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Abstract—1In this work, time-driven learning refers to the machine
learning method that updates parameters in a prediction model contin-
uously as new data arrives. Among existing approximate dynamic pro-
gramming (ADP) and reinforcement learning (RL) algorithms, the direct
heuristic dynamic programming (dHDP) has been shown an effective tool
as demonstrated in solving several complex learning control problems.
It continuously updates the control policy and the critic as system states
continuously evolve. It is therefore desirable to prevent the time-driven
dHDP from updating due to insignificant system event such as noise.
Toward this goal, we propose a new event-driven dHDP. By constructing
a Lyapunov function candidate, we prove the uniformly ultimately
boundedness (UUB) of the system states and the weights in the critic
and the control policy networks. Consequently, we show the approximate
control and cost-to-go function approaching Bellman optimality within
a finite bound. We also illustrate how the event-driven dHDP algorithm
works in comparison to the original time-driven dHDP.

Index Terms— Direct heuristic dynamic programming ({HDP),
event-driven/time-driven dHDP, reinforcement learning (RL).

I. INTRODUCTION

In this work, time-driven learning refers to the machine learning
method that updates parameters in a prediction model continuously as
new data arrives. While important applications such as autonomous
robots and intelligent agents on the web or in mobile devices
require on-the-fly and continuous adaptation to environment changes,
catastrophic forgetting [1], [2] can occur and thus drastically disrupt
prediction performance. From a human learning perspective, such
periodic, continuous update of the prediction model does not best rep-
resent biological learning. Long-established theory based on extensive
experimental data shows that short-term memory decays very slowly
when the environment is undisturbed, but decays amazingly fast
otherwise. In machine learning, disruption of a learned model by
new learning is a recognized feature of neural networks [2]-[8].

Forgetting after learning has plagued the machine learning field
for many years and it has attracted attention from machine learn-
ing researchers who seek scalable and effective learning methods.
A notable such progress was reported in [9] where several Atari
2600 games were learned sequentially by elastic weight consolida-
tion (EWC) algorithm. To learn a new task, EWC tempers the network
parameters based on previous task(s): it enables fast learning rates on
parameters that are poorly constrained by the previous tasks and slow
learning rates for those that are crucial. Incremental learning is an idea
of triggering learning only if new patterns are sufficiently different

Manuscript received December 20, 2019; revised May 3, 2020 and
October 16, 2020; accepted January 16, 2021. The work of J. Si was
supported in part by the NSF under Grant #1563921 and Grant #1808752.
(Corresponding author: Jennie Si.)

Qingtao Zhao and Jian Sun are with the Key Laboratory of Intelligent Con-
trol and Decision of Complex System, Beijing Institute of Technology, Beijing
100081, China (e-mail: zhaoqingtaophx @ 163.com; sunjian@bit.edu.cn).

Jennie Si is with the Department of Electrical, Computer, and Energy
Engineering, Arizona State University, Tempe, AZ 85287 USA (e-mail:
si@asu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3053037.

Digital Object Identifier 10.1109/TNNLS.2021.3053037

from previous ones [10], [11]. For example, the Learn++ algorithm
is to make the distribution update rule contingent on the ensemble
error instead of the previous hypothesis error to allow for efficient
incremental learning of new data that may introduce new classes.
In [7], learning without forgetting (LwF) was proposed by employing
convolutional neural networks. Given a set of shared weights across
all tasks, it optimizes the shared weights, old task weights, and
new task weights simultaneously based on an objective function
including the predicted errors of old tasks, new tasks, and a regulation
term. Similarly, to alleviate catastrophic forgetting, Zenke et al. [8]
allowed individual synapses to estimate their importance for learned
task. When the weights learn a new task, the cost-to-go function is
modified by adding a penalty term of the summed parameter error
functions of all previous tasks to reduce large changes in important
parameters.

