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   Abstract—We address a state-of-the-art reinforcement learning
(RL)  control  approach  to  automatically  configure  robotic  pros-
thesis  impedance  parameters  to  enable  end-to-end,  continuous
locomotion  intended  for  transfemoral  amputee  subjects.
Specifically,  our  actor-critic  based  RL  provides  tracking  control
of a robotic knee prosthesis to mimic the intact knee profile. This
is  a  significant  advance  from  our  previous  RL  based  automatic
tuning  of  prosthesis  control  parameters  which  have  centered  on
regulation control with a designer prescribed robotic knee profile
as  the  target.  In  addition  to  presenting  the  tracking  control
algorithm  based  on  direct  heuristic  dynamic  programming
(dHDP),  we  provide  a  control  performance  guarantee  including
the  case  of  constrained  inputs.  We  show  that  our  proposed
tracking  control  possesses  several  important  properties,  such  as
weight  convergence  of  the  learning  networks,  Bellman  (sub)
optimality of the cost-to-go value function and control input, and
practical stability of the human-robot system. We further provide
a systematic  simulation of  the proposed tracking control  using a
realistic human-robot system simulator, the OpenSim, to emulate
how the dHDP enables level ground walking, walking on different
terrains  and  at  different  paces.  These  results  show  that  our
proposed  dHDP  based  tracking  control  is  not  only  theoretically
suitable, but also practically useful.
    Index Terms—Automatic  tracking  of  intact  knee,  configuration  of
robotic  knee  prosthesis,  direct  heuristic  dynamic  programming
(dHDP), reinforcement learning control.
  

I.  Introduction

POWERED  lower  limb  prosthesis  provides  great  promise
for amputees to regain mobility in daily life.  Its  potential

has  been  demonstrated  for  transfemoral  amputees’ walking
ability  [1],  [2].  Such  robotic  devices  rely  on  an  impedance
control  framework  which  is  designed  based  on  human

biomechanics to mimic the central nervous system controlled
human joint  movements to provide a natural  substitute to the
lost  limb  functions.  These  devices  require  customization  of
the impedance parameters for each individual user. Currently,
configuration  of  the  powered  devices  is  performed  in  clinics
by  technicians  who  manually  tune  a  subset  of  impedance
parameters  over  a  number  of  visits  of  the  patient.  This
procedure  is  time  and  labor  intensive  for  both  amputees  and
clinicians.  Therefore,  an  automatic  approach  to  tuning  the
powered prosthesis parameters is needed.

Automatically configuring the impedance parameter settings
has  been  attempted  over  the  past  several  years.  An  untested
idea aims at estimating the joint impedance based on biomecha-
nical  measurements  and  a  model  of  the  unimpaired  leg  [3],
[4].  This idea may not be practically useful as the biomecha-
nics  and  the  joint  activities  of  amputees  are  fundamentally
different  from  those  of  the  able-bodied  population.  Another
approach  is  to  constrain  the  knee  kinematics  via  the
relationship  of  the  joint  control  and  intrinsic  measurements,
which in turn requires careful  modeling and thus may not  be
feasible  [5],  [6].  Such  an  approach  relies  on  significant
domain knowledge and is tuning time. A cyber expert system
was proposed [7] to emulate the prosthetists’ tuning decisions
of  human  experts  into  configuring  the  control  parameters.
This approach heavily relies on the expert’s experience and is
not  expected  to  scale  well  to  more  joints  and  different  users
and tasks.

As  those  methods  all  have  their  fundamental  limitations  in
principled ways, new approaches to configuring the prosthesis
control  parameters  are  needed.  RL  based  adaptive  optimal
control  approach  is  a  promising  alternative  as  they  have
demonstrated  their  capability  of  learning  from  data
measurements  in  an  online  or  offline  manner  in  several
realistic  application  problems  including  large-scale  control
problems [8]–[13]. The core of the RL methods is the idea of
providing  approximate  solutions  to  the  Bellman  equation  of
optimal  control  problems.  We  have  successfully  developed
several  RL  algorithms  to  configure  impedance  parameter
settings,  including  actor-critic  RL  [14]–[17]  and  policy
iteration  based  RL  approaches  [18]–[21],  and  systematically
tested them in both extensive simulations and in experiments
using able-bodied and transfemoral amputee subjects.

All  of  our  RL  control  approaches  to  date  require  a  target
knee  motion  profile  which  can  only  be  subjectively
determined.  Nonetheless,  those  results  are  important  as  they
provided  the  necessary  understanding  of  the  impedance
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control  parameter configuration problem and if  RL control  is
capable  of  solving  this  problem.  Even  though  detailed
understanding  of  human  locomotion  at  neurological  and
biomechanical levels has long been established, the individual
human subject’s locomotion dynamics are still not feasible to
model accurately by mathematical descriptions as individuals
differ  physically,  biologically  and  neurologically.  Additiona-
lly,  different  locomotion  tasks,  such  as  changing  pace  [22],
sloped  walking  [23]  and  walking  on  uneven  terrain  [24]  all
have  significant  influence  on  human  gait  behavior.  As  such,
accurately prescribing each and every locomotion behavior for
control purposes is not feasible.

Tracking the intact knee joint motion by a prosthetic knee is
an  intuitive  idea  as  the  intact  knee  kinematics  is  the  most
natural and realistic target: it contains actual biological joints’
inter-relational information, which makes it  a good candidate
to  replace  a  subjectively  defined  knee  profile.  Studies  have
shown that bilateral coordination between two legs are needed
in the regulation of bipedal walking to maintain stability, and
that  such  interlimb  cooperation  can  be  accomplished  at  a
spinal  level.  Since  the  spinal  level  locomotor  networks  are
symmetrically organized [25], sensory and muscle activities of
both  sides  are  involved  in  rhythmic  walking.  Amputees
usually  display  asymmetrical  walking  by  relying  heavily  on
their intact limbs because of the loss of sensory feedback.

Tracking  the  intact  knee  actually  has  been  explored  years
ago. Grimes et al. developed a mirror control  scheme for the
stance phase (not a complete gait cycle). It tracked the sound
limb’s  knee  trajectory  in  the  stance  phase  by  multiplying  a
gain factor to avoid over flexion while a fixed trajectory was
applied  in  swing  phase.  Bernal-Torres et  al. copied  the  full
gait  trajectory  by  the  Kalman  filter  with  a  biomimetic
designed  prosthesis  but  no  human  experiment  or  systematic
simulations  were  reported  [26].  Joshi et  al. developed  a
control  strategy  by  controlling  the  swing  time  to  mirror  the
stride  duration  of  the  intact  knee  while  the  prosthesis  was
locked  during  stance  phase  [27].  Sahoo et  al. aimed  at
mirroring  the  step  length  by  controlling  the  push-off  force
[28].  The  above  approaches  focused  on  either  part  of  a  gait
cycle  or  the  outcome  measurement  such  as  step  length  and
stance time. None of them has shown feasibility of tracking a
completed gait cycle.

