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Robotic Knee Tracking Control to Mimic the Intact
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Abstract—We address a state-of-the-art reinforcement learning
(RL) control approach to automatically configure robotic pros-
thesis impedance parameters to enable end-to-end, continuous
locomotion intended for transfemoral amputee subjects.
Specifically, our actor-critic based RL provides tracking control
of a robotic knee prosthesis to mimic the intact knee profile. This
is a significant advance from our previous RL based automatic
tuning of prosthesis control parameters which have centered on
regulation control with a designer prescribed robotic knee profile
as the target. In addition to presenting the tracking control
algorithm based on direct heuristic dynamic programming
(dHDP), we provide a control performance guarantee including
the case of constrained inputs. We show that our proposed
tracking control possesses several important properties, such as
weight convergence of the learning networks, Bellman (sub)
optimality of the cost-to-go value function and control input, and
practical stability of the human-robot system. We further provide
a systematic simulation of the proposed tracking control using a
realistic human-robot system simulator, the OpenSim, to emulate
how the dHDP enables level ground walking, walking on different
terrains and at different paces. These results show that our
proposed dHDP based tracking control is not only theoretically
suitable, but also practically useful.

Index Terms—Automatic tracking of intact knee, configuration of
robotic knee prosthesis, direct heuristic dynamic programming
(dHDP), reinforcement learning control.

I. INTRODUCTION

OWERED lower limb prosthesis provides great promise
for amputees to regain mobility in daily life. Its potential
has been demonstrated for transfemoral amputees’ walking
ability [1], [2]. Such robotic devices rely on an impedance
control framework which is designed based on human
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biomechanics to mimic the central nervous system controlled
human joint movements to provide a natural substitute to the
lost limb functions. These devices require customization of
the impedance parameters for each individual user. Currently,
configuration of the powered devices is performed in clinics
by technicians who manually tune a subset of impedance
parameters over a number of visits of the patient. This
procedure is time and labor intensive for both amputees and
clinicians. Therefore, an automatic approach to tuning the
powered prosthesis parameters is needed.

Automatically configuring the impedance parameter settings
has been attempted over the past several years. An untested
idea aims at estimating the joint impedance based on biomecha-
nical measurements and a model of the unimpaired leg [3],
[4]. This idea may not be practically useful as the biomecha-
nics and the joint activities of amputees are fundamentally
different from those of the able-bodied population. Another
approach is to constrain the knee kinematics via the
relationship of the joint control and intrinsic measurements,
which in turn requires careful modeling and thus may not be
feasible [5], [6]. Such an approach relies on significant
domain knowledge and is tuning time. A cyber expert system
was proposed [7] to emulate the prosthetists’ tuning decisions
of human experts into configuring the control parameters.
This approach heavily relies on the expert’s experience and is
not expected to scale well to more joints and different users
and tasks.

As those methods all have their fundamental limitations in
principled ways, new approaches to configuring the prosthesis
control parameters are needed. RL based adaptive optimal
control approach is a promising alternative as they have
demonstrated their capability of learning from data
measurements in an online or offline manner in several
realistic application problems including large-scale control
problems [8]-[13]. The core of the RL methods is the idea of
providing approximate solutions to the Bellman equation of
optimal control problems. We have successfully developed
several RL algorithms to configure impedance parameter
settings, including actor-critic RL [14]-[17] and policy
iteration based RL approaches [18]-[21], and systematically
tested them in both extensive simulations and in experiments
using able-bodied and transfemoral amputee subjects.

All of our RL control approaches to date require a target
knee motion profile which can only be subjectively
determined. Nonetheless, those results are important as they
provided the necessary understanding of the impedance
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control parameter configuration problem and if RL control is
capable of solving this problem. Even though detailed
understanding of human locomotion at neurological and
biomechanical levels has long been established, the individual
human subject’s locomotion dynamics are still not feasible to
model accurately by mathematical descriptions as individuals
differ physically, biologically and neurologically. Additiona-
lly, different locomotion tasks, such as changing pace [22],
sloped walking [23] and walking on uneven terrain [24] all
have significant influence on human gait behavior. As such,
accurately prescribing each and every locomotion behavior for
control purposes is not feasible.

Tracking the intact knee joint motion by a prosthetic knee is
an intuitive idea as the intact knee kinematics is the most
natural and realistic target: it contains actual biological joints’
inter-relational information, which makes it a good candidate
to replace a subjectively defined knee profile. Studies have
shown that bilateral coordination between two legs are needed
in the regulation of bipedal walking to maintain stability, and
that such interlimb cooperation can be accomplished at a
spinal level. Since the spinal level locomotor networks are
symmetrically organized [25], sensory and muscle activities of
both sides are involved in rhythmic walking. Amputees
usually display asymmetrical walking by relying heavily on
their intact limbs because of the loss of sensory feedback.

Tracking the intact knee actually has been explored years
ago. Grimes et al. developed a mirror control scheme for the
stance phase (not a complete gait cycle). It tracked the sound
limb’s knee trajectory in the stance phase by multiplying a
gain factor to avoid over flexion while a fixed trajectory was
applied in swing phase. Bernal-Torres et al. copied the full
gait trajectory by the Kalman filter with a biomimetic
designed prosthesis but no human experiment or systematic
simulations were reported [26]. Joshi et al. developed a
control strategy by controlling the swing time to mirror the
stride duration of the intact knee while the prosthesis was
locked during stance phase [27]. Sahoo et al. aimed at
mirroring the step length by controlling the push-off force
[28]. The above approaches focused on either part of a gait
cycle or the outcome measurement such as step length and
stance time. None of them has shown feasibility of tracking a
completed gait cycle.