Continuous-time nonlinear systems have been considered to
address the forgetting after learning problem in RL or ADP.
In [12] and [13], the authors established a framework to update
neural network weights in an event-triggered manner while the
weight convergence and system stability were still guaranteed. But
the results were obtained for nonlinear affine systems. Additionally,
an observer network was required in [12] and a system identifier
network was required in [13]. In [14]-[16], the authors considered a
partially unknown affine nonlinear system. They showed the weight
convergence of the neural networks and controlled system stability
while taking into account control input constraints and under differ-
ent event triggering conditions. Also dealing with nonlinear affine
systems, [17]-[21] take into account an internal uncertainty or an
external disturbance by the proposed event-triggered robust control
using ADP structures. A different event-triggered condition based on
value functions was proposed in [22] for continuous-time nonlinear
systems using ADP. The convergence of the performance index was
guaranteed while the system stability and weight boundedness were
also considered. But such triggering condition is indirect and its
dependence on value function may result in false triggers as value
function approximation errors vary, sometimes to a large degree.

A small set of papers have addressed discrete-time event-triggered
ADP by proving system stability, weight convergence in the
approximating neural networks, and optimality of the learned
policy [23]-[25]. The methods in [23] and [24] are restricted to affine
nonlinear systems and they also need an identifier neural network as
the state at time k+1 is required to solve the HIB equation, the use of
which will inevitably introduce errors into the solution and adversely
affect the reproducibility of the results. In addition to requiring
an identifier neural network for [24] and [25], the event-triggered
condition in those works was obtained during the derivation of
Lyapunov stability analysis of the nonlinear dynamic system. As a
result, the event-triggered condition is quite involved, and it is not
clear how to constructively apply this condition in design.

In recent years, ADP has developed into powerful tools for
optimally and adaptively control nonlinear dynamic systems driven
by data without (complete) knowledge of the system dynamics.
Among those ADP methods that deal with continuous-time nonlinear
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system of different forms, [26]-[28] have considered the optimality
of the policy iteration algorithms, but the design or the convergence
of approximating neural network weights was not considered. For
discrete-time systems, Bellman optimality of the designed control
policy is proved based on policy iteration [29] and value itera-
tion [30] for affine nonlinear systems, and Bellman optimality was
also obtained in [31] for general nonaffine systems. However, system
stability was not provided in [29]-[31], and additionally, neural net-
work weight convergence was not provided in [30]. Aside from those
important theoretical properties, practically useful ADP algorithms
have always been sought after. In this regard, the dHDP [32] (an
online, continuous learning algorithm) has shown its promise in
solving realistic, complex, and meaningful engineering problems that
few other ADP or RL algorithms have been able to demonstrate
in the area of adaptive optimal control. Since its introduction,
the dHDP has been applied to some complex control problems
such as Apache helicopter stabilization, tracking, and reconfiguration
control [33]-[35], damping low-frequency oscillation in large power
systems [36], and most recently, robotic prosthesis control tested
on amputee subjects [37], [38] and robot-assisted human rehabilita-
tion [39]. However as previously described, we also noticed parameter
drift due to noise after learning [38], [40]. An enhanced dHDP with
an ability to learn only significant events is thus expected to further
improve the applicability of the original dHDP [32].

Therefore, in this work, we aim to develop an easy-to-implement,
event-based dHDP to update the policy and critic network weights
driven by events directly reflected in system states.

Our proposed work differs from [12]-[22]. Almost all previous
event-triggered ADP algorithms were developed for continuous-time
systems, which also only deal with nonlinear dynamics that can
be described as affine systems. Among the few existing works for
discrete-time systems, Sahoo er al. [23] proposed a near optimal
event-driven control for nonlinear systems using an ADP structure
under some assumptions. However, this method was again, only
applicable for affine systems and an identifier neural network was also
necessary. More recently, Ha er al. [24] investigated an event-based
controller for affine discrete-time systems with constrained inputs.
The stability of the systems was guaranteed with Lyapunov analysis
tools but the approximation errors of the neural networks were
ignored. Additionally, a third model neural network was needed.
In [25], the authors proved the convergence of the weights for general
discrete-time systems in an input to state stable framework but a
model neural network was still needed.

With previous works laid out and discussed in the above, our new
contributions toward constructing theoretically suitable and practi-
cally useful event-driven dHDP are summarized below.

1) We base our current work on an established dHDP online
learning control algorithm. Also, we have derived a new and
simple event-triggered condition. Together, our event-driven
dHDP is potentially useful in practical applications.

2) Compared with previous works, which require the nonlinear
dynamics under consideration to be described as affine sys-
tems and/or the design of which requires an identifier/model
neural network, our event-driven dHDP is applicable to general,
discrete-time nonlinear systems and learns from data without
the requirement of learning a dynamic system model either
online or offline.

