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Understanding gluon density distributions and how they are modified in nuclei are among the most
important goals in nuclear physics. In recent years, diffractive vector meson production measured in
ultraperipheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density.
In this Letter, we report the first measurement of J=ψ photoproduction off the deuteron in UPCs at the center-
of-mass energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV in dþ Au collisions. The differential cross section as a function of
momentum transfer−t is measured. In addition, data with a neutron tagged in the deuteron-going zero-degree
calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent
diffractive scattering at low momentum transfer. Theoretical predictions based on the color glass condensate
saturation model and the leading twist approximation nuclear shadowing model are compared with the data
quantitatively. A better agreement with the saturation model has been observed. With the current
measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron
and the deuteron breakup process, which provides insights into the nuclear gluonic structure.

DOI: 10.1103/PhysRevLett.128.122303

One of the most outstanding problems in modern nuclear
physics is the partonic structure of nucleons (protons and
neutrons) and nuclei. Specially, the origin of the modified
partonic structure of nucleons bounded in nuclei has been
of extreme interest, with its first discovery on the valance
quarks made by the European Muon Collaboration (EMC)
almost 40 yr ago, known as the EMC effect [1–7].
However, this modification was not only found in valance
quarks but also in gluons [8], where gluons start to
dominate in parton densities at high energies [9] and
become more relevant in considering the parton hard
scattering processes. See Ref. [10] for a review.
Coherent diffractive vector-meson (VM) production off

nuclei has been considered as one of the golden measure-
ments to study the gluon density and its spatial distributions
[10–24]. In recent analyses carried out by the Large Hadron
Collider (LHC) collaborations [16,17,19–24], photopro-
duction of the J=ψ meson has been measured in ultra-
peripheral collisions (UPCs) of heavy ions—a photon-ion
interaction at a large impact parameter arising from extreme
electromagnetic fields [25]. The resulting cross sections
were found to be significantly suppressed with respect to
that of a free proton [16,17,22,23]. Leading twist approxi-
mation (LTA) calculations strongly suggest that the sup-
pression is caused by the nuclear shadowing effect [26–28],
while other models, e.g., the color dipole model with gluon

saturation and nucleon shape fluctuations [29], can also
describe the UPC data qualitatively. As of today, neither the
gluonic structure of heavy nuclei nor the modification of
their partonic structure is fully understood.
An interesting experimental approach to reveal the

gluonic structure of nuclei is to study the deuteron—the
simplest nuclear bound state of one proton and one neutron.
While neither gluon saturation nor the nuclear shadowing
effect is expected to be significant in such a loosely bound
system, the deuteron may provide unique physics insights
to phenomena that are poorly understood from data of
heavy nuclei, e.g., the interplay between coherent and
incoherent VM production, nuclear breakup, single and
double nucleon scattering, and short-range nuclear corre-
lations. For example, recent studies have shown potential
connections between (gluon) EMC effects and short-range
nuclear correlations in light nuclei [30–32]. This is a
subject of interest for a wide range of physics communities,
from nuclear and particle physics to high-density neutron
stars in astrophysics.
In this Letter, we investigate the differential cross section

of J=ψ photoproduction as a function of momentum transfer,
−t, in dþ Au UPC events at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The J=ψ
photoproduction process in dþ Au UPCs is illustrated in
Fig. 1. In the photoproduction limit, the momentum
transfer variable −t can be approximated by the transverse
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momentum squared of J=ψ particles, p2
T;J=ψ . The approxi-

mate photon-nucleon center-of-mass energy is [33], W ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hENiMJ=ψe−y

p
∼ 25 GeV, where EN is the average beam

energy per nucleon, MJ=ψ is the mass of the J=ψ particle,
and y is the J=ψ rapidity. In addition, the differential J=ψ
cross section with single neutron tagged events is reported.
The data are compared with two theoretical models: (i) the
color glass condensate (CGC) saturation model and (ii) the
LTA nuclear shadowing model. These model predictions are
based on an extension from heavy nuclei to light nuclei
[28,34,35]. Both model calculations are made specifically to
the dþ Au UPC data at relativistic heavy-ion collider
(RHIC), where Ref. [35] is an extension of Ref. [28] from
heavy nuclei at the LHC to the deuteron at RHIC.
The solenoidal tracker at RHIC (STAR) detector [36]