Virtual constraints were proposed to generate coordinated
joint motions as target joint motion profiles for the robotic
knee to track [29]. Biomimetic virtual constraints described
the joints’ geometric relationships and were encoded by
hybrid zero dynamics [30]. However, there are a few
limitations on this approach. Virtual constraints require a
simplified human model to establish the geometric relation-
ship among joints. Such a model is difficult to establish for a
human-prosthesis system. In a recent work of prosthesis
control design based on the virtual constraints [29], only a
proportional gain was derived and applied. The overall
human-prosthesis performance during locomotion is yet to be
demonstrated.

Tracking an intact knee motion poses additional challenges
beyond regulation control. Individual prosthesis users
demonstrate very different gait patterns, which are also very

different from one another, and also from healthy subjects.
This may be caused by individual’s physical conditions and/or
biological factors such as reduced or lost proprioception and
condition of socket fitting. It has long been believed that the
intact knee motion pattern changes as the user learns to walk
in a prosthesis (our data below also provide corroborating
evidence about this), tracking a moving target knee motion
has never been demonstrated by any controller. Most existing
tracking control designs based on mathematical models of the
human-prosthesis dynamics and the reference trajectory, both
are difficult or actually impossible to obtain. For data-driven
adaptive optimal control, reports on data-driven tracking
control are much less than those of regulation control. Most
approaches are based on reinforcement learning to establish
approximate solution to the HJB equation, yet, few of them
have demonstrated feasibility in engineering problems. And
even fewer results can be found to provide systematic studies
on the control design to demonstrate applicability.

In this paper, we propose an RL tracking control scheme for
the robotic knee to mimic the intact knee in different locomo-
tion tasks. In a previous experiment [31], we successfully
tested this pilot idea of RL tracking control to automatically
configure impedance parameter settings. In this study, we
formally formulate the tracking control problem, develop a
complete tracking control algorithm based on dHDP, and
provide an analytical framework to validate the real time
control performance guarantee by using this proposed scheme.
The contributions of this work include the following.

1) We provide the first systematic demonstration of an end-
to-end, continuous walking enabled by automatic tracking
control of a wearable lower limb robotic device beyond our
previous regulation control results [14]-[21].

2) We show that our proposed tracking control possesses
several important properties, such as weight convergence of
the learning networks, Bellman (sub) optimality of the cost-to-
go value function and control input, and practical stability of
the human-robot systems.

3) We provide a systematic evaluation of the proposed
tracking control using a realistic human-robot system simula-
tor to demonstrate level ground walking, slope walking under
various slope angles and walking under different paces. These
results show that our proposed dHDP based tracking control is
not only theoretically suitable, but also practically useful.

The remaining of this paper is organized as follows. Section I1
describes the human-prosthesis system and develops dHDP to
solve the tracking problem. Section III gives the Lyapunov
stability analysis of system. Section IV presents the implemen-
tation using Opensim simulations. Section V presents exten-
sive simulations. Discussions and conclusion are presented in
Section VI.

II. METHOD

Our proposed RL tracking control is built upon the finite
state machine (FSM) impedance controller (IC) framework. It
is to mimic the torque-generating capability of biological
joints to enable natural movement. Humans reportedly control
muscle activity to adjust joint impedance in walking
[32]-[34], and the compliant behaviors of legs are fundamen-
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Two control loops are coordinated to realize automatic control of the prosthetic knee based on an impedance control framework: i) an intrinsic

impedance control (left most panel of (a)) that operates at 100 Hz that creates a control torque according to (2) based on the knee kinematics and also the

impedance settings, and ii) an RL controller that is updated at each step . The output is the adjustment of the impedance setting that is to be used in the intrinsic

controller. (a) Flow chart of the automatic robotic knee control parameter tuning scheme by dHDP. (b) The dHDP controller to adjust the impedance setting. (c)

The structure of the critic network in the RL controller.

tal to human locomotion [35], [36]. Within this context,
impedance represents the inherent property of a mechanical
joint. It describes the relationship between external force and
motion produced or in other words, it is a dynamic property
that governs human joint-torque relationship. In our study, the
prosthesis joint is therefore characterized by the stiffness (K),
damping ratio (B), and equilibrium position (6,). The FSM-IC
provides intrinsic control in the form of adjustable control
torque influenced by impedance parameters. The settings of
the impedance parameters as control inputs have to be
adjusted or adapted to meet individuals’ needs including their
different physical conditions. Our proposed RL tracking
control is to automatically provide such needed impedance
parameter settings. In turn, the joint impedance affects the
knee kinematics such as peak value of knee angle
collaboratively. External force such as ground reaction force
and human reactions also affect knee angle or peak value.
However, many of these factors are difficult, or nearly
impossible, to be modeled. Gait duration is influenced by
impedance control parameters [17], as well as human’s

movement control of residual hip and intact limb in gait.
Meanwhile, the transition between double-stance and single-
stance will influence the duration as well since they have
different dynamics. Therefore, the relationship between
impedance and peak knee angle/duration is not deterministic
and difficult to model. These challenges motivate us to
consider data-driven RL control.