3) We show that our proposed algorithm retains important analyti-
cal properties (convergence of approximating weights, stability
of the controlled system, and optimality of the learned solution)
that are useful as assurances for applications.

In the remainder of this brief, Section II will be used to formulate

the event-driven dHDP for general, discrete-time nonlinear systems.
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Section III provides the proofs of system stability and neural network
weight convergence as well as the solution optimality. We use an
example to illustrate the proposed algorithm in Section IV.

II. PROBLEM FORMULATION

Consider a general nonlinear discrete-time system with unknown
dynamics

x(k+1) = fx(k), u(k)) 1)

where x € R™ is the system state and u € R” system input.

Assumption 1: System (1) is controllable. x(k) = O is a unique
equilibrium point and f(0, 0) = 0.

In time-driven ADP, a control input u(k) is generated at each
sampling time k as a function of system state x (k). In event-driven
ADP, which is considered in this work, the control input is updated
only when there is a driving event reflected in system states going
beyond a threshold. As such, the control inputs will be kept constant
in a zero-order holder (ZOH) after a driving event time instant.
We define the event indices as {5;(}]‘:10 (09 = 0). The control law
can then be represented as

uk) = u(G) Vo <k < Gpr. @
We introduce the event-driven state error as
e(k) = x(0) — x(k) Yo, <k < Fpy1. 3)
Then system (1) can be rewritten as
x(k+1) = f(x(k), u(e(k) + x(k)). “
Let the event instants be determined by the following condition:
le()ll < er (&)

where er is a time-varying threshold variable that will be investigated
in next section.
Consider the following cost-to-go function with event-driven
control:
(e.¢]
V) = ra(). ut() +e() ©)
J=k
where

r(x(k), u(x (k) + e(k))
= r(x(k), u(x(d))
= 2T (k) Qx (k) + u” (x(5)) Ru(x (). ©)

In the above equation, both Q and R are positive definite matrices
whose maximum eigenvalue and minimum eigenvalue are Amax(-)
and A (+), respectively. For simplicity, we denote r(x(k), u(x(d))
as r(k).

It is noted that the V (x(k)) reflects a measure of the performance
index at state x(k) and satisfies the Bellman equation

V(x(k)) = r(k) + V(x(k + 1)). (8)

From Bellman’s optimality principle, the optimal cost-to-go func-
tion is therefore
E3 .
Ve@)= o
As a model of the environment is unknown for system (1), our
design, as in the original dHDP, relies on memory in place of
using predicted system states when formulating the Bellman error
for training the critic network.
To achieve event-driven learning control by dHDP, we adopt the
architecture as shown in Fig. 1, where both the critic network and

{r(k) + V*(x(k + 1))}. 9)
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Fig. 1. Relationship between event time instants J; and general time k is
shown in the upper left corner. As (2) and (3) show, only at event time instants
Ok, the state x(k) = x(dx) is used to update u(dy). At other time instants,
the ZOH element provides the needed control input to interact with the system.
Correspondingly as shown in (14) and (17), the weights in the critic and action
networks learn at event time instants k = J; and remain unchanged without
triggering event. The critic network approximates the cost-to-go as a function
of x(dx) and u(J), while the action network approximates the input control
as a function of x(dy).

the action network are universal approximating neural networks. The
nonlinear thresholding functions ¢.(.) and ¢,(.) in the hidden layer
are hyperbolic tangents. We use 7.(k), 75 (k) and w.(k), w,(k) to
denote the input-to-hidden layer weights and the hidden-to-output
layer weights for the critic and the action networks, respectively.

Given Fig. 1, we consider the approximate cost-to-go function
V (x(k)) and the approximate input (k) of the following form:

V(x(k) = &F (k)pe (k)
(k) = &F (k)ga k).

(10)
an

In this work, the input-to-hidden layer weights 7.(k), 7, (k) are
chosen initially at random and kept constants as was the case in [41]
and only the output layer weights w(k), w, (k) are updated during
learning. As shown in [41], such neural networks can be universally
approximating.

The critic network weights are updated in order to minimize the
following approximation error:

el (k)ec (k)
A 2 A
ec(k) = V(x(k)) = [V(x(k —1) —r(k — D].