and its subsystems have been thoroughly described in
previous STAR papers [37,38]. This analysis utilizes
several subsystems of the STAR detector. Charged particle
tracking, including transverse momentum reconstruction
and charge sign determination, is provided by the time
projection chamber (TPC) [39] positioned in a 0.5 T
longitudinal magnetic field. The TPC volume extends from
50 to 200 cm from the beam axis and covers pseudor-
apidities jηj < 1.0 and over the full azimuthal angle,
0 < ϕ < 2π. Surrounding the TPC is the barrel electro-
magnetic calorimeter (BEMC) [40], which is a lead-
scintillator sampling calorimeter. The BEMC is segmented
into 4800 optically isolated towers covering the full
azimuthal angle for pseudorapidities jηj < 1.0. There are
two beam-beam counters (BBCs) [41], one on each side of
the STAR main detector, covering a pseudorapidity range
of 3.4 < jηj < 5.0. There are also two zero degree calo-
rimeters (ZDCs) [36], used to determine and monitor the
luminosity and tag the forward neutrons.
The UPC data were collected by the STAR experiment

during the 2016 dþ Au run, corresponding to an integrated
luminosity of 93 nb−1 and approximately 2 × 106 UPC J=ψ -
triggered events. The J=ψ candidates are reconstructed
via the electron decay channel J=ψ → eþe−, which has
a branching ratio of 5.93%[42]. Based on this channel, the

UPC J=ψ trigger is defined by no signal in either BBC east
or west, time-of-flight [36] track multiplicity between 2
and 6, and a topological selection of back-to-back clusters
in the BEMC. In the offline analysis, the events are required
to have a valid vertex that is reconstructed within 100 cm
of the center of the STAR detector. In addition, a valid
event is required to have at least two TPC tracks associated
with the primary vertex with transverse momentum pT >
0.5 GeV=c and jηj < 1.0. Single electron candidates are
selected from charged tracks reconstructed in the TPC,
which are required to have at least 25 space points (out
of a maximum of 45) to ensure sufficient momentum
resolution, contain no fewer than 15 points for the ioniza-
tion energy loss (dE=dx) determination to ensure good
dE=dx resolution, and be matched to a BEMC cluster.
Furthermore, these tracks are required to have a distance of
closest approach less than 3 cm from the primary vertex. To
further enhance the purity of electron candidates for the
J=ψ reconstructions, an unlike-sign electron pair selection
is performed based on the dE=dx of charged tracks. The
variable nσ;e (nσ;π) is the difference between the measured
dE=dx value compared with an electron (π) hypothesis of
the predicted dE=dx value. It is calculated in terms of the
number of standard deviations from the predicted mean.
The pair selection variable χ2eþe− is defined as n

2
σ;eþ þ n2σ;e−

(similar for π). For the region of χ2πþπ− < 30, the ratio
χ2eþe−=χ

2
πþπ− is required to be less than 1=3, while for

χ2πþπ− > 30, χ2eþe− must be< 10. This pair selection ensures
the purity of electrons is higher than 95%, which is
determined by a data-driven approach using photonic
electrons [37].

The unlike-sign electron candidates are paired to recon-
struct an invariant mass distribution of J=ψ candidates,
while the like-sign pairs are also investigated to indicate the
contribution from the combinatorial background. The
resulting J=ψ candidates are required to have a rapidity
jyj < 1.0. In Fig. 2 (left), the invariant mass distribution is
shown with a template fit to extract the raw yield of J=ψ
particles. The signal template is taken from the STARlight
[43] Monte Carlo program that was run through the STAR
detector GEANT3 simulation [44] for its detector response,
indicated by the shaded histogram. Motivated by similar
studies in Refs. [17,45,46], the background function is
taken to be of the form ðm − AÞeBðm−AÞðm−CÞþCm3

, which
can describe both the combinatorial and the two-photon
interaction (γγ → eþe−) backgrounds. The fitted result is
shown as the dotted line, where meþe− is the invariant mass
of two oppositely charged electrons, and A, B, and C are
free parameters [33]. The raw yield of the entire analyzed
sample after full event selections and background sub-
traction is 359� 22. For measurement of the differential
cross section, raw yields of each p2

T;J=ψ interval are
determined based on the same fitting procedure. In
Fig. 2 (right), the ZDC energy depositions in terms of

γ

Au

d X

J/

Au'

-t  p2

T,J/

quasireal photon

FIG. 1. Photoproduction of J=ψ in dþ Au UPCs, where X
represents the deuteron (coherent) or deuteron-dissociative (in-
coherent) system.
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the analog-to-digital converter (ADC) count are shown for
both Au- and deuteron-going directions. For the deuteron-
going direction, an ADC count larger than 40 is required for
events associated with single neutron emission. Note that
after extracting the J=ψ signal, no significant background
(pedestal) has been found under the neutron peak for the
ADC count larger than 40.
The differential cross section of J=ψ photoproduction as

a function of −t is measured in the dþ Au UPCs, which
can be related to the photon-deuteron cross section based
on the relation