A. Finite State Machine (FSM) Impedance Control (IC)

The FSM-IC is common for prosthesis intrinsic control as
studies have shown that humans control the stiffness of leg
muscles and therefore joint impedance while walking, and
compliant behaviors of legs are instrumental for human
walking. The impedance controller generates a torque input to
the robotic knee based on current knee kinematics and knee
joint impedance settings.

Refer to Fig. 1(b), a gait cycle is divided into four phases in
the FSM-IC: stance flexion (STF, m = 1), stance extension
(STE, m=2), swing flexion (SWF, m=3) and swing
extension (SWE, m = 4). The phase transitions are determined
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by knee motion and gait events (heel strike and toe-off) that
are obtained from vertical ground reaction forces of both legs.
In each phase of the FSM, three impedance parameters
(stiffness K, damping B, and equilibrium position 6,) are
provided as inputs to the FSM-IC for gait cycle &

L' =K By, (0 1. M

The knee joint torque 7" is consequently generated by the
following first principle equation:

T = K'(6— (0.)") + Bl'w. )

The RL controller will adjust these impedance parameters,
ie.,

wy' = [AKY, ABY, ABe)]'] 3)

so that the updated impedance parameters are applied to the
FSM-IC to generate knee torque according to (2)

L =0 +u. 4)

B. Tracking Problem Formulation

Biomechanical studies have shown that the intact knee joint
movements or profiles change as amputees adapt to a
prosthetic device [37]. We have observed the same in our pilot
study using two human subjects [31]. Fig. 2 is an illustration
of the same phenomenon using simulations where the intact
knee kinematic trajectories were recorded, and changes in
profile features are clearly observed. The goal of the RL
controlled robotic knee is therefore to track those time varying
intact knee profile features for each and every phase during
each and every gait cycle. For a gait cycle %, the robotic knee
motion (Fig. 1(b)) featured by the peak knee angle P}
(degrees) and duration D" (seconds) is measured. Let

m __ /71 n
Z" = (D', P"). (5)
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=) 2
< 5
0.26 0.10 1.01 0353
0.07 0.26 0.06 027 &
< STE SWE E
iy 2
E] WM -
z =
0.03 0.24 0.02 0250
0 0 0 70
Impedance update Impedance update
Fig. 2. Anillustration of how the intact knee profile changes as the robotic

knee control parameters adapt during a level ground walking simulation
session. The peak angles (blue) and the phase durations (orange) are shown in
all phases.

Similarly, we measure the peak knee angle and duration of
the intact knee, and let

Y =Dy, PY). (6)
We consider a human-robot, i.e., an amputee-prosthesis
system, a discrete-time nonlinear dynamic system with

unknown nonlinearities. For the ease of discussion, we let the
dynamics be represented by

k=0,1,... @)
where the nonlinear mapping £ is Lipschitz continuous on the
domain of D£{(Z,u)Ze Z,ue U}, where Z and U are
compact sets with dimensions of Nz and N, respectively. In
the human-robot system under consideration, F' represents the
kinematics of the robotic knee, which is affected by both the
human wear and the RL controller. Because of a human in-
the-loop, an explicit mathematical model as (7) is intractable
or impossible to obtain.

Without causing any confusion and for the sake of
convenience, we drop the superscript m (m = 1,2,3,4) in the
rest of the paper because all four FSM-ICs and their respective
RL controllers share the same structure, although the RL
controllers for each phase have different parameterizations or
in other words, the control policies are different for each
phase even though they have the same structure. Then, the
tracking error between the intact knee and the prosthetic knee
is defined as

Zi = FEZ ), m=1,....4,

+

ex = Y —Zx = (ADy, APy). (3

C. dHDP for Tracking Control

Fig. 1(a) depicts the RL based solution approach to automa-
tically configure the impedance parameters of the robotic knee
to track the intact knee joint motion within the FSM-IC
framework. Each RL control block corresponds to one of the
four FSM phases. As shown in Fig. 1(a), we develop a dHDP
based RL tracking control with each of the four dHDP blocks
providing impedance parameter settings for each of the four
gait phases. Each dHDP block has an action network and a
critic network, trained for the given FSM phase only.

In the RL tracking controller, let the state be denoted by sy,
and the control input/action network output as i for gait cycle
k, ie.,

Sk = (ADy, APy),  ug = [AKg, ABy, A(6e)i]. 9

We consider the stage cost in a quadratic form

Usiour) = si” Rysy + " Ry (10)
where R, € R>? and R, € R¥3 are positive definite matrices.
Note that, our following results are also applicable to other
stage costs such as a reinforcement signal of finite discrete
levels or a general bounded sefmi-definite reinforcement
signal.