Virtual  constraints  were  proposed  to  generate  coordinated
joint  motions  as  target  joint  motion  profiles  for  the  robotic
knee  to  track  [29].  Biomimetic  virtual  constraints  described
the  joints’ geometric  relationships  and  were  encoded  by
hybrid  zero  dynamics  [30].  However,  there  are  a  few
limitations  on  this  approach.  Virtual  constraints  require  a
simplified  human  model  to  establish  the  geometric  relation-
ship among joints. Such a model is difficult to establish for a
human-prosthesis  system.  In  a  recent  work  of  prosthesis
control  design  based  on  the  virtual  constraints  [29],  only  a
proportional  gain  was  derived  and  applied.  The  overall
human-prosthesis performance during locomotion is yet to be
demonstrated.

Tracking an intact knee motion poses additional challenges
beyond  regulation  control.  Individual  prosthesis  users
demonstrate  very  different  gait  patterns,  which  are  also  very

different  from  one  another,  and  also  from  healthy  subjects.
This may be caused by individual’s physical conditions and/or
biological  factors  such  as  reduced  or  lost  proprioception  and
condition of  socket  fitting.  It  has  long been believed that  the
intact knee motion pattern changes as the user learns to walk
in  a  prosthesis  (our  data  below  also  provide  corroborating
evidence  about  this),  tracking  a  moving  target  knee  motion
has never been demonstrated by any controller. Most existing
tracking control designs based on mathematical models of the
human-prosthesis dynamics and the reference trajectory, both
are  difficult  or  actually  impossible  to  obtain.  For  data-driven
adaptive  optimal  control,  reports  on  data-driven  tracking
control  are  much  less  than  those  of  regulation  control.  Most
approaches  are  based  on  reinforcement  learning  to  establish
approximate  solution  to  the  HJB  equation,  yet,  few  of  them
have  demonstrated  feasibility  in  engineering  problems.  And
even fewer results can be found to provide systematic studies
on the control design to demonstrate applicability.

In this paper, we propose an RL tracking control scheme for
the robotic knee to mimic the intact knee in different locomo-
tion  tasks.  In  a  previous  experiment  [31],  we  successfully
tested  this  pilot  idea  of  RL  tracking  control  to  automatically
configure  impedance  parameter  settings.  In  this  study,  we
formally  formulate  the  tracking  control  problem,  develop  a
complete  tracking  control  algorithm  based  on  dHDP,  and
provide  an  analytical  framework  to  validate  the  real  time
control performance guarantee by using this proposed scheme.
The contributions of this work include the following.

1) We provide the first systematic demonstration of an end-
to-end,  continuous  walking  enabled  by  automatic  tracking
control  of  a  wearable  lower  limb  robotic  device  beyond  our
previous regulation control results [14]–[21].

2)  We  show  that  our  proposed  tracking  control  possesses
several  important  properties,  such  as  weight  convergence  of
the learning networks, Bellman (sub) optimality of the cost-to-
go value function and control  input,  and practical  stability of
the human-robot systems.

3)  We  provide  a  systematic  evaluation  of  the  proposed
tracking control using a realistic human-robot system simula-
tor to demonstrate level ground walking, slope walking under
various slope angles and walking under different paces. These
results show that our proposed dHDP based tracking control is
not only theoretically suitable, but also practically useful.

The remaining of this paper is organized as follows. Section II
describes the human-prosthesis system and develops dHDP to
solve  the  tracking  problem.  Section  III  gives  the  Lyapunov
stability analysis of system. Section IV presents the implemen-
tation  using  Opensim  simulations.  Section  V  presents  exten-
sive simulations. Discussions and conclusion are presented in
Section VI.  

II.  Method

Our  proposed  RL  tracking  control  is  built  upon  the  finite
state machine (FSM) impedance controller (IC) framework. It
is  to  mimic  the  torque-generating  capability  of  biological
joints to enable natural movement. Humans reportedly control
muscle  activity  to  adjust  joint  impedance  in  walking
[32]–[34], and the compliant behaviors of legs are fundamen-
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tal  to  human  locomotion  [35],  [36].  Within  this  context,
impedance  represents  the  inherent  property  of  a  mechanical
joint.  It  describes the relationship between external force and
motion  produced  or  in  other  words,  it  is  a  dynamic  property
that governs human joint-torque relationship. In our study, the
prosthesis joint is therefore characterized by the stiffness (K),
damping ratio (B), and equilibrium position ( ). The FSM-IC
provides  intrinsic  control  in  the  form  of  adjustable  control
torque  influenced  by  impedance  parameters.  The  settings  of
the  impedance  parameters  as  control  inputs  have  to  be
adjusted or adapted to meet individuals’ needs including their
different  physical  conditions.  Our  proposed  RL  tracking
control  is  to  automatically  provide  such  needed  impedance
parameter  settings.  In  turn,  the  joint  impedance  affects  the
knee  kinematics  such  as  peak  value  of  knee  angle
collaboratively.  External  force  such  as  ground  reaction  force
and  human  reactions  also  affect  knee  angle  or  peak  value.
However,  many  of  these  factors  are  difficult,  or  nearly
impossible,  to  be  modeled.  Gait  duration  is  influenced  by
impedance  control  parameters  [17],  as  well  as  human’s

movement  control  of  residual  hip  and  intact  limb  in  gait.
Meanwhile,  the  transition  between  double-stance  and  single-
stance  will  influence  the  duration  as  well  since  they  have
different  dynamics.  Therefore,  the  relationship  between
impedance  and  peak  knee  angle/duration  is  not  deterministic
and  difficult  to  model.  These  challenges  motivate  us  to
consider data-driven RL control.  

A.  Finite State Machine (FSM) Impedance Control (IC)
The  FSM-IC  is  common  for  prosthesis  intrinsic  control  as

studies  have  shown  that  humans  control  the  stiffness  of  leg
muscles  and  therefore  joint  impedance  while  walking,  and
compliant  behaviors  of  legs  are  instrumental  for  human
walking. The impedance controller generates a torque input to
the  robotic  knee  based  on  current  knee  kinematics  and  knee
joint impedance settings.

m = 1
m = 2 m = 3

m = 4

Refer to Fig. 1(b), a gait cycle is divided into four phases in
the  FSM-IC:  stance  flexion  (STF, ),  stance  extension
(STE, ),  swing  flexion  (SWF, )  and  swing
extension (SWE, ). The phase transitions are determined
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Fig. 1.     Two  control  loops  are  coordinated  to  realize  automatic  control  of  the  prosthetic  knee  based  on  an  impedance  control  framework:  i)  an  intrinsic
impedance  control  (left  most  panel  of  (a))  that  operates  at  100  Hz  that  creates  a  control  torque  according  to  (2)  based  on  the  knee  kinematics  and  also  the
impedance settings, and ii) an RL controller that is updated at each step k. The output is the adjustment of the impedance setting that is to be used in the intrinsic
controller. (a) Flow chart of the automatic robotic knee control parameter tuning scheme by dHDP. (b) The dHDP controller to adjust the impedance setting. (c)
The structure of the critic network in the RL controller.
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by  knee  motion  and  gait  events  (heel  strike  and  toe-off)  that
are obtained from vertical ground reaction forces of both legs.
In  each  phase  of  the  FSM,  three  impedance  parameters
(stiffness K ,  damping B ,  and  equilibrium  position )  are
provided as inputs to the FSM-IC for gait cycle k
 

