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We report a measurement of the D0 and Dþ lifetimes using D0 → K−πþ and Dþ → K−πþπþ decays
reconstructed in eþe− → cc̄ data recorded by the Belle II experiment at the SuperKEKB asymmetric-
energy eþe− collider. The data, collected at center-of-mass energies at or near the ϒð4SÞ resonance,
correspond to an integrated luminosity of 72 fb−1. The results, τðD0Þ ¼ 410.5� 1.1ðstatÞ � 0.8ðsystÞ fs
and τðDþÞ ¼ 1030.4� 4.7ðstatÞ � 3.1ðsystÞ fs, are the most precise to date and are consistent with
previous determinations.

DOI: 10.1103/PhysRevLett.127.211801

Accurate predictions of lifetimes of weakly decaying
charmed and bottom hadrons are challenging because they
involve strong-interaction theory at low energy. Predictions
must resort to effective models, such as the heavy-quark
expansion [1–6], which also underpin strong-interaction
calculations required for the determination of fundamental
standard-model parameters from hadron-decay measure-
ments (e.g., to extract the strength of quark-mixing cou-
plings from decay widths). Precise lifetime measurements
provide excellent tests of such effective models. Lifetimes
are also important inputs for a wide variety of studies
because they are needed to compare measured decay
branching fractions to predictions for partial decay widths.
Weakly decaying charmed hadrons have lifetimes rang-

ing from about 0.1 to 1 ps [7]. The world averages of theD0

and Dþ lifetimes, 410.1� 1.5 and 1040� 7 fs, are almost
exclusively determined from systematically limited per-
mille-precision measurements made by FOCUS two dec-
ades ago [7,8]. Recently, the LHCb Collaboration precisely
measured the lifetimes of the Dþ

s meson and charmed
baryons relative to that of the Dþ meson [9–12]. Such
relative measurements minimize systematic uncertainties
due to decay-time-biasing event-selection criteria that are
particularly severe at hadron colliders. By contrast, experi-
ments at eþe− colliders, owing to the reconstruction of
large charmed hadron yields without decay-time-biasing
selections, have a great potential for absolute lifetime
measurements. With the first layer of its vertex detector
only 1.4 cm away from the interaction region, the Belle II
experiment at the SuperKEKB asymmetric-energy eþe−
collider [13,14] obtains a decay-time resolution two times
better than the Belle and BABAR experiments [15], ena-
bling high precision for the measurement of charmed
lifetimes with early data. To limit systematic uncertainties
this potential must be complemented with an accurate

vertex-detector alignment, a precise calibration of
final-state particle momenta, and powerful background
discrimination.
In this Letter, we report high-precision measurements of

the D0 and Dþ lifetimes using D�þ → D0ð→ K−πþÞπþ
and D�þ → Dþð→ K−πþπþÞπ0 decays reconstructed in
the data collected by Belle II during 2019 and the first half
of 2020 at center-of-mass energies at or near the ϒð4SÞ
resonance. (Charge-conjugate decays are implied through-
out.) The data correspond to an integrated luminosity of
72 fb−1. At Belle II, D�þ mesons from eþe− → cc̄ events
are produced with boosts that displace the D0 and Dþ
decay points from those of production by approximately
200 and 500 μm on average, respectively. The decay time is
measured from this displacement  L, projected onto the
direction of the momentum  p as t ¼ mD

 L ·  p=j  pj2, where
mD is the known mass of the relevant D meson [7]. The
decay-time uncertainty σt is calculated by propagating
the uncertainties in  L and  p, including their correlations.
The lifetimes are measured using a fit to the ðt; σtÞ
distributions of the reconstructed decay candidates. The
sample selection and fit strategy have been optimized and
validated using simulation; however, no input from simu-
lation is used in the fit to data. To avoid bias,we inspected the
lifetimes measured with the full data sample only after the
entire analysis procedure was finalized and all uncertainties
were determined. However, we examined the results from
the subset of data collected during 2019 (approximately 13%
of the total) before the analysis was complete.
The Belle II detector [13] consists of several subsystems