We consider the tracking problem as one to devise an
optimal control law via learning from observed data along the
human-robot interacting system dynamics. We define the
state-action O-function or the total cost-to-go as

O (g, u) = U (g, up) + Z ')’jU(Sk+j’ Mk+j)-
=)

(11)

Note that the Q(sy,ux) value is a performance measure when
action uy is applied at state sx. Such Q(sg,ux) formulation
implies that we have considered the optimal adaptive tracking
control of the robotic knee as a discrete-time, infinite horizon,
discounted problem without knowing an explicit mathematical
description of the human-robot interacting dynamics.
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For the O-function in (11), it satisfies the Bellman equation

O (s, ux) = U (s ) +yQ (Ska1, U 1) - (12)
Assumption 1: The state trajectory Y; of the intact knee is
bounded, and the initial robotics knee state Z; is bounded.
1) Critic Network: Fig. 1(c) depicts the structure of the critic
network which is realized by an universal approximator with
one hidden layer. Therefore, the approximated value is

O (ssur) = Weo kd(Wer xzk) (13)
where Wcl,k is the estimated weight matrix between the input
layer and the hidden layer, WcZ,k is the estimated weight
matrix between the hidden layer and the output layer, ¢ is the
activation function (hyperbolic tangent) in the hidden layer,
and the input z; = [sg, ux]”.

The approximation error of the critic network is

ecr =0 (sk,u) — [Q(Skfl,ukfl)_ U(Skfla“kfl)]- (14)

In the following, we use the short-hand notation Uj_; for
U(sk-1,uk—1) and similarly for others. The weights W, and

W, are updated as

~ ~

Weist = Wer + AWep. (15)

According to the gradient descend rule as in [38], AW,
and AW, can be written as

. N 1
AWer g = =lexyeciWeak [5 (1 - (f’ik)]Zk 16)
AWCZ,k = _lc,kyeck¢c,k
where ¢, x is the output of hidden layers in critic network, and
Ik 1s the learning rate.
2) Action Network: The output of the action network is the
control input

e = p(Wao ke d(Wa1 k5)) (17)
where W, 1k 1s the estimated weight matrix between the input
layer and the hidden layer, Wag,k is the estimated weight
matrix between the hidden layer and the output layer. Note,
however, that our development applies to unconstrained inputs
as well.

Based on the design principle of dHDP [38], the action
network is to minimize the total cost-to-go Q(si,ux). We
defined the prediction error of the action network as

eak = O (sk,ur). (18)
Similarly to (16), the weights W,q and W, are updated as

Wasr1 = Wag + AW,k (19)
and AW, x, AW,2x can be written as
~ A 1 2 A 1 2
AWar g = —lajear [Wclkz (1 - ¢c,k) WCu,k] > (1 - ”k)
A 1 1 2
X Wa2,k§ ( - ¢>a,k) Sk
AW = ~lagear | Werks (1= 82,) Weuk| = (1- 1) 6
a2,k a,k€ak 2.k ) ¢k cuk ) k) Pa.k
(20)

where Wcu,k is the weight vector associated with the input uy
(Fig. 1(c)) from action network, i.e., the part of W, which
connects with uy, ¢, is the output of hidden layers in actor
network, and /, 4 is the learning rate.

III. LYAPUNOV STABILITY ANALYSIS

In this section, we provide a qualitative analysis for the
weight convergence of the actor-critic networks, the Bellman
(sub) optimality of the control policy, and practical stability of
the human-prosthesis system.

A. Preliminaries

Let W, W denote the optimal weights, that is,

W, = argAmin HQ(sk,uk)”

. . (21)
W = argAminH)’Q(Sk,uk) + Uit = Q (st 1) ||
We

and the optimal O -value and optimal control policy are
defined as

Q* = W:2¢c,k +Ecks u' = ¢(W22¢a,k) t&auk (22)
where &.x and &, are the reconstruction errors of neural
networks. From (21) to (22), we implied that the persistent
excitation condition is satisfied.

Assumption 2: The optimal weights for the actor-critic
networks exist and they are bounded by two positive constants
Wam and W, respectively.

Wil < Wam,  ||W (23)

Accordingly, the weight estimation errors of the actor-critic
networks are described respectively as

< We.

~ A

Wa,k = VAVa,k - WZ, Wek :=Wep— Wj (24)

Lemma 1: Consider the weight vectors of the critic network.
Let

1 T s 1 T s
Lig= 7 trlWhWearl,  Log=——ir|[Wh Weri] (25)

k@1
and let Assumption 2 hold. Then the first difference of L, is
given by

2 2 2 2
AL = =V?||Zeil|” = (1 =V lealides]| )
X |y Werkex + U1 = Werk-16ex1 I

+IYWhtek + Ukt = Wea o1 b g I (26)
where .; = Weoxéex is an approximation error of the critic
output.

And the first difference of Ly is given by

1 .
AlLri < a—l(Vzlc,kII)’Wcz,k%k + U1
— Wea g1 Gek—1 IPIAKIPl1xe.el
+ Y Wer kX kAT I+ Yy Wea ke
+ Up—1 = Wer k1 Pe k-1 ||2) (27)

where a; >0 is a weighting factor and Ay is a vector, with
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A =51 -2 Wark.

The proof of Lemma 1 can be found in [39].

Lemma 2: Consider the weight vector of the action network,
which leads to the control input u; of the human-prosthesis
systems (7). Let

1 - .
Ly = tr[ . kWaZ k] Lyy= I s [’"[ng,kwal,k] . (28)

la,ka
Then the first difference of L3 x is bounded by

1 o R
ALz (k) < g( — (1= Ly lla2 dl PIW e 4k Crl ) Wz kel

+4||§Lk||2+4||W2¢ck||2+||wL2kck§ak||2) 29)

where £, = Wapxdax is an approximation error of the actor
network output, Cy = %(1 —¢fk)WC,,,k X %(1 —u]%); ap>01is a
weighting factor.