Imk = [K
m
k ,B

m
k , (θe)

m
k ]. (1)

Tm
kThe knee joint  torque  is  consequently  generated by the

following first principle equation:
 

Tm
k = Km

k (θ− (θe)mk )+B
m
k ω. (2)

The  RL controller  will  adjust  these  impedance  parameters,
i.e.,
 

umk = [∆K
m
k ,∆B

m
k ,∆(θe)

m
k ] (3)

so  that  the  updated  impedance  parameters  are  applied  to  the
FSM-IC to generate knee torque according to (2)
 

Imk+1 = Imk +u
m
k . (4)

  

B.  Tracking Problem Formulation

Pm
k

Dm
k

Biomechanical studies have shown that the intact knee joint
movements  or  profiles  change  as  amputees  adapt  to  a
prosthetic device [37]. We have observed the same in our pilot
study using two human subjects  [31]. Fig. 2  is  an illustration
of  the  same  phenomenon  using  simulations  where  the  intact
knee  kinematic  trajectories  were  recorded,  and  changes  in
profile  features  are  clearly  observed.  The  goal  of  the  RL
controlled robotic knee is therefore to track those time varying
intact  knee  profile  features  for  each  and  every  phase  during
each and every gait cycle. For a gait cycle k, the robotic knee
motion  (Fig. 1(b))  featured  by  the  peak  knee  angle 
(degrees) and duration  (seconds) is measured. Let
 

Zm
k = (D

m
k ,P

m
k ). (5)
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Fig. 2.     An illustration of how the intact knee profile changes as the robotic
knee control  parameters  adapt  during a  level  ground walking simulation
session. The peak angles (blue) and the phase durations (orange) are shown in
all phases.
 

Similarly, we measure the peak knee angle and duration of
the intact knee, and let
 

Ym
k = (D̄

m
k , P̄

m
k ). (6)

We  consider  a  human-robot,  i.e.,  an  amputee-prosthesis
system,  a  discrete-time  nonlinear  dynamic  system  with
unknown nonlinearities. For the ease of discussion, we let the
dynamics be represented by 

Zm
k+1 = F(Zm

k ,u
m
k ), m = 1, . . . ,4, k = 0,1, . . . (7)

D ≜ {(Z,u)|Z ∈ Z,u ∈ U} Z U
NZ Nu

where the nonlinear mapping F is Lipschitz continuous on the
domain  of ,  where  and   are
compact  sets  with  dimensions of  and ,  respectively.  In
the human-robot system under consideration, F represents the
kinematics of  the robotic knee,  which is  affected by both the
human  wear  and  the  RL  controller.  Because  of  a  human  in-
the-loop,  an  explicit  mathematical  model  as  (7)  is  intractable
or impossible to obtain.

m (m = 1,2,3,4)
Without  causing  any  confusion  and  for  the  sake  of

convenience,  we  drop  the  superscript  in  the
rest of the paper because all four FSM-ICs and their respective
RL  controllers  share  the  same  structure,  although  the  RL
controllers for each phase have different parameterizations or
in  other  words,  the  control  policies  are  different  for  each
phase  even  though  they  have  the  same  structure.  Then,  the
tracking error between the intact knee and the prosthetic knee
is defined as
 

ek = Yk −Zk = (∆Dk,∆Pk). (8)
  

C.  dHDP for Tracking Control
Fig. 1(a) depicts the RL based solution approach to automa-

tically configure the impedance parameters of the robotic knee
to  track  the  intact  knee  joint  motion  within  the  FSM-IC
framework. Each RL control block corresponds to one of the
four FSM phases. As shown in Fig. 1(a), we develop a dHDP
based RL tracking control with each of the four dHDP blocks
providing  impedance  parameter  settings  for  each  of  the  four
gait  phases.  Each  dHDP  block  has  an  action  network  and  a
critic network, trained for the given FSM phase only.

sk
uk

In the RL tracking controller, let the state be denoted by ,
and the control input/action network output as  for gait cycle
k, i.e.,
 

sk = (∆Dk,∆Pk), uk = [∆Kk,∆Bk,∆(θe)k]. (9)
We consider the stage cost in a quadratic form

 

U(sk,uk) = skTRssk +ukTRuuk (10)
Rs ∈ R2×2 Ru ∈ R3×3where  and  are positive definite matrices.

Note  that,  our  following  results  are  also  applicable  to  other
stage  costs  such  as  a  reinforcement  signal  of  finite  discrete
levels  or  a  general  bounded  sefmi-definite  reinforcement
signal.

We  consider  the  tracking  problem  as  one  to  devise  an
optimal control law via learning from observed data along the
human-robot  interacting  system  dynamics.  We  define  the
state-action Q-function or the total cost-to-go as
 

Q (sk,uk) = U (sk,uk)+
∞∑
j=1

γ jU
(
sk+ j,uk+ j

)
. (11)

Q(sk,uk)
uk sk Q(sk,uk)

Note that the  value is a performance measure when
action  is  applied  at  state .  Such  formulation
implies that we have considered the optimal adaptive tracking
control of the robotic knee as a discrete-time, infinite horizon,
discounted problem without knowing an explicit mathematical
description of the human-robot interacting dynamics.
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For the Q-function in (11), it satisfies the Bellman equation
 

Q (sk,uk) = U (sk,uk)+γQ (sk+1,uk+1) . (12)
Yk

Z0
Assumption  1: The  state  trajectory  of  the  intact  knee  is

bounded, and the initial robotics knee state  is bounded.
1) Critic Network: Fig. 1(c) depicts the structure of the critic

network which is  realized by an universal  approximator  with
one hidden layer. Therefore, the approximated value is
 

Q̂ (sk,uk) = Ŵc2,kϕ(Ŵc1,kzk) (13)
Ŵc1,k

Ŵc2,k

zk = [sk,uk]T

where  is the estimated weight matrix between the input
layer  and  the  hidden  layer,  is  the  estimated  weight
matrix between the hidden layer and the output layer, ϕ is the
activation  function  (hyperbolic  tangent)  in  the  hidden  layer,
and the input .

