid-lines in Fig. 5). However, the simulation results from JAM cas-
cade mode underestimate the magnitudes of proton vi and give
positive values for proton v, within —0.5 < y < 0, opposite to the
data. Note that the calculations from the mean-field mode, which
reproduce the observed collectivity of proton and A [32], impose
stronger repulsive interactions among baryons.

The current JAM model does not create light nuclei. An af-
terburner, a coalescence approach, is employed to form the light
nuclei using the proton and neutron phase-space distributions at
a fixed time of 50 fm/c. For each nucleon pair, the momentum
and position of each nucleon is boosted to the rest frame of the
pair. The relative momentum Ap and the relative coordinate Ar of
the two nucleons are evaluated in the rest frame. If the Ap < 0.3
GeV/c and Ar < 4 fm, then the nucleon pair is marked as a d [33].
A similar process is used for the formation of ¢ (nnp), 3He (npp)
and “He (nnpp), where the constituent nucleons are added one
by one according to the Ap and Ar in the rest frame of the nu-
cleon and a light nucleus core. The resulting light nucleus v; and
vy, as functions of rapidity, are shown as bands in Fig. 5a and 5b,
respectively. Qualitatively both dependencies are well reproduced
by the mean-field mode of the JAM plus coalescence calculations.
It is noteworthy that the sign change in v, of protons (negative)
compared to light nuclei (positive) with increasing rapidity is also
reproduced by the model calculations. Note, the broken A scal-
ing for light nucleus v, is consistent with the nucleon coalescence
picture. On the other hand, the cascade mode of the JAM cannot
reproduce the measured vqi and v; of protons, as shown by the
dash-dotted curves in Fig. 5. As a result, calculations with JAM
cascade plus coalescence fail to reproduce the y dependence of
vy and vy of light nuclei.

A first order polynomial function is employed to fit v in Fig. 5a
within rapidity range —0.5 < y < 0. The extracted slope parame-
ters, dv1/dy, scaled by A, for light nuclei are shown in Fig. 6 as

o (®) 3 GeV Au+Au Collisions _ _
-0.2-
> L
-0.41- - JAM cascade (p)
F ——JAM mean-field (p)
JAM mean-field
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Fig. 5. Rapidity dependencies of light nucleus v; (a) and v, (b) in 10-40% mid-
central Au+Au collisions at /sy = 3 GeV. For t and 4He, the points in —0.1 <y <0
are absent due to limited acceptance. The dash-dotted line and solid line represent
the results for protons from the cascade and mean-field modes of JAM, respectively.
The bands are the results for light nuclei from JAM mean-field plus coalescence
calculations. Systematic uncertainties are represented by open boxes.

functions of the collision energy, together with existing data from
higher energies. The values of (dvi/dy)/A at 3 GeV for all mea-
sured light nuclei are positive and grouped together with that of
the protons. The results of the JAM model in mean-field mode plus
coalescence calculations for p, d, t, 3He and #He in 3 GeV Aut+Au
collisions are also shown with corresponding bars. The same ex-
perimental cuts have been applied in the calculations and the
resulting slope parameters are consistent with the data includ-
ing the relative order. The agreement between experimental data
and model calculations implies that at 3 GeV these light nuclei
are formed via the coalescence processes and baryonic interactions
dictate their dynamics.



STAR Collaboration

0.4 Au+Au Collisions at RHIC
F g~ 10-40%
I
_E‘O.Si % JAM mean-field Data
= - + Coalescence
=2 r - L
< 02 e d
~ . ot
% L + °He
0.1 8 -- s “He
r 10-25%
F nd
s A SR A AR
3 5 7 10 20 30 40
s (GeV)

Fig. 6. Light nucleus scaled v; slopes (d(v]/A)/dy|y:0) as a function of collision
energy in 10-40% mid-central Au+Au collisions. Statistical and systematic uncertain-
ties are represented by vertical lines and open boxes, respectively. The data points
above 7 GeV are taken from [13]. The proton result at \/syy = 4.5 GeV is for 10-25%
Au+Au collisions [34]. For clarity, the data points are shifted horizontally. Results of
the JAM model in the mean-field mode plus coalescence calculations are shown as
color bars.

At higher collision energies, the vi of d has been measured
from /SNy = 7.7 — 39 GeV AutAu collisions by the STAR experi-
ment [13]. At /snn = 7.7 GeV, the v slope of d follows A scal-
ing within the statistical and systematic uncertainties. For energy
A/SNN > 7.7 GeV, the value of proton dv/dy is negative and the
corresponding v slopes of d are positive with larger uncertainties.
The different scaling behavior of light nuclei dvq/dy at \/sny < 7.7
GeV and ./sny > 11.5 GeV may indicate a different production
mechanism. At higher energies where a QGP is formed, the domi-
nant interactions are partonic in nature. At 3 GeV, baryonic interac-
tions are likely dominant and light nuclei may primarily be formed
via coalescence of nucleons. Fragmentation contribution may also
play a role which requires further investigation.

4. Summary

In summary, we present the directed flow v; and elliptic flow
v, of d, t, 3He, and “He for 10-40% centrality in Au+Au collisions at
+/SNN = 3 GeV. The light nucleus v1, as function of both transverse
momentum and particle rapidity, follow an approximate atomic
mass number A scaling at rapidity —0.5 < y < 0, consistent with
the nucleon coalescence model calculations. On the other hand,
the light nucleus v, do not follow the simple A scaling, even after
taking into account the contribution from the comparable mag-
nitude of v%. At mid-rapidity —0.1 < y < 0, the value of v, is
negative for all light nuclei, implying a shadowing effect due to
the longer passage time of the spectators. Away from the mid-
rapidity, the values of light nucleus v, become positive and the
corresponding proton v; remains negative. The JAM model, with
the baryon mean-field (incompressibility parameter ¥ = 380 MeV
and a momentum dependent potential), and a nucleon coalescence
qualitatively reproduce both the v{ and v, as functions of rapidity
for all reported light nuclei. On the other hand, the results from
the JAM cascade mode plus coalescence fail to describe the data.
Our results suggest that the light nuclei are likely formed via the
coalescence of nucleons at ./syy = 3 GeV Au+Au collisions, where
baryonic interactions dominate the collision dynamics.
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