arranged in a cylindrical structure around the beam pipe.
The tracking system consists of a two-layer silicon-pixel
detector (PXD), surrounded by a four-layer double-sided
silicon-strip detector (SVD) and a 56-layer central drift
chamber (CDC). Only two out of 12 ladders were installed
in the second layer of the PXD for this data sample. The
combined PXD and SVD system provides average decay-
time resolutions of about 70 and 60 fs, respectively, for the
D0 and Dþ decays considered here. A time-of-propagation
counter and an aerogel ring-imaging Cherenkov counter
that cover the barrel and forward end cap regions of the
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detector, respectively, are essential for charged-particle
identification. The electromagnetic calorimeter fills the
remaining volume inside a 1.5 T superconducting solenoid
and serves to reconstruct photons and electrons. A dedi-
cated system to identify K0

L mesons and muons is installed
in the outermost part of the detector. The z axis of the
laboratory frame is defined as the central axis of
the solenoid, with its positive direction determined by
the direction of the electron beam.
The simulation uses KKMC [16] to generate quark-

antiquark pairs from eþe− collisions, PYTHIA8 [17] for
hadronization, EVTGEN [18] for the decay of the generated
hadrons, and GEANT4 [19] for the detector response.
The reconstruction [20–22] and selection of the signal

candidates avoid any requirement that could bias the decay
time or introduce a variation of the efficiency as a function
of decay time, as checked in simulation. Events are first
selected by vetoing events consistent with Bhabha scatter-
ing and by requiring at least three tracks with loose upper
bounds on their impact parameters and with transverse
momenta greater than 200 MeV=c. These three tracks are
not necessarily associated with the decay modes being
reconstructed.
Candidate D0 → K−πþ decays are formed using pairs of

oppositely charged tracks. Each track must have a hit in the
first layer of the PXD, at least one hit in the SVD, at least 20
hits in the CDC, and be identified as a kaon, if negative, or
else a pion. Low-momentum pion candidates are tracks
consistent with originating from the interaction region that
are required to have hits both in the SVD and CDC. They
are combined with D0 candidates to form D�þ → D0πþ

decays. A global decay-chain vertex fit [23] constrains the
tracks according to the decay topology and constrains the
D�þ candidate to originate from the measured position of
the eþe− interaction region (IR). Only candidates with fit
χ2 probabilities larger than 0.01 are retained for further
analysis. The IR has typical dimensions of 250 μm along
the z axis and of 10 and 0.3 μm in the two directions of the
transverse plane. Its position and size vary over data taking
and are regularly measured using eþe− → μþμ− events.
The mass of the D0 candidate mðK−πþÞ must be in the
range ½1.75; 2.00� GeV=c2. The difference between the
D�þ and D0 candidate masses Δm must satisfy 144.94 <
Δm < 145.90 MeV=c2 (�3 times the Δm resolution
around the signal peak). Since the D0 is assumed to
originate from the IR, charmed mesons originating from
displaced decays of bottom mesons would bias the lifetime
measurement. They are suppressed to a negligible rate
by requiring that the momentum of the D�þ in the eþe−

center-of-mass system exceeds 2.5 GeV=c. After requiring
1.851 < mðK−πþÞ < 1.878 GeV=c2 (signal region),
multiple D�þ candidates occur in a few per mille of
the selected events. In such events, one randomly selected
candidate is retained for subsequent analysis.

The signal region contains approximately 171 × 103

candidates with a signal purity of about 99.8%, as deter-
mined from a binned least-squares fit to the mðK−πþÞ
distribution (Fig. 1). In the fit, the D0 → K−πþ signal is
modeled with the sum of two Gaussian distributions and a
Crystal Ball function [24]; misidentified decays of D0 →
πþπ− andD0 → KþK−, each modeled with a Johnson’s SU
distribution [25] with parameters determined from simu-
lation, do not enter the signal region; the remaining
background, modeled with an exponential distribution, is
dominated by candidates formed by random combinations
of particles.
The selection of the D�þ → Dþð→ K−πþπþÞπ0 candi-