The approximation error of the critic network is
 

ec,k = γQ̂ (sk,uk)−
[
Q̂ (sk−1,uk−1)−U(sk−1,uk−1)

]
. (14)

Uk−1
U(sk−1,uk−1) Ŵc1
Ŵc2

In  the  following,  we  use  the  short-hand  notation  for
 and  similarly  for  others.  The  weights  and

 are updated as
 

Ŵc,k+1 = Ŵc,k +∆Wc,k. (15)
∆Wc1,k

∆Wc2,k

According  to  the  gradient  descend  rule  as  in  [38], 
and  can be written as
 

∆Ŵc1,k = −lc,kγec,kŴc2,k

[
1
2

(
1−ϕ2c,k

)]
zk

∆Ŵc2,k = −lc,kγeckϕc,k
(16)

ϕc,k
lc,k
where  is the output of hidden layers in critic network, and

 is the learning rate.
2) Action Network: The output of the action network is the

control input
 

uk = ϕ(Ŵa2,kϕ(Ŵa1,ksk)) (17)
Ŵa1,k

Ŵa2,k

where  is the estimated weight matrix between the input
layer  and  the  hidden  layer,  is  the  estimated  weight
matrix  between  the  hidden  layer  and  the  output  layer.  Note,
however, that our development applies to unconstrained inputs
as well.

Q(sk,uk)
Based  on  the  design  principle  of  dHDP  [38],  the  action

network  is  to  minimize  the  total  cost-to-go .  We
defined the prediction error of the action network as
 

ea,k = Q̂ (sk,uk) . (18)
Ŵa1 Ŵa2Similarly to (16), the weights  and  are updated as

 

Ŵa,k+1 = Ŵa,k +∆Wa,k (19)
∆Wa1,k ∆Wa2,kand ,  can be written as

 

∆Ŵa1,k = − la,kea,k

[
Ŵc2,k

1
2

(
1−ϕ2c,k

)
Ŵcu,k

]
1
2

(
1−u2k

)
× Ŵa2,k

1
2

(
1−ϕ2a,k

)
sk

∆Ŵa2,k = − la,kea,k

[
Ŵc2,k

1
2

(
1−ϕ2c,k

)
Ŵcu,k

]
1
2

(
1−u2k

)
ϕa,k

(20)

Ŵcu,k uk
Ŵc1

uk ϕa,k
la,k

where  is  the weight vector associated with the input 
(Fig. 1(c))  from  action  network,  i.e.,  the  part  of  which
connects  with ,  is  the  output  of  hidden  layers  in  actor
network, and  is the learning rate.  

III.  Lyapunov Stability Analysis

In  this  section,  we  provide  a  qualitative  analysis  for  the
weight convergence of the actor-critic networks,  the Bellman
(sub) optimality of the control policy, and practical stability of
the human-prosthesis system.  

A.  Preliminaries
W∗

a W∗
cLet ,  denote the optimal weights, that is,

 
W∗

a = argmin
Ŵa

∥∥∥Q̂ (sk,uk)
∥∥∥

W∗
c = argmin

Ŵc

∥∥∥γQ̂ (sk,uk)+Uk−1− Q̂ (sk−1,uk−1)
∥∥∥ (21)

and  the  optimal Q -value  and  optimal  control  policy  are
defined as
 

Q∗ =W∗
c2ϕc,k +εc,k, u∗ = ϕ(W∗

a2ϕa,k)+εa,k (22)
εc,k εa,kwhere  and   are  the  reconstruction  errors  of  neural

networks.  From  (21)  to  (22),  we  implied  that  the  persistent
excitation condition is satisfied.

Wam Wcm

Assumption  2: The  optimal  weights  for  the  actor-critic
networks exist and they are bounded by two positive constants

 and , respectively.
 ∥∥∥W∗

a

∥∥∥ ≤Wam,
∥∥∥W∗

c

∥∥∥ ≤Wcm. (23)
Accordingly, the weight estimation errors of the actor-critic

networks are described respectively as
 

W̃a,k := Ŵa,k −W∗
a , W̃c,k := Ŵc,k −W∗

c . (24)
Lemma 1: Consider the weight vectors of the critic network.

Let
 

L1,k =
1
lc,k

tr[W̃T
c2,kW̃c2,k], L2,k =

1
lc,kα1

tr
[
W̃T

c1,kW̃c1,k
]

(25)

L1,kand let Assumption 2 hold. Then the first difference of  is
given by
 

∆L1,k = −γ2
∥∥∥ζc,k∥∥∥2− (1−γ2lc,k∥ϕc,k∥∥∥2)

×∥γŴc2,kϕc,k +Uk−1− Ŵc2,k−1ϕc,k−1∥2

+ ∥γW∗
c2ϕc,k +Uk−1− Ŵc2,k−1ϕc,k−1∥2 (26)

ζc,k = W̃c2,kϕc,kwhere  is  an  approximation  error  of  the  critic
output.

L2,kAnd the first difference of  is given by
 

∆L2,k ≤
1
α1

(
γ2lc,k∥γŴc2,kϕc,k +Uk−1

− Ŵc2,k−1ϕc,k−1∥2∥Ak∥2∥xc,k∥2

+γ∥W̃c1,kxc,kAT
k ∥

2+γ∥γŴc2,kϕc,k

+Uk−1− Ŵc2,k−1ϕc,k−1∥2
)

(27)

α1 > 0 Akwhere  is  a  weighting  factor  and  is  a  vector,  with
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Ak =
1
2 (1−ϕ2c,k)Ŵc2,k .

The proof of Lemma 1 can be found in [39].

uk
Lemma 2: Consider the weight vector of the action network,

which  leads  to  the  control  input  of  the  human-prosthesis
systems (7). Let
 

L3,k =
1

la,kα2
tr
[
W̃T

a2,kW̃a2,k
]
,L4,k =

1
la,kα3

tr
[
W̃T

a1,kW̃a1,k
]
. (28)

L3,kThen the first difference of  is bounded by
 

∆L3(k) ≤
1
α2

(
− (1− la,k∥ϕa2,k∥2∥Ŵc2,kCk∥2)∥Ŵc2,kϕc,k∥2

+4∥ζc,k∥2+4∥W∗
c2ϕc,k∥2+ ∥Ŵc2,kCkζa,k∥2

)
(29)

ζa,k = W̃a2,kϕa,k

Ck =
1
2 (1−ϕ2c,k)Wcu,k × 1

2 (1−u2k) α2 > 0
where  is  an  approximation  error  of  the  actor
network  output, ;  is  a
weighting factor.

L4,kAnd the first difference of  is bounded by
 

∆L4(k) ≤
1
α3

(
la,k∥Ŵc2,kϕc,k∥2∥Ŵc2,kCkDT

k ∥
2∥sk∥2

+ ∥Ŵc2,kϕc,k∥2+ ∥W̃a1,ksk∥2∥Ŵc2,kCkDT
k ∥

2
)

(30)

Dk =
1
2 (1−ϕ2a,k)Ŵa2,k α3 > 0where , and  is a weighting factor.

The proof of Lemma 2 can be found in Appendix.
  

B.  Weight Convergence, (Sub) Optimality and Practical Stability

xk
b > 0, a > 0 t > 0,

N = N(a,b)
∥x̃k∥ ≤ b k ≥ N + t ∥x̃t∥ ≤ a

Definition  1  (Uniformly  Ultimately  Boundedness  of  a
Discrete  Time Dynamical  System [40]): A dynamical  system
with states  is said to be uniformly ultimately bounded with
ultimate bound  if for any  and  there exists a
positive  number  independent  of t ,  such  that

 for all  whenever .
Ŵa,k

Ŵc,k

In  the  following,  we  consider  the  dynamics  of  and
.