Ec(k) = 12

13)

Under the event-driven learning mechanism (2), learning and adapta-
tion takes place only at event instants, that is k = J; and the control
input holds as a constant during the event intervals. Then the critic
network weights are updated as

Be(k) = e (k) [OF () pe (k) +r(k — 1)
—of (k= Dgetk = D], k=5
O <k < Ok41

dclk+ 1) =

wc(k),
(14)

where /. denotes the learning rate of the critic network.

Similar to [32], the action network weights are adjusted to mini-
mize the following approximation error:

T
Eatty = @00 (15)
ea(k) = V(x(k)). (16)

Similar to the critic network, the action network weights are updated
as follows considering that the weight updates are driven by signifi-
cant events in the system states:

@a (k) — lada (k) [OT () C (k)]
x [oF k)ge)]", k=
dak), O <k < iy

where [, denotes the learning rate of the action network and the
components of C(k) € RVic X" are expressed as

dalk+1) = (17)

1
Cji(k) = 3 (1- ¢5c21 (K)) Ty i

I=1,..., Ny, (18)

where [ and i are the indices of the hidden and input neurons, while
m and n denote the dimension of system state and input.

We refer the critic and action update rules in (14) and (17) as
event-driven dHDP. Let o} and o] be the optimal weights of the
critic network and the action network, respectively, that is,

i=1,...,n

ol = argagin IV Ce(k)) = [V (x(k = 1) = r(k = D] (19)

@; = argmin IV ()l (20)
Then we have :

VEx(0) = o (ke (k) + € @1

w* (k) = op! (K)pa (k) + €a (22)

where V*(x(k)) and u*(k) denote the optimal cost-to-go function
and optimal control input, while €, and €, are the neural network
reconstruction errors of the critic network and the action network,
respectively.

III. MAIN RESULTS

As previously described, our goal is to devise a dHDP-based
ADP online learning method that adapts the action and the critic
weights during significant system events reflected in system states.
That is to say that learning and adaptation does not necessarily
take place regularly at each sampling time when an observation is
made. We therefore will provide a sufficient condition under which
learning takes place as driven by events while the closed-loop system
stability is guaranteed. Specifically, we will show that both the weight
parameters and the system states will remain UUB.

We define the weight estimation errors and some auxiliary variables
as follows:

wc(k) = dc(k) — wz

&k) = (@ek) — 0f) dek) = & k) pe (k)
@q (k) = dq (k) — wZ

Ealk) = (Ga(k) — )" Batl) = BT (K)pa (k).

Assumption 2: For the critic network and the action network,
the optimal weights, the activation functions and the reconstruction
errors are bounded, that is [}l < wem, o}l < @am, llgell <
demsllpall < am, llecll < €ems ll€all < €am. Besides, the activation
function ¢, is Lipschitz continuous and satisfies

ll¢a(x1) — ¢a(x2)]| < Lallxy — x2]|

(23)

(24)
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for all x1,xp € Q where L, is a positive constant and Q is the
domain of function f(x, u).

Theorem 1: Consider nonlinear system (1) and let Assumptions
1-2 hold. Given a stabilizing initial weight @, (0), let the critic and
action network weights update iteratively according to (14) and (17).
If a learning event occurs based on the following event-driven
condition:

le(k) | <

jLmin
(D)p 2 llx (k) I (25)

2Jmax (R) 1 éoa |1
where 0 < f < 1 and let the learning rates of the action and critic
networks satisty

1 1
Slge® T a0
then we have the following results:

(26)

le

1) The errors between the optimal network weights o}, @} and
their estimates @ (k) and @, (k) are UUB.

2) The control u(k), which is parameterized by w,(k), is a
stabilizing control to guarantee the UUB of the nonlinear
system under the proposed event-driven dHDP algorithm.

Proof: Consider the Lyapunov function candidate defined as
follows:

L(k) = Ly (k) + L2 (k) + L3 (k) + L4 (k) 27N

where

1 1
L1 = Fu[a 0de®]. Lalk) = —-uldg ()6a®)]

1
L3(k) = S léek = DI, Latk) = V(x(k)).

Given an initially stabilizing @, (0), L4(k) is finite at time k = 0.
Then we could prove @y (k) is stabilizing for each k by means of the
mathematical induction. First, we assume @, (k) is stabilizing.

Now we consider the following two cases.