dates follows similar criteria to those for the D0 mode, but
with more stringent requirements to suppress a larger
background contamination. Tracks identified as kaons or
pions are required to have a hit in the first layer of the PXD,
at least one hit in the SVD, and at least 30 hits in the CDC.
They are combined to form Dþ → K−πþπþ candidates. To
suppress backgrounds from misreconstructed charmed-
hadron decays, such as four-body hadronic or semileptonic
decays, the lower-momentum pion must have momentum
exceeding 350 MeV=c and the higher-momentum pion
must not be identified as a lepton. Candidate π0 → γγ
decays are reconstructed using photon candidates from
calorimetric energy clusters that are not associated with a
track. Each photon energy must be larger than 80, 30, or
60 MeV if detected in the forward, central, or backward
region, respectively, of the calorimeter. Neutral-pion can-
didates with masses in the range ½120; 145� MeV=c2 and
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FIG. 1. Mass distributions of (top) D0 → K−πþ and (bottom)
Dþ → K−πþπþ candidates with fit projections overlaid. The
vertical dashed and (for the bottom plot) dotted lines indicate the
signal regions and the sideband, respectively.
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momenta larger than 150 MeV=c are combined with Dþ

candidates to form D�þ → Dþπ0 decays. The D�þ decay
chain is fit using IR and π0mass constraints.Only candidates
with fit χ2 probabilities larger than 0.01 are retained. The
mass of theDþ candidate,mðK−πþπþÞ, must be in the range
½1.75; 2.00� GeV=c2 and the difference between the D�þ

and Dþ masses in the range ½138; 143� MeV=c2 (�3 times
the Δm resolution around the signal peak). The momentum
of the D�þ in the eþe− center-of-mass system must exceed
2.6 GeV=c to suppress D�þ candidates from bottom mes-
ons. This requirement is tighter than that used for D0

candidates because of the less-precise π0 -momentum
resolution.
The signal region in mðK−πþπþÞ is defined as

½1.855; 1.883� GeV=c2 (Fig. 1). It contains approximately
59 × 103 candidates after randomly selecting one D�þ
candidate for the percent-level fraction of events where
more than one is found. A binned least-squares fit to the
mðK−πþπþÞ distribution identifies about 9% of candidates
in the signal region as background. Simulation shows that
such background is composed of misreconstructed
charmed decays and random track combinations. In the
fit, the Dþ → K−πþπþ signal is modeled with the sum of
two Gaussian distributions and a Crystal Ball function; the
background is modeled with an exponential distribution.
The lifetimes are determined with unbinned maximum-

likelihood fits to the ðt; σtÞ distributions of the candidates
populating the signal regions. Each signal probability-
density function (PDF) is the convolution of an exponential
distribution in t with a resolution function that depends on
σt, multiplied by the PDF of σt. In the Dþ case, simulation
shows that a Gaussian distribution is sufficient to model the
resolution function. The mean of the resolution function is
allowed to float in the fit to account for a possible bias in
the determination of the decay time; the width is the per-
candidate σt scaled by a free parameter s to account for a
possible misestimation of the decay-time uncertainty. The
fit returns s ≈ 1.12 (1.29) for theD0 (Dþ) sample. In theD0

case, an additional Gaussian distribution is needed to
describe the 3% of candidates with poorer resolution.
This second component shares its mean with the principal
component but has its own free scaling parameter (s0 ≈ 2.5)
for the broader width.
In theD0 case, the signal region contains a 0.2% fraction

of background candidates. Sensitivity to the background
contamination and its effects on the decay-time distribution
is very limited. For the sake of simplicity, the background is
neglected in the fit and a systematic uncertainty is later
assigned. In the Dþ case, the signal region contains a non-
negligible amount of background, which is accounted
for in the fit. The background is modeled using data
with mðK−πþπþÞ in the sideband ½1.758; 1.814� ∪
½1.936; 1.992� GeV=c2 (Fig. 1), which is assumed to
contain exclusively background candidates and be repre-
sentative of the background in the signal region, as verified

in simulation. The background PDF consists of a zero-
lifetime component and two exponential components, all
convolved with a Gaussian resolution function having a
free mean and a width corresponding to sσt. To better
constrain the background parameters, a simultaneous fit
to the candidates in the signal region and sideband is
performed. The background fraction is Gaussian con-
strained in the fit to ð8.78� 0.05Þ%, as measured in the
mðK−πþπþÞ fit.
The PDF of σt is a histogram template derived directly