W̃c,k W̃a,k

Theorem 1 (Weight Convergence): Let Assumptions 1 and 2
hold,  and  let  the  weights  of  the  actor  and  critic  neural
networks be updated according to (16) and (20), respectively.
Then  and   are  uniformly  ultimately  bounded
provided that the following conditions are met:
 

lc,k <
α1−γ

γ2α1(
∥∥∥ϕc,k∥∥∥2+ 1

α1

∥∥∥Ak
∥∥∥2∥∥∥zk∥∥∥2)

la,k <
α3−α2

α3
∥∥∥ŴT

c2,kCk
∥∥∥2∥∥∥ϕa,k∥∥∥2+α2∥∥∥Ŵc2,kCkDT

k

∥∥∥2∥∥∥sk∥∥∥2 .
(31)

γ α1 α2 α3
lc,k la,k α1 > γ > 0

α3 > α2 > 0

Remark 1: As , , ,  can be found in (11), (25), and
(28), for ,  to be positive, it is necessary that 
and .  Those  conditions  can  be  satisfied  in  the
following induction.

Proof  of  Theorem  1: We  introduce  a  candidate  Lyapunov
function
 

Lk = L1,k +L2,k +L3,k +L4,k (32)
L1,k L2,k L3,k L4,k

Lk
where , , ,  and  are  defined  in  (25)  and  (28).
The first difference of  can be rewritten as 

∆Lk ≤ − (γ2− 4
α2

)
∥∥∥ζc,k∥∥∥2− (1−γ2lc,k

∥∥∥ϕc,k∥∥∥2
− γ

2lc,k
α1

∥∥∥Ak
∥∥∥2∥∥∥zk∥∥∥2− γ

α1
)
∥∥∥γŴc2,kϕc,k +Uk−1

− Ŵc2,k−1ϕc,k−1
∥∥∥2− ∥∥∥Ŵc2,kϕc,k

∥∥∥2( 1
α2

− la,k
α2

∥∥∥Ŵc2,kCk
∥∥∥2

×
∥∥∥ϕa,k∥∥∥2− la,k

α3

∥∥∥Ŵc2,kCkDT
k

∥∥∥2∥∥∥sk∥∥∥2− 1
α3

)

+
4
α2

∥∥∥W∗
c2ϕc,k

∥∥∥2+ 1
α2

∥∥∥Ŵc2,kCk
∥∥∥2∥∥∥ζa,k∥∥∥2

+
∥∥∥γW∗

c2ϕc,k +Uk−1− Ŵc2,k−1ϕc,k−1
∥∥∥2

+
γ

α1

∥∥∥W̃c1,kzk
∥∥∥2∥Ak∥2+

1
α3

∥∥∥Ŵc2,kCkDT
k

∥∥∥2∥∥∥W̃a1,ksk
∥∥∥2.
(33)

To guarantee that the second and the third terms in the last
expression  are  negative,  we  need  to  choose  learning  rates  in
the following manner:
 

1−γ2lc,k
∥∥∥ϕc,k∥∥∥2− γ2lc,k

α1

∥∥∥Ak
∥∥∥2∥∥∥zk∥∥∥2− γ

α1
> 0. (34)

Therefore,
 

lc,k <min
k

α1−γ
γ2α1(∥ϕc,k∥2+ 1

α1
∥Ak∥2∥zk∥2)

. (35)

Similarly, for the action network we obtain
 

1
α2

− 1
α2

la,k∥(Ŵc2,k)TCk∥2∥ϕa,k∥2

− la,k
α3

∥DkCT
k Ŵc2,k∥2∥sk∥2−

1
α3
> 0 (36)

and then
 

la,k <
α3−α2

α3∥ŴT
c2,kCk∥2∥ϕa,k∥2+α2∥Ŵc2,kCkDT

k ∥2∥sk∥2
. (37)

As is known, the following inequality holds:
 ∥∥∥γW∗

c2ϕc,k +Uk−1− Ŵc2,k−1ϕc,k−1
∥∥∥2

≤ 4γ2
∥∥∥W∗

c2ϕc,k
∥∥∥2+4U2

k−1+2
∥∥∥Ŵc2,k−1ϕc,k−1

∥∥∥2 . (38)

Applying the Cauchy–Schwarz inequality, we have
 

4
α2

∥W∗
c2ϕc,k∥2+

1
α2

∥Ŵc2,kCk∥2∥ζa,k∥2

+ ∥γW∗
c2ϕc,k +Uk−1− Ŵc2,k−1ϕc,k−1∥2

+
γ

α1
∥W̃c1,kxc,k∥2∥Ak∥2+

1
α3

∥Ŵc2,kCkDT
k ∥

2∥W̃a1,ksk∥2

≤ (
4
α2
+4γ2+2)(W2cmϕcm)2+4U2

m+
γ

α1
(W1cmzmAm)2

+
1
α2

(W2cmCmW2amϕam)2+
1
α3

(W2cmCmDmW1amsm)2 = M

(39)
ϕam ϕcm Um W1cm W2cm Am Cm Dm sm zmwhere , , , , , , , , , and  are
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ϕa,k ϕc,k Uk−1 Wc1,k Wc2,k Ak Ck Dk
sk zk
the upper bounds of , , , , , , , ,

, and , respectively.
∆Lk < 0

α2 >
4
γ2

la,k lc,k

Substituting  (38)  and  (39)  into  (33),  we  obtain 
under  the condition that ,  constrained ,  in  (31),
and
 

∥ζc,k∥ >
√

M

γ2− 4
α2

. (40)

s0
U0

lc,0 la,0
Ŵa,0 Ŵc,0 s0

∆Lk < 0 W̃a,k

W̃c,k k+1
Ŵa,k Ŵc,k

k+1
uk Zk+1

sk+1
Ŵa,k+1 Ŵc,k+1

uk+1 Uk+1
lc,k+1 la,k+1

Ŵa,k+1 Ŵc,k+1 sk+1
W̃a,k W̃c,k

Assumption  1  leads  to  that  the  initial  tracking  error  is
bounded,  then  the  initial  stage  cost  in  (10)  is  bounded.
There exist ,  meeting condition (31)  with the bounded
initial  weights ,  and  tracking  error .  From
Definition  1,  means  that  the  estimation  errors 
and  are  bounded  from  step k  to  step ,  respectively.
Based on Assumption 2,  and  are bounded from step
k to  step .  As F  in  (7)  is  Lipschitz  continuous,  the
bounded control law  results in bounded ,  and then we
obtain  the  bounded  tracking  error  under  Assumption  1.
The bounded  and  result in a bounded control law

,  then  the  resulted  stage  cost  is  bounded.  As  there
exist  appropriate ,  meeting  condition  (31)  with
bounded ,  and  ,  by  mathematical  induction,
we  have  the  estimation  errors  and   uniformly
ultimately bounded. ■

uk u∗

Theorem 2 ((Sub) Optimality Result): Under the conditions
of Theorem 1, the Bellman optimality is achieved within finite
approximation  error.  Meanwhile,  the  error  between  the
obtained  control  and  optimal  control  is  uniformly
ultimately bounded.