Case 1 (No Learning Event Is Observed at Time Instant k). As
¢k + 1) = @c(k) and @4k + 1) = @4(k), we find AL{(k) =
ALy(k) =0

AL3(k) = %[n@(k)nz — etk = D117 (28)
ALy(k) = V(x(k + 1)) = V(x(k)) = —r(k)
= —xT (k) Qx (k) — u” (x(5)) Ru(x(5))
= —xT (k) Qx(k)
—{= [ (x (k) — u(x (@) + w* (x(k)} R
x {—[u* (x(k)) — u(x ()] + u*(x (k))}
= —xT (k) Qx (k) — u*T (x (k) Ru* (x (k)
— [u* (x(k)) — ux (@) Ru* (x (k) — u(x(5))]
+ 20T (e (k) RIu* (x (k) — u(x ()] (29)
From (22), we have

Wt (x(k) — u(x(3)) = & (k) pa (k) + €a — L k) (x ()
OF ()[¢ax (k) — $a(x(50))]
—&q(k) + €q.
Substituting (24) and (30) into (29), we obtain

ALg(k) < —xT (k) Qx(k) + 2max (R) [u* (x(K)) 1%
+ Zmax (R)[6F (k) [da (x (k) — da (x(5))]

— ol () pax()) + €a]”

—Zmin (@)X () 12 + 22max (R) 1 @a > L2 (k) |1
+62max (R) (03 bam + €am)-

(30)

N

€1Y)
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Recall (25), from (28) and (31), we have

AL(K) < —(1 = B)Amin(Q)Ix(K) | + DT, (32)
where
D%m = 6;“maX(R) (wt%m(ﬁgm + egm) + zwgm(ﬁczm (33)
If
Din
(k)| > ! (34)

VI = B)Amin(0)
the first difference AL (k) < 0. This demonstrates that the closed-loop
system state and the weight estimation errors are UUB in this case.

Case 2 (A learning event is observed at time instant k with an
event index oy): In this case, the weights of the critic network and
the action network will be updated using (14) and (17). With the
same Lyapunov function candidate (27) and a similar derivation as
[41, Th.4.3], we have

1 4
AL(k) < — (5 - ;) ()% = Zmin(Q) Ix (k) 1> + D3,
4 4
2 2 2 2 2 2 2 2
D2m = (12 + ;) wcm¢cm + ;wcmcmwam(ﬁam + 8rm (35)

where Cp,;, and ry, are the upper bounds of C(k) and r(k) in (18) and
(7), respectively, and y > 8 is a weighting factor. If

Doy, Doy,
k —_— c(k 36
lx ()1 > ——0) or [|&e (k)| > 1 (36)
2y

the first difference AL (k) < 0.

Summarizing both cases we conclude that the closed-loop system
state and the errors between the optimal network weights o, ) and
their respective estimates @ (k) and @, (k) are UUB. In this way,
q(k + 1) and the designed controller is stabilizing. This completes
the proof. |

Remark 1: Theorem 1 presents a sufficient condition to guarantee
the stability of an event-driven dHDP-controlled system with learning
realized in the critic and action neural networks. Without any special
constraints on the nonlinear system, we have obtained a system
boundedness result under a few mild assumptions. However, notice
that even though the actor and critic neural networks are universally
approximating according to the universal approximation theorem, it is
unavoidable that the neural network weights are locally convergent
and thus the designed controller is locally stabilizing. As there exist
unavoidable approximation errors in both the cost-to-go function and
the input control, Theorem 2 below examines how an approximate
solution of the Bellman optimality equation can be achieved within
a finite approximation error.

Theorem 2: Under the same conditions as in Theorem 1, the
Bellman optimality equation is approximated within a finite approx-
imation error. Meanwhile, the adopted control law (k) is uniformly
convergent to a finite neighborhood of the optimal control u* (k).

Proof: From the approximate cost-to-go in (10) for the Bellman
equation (8) and the optimal cost-to-go expressed in approximation
form (21) for the Bellman optimality (9), we have

IV (k) = V¥ = o () (k) — ofT () e k) — e |

< |@c (k) |pem + € < éc. 37
Similarly, from (11) and (22), we have
(k) — u* &)l < llda (k) llpam + €a < éa- (38)

This comes directly as ||@¢(k)|| and ||@, (k)| are both UUB as shown
in Theorem 1. This demonstrates that the Bellman optimality is
achieved within finite approximation errors. |
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Fig. 2. State trajectories with event-driven dHDP controller (different /) and
time-driven dHDP controller (f = 0).
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Fig. 3. Numbers of learning events of event-driven dHDP (different f) and
time-driven dHDP (f = 0).