And the first difference of L4y is bounded by

1 ~ .
ALy(k) < a—s(za,kuWcz,k¢c,k||2||Wcz,kckD,{||2||sk||2

+IWeaadeslP +IWar sl PIWeas CDFIR) - (30)

where D;, = %(1 —¢3 k)VAVaz,k, and a3 > 0 is a weighting factor.
The proof of Lemma 2 can be found in Appendix.

B. Weight Convergence, (Sub) Optimality and Practical Stability

Definition 1 (Uniformly Ultimately Boundedness of a
Discrete Time Dynamical System [40]): A dynamical system
with states x; is said to be uniformly ultimately bounded with
ultimate bound b > 0, if for any a > 0 and ¢ > 0, there exists a
positive number N = N(a,b) independent of ¢, such that
[l Xkl < b for all k > N + ¢t whenever ||%]| < a.

In the following, we consider the dynamics of W, and
Wer.

Theorem 1 (Weight Convergence): Let Assumptions 1 and 2
hold, and let the weights of the actor and critic neural
networks be updated according to (16) and (20), respectively.
Then W,iand W,; are uniformly ultimately bounded
provided that the following conditions are met:

ap—y
(sl + Zadl el

@3 — @2

lc,k <

G

la,k <

as|WE, WVea oD el

Remark 1: As y, a1, az, @3 can be found in (11), (25), and
(28), for l.x, lax to be positive, it is necessary that @; >y >0
and a3 > ap > 0. Those conditions can be satisfied in the
following induction.

Proof of Theorem 1: We introduce a candidate Lyapunov
function

Liy=Lix+Log+L3x+Lay (32)

where Lik, Lok, L3k, and Lsy are defined in (25) and (28).
The first difference of L; can be rewritten as

4
A< =02 = el = 0 =7 leslfoesl

7 lck

A el - ol Wersdes + Uiy

a k

We ka”

-W c2,k—1¢c,k—1||2 - ||W .

4 1
X[asl = = [ WeasCi ||2||Sk||2 "%
L Wesesl + S Wera el Pl
" @2 (0%)

+yWirder + Ukt = Wer g1 1“
1

N 21 2
c2,kaD]{” ”Wal,ksk“ :
(33)
To guarantee that the second and the third terms in the last

expression are negative, we need to choose learning rates in
the following manner:

+ L Wer x| 11412
@y

2
2 Yyl a2 Y
V=Vledllpes]” = A el = >0. 34
aq [07]
Therefore,
) — ’y
lex <m . (35)
e a(IexlP+ ZIAIPIAP)
Similarly, for the action network we obtain
1 57 \T 2 2
— = — L ill(We2 )" Cill“lldpa il
[0%) [0%)
1
——IIDka Wer ilPllsell> = — >0 (36)
a3
and then
a3 —an
lak < (37)
T all LZka”2||¢ak||2+a’2”WL2kaDT”2“Sk“2
As is known, the following inequality holds:
||7 bk Ukot = Wea o1 e 1||
<4y |w, 2¢ckl| +AUT | +2||Wea g1 Gk 1|| (38)

Applying the Cauchy—Schwarz inequality, we have
—||W2¢ck||2+—||W02kck|| Il

+ YW der + Ukt = Wea o1 bej—1 |2

Y i 2 T T 112117k 2
+a—||Wc1,kxc,k|| 1AL] +ZI|Wc2,kaDkll IWar g sell
1

4
< (447 + DWacnden)” +4U5 + - (Wicnindn)”

1 1
+ Z(WZCmCmWZanﬂsam)z + Q_S(WZCmCmDmW]amsm)z =M
(39)

where ¢um, dems Unms Wiems Woems Ams Ciy Dy S, and z,, are
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the upper bounds of ¢ux, dek, Ur-1, Wer ko, Weaks Aks Ci, D,
sk, and z, respectively.
Substituting (38) and (39) into (33), we obtain ALy <0

under the condition that ap > ;‘—2, constrained /,k, I in (31),

and
ekl > (| =
Cek .
V-

Assumption 1 leads to that the initial tracking error sg is
bounded, then the initial stage cost Uy in (10) is bounded.
There exist /.0, I, meeting condition (31) with the bounded
initial weights VAVa,o, VAVC,O and tracking error sg. From
Definition 1, AL; <0 means that the estimation errors W,
and W, are bounded from step k to step k+ 1, respectively.
Based on Assumption 2, Wa,k and Wc,k are bounded from step
k to step k+1. AsF in (7) is Lipschitz continuous, the
bounded control law u; results in bounded Z;,, and then we
obtain the bounded tracking error sxy; under Assumption 1.
The bounded Wa’k_;.l and VAVC’kH result in a bounded control law
ug+1, then the resulted stage cost Uy is bounded. As there
exist appropriate lci+1, lox+1 meeting condition (31) with
bounded Wa’[ﬁ_l, VAVC’kH and sg+1, by mathematical induction,
we have the estimation errors W,; and W, uniformly
ultimately bounded. u

Theorem 2 ((Sub) Optimality Result): Under the conditions
of Theorem 1, the Bellman optimality is achieved within finite
approximation error. Meanwhile, the error between the
obtained control u; and optimal control #* is uniformly
ultimately bounded.