from the data. In the fit to the D0 sample, the template is
derived assuming that all candidates in the signal region are
signal decays. In the fit to the Dþ sample, the template is
derived from the candidates in the signal region by
subtracting the scaled distribution of the sideband data.
The PDF of σt for the background is obtained directly from
the sideband data.
The lifetime fits are tested on fully simulated data and on

sets of data generated by randomly sampling the PDF with
parameters fixed to the values found in the fits to the data.
All tests yield unbiased results and expected parameter
uncertainties, independent of the assumed values of the D0

and Dþ lifetimes.
The decay-time distributions of the data, with fit pro-

jections overlaid, are shown in Fig. 2. The measured D0

and Dþ lifetimes 410.5� 1.1ðstatÞ � 0.8ðsystÞ fs and
1030.4� 4.7ðstatÞ � 3.1ðsystÞ fs, respectively, are consis-
tent with their world averages [7]. The systematic uncer-
tainties arise from the sources listed in Table I and
described below. The total systematic uncertainty is the
sum in quadrature of the individual components.
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FIG. 2. Decay-time distributions of (top) D0 → K−πþ and
(bottom) Dþ → K−πþπþ candidates in their respective signal
regions with fit projections overlaid.
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The decay time and decay-time uncertainty are observed
to be correlated in data and simulation reproduces these
effects well. The dominant effect is that small σt values
correspond to larger true decay times (and vice versa).
These correlations, when neglected in the fits, result in an
imperfect description of the t distribution as a function of
σt. To quantify the impact on the results, our model that
neglects the correlations is fit to 1000 samples of signal-
only simulated decays, each the same size as the data. The
samples are obtained by resampling, with repetition, a set
of simulated eþe− collisions corresponding to an integrated
luminosity of 500 fb−1. Upper bounds of 0.16 and 0.39 fs
on the average absolute deviations of the measured life-
times from their true values are derived and assigned as the
systematic uncertainty due to the imperfect resolution
model for the D0 → K−πþ and Dþ → K−πþπþ cases,
respectively. For signal decays, the bias of the decay-time
resolution function depends nearly linearly on the candi-
date mass and may not average out when the mass range is
restricted. Varying the boundaries of the signal region
shows that such a correlation has a negligible effect upon
the measured lifetimes.
The background neglected in the D0 → K−πþ fit could

result in a systematic bias on the measured lifetime. To
estimate the size of the bias, we fit our model that neglects
the background to 500 resampled sets of simulated eþe−
collisions, each having the same size and signal-to-
background proportion as the data. The measured lifetimes
are corrected by subtracting the bias due to the neglected t
vs σt correlations. The average absolute difference between
the resulting value and the simulated lifetime, 0.24 fs, is
assigned as a systematic uncertainty due to the neglected
background contamination in the D0 → K−πþ fit.
The background contamination under the Dþ →

K−πþπþ peak is already accounted for in the fit of the
Dþ lifetime using sideband data. In simulation, the side-
band ðt; σtÞ distribution describes the background ðt; σtÞ
distribution in the signal region well. The same might not
hold in data given that some disagreement is observed
between data and simulation in the t distribution of the
candidates populating the sideband. We fit to one thousand
samples of simulated data obtained by sampling the fit PDF
for the signal region and by resampling from the simulated
eþe− collisions for the sideband. The resulting samples
feature sideband data that differ from the background in the

signal region with the same level of disagreement as
observed between data and simulation. The absolute
average difference between the measured and simulated
lifetimes, 2.52 fs, is assigned as a systematic uncertainty
due to the modeling of the background ðt; σtÞ distribution.
In the lifetime fit, the fraction of background candidates
in the signal region is constrained from the fit to the
mðK−πþπþÞ distribution. When we change this back-
ground fraction to values obtained from fitting to the
mðK−πþπþÞ distribution with alternative signal and back-
ground PDFs, the change in the measured lifetime is
negligible.
During data taking, a periodic calibration determines the