Q̂(sk,uk) Q∗ uk
u∗

Proof  of  Theorem  2: From  Assumption  2  and  Theorem  1,
we obtain that  and  are bounded. Furthermore, 
and  are bounded from Remark 2 and Assumption 2.

From  the  approximate Q -value  in  (13)  and  the  optimal Q-
value in (22), we have
 

∥Q̂(sk,uk)−Q∗∥ = ∥Ŵc2,kϕc,k −W∗
c2ϕc,k −εc,k∥

≤ ∥W̃c2,k∥ϕcm+εcm. (41)
εcm εc,kwhere  is the upper bound of .
uk u∗For  and  from (17) and (22), we have

 

∥uk −u∗∥ = ∥ϕ(Ŵa2,kϕa,k)−ϕ(W∗
a2ϕa,k)−εa,k∥. (42)

Similarly to (50)
 

∥Ŵa1,kϕa2,k −W∗
a2ϕa2,k∥ ≤ ∥W̃a2,k∥ϕa2m. (43)

Then,  by  using  the  Lagrange  Mean  Value  Theorem,  (51)
can be rewritten as
 

∥uk −u∗∥ ≤ 1
2
∥W̃a2,k∥ϕam+εam (44)

εam εa,k
∥W̃c2∥ ∥W̃a2∥
where  is  the  upper  bound of .  This  comes directly  as

 and  are both uniformly ultimately bounded as the
time step k increases as shown in Theorem 1. It demonstrates
that  the  Bellman  optimality  is  achieved  within  finite
approximation errors. ■

uk Zk Yk sk

Remark  2  (Practical  Stability): From  Assumption  1,
Remarks  1–3,  and  Theorem  1,  we  obtain  that  all  the  signals
(such  as , , ,  and )  are  bounded  in  the  human-robot

system  (7).  As  shown  in  Theorem  2,  the  approximated Q-
value  in  (13)  and  the  resulted  policy  (17)  achieve  (sub)
optimality as time step k increases. This demonstrates that the
stage  cost  in  (10)  approaches  zero  in  the  sense  of  uniformly
ultimately  boundedness.  As  such,  the  tracking  error  (8)
approaches  zero  in  the  sense  of  uniformly  ultimately
boundedness  also  as  time  step k  increases.  Therefore,  the
considered human-robot system is practically stable.  

IV.  Opensim Simulation Studies

Table I is  a  summary  of  how our  proposed  dHDP tracking
control  is  implemented  and  applied  to  configure  the
impedance  parameters  of  the  robotic  knee.  Pertinent
information for the implementation steps is provided below.
 

TABLE I 

Implementation of Simulation Studies

Initialization (gait cycle k = 0);

Set simulation conditions such as walking speed, subject

physical conditions (body mass, height, etc.), and small

knee angles for both knees;

Random, initially feasible impedance parameters;

Random initial weights in actor-critic network;

Repeat (for a complete OpenSim simulated gait cycle)

Yk Zk　Obtain target feature  (5) and robotic feature  (6);

sk　Obtain state dynamics  using (9);

sk >　if  safety bound then

　　Reset to initial impedance;

　　Repeat the implementation procedure from the top

　　but keep the weights of actor-critic networks;

　end if

uk　Obtain  through actor network;

Uk　Obtain stage cost  using (12);

　Update critic network using (16);

　Update action network using (20);

uk　Use  as input to the FSM-IC by updating the

　impedance parameters using (4) for the next gait cycle;
Until tracking criteria met

  

A.  OpenSim Model Setup
We  investigated  this  tracking  control  problem  using

OpenSim,  a  well-established  simulator  in  the  field  of
biomechanics  [41].  A  bipedal  walking  model,  as  shown  in
Fig. 3(a),  includes  a  body  of  five  rigid-segments,  linked
through a one degree of freedom pin joint and the pelvis was
linked to  the  ground by a  free  joint  to  allow free  movement.
The  model  settings,  such  as  segment  length,  body  mass  and
inertial  parameters,  followed the  lower  limb OpenSim model
[42]. In this study, the left knee was defined as intact while the
right as prosthetic to enable locomotion in a single simulation
model.  The  intact  knee  was  controlled  by  a  fixed  set  of
impedance  parameters  settings  while  the  prosthetic  knee  was
controlled by the RL controller with its impedance parameters
updated for each gait cycle.
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Simulating  a  gait  cycle  in  OpenSim  requires  specifying
initial  model  settings  such  as  walking  speed  and  ,  both
knee  angles  and   which  are  set  to  small  numbers  near
stance  position.  We  added  artificial  Gaussian  noises  to  the
state s  and  control u  to  simulate  sensor  noise  and  actuator
noise, a consideration to make the simulations more realistic.
The  sensor  noise  magnitude  was  set  at  20% of  the
performance  tolerance  bound  and  the  actuator  noise  was  1%
of the maximum action value.  

B.  Simulation Procedure
All  simulations  were  carried  out  in  trials.  A  trial  is  a

continuous  experiment  of  500  gait  cycles  when  RL  tracking
control  is  applied  to  tuning  the  impedance  parameters  of  the
robotic  knee  under  different  simulation  scenarios.  We
performed  two  sets  of  simulations:  training  trials  and  testing
trials.  During  training,  we  performed  30  training  trials  each
from a randomly initialized controller,  i.e.,  a  set  of randomly
generated initially feasible impedance parameter settings, that
allow  the  simulator  to  simulate  balanced  walking  without
falling.  During  testing,  we  randomly  selected  10  successful
controllers  (i.e.,  10  sets  of  impedance  parameters  after
training)  and  applied  those  control  policies  (i.e.,  the  actor
network  weights)  as  initial  controller  parameter  settings  for
tracking  new,  untrained  trajectory  profiles.  Then  we  tested
each of the 10 controllers (policy network weights) to perform
30  new  trials,  each  of  which  has  a  new  set  of  randomly
selected initial impedance parameters.

A  trial  is  considered  successful  if  the  tracking  error  in  (8)
reached  an  error  tolerance  bound  (Table II,  bottom  row).
Specifically,  for  each  of  the  4  phases  (Fig. 1(b)),  if  the
tracking error was within the tolerance bound for 8 out of 10
consecutive  gait  cycles,  tracking  process  in  this  phase  was
considered  convergent.  If  all  4  phases  had  converged  within
500 gait cycles, the trial was a success.