Proof of Theorem 2: From Assumption 2 and Theorem 1,
we obtain that O(sg, ux) and Q* are bounded. Furthermore, u
and u* are bounded from Remark 2 and Assumption 2.

From the approximate Q-value in (13) and the optimal Q-
value in (22), we have

19Csk, i) = Q7N = [IWea ke = Wer e — Ecll

(40)

< ||W62,k||¢cm +Ecm- (41)
where &, is the upper bound of &..
For u; and u* from (17) and (22), we have
g — || = lpWazkai) — p(Worai) — Eapll.  (42)

Similarly to (50)

Wt ka2 i = Wi dar ikl < Waz klldazm- 43)
Then, by using the Lagrange Mean Value Theorem, (51)

can be rewritten as

* 1 Y
ot —u™|| < §||Wa2,k”¢am +Eam (44)

where &, is the upper bound of &,. This comes directly as
Wl and ||W,,]| are both uniformly ultimately bounded as the
time step k increases as shown in Theorem 1. It demonstrates
that the Bellman optimality is achieved within finite
approximation errors. [ ]

Remark 2 (Practical Stability): From Assumption 1,
Remarks 1-3, and Theorem 1, we obtain that all the signals
(such as ug, Zy, Y, and s;) are bounded in the human-robot

system (7). As shown in Theorem 2, the approximated Q-
value in (13) and the resulted policy (17) achieve (sub)
optimality as time step k increases. This demonstrates that the
stage cost in (10) approaches zero in the sense of uniformly
ultimately boundedness. As such, the tracking error (8)
approaches zero in the sense of uniformly ultimately
boundedness also as time step & increases. Therefore, the
considered human-robot system is practically stable.

IV. OPENSIM SIMULATION STUDIES

Table I is a summary of how our proposed dHDP tracking
control is implemented and applied to configure the
impedance parameters of the robotic knee. Pertinent
information for the implementation steps is provided below.

TABLE1
IMPLEMENTATION OF SIMULATION STUDIES

Initialization (gait cycle £ = 0);

Set simulation conditions such as walking speed, subject

physical conditions (body mass, height, etc.), and small

knee angles for both knees;

Random, initially feasible impedance parameters;

Random initial weights in actor-critic network;

Repeat (for a complete OpenSim simulated gait cycle)
Obtain target feature Yy (5) and robotic feature Z; (6);
Obtain state dynamics s; using (9);
if sx > safety bound then

Reset to initial impedance;
Repeat the implementation procedure from the top
but keep the weights of actor-critic networks;
end if
Obtain uy through actor network;
Obtain stage cost Uy using (12);
Update critic network using (16);
Update action network using (20);
Use uy as input to the FSM-IC by updating the
impedance parameters using (4) for the next gait cycle;

Until tracking criteria met

A. OpenSim Model Setup

We investigated this tracking control problem using
OpenSim, a well-established simulator in the field of
biomechanics [41]. A bipedal walking model, as shown in
Fig. 3(a), includes a body of five rigid-segments, linked
through a one degree of freedom pin joint and the pelvis was
linked to the ground by a free joint to allow free movement.
The model settings, such as segment length, body mass and
inertial parameters, followed the lower limb OpenSim model
[42]. In this study, the left knee was defined as intact while the
right as prosthetic to enable locomotion in a single simulation
model. The intact knee was controlled by a fixed set of
impedance parameters settings while the prosthetic knee was
controlled by the RL controller with its impedance parameters
updated for each gait cycle.
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Fig. 3.
The next gait is used to measure the tracking error as the prosthetic knee

OpenSim model. (a) Five-rigid segment bipedal walking model; (b)

needs to copy the intact knee that is half gait ahead.

Simulating a gait cycle in OpenSim requires specifying
initial model settings such as walking speed v, and v,, both
knee angles 6; and g which are set to small numbers near
stance position. We added artificial Gaussian noises to the
state s and control ¥ to simulate sensor noise and actuator
noise, a consideration to make the simulations more realistic.
The sensor noise magnitude was set at 20% of the
performance tolerance bound and the actuator noise was 1%
of the maximum action value.

B. Simulation Procedure

All simulations were carried out in trials. A trial is a
continuous experiment of 500 gait cycles when RL tracking
control is applied to tuning the impedance parameters of the
robotic knee under different simulation scenarios. We
performed two sets of simulations: training trials and testing
trials. During training, we performed 30 training trials each
from a randomly initialized controller, i.e., a set of randomly
generated initially feasible impedance parameter settings, that
allow the simulator to simulate balanced walking without
falling. During testing, we randomly selected 10 successful
controllers (i.e., 10 sets of impedance parameters after
training) and applied those control policies (i.e., the actor
network weights) as initial controller parameter settings for
tracking new, untrained trajectory profiles. Then we tested
each of the 10 controllers (policy network weights) to perform
30 new trials, each of which has a new set of randomly
selected initial impedance parameters.