alignments and surface deformations of the internal com-
ponents of the PXD and SVD and the relative alignments of
the PXD, SVD, and CDC using eþe− -collision, beam-
background, and cosmic-ray events [26]. Unaccounted-for
misalignment can bias the measurement of the charmed
decay lengths and hence their decay times. Two sources of
uncertainties associated with the alignment procedure are
considered: the statistical precision and a possible system-
atic bias. Their effects are evaluated using simulated signal-
only decays reconstructed with a misaligned detector.
For the statistical contribution, we consider configurations
derived from comparison of alignment parameters deter-
mined from data acquired on two consecutive days. These
configurations have magnitudes of misalignment compa-
rable to the alignment precision as observed in data
averaged over a typical alignment period. For the system-
atic contribution, we consider configurations derived from
simulation studies in which coherent global deformations
of the vertex detectors (e.g., radial expansion) are intro-
duced [27]. These deformations have magnitudes, deter-
mined by the most misaligned sensors, ranging from about
50 to 700 μm. The alignment procedure determines the
magnitude of these deformations within 4 μm accuracy.
We consider configurations in which the CDC is perfectly
aligned and configurations in which it is misaligned.
Possible effects on the determination of the IR are also
introduced by using parameters measured on misaligned
samples of simulated eþe− → μþμ− events, to fully mimic
the procedure used for real data. For each misalignment
configuration, we fit to the reconstructed signal candidates
and estimate the lifetime bias. We estimate the systematic
uncertainty due to imperfect detector alignment as the sum
in quadrature of the largest biases observed in each of the
statistical and systematic contributions. The resulting
uncertainties are 0.72 and 1.70 fs for D0 → K−πþ and
Dþ → K−πþπþ decays, respectively. The absolute length
scale of the vertex detector is determined with a precision
significantly better than 0.01% and contributes negligibly
to the systematic uncertainty.
The measurement of momenta is calibrated with the peak

positions of abundant charmed-, strange-, and bottom-
hadron decays. Uncertainty in the scaling of the momenta

TABLE I. Systematic uncertainties.

Source τðD0Þ [fs] τðDþÞ [fs]
Resolution model 0.16 0.39
Backgrounds 0.24 2.52
Detector alignment 0.72 1.70
Momentum scale 0.19 0.48
Total 0.80 3.10
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results in a systematic uncertainty in the lifetimes of
0.19 fs for D0 and 0.48 fs for Dþ. Uncertainties in the
D0 and Dþ masses [7] contribute negligibly to the
systematic uncertainty.
As a cross-check, a statistically independent measure-

ment of the D0 lifetime is performed using approximately
146 × 103 D�þ → D0ð→ K−πþπ−πþÞπþ decays recon-
structed in data with criteria similar to those used for the
D0 → K−πþ mode and a signal purity greater than 99%.
The resulting lifetime, 408.8� 1.2ðstatÞ fs, agrees with the
value determined from the D0 → K−πþ mode.
Finally, the internal consistency of the measurement is

tested by repeating the full analysis on various subsets of
the data, i.e., running periods and running conditions,
charmed-meson momentum and flight direction, and
D�þ or D�− candidates. We have also studied different
selection criteria and sideband definitions. In all cases, the
resulting changes in the lifetimes are insignificant.
In conclusion, the D0 and Dþ lifetimes are measured

using eþe− → cc̄ data collected by the Belle II experiment
corresponding to an integrated luminosity of 72 fb−1. The
results,

τðD0Þ ¼ 410.5� 1.1 ðstatÞ � 0.8 ðsystÞ fs and ð1Þ

τðDþÞ ¼ 1030.4� 4.7 ðstatÞ � 3.1 ðsystÞ fs; ð2Þ

are the world’s most precise to date and are consistent with
previous measurements [7]. Assuming that all systematic
uncertainties are fully correlated between the two mea-
surements, except those due to the background contami-
nation (assumed uncorrelated), the total correlation
coefficient is 18%. The ratio of lifetimes is
τðDþÞ=τðD0Þ ¼ 2.510� 0.013ðstatÞ � 0.007ðsystÞ. These
results demonstrate the vertexing capabilities of the Belle II
detector and confirm our understanding of systematic
effects that impact future decay-time-dependent analyses
of neutral-meson mixing and mixing-inducedCP violation.
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