d2σðdþAu→J=ψþXÞ

dtdy
¼ ΦT;γ

d2σðγ�þd→J=ψþXÞ

dt dy
; ð1Þ

where ΦT;γ is the average transversely polarized photon flux
emitted from the Au nucleus. The probability of a photon
emitted by the deuteron is ∼4 orders of magnitude smaller,
therefore negligible in this analysis with J=ψ rapidity
jyj < 1.0, and X represents the deuteron (coherent) or the
deuteron-dissociative (incoherent) system. Therefore, the
full differential cross section in the photon-deuteron system
can be written as

d2σðγ�þd→J=ψþXÞ

dtdy
¼ 1

ΦT;γ

Nobs

Δt × Δy × ðA × ϵÞ × ϵtrig

×
1

Lint × BRðeþe−Þ : ð2Þ

HereΦT;γ ¼ 11.78 is based on the STARlight MC generator,
where the photon flux is calculated based on the Au nucleus
thickness function and the photon number density deter-
mined from the Weizsacker-Williams method [43]. The Nobs
is the raw J=ψ yield, Lint is the integrated luminosity,
BRðeþe−Þ ¼ 5.93% is the branching ratio of J=ψ decaying
into an electron pair, Δt is the bin width of p2

T;J=ψ , Δy ¼ 2.0

is the rapidity range, A × ϵ is the J=ψ reconstruction
acceptance and efficiency corrections, and ϵtrig is the trigger
efficiency correction. The J=ψ reconstruction efficiency and
trigger efficiency corrections are based on the STARlight
MC events embedded into STAR zero-bias events, where an
unfolding technique is employed in the correction procedure.
The default unfolding algorithm is based on the Bayesian
method from the RooUnfold software package [47].
Different sources of systematic uncertainty on the differ-

ential cross section were investigated, which were quanti-
tatively motivated by previous STAR publications on VM
and di-lepton measurements [19,37,48]. Variations of the fit
functions, signal templates, yield extraction methods (bin
counting vs fit parameter), and momentum resolution of
tracks yield a combined systematic uncertainty of 7.3%.
Track selections with more than 20 or 30 space points in
TPC hits, with more than 10 or 20 space points of dE=dx
determination and less than 2 cm in a distance of closest
approach with respect to the primary vertex were inves-
tigated and found to lead to a systematic uncertainty of 4%.
Variation of the electron identification selection criteria
yields a systematic uncertainty of 2%. The systematic
uncertainty associated with the unfolding technique, e.g.,
regularization parameter (4 vs 10 iterations), unfolding
algorithm (RooUnfold Bayesian vs TUnfold [49]), and
modified underlying truth distributions (exponential vs flat),
is found to be 3%. The trigger efficiency associated with the
trigger simulation of the BEMC is found to have an
uncertainty of 8%. The systematic uncertainty on the
integrated luminosity determined by the STAR experiment
during this dþ Au run is 10% [50,51]. Finally, the
systematic uncertainty on modeling the transversely polar-
ized photon flux is found to be 2% by varying the Au radius
by �0.5 fm, where a similar study has been done in
Ref. [33] at the LHC. The different sources of uncertainty
are added in quadrature for the total systematic uncertainty,
which is found to be 15.8%. The systematic uncertainty
is largely independent of −t, which is expected given that
the daughter electrons in the studied kinematic region are
within a range of momentumwith good detector resolutions.
In Fig. 3, the fully corrected differential cross section

of J=ψ photoproduction in dþ Au UPCs at
ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV is shown. The total diffractive J=ψ cross section
is labeled “Total data.” Figure 3 also shows the n-tagged
data, which requires that a neutron be detected in the
deuteron-going ZDC from deuteron breakup. There are
three distinct physics processes that contribute to the ‘total
data”: (i) coherent diffraction, X ¼ deuteron; (ii) incoher-
ent diffraction with elastic nucleon, X ¼ protonþ
neutron; and (iii) incoherent diffraction with nucleon
dissociation, X ¼ proton ðneutronÞ þ fragments. For (i),
it is possible that the deuteron can be broken up by a
secondary soft photon, although with small probability, on
the order of 0.1% estimated in the measured kinematic
region [52,53].
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FIG. 2. Left: invariant mass distribution and corresponding
fits of J=ψ candidates reconstructed via the electron decays.
Right: ZDC energy deposition (arbitrary units) distribution for
both Au- and deuteron-going directions.
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Although separating the three physics processes exper-
imentally is difficult, the STAR ZDC with approximately
�2.5–3 mrad of angular acceptance [54] can capture
almost 100% of the neutron spectators. For the case when
the neutron is the leading nucleon, the acceptance is
nearly 100% for p2

T;J=ψ ≈ p2
T;neutron. Therefore, in the very

low −t region, the n-tagged events are expected to be
dominated by the incoherent scattering process [52,53].
In addition, there is the possibility of more complicated
incoherent scattering processes, e.g., the photon
interacts with both nucleons simultaneously [55–57],
where the data with neutron tagging reported in this
measurement will be extremely helpful in constraining
these scenarios.
To further understand the structure of gluons in the

deuteron, we compare our data quantitatively with afore-
mentioned theoretical models—CGC [34] and LTA [35].