IV. ILLUSTRATIVE EXAMPLE

In this section, we use a numerical example to demonstrate the
theoretical results in this work and differences between event-driven
dHDP and its time-driven counterpart. The unknown system dynam-
ics are assumed to be generated from the following equation:

[xl(k+1)]_[0‘9996x1(k)+0‘0099x2(k):| [ 0 ]

xo(k+1)| = | —0.0887x (k) +0.99x2 (k) | T | 0.1u(k)

Now we try to stabilize this system by the proposed event-driven
dHDP algorithm. For both the critic neural network and the action
neural network, we set the number of hidden layer nodes to
Njpe = Npg = 6. From Theorem 1, the learning rates of these two
neural networks should satisfy (26). In this simulation, we choose
lg = Il = 0.1. The initial condition of the system state is set
as x(0) = [—1,1)7. The RL signal is r(k) = xT (k)Iux(k) +
ul (k)(0.11,)u(k), where I, and I, are identity matrices. The initial
weights of both the critic and the action neural network are set
randomly within [—0.4, 0.4]. For the learning event condition (25),
we choose different f values where f = 0 corresponds to time-driven
dHDP as in [32].

Dynamic system state trajectories under different event-driven
learning conditions (i.e., different f values) are shown in Fig. 2.
As expected, little difference is noticed between the event-driven
dHDP and the time-driven dHDP when f is small. Also as expected,
the controlled system state trajectories deviate further from those
controlled by the time-driven dHDP as S increases. Fig. 3 illustrates
reduced numbers of learning events and consequently degraded
learning control responses as f increases.

Next, we illustrate how event-driven dHDP may be used as an
effective tool to prevent converged critic and action network weights

0.6 T T T T

0.4 1

- -~ Time driven dHDP (|
—— Event driven dHDP (3=0.0001)
Event driven dHDP (3=0.001)
— Event driven dHDP (53=0.005) ||
J ~— Event driven dHDP (3=0.01)
Event driven dHDP (3=0.05)

Variation of the critic and the action networks

0 100 200 300 400 500
Time steps

Fig. 4. Average accumulated variation for every weight under event-driven
dHDP controller (different £) and time-driven dHDP controller (# = 0) with
external noise.

from drifting too far from the learned controller due to inevitable
noise in the state measurements.

This simulation entails 500 time steps, the first 100 of which are for
training the critic and action weights. During this period, the weights
are updated at each time instant k& while the system dynamics are
not subject to any noise. From time step 101 to 300, we introduce
random Gaussian white noise w; ~ N(wg, 1) with wg = 0.1 into
the system. Then from time step 301 to 500, the random Gaussian
white noise is removed or the system dynamics evolve under noise
free condition. We use event-driven dHDP with different f values
and consider the accumulated amount of variation in the critic and
action network weights as defined below:

Sicae Zh ol + 1) — i ()12
th + Nha

nk) = (39)

where ||| denotes the 2-norm.

The first 100 time steps in Fig. 4 shows actual learning in the critic
and action networks and such learning converges at about time step
80. From steps 101 to 300, we notice from small to large weight
variations corresponding to small to large £ values due to the added
white Gaussian noise, and such variation is the largest when f = 0
or when learning takes place continuously. Therefore, we can see
how learning event condition (25) helps protect the critic and action
networks from drifting away due to random fluctuation in system
dynamics.

V. CONCLUSION

We have proposed a new event-driven RL control method, that
is event-driven dHDP based on the time-driven dHDP for a general
discrete time nonlinear system. Specifically, we introduced a learning
event criterion that is directly related to system states such that a
learned dHDP controller could be less affected by random fluctuations
in the system dynamics. We proved the stability of the closed-loop
system under event-driven dHDP control using Lyapunov functions
as well as the approximate optimality of the dHDP control solution.
We demonstrated a significant reduction of weight updating times for
event-driven learning from time-driven learning without sacrificing
too much system performance.
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