A trial is considered successful if the tracking error in (8)
reached an error tolerance bound (Table II, bottom row).
Specifically, for each of the 4 phases (Fig. 1(b)), if the
tracking error was within the tolerance bound for 8 out of 10
consecutive gait cycles, tracking process in this phase was
considered convergent. If all 4 phases had converged within
500 gait cycles, the trial was a success.

To ensure subjects safety (not stumble or fall), a safety

TABLE 11
SAFETY BOUND AND TOLERANCE BOUND
Phase 1 Phase 2 Phase 3 Phase 4
Safety bounds
[Angle (rad), [0.184,12] [0.131,12] [0.157,12] [0.105, 12]
duration (%)]
Tolerance bounds
[Angle (rad), [0.0263,2] [0.0263,2] [0.0263,2] [0.0263,2]
duration (%)]

bound was introduced based on the realistic conditions of
balanced walking. Specifically, as shown in Table Il (top
row), the safety bound was set at 1.5 standard deviations
above the knee kinematic peak values observed in each phase
[43]. If the tracking errors exceed the safety bound, which
means the prosthetic profile may place subjects in unsafe
areas, the impedance parameters of the prosthetic knee will be
reset to the initial impedance. Note however, the actor and
critic network weights are retained for further training until
meeting tracking criteria.

In obtaining all results, we set the weighting matrices in the
stage cost (10) as: Ry =diag(1l,1) and R, =diag(0.1,0.1,0.1).
For the critic network, we used 8 hidden layer neurons with
hyperbolic activation function and we used a linear output
layer. For the actor network, we used 6 hidden layer neurons
with hyperbolic activation function and we also used a
hyperbolic activation function for the output layer neuron so
that the control inputs are constrained. For both networks,
learning rate was 0.1. The actor-critic network was updated
every gait cycle until reaching trial success.

C. Simulating Realistic Walking

To evaluate the efficacy of the proposed dHDP tracking
control, we performed a systematic simulation study to
evaluate human-robot walking performance under RL tracking
control. We emulated three walking conditions: ground
walking, walking on different terrains and at different paces.

Scenario 1 (Level Ground Tracking): The intact knee was
operated by a fixed set of impedance parameters at all time
while the robotic knee impedance parameters were controlled
by RL controller. Note that, fixed impedance parameters still
provide realistic control according to (2) as the intact knee
was also controlled by FSM-IC. For both the training stage
and the testing stage, the RL controller was required to
successfully track the intact knee profile within 500 gait
cycles, while the OpenSim setting was placed at constant
walking pace under level ground condition.

Scenario 2 (Walking on Different Terrain): To simulate
walking on different terrains, we provided different gait
profiles for the intact knee which correspond to different
impedance control parameters. The changing profiles of the
intact knee were then the new moving targets for the
prosthetic knee to track. Five randomly initialized impedance
parameter sets that could enable balanced walking of the
human-robot system were generated. The impedance
parameters of the intact knee were randomly selected from
this pool of 5 different gait profiles every 20 gait cycles.
During training, the controller was required to successfully
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track the intact knee for 3 consecutive times with respective
knee profiles. During testing, a new pool of 5 sets of
impedance parameters was generated and used on the intact
knee, the respective profiles of which were tracked by the
robotic knee. Again, the controller was required to
successfully track the intact knee profile for 3 consecutive
times.

Scenario 3 (Changing Pace): We examined RL tracking
performance when the pace changes. The simulated pace
changes were implemented in a sequence of [100% — 112% —
100% — 88%] of the initial pace. Changing pace took place
once the controllers successfully tracked the intact knee by
meeting convergence criteria. The controller must complete
the full sequence to complete the training stage. In the testing
stage, the pace change was placed in a different order of
[100% — 80% — 100% — 120%] which also signifies a
greater variance than the respective conditions for training.
Same as in the training stage, each controller must finish the
full sequence to be counted as a success.

V. RESULTS
All three scenarios were simulated in both training and
testing stages with the same human subject. Table III shows
the tracking performance for all three scenarios.

TABLE III
SIMULATION RESULTS OF ALL THREE SCENARIOS

Scenario Task Success rate Tuning steps
1 training 1 64.6+84.72
1 testing 1 36.30+57.22
2 training 0.97 55.76 +55.18
2 testing 1 19.16 £15.23
3 training 0.8 52.46+32.75
3 testing 0.92 42.75+37.87

In Scenario 1, a 100% success rate was achieved with 64.6
average steps to fully learn to track the intact knee. The RMS
tracking error was reduced from 0.0588 to 0.0131 radian of
peak angle and from 1.96% to 0.69% of phase duration. In the
test stage, because a trained actor network was used in
initialization, an improvement in tuning speed was observed
from 64.6 to 36.3 average steps. The RMS tracking error has a
similar performance.

In Scenario 2, a 97% success rate was achieved with 55.8
average steps for successfully tracking the intact knee each
time. The RMS tracking error was reduced from 0.0581 to
0.0124 radian of peak angle and reduced from 1.82% to 0.66%
of phase duration. In the test stage, the trained policy of actor
network shows the ability to track the target profile rapidly.
An average of 19.16 tracking steps with a 100% success
rate shows the ability to track a changing target effectively.
Fig. 4(a) shows an example of typical training and testing
trials. The RMS tracking error has a similar outcome in both
training and testing as they share the same success criteria.