To  ensure  subjects  safety  (not  stumble  or  fall),  a  safety

bound  was  introduced  based  on  the  realistic  conditions  of
balanced  walking.  Specifically,  as  shown  in Table II  (top
row),  the  safety  bound  was  set  at  1.5  standard  deviations
above the knee kinematic peak values observed in each phase
[43].  If  the  tracking  errors  exceed  the  safety  bound,  which
means  the  prosthetic  profile  may  place  subjects  in  unsafe
areas, the impedance parameters of the prosthetic knee will be
reset  to  the  initial  impedance.  Note  however,  the  actor  and
critic  network  weights  are  retained  for  further  training  until
meeting tracking criteria.

Rs = diag(1,1) Ru = diag(0.1,0.1,0.1)
In obtaining all results, we set the weighting matrices in the

stage  cost  (10)  as:  and  .
For  the  critic  network,  we  used  8  hidden  layer  neurons  with
hyperbolic  activation  function  and  we  used  a  linear  output
layer. For the actor network, we used 6 hidden layer neurons
with  hyperbolic  activation  function  and  we  also  used  a
hyperbolic  activation  function  for  the  output  layer  neuron  so
that  the  control  inputs  are  constrained.  For  both  networks,
learning  rate  was  0.1.  The  actor-critic  network  was  updated
every gait cycle until reaching trial success.  

C.  Simulating Realistic Walking
To  evaluate  the  efficacy  of  the  proposed  dHDP  tracking

control,  we  performed  a  systematic  simulation  study  to
evaluate human-robot walking performance under RL tracking
control.  We  emulated  three  walking  conditions:  ground
walking, walking on different terrains and at different paces.

Scenario  1  (Level  Ground  Tracking): The  intact  knee  was
operated  by  a  fixed  set  of  impedance  parameters  at  all  time
while the robotic knee impedance parameters were controlled
by RL controller.  Note that,  fixed impedance parameters still
provide  realistic  control  according  to  (2)  as  the  intact  knee
was  also  controlled  by  FSM-IC.  For  both  the  training  stage
and  the  testing  stage,  the  RL  controller  was  required  to
successfully  track  the  intact  knee  profile  within  500  gait
cycles,  while  the  OpenSim  setting  was  placed  at  constant
walking pace under level ground condition.

Scenario  2  (Walking  on  Different  Terrain): To  simulate
walking  on  different  terrains,  we  provided  different  gait
profiles  for  the  intact  knee  which  correspond  to  different
impedance  control  parameters.  The  changing  profiles  of  the
intact  knee  were  then  the  new  moving  targets  for  the
prosthetic knee to track. Five randomly initialized impedance
parameter  sets  that  could  enable  balanced  walking  of  the
human-robot  system  were  generated.  The  impedance
parameters  of  the  intact  knee  were  randomly  selected  from
this  pool  of  5  different  gait  profiles  every  20  gait  cycles.
During  training,  the  controller  was  required  to  successfully
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Fig. 3.     OpenSim model. (a) Five-rigid segment bipedal walking model; (b)
The  next  gait  is  used  to  measure  the  tracking  error  as  the  prosthetic  knee
needs to copy the intact knee that is half gait ahead.
 

 

TABLE II 

Safety Bound and Tolerance Bound

Phase 1 Phase 2 Phase 3 Phase 4
Safety bounds
[Angle (rad),
duration (%)]

[0.184, 12] [0.131, 12] [0.157, 12] [0.105, 12]

Tolerance bounds
[Angle (rad),
duration (%)]

[0.0263, 2] [0.0263, 2] [0.0263, 2] [0.0263, 2]
 

 26 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 1, JANUARY 2022

Authorized licensed use limited to: ASU Library. Downloaded on August 02,2022 at 02:59:40 UTC from IEEE Xplore.  Restrictions apply. 



track  the  intact  knee  for  3  consecutive  times  with  respective
knee  profiles.  During  testing,  a  new  pool  of  5  sets  of
impedance  parameters  was  generated  and  used  on  the  intact
knee,  the  respective  profiles  of  which  were  tracked  by  the
robotic  knee.  Again,  the  controller  was  required  to
successfully  track  the  intact  knee  profile  for  3  consecutive
times.

[100%→ 112%→
100%→ 88%]

[100%→ 80%→ 100%→ 120%]

Scenario  3  (Changing  Pace): We  examined  RL  tracking
performance  when  the  pace  changes.  The  simulated  pace
changes were implemented in a sequence of 

 of  the  initial  pace.  Changing  pace  took  place
once  the  controllers  successfully  tracked  the  intact  knee  by
meeting  convergence  criteria.  The  controller  must  complete
the full sequence to complete the training stage. In the testing
stage,  the  pace  change  was  placed  in  a  different  order  of

 which  also  signifies  a
greater  variance  than  the  respective  conditions  for  training.
Same as  in  the training stage,  each controller  must  finish the
full sequence to be counted as a success.  

V.  Results

All  three  scenarios  were  simulated  in  both  training  and
testing  stages  with  the  same  human  subject. Table III  shows
the tracking performance for all three scenarios.
 

TABLE III 

Simulation Results of All Three Scenarios

Scenario Task Success rate Tuning steps

1 training 1 64.6±84.72

1 testing 1 36.30±57.22

2 training 0.97 55.76±55.18

2 testing 1 19.16±15.23

3 training 0.8 52.46±32.75

3 testing 0.92 42.75±37.87

 
 

100%

1.96% 0.69%

In Scenario 1,  a  success rate was achieved with 64.6
average steps to fully learn to track the intact knee. The RMS
tracking  error  was  reduced  from 0.0588  to  0.0131  radian  of
peak angle and from  to  of phase duration. In the
test  stage,  because  a  trained  actor  network  was  used  in
initialization,  an  improvement  in  tuning  speed  was  observed
from 64.6 to 36.3 average steps. The RMS tracking error has a
similar performance.

97%

1.82% 0.66%

In  Scenario  2,  a  success  rate  was  achieved  with  55.8
average  steps  for  successfully  tracking  the  intact  knee  each
time.  The  RMS  tracking  error  was  reduced  from 0.0581  to
0.0124 radian of peak angle and reduced from  to 
of phase duration. In the test stage, the trained policy of actor
network  shows  the  ability  to  track  the  target  profile  rapidly.
An  average  of  19.16  tracking  steps  with  a  100% success
rate  shows  the  ability  to  track  a  changing  target  effectively.
Fig. 4(a) shows  an  example  of  typical  training  and  testing
trials.  The RMS tracking error has a similar  outcome in both
training and testing as they share the same success criteria.

Scenario  3  focuses  on  examining  tracking  performance

80%

1.90% 0.92%

reflected in gait duration.  success rate was achieved with
52.5 average steps for successfully tracking the intact knee at
different  paces.  The  RMS  tracking  error  was  reduced  from
0.0573 to  0.0103  radian  of  peak  angle  and  reduced  from

 to  of phase duration. In the test stage, the trained
policy  of  actor  network  shows  a  slightly  improvement  on
tracking speed. But it  greatly improved the success rate from
0.8 to 0.92. Fig. 4(b) shows an example of typical training and
testing trials. The RMS tracking error has a similar outcome in
both  training  and  testing  as  they  share  the  same  success
criteria.