It is important to note that for STAR kinematics, where
Bjorken-x ∼ 0.01, a very small gluon saturation or the
nuclear shadowing effect is expected. Without these
effects, however, the data and model comparisons (and
comparison between models) will be more sensitive to the
underlying gluon density distributions, deuteron breakup
processes, etc. There are a few model variations available
for comparison with the STAR data, while only one
variation from each model is presented in Fig. 3. The
presented CGC and LTA predictions use the AV18
deuteron wave function [58] with effects of nucleon
shape and cross section fluctuations, respectively
[34,35]. Other model variations and their comparisons
to the data are available in the Supplemental Material
[59], which includes Refs. [34,35,58,60]. In Fig. 3, the
sum of all diffractive processes (coherent and incoherent)
is presented for both models, and denoted by lines. The
ratios between the total data and the two models are
shown in the lower panel. Note that the theoretical
uncertainties related to these two models are significantly
less than those of the data in the measured −t range, and
therefore are not shown.
It is found that the prediction based on the CGC model

describes the data better quantitatively, where the χ2 per
degree of freedom is found to be 3.38. On the other hand,
the LTA overpredicts the data over most of the measured −t
range except for the first bin, resulting in a χ2 per degree of
freedom of 13.41. In these analyses, no model parameters
are allowed to vary; thus, the absolute differential cross
sections from the models are directly compared with the
data. Although the small number of degrees of freedom
might make the absolute χ2 values suspect, their relative
sizes for the two models are still highly relevant.
In Fig. 4, our total and n-tagged data are compared with

the same model predictions from Fig. 3, but decomposed
into coherent and incoherent contributions. For the coher-
ent process, the LTA predicts a −t distribution similar to
that of the CGC, where the slope of the coherent −t
distribution is generally a measure of the target size [61].
In contrast, the incoherent contributions are found to be
significantly different, especially at low −t, which is in a
regime that is sensitive to the deuteron breakup. No
experimental data were available in this kinematic region
prior to this measurement. Therefore, by using the forward
neutron tagging in the ZDC, the n-tagged data in this
Letter provide the first direct measurement of incoherent
diffractive J=ψ production at low −t. The result is found to
be in better agreement with the incoherent prediction
based on the CGC model. A quantitative comparison
between the n-tagged data and incoherent contributions
from the two models can be found in the Supplemental
Material [59].

In conclusion, the differential cross section of J=ψ
photoproduction has been measured as a function of
momentum transfer −t in dþ Au ultraperipheral collisions
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FIG. 3. Upper: differential cross section as a function of p2
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of J=ψ photoproduction in UPCs at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Data for
the total diffractive process are shown with solid markers, while
data with neutron tagging in the deuteron-going ZDC are shown
with open markers. Theoretical predictions based on the satu-
ration model (CGC) [34] and the nuclear shadowing model (LTA)
[35] are compared with data, shown as lines. Statistical uncer-
tainty is represented by the error bars, and the systematic
uncertainty is denoted by the shaded box. Lower: ratios of total
data and models are presented as a function of −t ≈ p2

T;J=ψ . Color
bands are statistical uncertainty based on the data only, while
systematic uncertainty is indicated by the gray box.
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at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV using the STAR detector. The data are
corrected to the photon-deuteron center-of-mass system,
where all final-state particles from deuteron breakup are
included. In addition, the differential cross section with a
single neutron detected in the deuteron-going zero-degree
calorimeter is reported. The data are compared with
theoretical predictions based on the color glass condensate
saturation model and the leading twist approximation
nuclear shadowing model. Both models use the Good-
Walker paradigm [62] to describe the coherent and inco-
herent photoproduction of J=ψ in ultraperipheral collisions.
The saturation model approaches the problem with dynami-
cal modeling of the gluon density and its fluctuation of the
target, while the nuclear shadowing model emphasizes the
importance of a shadowing correction from multinucleon
interaction in nuclei and the fluctuation of the dipole cross
section. The data are found to be in better agreement with
the saturation model for incoherent production, where the
disagreement between the two models has provided impor-
tant insights into our theoretical understanding of the
nuclear breakup processes.
Understanding these processes in a simple nuclear

environment will be indispensable to further understanding
the nuclear effect in heavy nuclei. The data and model
comparisons reported in this Letter place significant exper-
imental constraints on the deuteron gluon density distri-
butions and the deuteron breakup process. The results
reported here of J=ψ photoproduction will serve as an
essential experimental baseline for a high precision meas-
urement of diffractive J=ψ production at the upcoming
Electron-Ion Collider.
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