Scenario 3 focuses on examining tracking performance

reflected in gait duration. 80% success rate was achieved with
52.5 average steps for successfully tracking the intact knee at
different paces. The RMS tracking error was reduced from
0.0573 to 0.0103 radian of peak angle and reduced from
1.90% to 0.92% of phase duration. In the test stage, the trained
policy of actor network shows a slightly improvement on
tracking speed. But it greatly improved the success rate from
0.8 to 0.92. Fig. 4(b) shows an example of typical training and
testing trials. The RMS tracking error has a similar outcome in
both training and testing as they share the same success
criteria.

Fig. 5 shows RMS tracking errors for all trials in all
simulation scenarios. A significant reduction in tracking error
was observed under all conditions. The difference between
training and testing is minor because they use the same
randomization in initial impedance parameters and the same
convergence criteria.

VI. CONCLUSIONS AND DISCUSSIONS

We have introduced a new RL based tracking control
scheme for automatic tuning of robotic knee impedance
parameter settings of a robotic knee to track the intact knee
kinematics. For the first time, we successfully demonstrated
stable and continuous walking in simulations of a human
wearing a robotic prosthesis which was designed to track the
intact knee motion.

Mirroring the intact knee motion by a prosthetic knee is an
intuitive idea which has been proposed for decades, but has
not been successfully demonstrated. The robotic knee control
to mimic the intact knee joint is a tracking problem in
classical control. Even though many control theoretic
solutions exist, such as backstepping [44]-[46], observer-
based control [47] and nonlinear adaptive/robust control [48],
[49], they are inadequate for this problem as they require an
accurate mathematical description of the system dynamics,
which involve co-adapting human and robot in this case, and
which are nearly impossible to obtain. Additionally, those
control theoretic approaches focus on the stabilization (in the
Lyapunov sense) of the nonlinear dynamic systems without
addressing control performance such as the Bellman
optimality.

Recently, some results emerged to tackle these issues using
data-driven, learning enabled, nonlinear optimal tracking
control designs [50]. Unfortunately, many of the reported
results have focused on theoretical analyses, which are usually
based on requiring a reference model for the desired
movement trajectory and/or control trajectory. They are thus
not practically useful.

In this paper, we have presented a complete tracking control
algorithm based on dHDP. Additionally, we have systemati-
cally evaluated the performance of the proposed tracking
controller. Our simulation results have shown effectiveness of
the tracking controller for different walking tasks that emulate
level ground walking, walking on different terrains and at
different paces. Based on our previous work, we expect these
new results to be verified in human experiments at a future
time.
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APPENDIX

Proof of Lemma 2: The first difference of L,; can be
written as

AL3,]¢ = ]

tr [WLM W k1 = Wgz,kWalk] . (45)
a,k@2

According to (19) and (20), Waz,kﬂ can be rewritten as

~ ~

War ki1 = Waz et =W,
& & 5 T
= Wa2k — la,k¢a,k WcZ,ka[WCZ,k¢c,k] - WZZ

= Wark = lakbak WerkCrlWerkex]” (46)
Based on the above expression, we can obtain

tr[WZz’kH WaZ,kH]
= W Wark + L s PIWer s ClP W x b 4l
~ 2k Wer kClWerades” Za(k). 47

Substituting (47) into (45), we have

WcZ,k¢c,k | |2

1 -
ALz = z(la,k ||¢a,k||2 ||Wc2,ka||2
+IWez ks = WeraCrla |~ || Weza CidaI”

- ||Wc2,k¢c,k”2)~ (48)
Note that

|Wez ks — Wcz,kck§a,k||2 - ||Wc2,ka§a,k||2
<2 ||Wc2,k¢c,k||2 + ||Wc2,kck£a,k||2

* | WeaaCedas|[

<2 ”(Wcz,k + W:2)¢CJ<

< 2(||Weaaer]| +IWeadeall)” + | WeraCodaa |

<4 ||§c,k||2 +4 ”W§2¢c,k||2 + ||Wcz,ka{a,k||2 : (49)

Then we obtain (29) by substituting (49) into (48).
The first difference of L4 ; can be written as

ALyy = tr[WTl,kHWal,kH - W;’kWal,k]- (50)

lajas a

According to (19) and (20), Wal’k+1 can be rewritten as

Wat kst = Watgr1 =Wy,
=W — LW, D CITWT T 51
= Watk+1 = lagWer ke kDiCr W ) - (51)
Let us consider
o
tr[Wal,kWal,k]
o 1i 2 I 211y T\ 016,112
=W Wark+ L |[Weakde|||WeanCeDE|| sl

=2l k VAch,kaD;{fﬁcT, kWCTz,kWal,k Sk- (52)

Authorized licensed use limited to: ASU Library. Downloaded on August 02,2022 at 02:59:40 UTC from |IEEE Xplore. Restrictions apply.



WU et al.: ROBOTIC KNEE TRACKING CONTROL TO MIMIC THE INTACT HUMAN KNEE PROFILE

Then, by using the cyclic property of matrix trace, the last
term in (52) is bounded by

We obtain (30) by substituting (52), (53) into (50).

A A T ~
=2k Wc2,kaD[{¢£ k (Wc2,k) Wat i Sk

WcZ,kaDI{HZ||Wa1,ksk”2)- (53)
[ |

Wcz,k¢c,k||2 +

< la,k(
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