Fig. 5 shows  RMS  tracking  errors  for  all  trials  in  all
simulation scenarios. A significant reduction in tracking error
was  observed  under  all  conditions.  The  difference  between
training  and  testing  is  minor  because  they  use  the  same
randomization  in  initial  impedance  parameters  and  the  same
convergence criteria.  

VI.  Conclusions and Discussions

We  have  introduced  a  new  RL  based  tracking  control
scheme  for  automatic  tuning  of  robotic  knee  impedance
parameter  settings  of  a  robotic  knee  to  track  the  intact  knee
kinematics.  For  the  first  time,  we  successfully  demonstrated
stable  and  continuous  walking  in  simulations  of  a  human
wearing a robotic prosthesis which was designed to track the
intact knee motion.

Mirroring the intact knee motion by a prosthetic knee is an
intuitive  idea  which  has  been  proposed  for  decades,  but  has
not been successfully demonstrated. The robotic knee control
to  mimic  the  intact  knee  joint  is  a  tracking  problem  in
classical  control.  Even  though  many  control  theoretic
solutions  exist,  such  as  backstepping  [44]–[46],  observer-
based control [47] and nonlinear adaptive/robust control [48],
[49],  they  are  inadequate  for  this  problem as  they  require  an
accurate  mathematical  description  of  the  system  dynamics,
which involve co-adapting human and robot in this case,  and
which  are  nearly  impossible  to  obtain.  Additionally,  those
control theoretic approaches focus on the stabilization (in the
Lyapunov  sense)  of  the  nonlinear  dynamic  systems  without
addressing  control  performance  such  as  the  Bellman
optimality.

Recently, some results emerged to tackle these issues using
data-driven,  learning  enabled,  nonlinear  optimal  tracking
control  designs  [50].  Unfortunately,  many  of  the  reported
results have focused on theoretical analyses, which are usually
based  on  requiring  a  reference  model  for  the  desired
movement  trajectory  and/or  control  trajectory.  They  are  thus
not practically useful.

In this paper, we have presented a complete tracking control
algorithm  based  on  dHDP.  Additionally,  we  have  systemati-
cally  evaluated  the  performance  of  the  proposed  tracking
controller. Our simulation results have shown effectiveness of
the tracking controller for different walking tasks that emulate
level  ground  walking,  walking  on  different  terrains  and  at
different paces. Based on our previous work, we expect these
new  results  to  be  verified  in  human  experiments  at  a  future
time.  
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Appendix

L2,kProof  of  Lemma  2: The  first  difference  of  can  be
written as 

∆L3,k =
1

la,kα2
tr
[
W̃T

a2,k+1W̃a2,k+1− W̃T
a2,kW̃a2,k

]
. (45)

W̃a2,k+1According to (19) and (20),  can be rewritten as
 

W̃a2,k+1 = Ŵa2,k+1−W∗
a2

= Ŵa2,k − la,kϕa,kŴc2,kCk[Ŵc2,kϕc,k]T −W∗
a2

= W̃a2,k − la,kϕa,kŴc2,kCk[Ŵc2,kϕc,k]T . (46)
Based on the above expression, we can obtain

 

tr
[
W̃T

a2,k+1W̃a2,k+1
]

= W̃T
a2,kW̃a2,k + l2a,k∥ϕa,k∥

2∥Ŵc2,kCk∥2∥Ŵc2,kϕc,k∥2

−2la,kŴc2,kCk[Ŵc2,kϕc,k]T ζa(k). (47)

Substituting (47) into (45), we have
 

∆L3,k =
1
α2

(la,k
∥∥∥ϕa,k∥∥∥2 ∥∥∥Ŵc2,kCk

∥∥∥2 ∥∥∥Ŵc2,kϕc,k
∥∥∥2

+ ∥Ŵc2,kϕc,k − Ŵc2,kCkζa,k
∥∥∥2−∥∥∥Ŵc2,kCkζa,k∥2

−
∥∥∥Ŵc2,kϕc,k

∥∥∥2). (48)

Note that
 ∥∥∥Ŵc2,kϕc,k − Ŵc2,kCkζa,k

∥∥∥2− ∥∥∥Ŵc2,kCkζa,k
∥∥∥2

≤ 2
∥∥∥Ŵc2,kϕc,k

∥∥∥2+ ∥∥∥Ŵc2,kCkζa,k
∥∥∥2

≤ 2
∥∥∥∥(W̃c2,k +W∗

c2

)
ϕc,k

∥∥∥∥2+ ∥∥∥Ŵc2,kCkζa,k
∥∥∥2

≤ 2
(∥∥∥W̃c2,kϕc,k

∥∥∥+ ∥∥∥W∗
c2ϕc,k

∥∥∥)2+ ∥∥∥Ŵc2,kCkζa,k
∥∥∥2

≤ 4
∥∥∥ζc,k∥∥∥2+4∥∥∥W∗

c2ϕc,k
∥∥∥2+ ∥∥∥Ŵc2,kCkζa,k

∥∥∥2 . (49)
Then we obtain (29) by substituting (49) into (48).

L4,kThe first difference of  can be written as
 

∆L4,k =
1

la,kα3
tr
[
W̃T

a1,k+1W̃a1,k+1− W̃T
a1,kW̃a1,k

]
. (50)

W̃a1,k+1According to (19) and (20),  can be rewritten as
 

W̃a1,k+1 = Ŵa1,k+1−W∗
a1

= W̃a1,k+1− la,kŴc2,kϕc,kDkCT
k Ŵ

T
c2,ks

T
k . (51)

Let us consider
 

tr
[
W̃T

a1,kW̃a1,k
]

= W̃T
a1,kW̃a1,k + l2a,k

∥∥∥Ŵc2,kϕc,k
∥∥∥2 ∥∥∥Ŵc2,kCkDT

k

∥∥∥2 ∥sk∥2
−2la,kŴc2,kCkDT

k ϕ
T
c,kŴ

T
c2,kW̃a1,ksk. (52)
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Fig. 4.     Typical  trials  for  Scenario  2  (a)  and Scenario  3  (b).  The left  columns show tracking errors  during training while  the  horizontal  green dashed lines
represent tolerance bounds and the grey vertical dashed lines represent task/pace transitions. The right columns show tracking trajectories during testing.
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Fig. 5.     Summary of RMS tracking errors of the peak angle (top) and phase
duration  (bottom)  for  all  three  scenarios.  The  blue  bars  represent  the  initial
tracking errors while the red bars represent the final tracking errors.
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Then,  by  using the  cyclic  property  of  matrix  trace,  the  last
term in (52) is bounded by
 

−2la,kŴc2,kCkDT
k ϕ

T
c,k

(
Ŵc2,k

)T
W̃a1,ksk

≤ la,k(
∥∥∥Ŵc2,kϕc,k

∥∥∥2+ ∥∥∥Ŵc2,kCkDT
k

∥∥∥2 ∥∥∥W̃a1,ksk
∥∥∥2). (53)

We obtain (30) by substituting (52), (53) into (50). ■
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